
(C) Copyright IBM Corp. 2018 All Rights Reserved.

1

Ownership and Control of Firmware in Open Compute Project Devices
Elaine Palmer (erpalmer@us.ibm.com), Tamas Visegrady (tvi@zurich.ibm.com), and Michael Osborne

(osb@zurich.ibm.com), IBM Research Division
9 November 2018

1 Introduction
A country music song made famous by Garth
Brooks in 1990 declares, “I’ve got friends in low
places,” noting that one can always rely on
ordinary people to help a friend in need.
Firmware is the friend in the “low places” of data
centers. It runs in servers, memory subsystems,
storage systems, cooling units, communications
controllers, power management systems, and
other devices. These systems and subsystems
rely on firmware to verify the soundness of the
hardware, to transfer control to subsequent
software, and, in many cases, to operate the
hardware directly. Firmware typically has full
access to the resources of a system, such as
volatile and non-volatile memory, processors,
coprocessors, voltage regulators and fans. What,
then, if firmware were to become irreparably
modified, whether by mistake or malice?

2 Firmware Ownership in the Open

Compute Project
The Open Compute Project (OCP), defines itself
as “a collaborative community focused on
redesigning hardware technology to efficiently
support the growing demands on compute
infrastructure.”1 Two OCP projects, “Security”2
and “Open System Firmware”3 incubation
projects, have identified security as critical to the
resilience of the compute infrastructure. As these
projects attempt to make the firmware in OCP
devices as open and secure as possible, the
concept of ownership repeatedly arises.
Ownership establishes the authority to initialize
and update firmware in a device.

The goal of this paper is to provide tutorial
information about firmware ownership as
requested by members of multiple OCP projects.
Firmware ownership affects the overall security of
OCP devices, which, in turn, affects the security
of the compute infrastructure in which the devices
are deployed. This paper describes secure and
efficient methods of establishing, representing,
and transferring ownership. It provides detailed
examples of ownership transfers throughout the
lifecycle of a device. Finally, it relates these
examples to OCP’s tenets of efficiency,
scalability, openness, and impact.

The information herein is based on the authors’
decades of work in designing and implementing
ownership in a broad range of security devices,
from smart card chips to servers.

3 The parties involved
Consider a simple example of a data center that
procures and deploys a thousand identical new
devices. The devices arrive with firmware that is
functional, but outdated. After first installing the
devices, the data center staff must update the
firmware, and continue to update it, as new
versions of the firmware are released, throughout
the life of the device. When the device is
ultimately taken out of service, it is sent to a
reclamation center, where it is stripped of useful
parts, and the remaining parts are scrapped. In
this simple example, there are only three parties
involved: the initial manufacturer, the data center
operations staff, and the reclamation company.

A more realistic example involves more parties,
each with their own responsibilities and concerns,
such as

• suppliers who furnish component parts to the

device vendor
• original design manufacturers (ODMs) who

assemble the components before the devices
are rebranded by the device vendor

• independent vendors who write the firmware
• testing facilities that test the device and its

firmware
• third party evaluation agencies who review

the security of the firmware
• the data center’s staff who configures the

devices (e.g., is power saving mode always
enabled?)

• the chief information security officer’s staff,
who determine and audit the security
configuration of the devices (e.g., is
encryption always enabled in storage
media?)

• the data center customers (e.g. is my
application key adequately protected in this
hardware security module?)

Each of the parties has a vested interest in the
configuration and security of the device firmware.

(C) Copyright IBM Corp. 2018 All Rights Reserved.

2

4 The rights and privileges of the firmware
owner

In this paper, we use the term “owner” (others use
use “administrator”, “officer”, or “authority”). The
firmware owner is not necessarily the one who
purchased a device, and may not even have
physical possession of it. Nor does the firmware
owner necessarily hold the intellectual property
rights to it. Instead, the owner controls what
firmware is allowed to run on a device.
Consequently, the owner controls its security.
Ron Minnich, a software engineer at Google and
co-chair of the Open Compute Project on Open
System Firmware, observes, “If you don’t own
your firmware, your firmware owns you”.

The owner establishes ownership of a device by
installing a cryptographic signature verification
key or certificate into the device, along with the
first version of firmware. In the simplest case, the
device uses that key to verify the authenticity and
integrity of the firmware (see Figure 1). For
example, before selling its devices, a vendor, in
its role as the owner, installs its own signature
verification key and firmware into them. The
devices are deployed, and later, when the
firmware is outdated, a new version, digitally
signed by the vendor, is presented to each
device. The device attempts to verify the digital
signature, and, if the verification succeeds,
installs the new version on the device. If the
verification fails, for example, if the wrong party
signed it or if the firmware was modified after it
was signed, then the device rejects it.

Figure 1

That example, while straightforward, is not
common. Instead, it is more common for the
owner to sign other keys (not the firmware itself),
and those other keys are then used to verify the
firmware. (See Figure 2) This key hierarchy
allows the device owner to delegate the authority
to other parties, who sign firmware using their
keys.

Such a hierarchy is in use today in servers which
implement secure boot. In those systems, the
firmware owner is typically the system or platform

manufacturer. Systems are shipped with default
firmware and a key hierarchy pre-installed. This
initial configuration also controls whether to allow
another entity to take over ownership, either
through physical presence or authenticated
remote configuration services.

Figure 2

5 The problem to be solved
Attackers attempt to take control over devices in
order to install or execute malware. As a device
owner, an attacker can replace or augment
legitimate firmware with malware, then use it to
control the device or to install additional malware.
Even devices which support secure boot are
programmed to accept firmware from their
owners. The problem, then, is how to prevent an
attacker from establishing ownership.

Although there are many issues around
establishing ownership, two key ones that we
address in this paper are

1. How can a secure device be initialized with

its very first credentials?

2. Once initialized, how can ownership of the
secure device be transferred to another
party?

6 Initialization – The Origin of the Device’s
Universe

How can a secure device be initialized with its
very first credentials? There are at least three
common ways: 1) imprinting, 2) installing
temporary transport keys and initializing later,
and 3) establishing permanent keys during
manufacture.

(C) Copyright IBM Corp. 2018 All Rights Reserved.

3

6.1 Imprinting in the Field
Imprinting allows the first initializer of a device to
establish the device’s identity and membership in
an organization. Device: “Hello server, I am
device ABC, my public key is ABCKpub and I want
to become part of your system.” Server: “Hello
device ABC, you are hereby part of the XYZ
server owned and managed by XYZCo.” The
device may create its own initial keys, or they can
be generated externally and injected. Those keys
must be certified, lest the device be
indistinguishable from other devices that are
outside of the organization. Further attempts to
imprint the device are either allowed (after wiping
all secrets) or forbidden (by blowing a fuse or
setting an unmodifiable bit).

It is important that the chain of custody, and the
certifying and imprinting operations be physically
and logically secured. If not, then attackers can
trick the certifying operation to certify a software
clone or to certify keys controlled by the
attackers. Device: “Hello certifying server, I am
device ABC (but I’m really a software clone
pretending to be real hardware)”. Or, Device:
“Hello certifying server, I am device ABC (but I’m
really hardware with a hacker-controlled key
inside)”. The certifier may not be able to tell the
difference, when it’s the very first step in
establishing ownership.4, 5

In an insecure supply chain, attackers can use
stolen, but authentic hardware that they have
imprinted to impersonate legitimate hardware.
“Hello Bank of New Currency, I look just like all
your other devices. You can trust me because
I’m real hardware.” The device, of course, is
indeed real hardware, and it may report that it’s
running legitimate firmware, even though it’s
running an attacker’s firmware.6

6.2 Temporary Transport Keys
Similar problems exist in the Internet of Things
(IoT), where thousands of low cost devices are
manufactured, initialized with applications, and
personalized with the user’s information. There,
devices are initialized with a secret transport key
that is common across a large batch of devices,
and is known only to the manufacturer and the
next organization to process the device. When
devices have limited processing and memory
resources, initialization using a secret key is fast
and easy. Using this technique requires physical
and logical protection of the secret transport key.
Some organizations use public / private key pairs
instead of shared secret keys.

When the number of organizations is relatively
small and their identities are known in advance,
such a scheme is feasible. However, temporary
transport keys are not always an option, because
at the time of manufacture, the identity of the
“next” organization is not known, nor is it known
what quantity of devices the unknown
organization will order.

6.3 Permanent Keys at Manufacture
Manufacturers can establish ownership during a
once-in-a-lifetime (of the device) initialization step
performed in a secure manufacturing facility.
There, the device generates its first key pair.
Then, the manufacturer digitally signs and installs
a certificate containing the device’s unique id and
public key, and information about the
manufacturer. Trusted Platform Modules are
initialized this way.

One such device is the IBM 4767-002 PCIe
Cryptographic Coprocessor,7 a device that has
been evaluated at level 4 under the Federal
Information Processing Standard (FIPS)140-28.
Its design allows one general-purpose device to
be programmed and updated by multiple
authorities for widely different security
applications. The IBM 4767-002 initialization step
takes place after the module has already been
encapsulated in its tamper-responding enclosure.

When security is the utmost concern, initializing a
device with its permanent and secure identity at
the time of manufacture is preferred. In a device
with tamper protection, the device can assert its
identity, its configuration, its owner(s), and its
manufacturer, and it can protect itself, even
before it leaves the manufacturing facility.9

6.4 Hybrid techniques
The techniques listed above can be combined to
meet the needs of the manufacturer, the stage of
manufacturing and device’s next destination. For
example, a batch of devices might use a shared
secret transport key to get them from a chip
fabricator to an adapter vendor, but later, the
adapter vendor injects unique key pairs and
matching certificates. In another example, a
vendor might install permanent keys at
manufacturing, but those keys control only one
portion of the firmware. The remainder of the
firmware is controlled by the customer, who
imprints secondary keys in the field.

(C) Copyright IBM Corp. 2018 All Rights Reserved.

4

7 Transferring Ownership
As noted in section 3 above, any one or a
combination of parties may furnish the firmware
or keys for a device. How then, can a device
identify all the parties that may control it
throughout its lifecycle?

7.1 Functional Requirements
In our work, we have identified common
functionality required to implement the concept of
firmware ownership and ownership transitions.
This functionality is required by a range of
devices, from smallest to largest, such as smart
card and passport chips, Trusted Platform
Modules, hardware security modules (HSMs),
baseboard management controllers, service
processors, large cloud servers and their
subsystems.

In this section, we describe a subsystem that
meets these requirements using a simple state
machine (in hardware or firmware), persistent
registers or memory locations, and digital
signature verification operations.10 Other
implementations are possible.

7.1.1 The	Minimum	Requirements	
In order for a device to validate the origin and
integrity of firmware it is expected to run, it must

a) remember and write protect the firmware

owner’s public key (or a list of keys), and

b) verify the digital signature of firmware that
was signed (elsewhere) using the owner’s
private key.

The owner’s public key is typically stored in an
X.509 certificate. Note that we assume that a
public key algorithm is used, because, in addition
to signature verification, it provides non-
repudiation of operations. The public key must
persist through power cycles. Read protection of
the public key is not required, but write protection
is. It must be protected from malicious or
inadvertent changes that would allow the wrong
party to become the owner.

7.1.2 Requirements	that	support	transfer	of	
ownership	

The minimum requirements in 7.1.1 above
assume that a device, once owned, remains in
the control of that owner. However, in our
experience, such a scenario is unlikely. Instead,
as a device progresses through its lifecycle, its
ownership and the keys inside it will change.

Consider, for example, a device as it transitions
from a fully open manufacturing test floor, to a
final test stage, and then to a courier for transport
to its final customer installation. The first keys
used on the open test floor have little to no
security requirements. Anyone can update them
and digitally sign tests to exercise the device
(assuming signature verification is even enabled
at that time). At the final test stage, operators
install production keys to test that firmware
signature verification works prior to shipment.
Finally, at the customer’s data center, the
customer may replace the production keys with
ones with stricter controls and pedigree.
In our experience, devices large and small,
simple and complex, go through these firmware
ownership transitions. It is important, then, to
generalize the concepts of firmware ownership
and secure transition of ownership in an easy-to-
implement representation that uses very little
memory.

7.1.3 Representing	 ownership	 in	 persistent	
memory	

Our system requires a small number of
ownership-representing registers, and certain
additional attributes, to describe the current state
control, short-term past history, and a designated
successor:

• Current owner, storing an owner (public key)

certificate, certificate hash, issuer + serial
number, or an unambiguous representation
of the currently authorized owner. We
generally assume that the corresponding
private key is not present within our system.
It would be stored in a secure signing device;
we only process authenticated messages.  	

• Previous owner, storing the authentication
information about the last accepted owner.  	

• Designated successor, if present, contains
a certificate, hash, or other identification of
the next targeted user. The device will reject
transfer of control to any other designated
entity.  	

• Reversibility: a Boolean attribute, which
represents the capability of the previous
owner to revert the device back to his control.

(C) Copyright IBM Corp. 2018 All Rights Reserved.

5

7.1.4 Commands	
At the time of an ownership transfer, the device
verifies the digital signature on a command
requesting an ownership change. Incoming state-
changing commands are authenticated using the
current owner’s public key. In typical certificate
management scenarios, an ownership change
command can take the form of a “transition
certificate” designating the new owner as an
authorized one, digitally signed by the current
owner.

7.1.5 State	machine	
The entire operation of changing ownership can
be represented by a simple state transition
machine, which uses two inputs to determine a
new state: the current state of ownership as
described in section 7.1.3, and a command as
described in section 7.1.4 determine the new
state of ownership. Worked examples of an
ownership state machine and common
transitions are in section 7.1.7 below.

7.1.6 Extensions	
Note that our directly used registers represent
only one previous owner. Maintaining a full
history of past owners may be added. A one-way
chained certificate list could be maintained
parallel to our current-ownership information, and
validated against it. Since such digitally signed
certificate chains may be validated offline, we
may let any other entity aggregate past history,
while our system only maintains the set of three
active certificates.

The system trivially generalizes to multiply-
controlled environments, such as those requiring
multiple signatures to authenticate critical
commands. Such policies could be represented
as additional attributes, such as describing
maximum and required number of signatures.

7.1.7 Worked	Examples	
Figure 3 shows examples of transfers of control,
from the fictional originator “Republic of Utopia”
(UTO) to its counterpart in the similarly fictional
“People’s Republic of Utopia” (PRU)*. In our
example, UTO1 and UTO2 represent different
signing keys controlled by the originator, PRU is
the signing key of the recipient, and SVC is a
service key shared and known to both of the
mutually suspicious participants.

* Standard entities used as examples in literature related to
electronic documents11

1. Control of ownership from UTO to PRU may
pass through the possible states, depending
on the policy used: Controlled entirely by the
“current” owner, either without relevant
previous owner (a clean slate), or with a
current owner, rolled over from a previous
certificate within the same organization.
(states [C1] and [C2])  

2. Handed over to a service key, allowing
reverting to the previous owner. [C3]  	

3. Handed over to the “successor” (PRU) with
no revocation of this handover, while PRU
has not yet acknowledged handover. [S1] 	
	

This state transition also represents a fully
online ownership transfer, if the identity of the
intended recipient is established in an
interactive protocol.

 
4. Handed over to the successor, with the

current owner allowed to revert the handover.
Note that this state is effectively controlled by
both certificates, with two states. [C4 and S5]
 

5. The designated successor, PRU, accepts
ownership, rolling over its own certificate.
[S2]	

6. The successor erases the previous
certificate, advancing the device into a new
“clean” slate. [S4]. Note that the global
certificate history remains, and only the
current/previous pair is updated.  	

7. Control is passed to the successor indirectly,
transferring ownership to a service key,
indicating some indirect information about the
designated successor PRU. [U1]	

8. Indirect transfer, through registering a service
key, without revocation capability. [U2]  	
	

Note that anyone, including the previous
owner, may take ownership from this state.
Therefore, the lack of revocation is only a
policy restriction.  

9. Indirect transfer from service key to

successor ownership, with an offline-
prepared transition certificate (from service
key to successor). [S3]

(C) Copyright IBM Corp. 2018 All Rights Reserved.

6

  

Figure 3

7.1.8 Common	ownership	flows	
Depending on ownership-transfer policies, the
system will pass through different chains of
states during the transition. Highlighted arrows
show typical system transitions for the most
frequent scenarios. We mark irrevocable control
specially (see the legend) since these state
changes correspond to externally newsworthy,
auditable events. We similarly mark states
controlled by service keys, where ownership is
effectively shared.

1. Regular rollover with direct coordination,

replacing the control certificate directly [C1,
C2, S1, S2, S4] (see Figure 3 green arrows).

2. Regular rollover, with revocation capability

[C1, C2, C4/S5, S1, S2, S4] (see Figure 3	
blue arrows). While in the [C4/S5] state, the
module is effectively controlled by both
predecessor and successor. When the
initial transfer is rolled back by the originator,
ownership returns from [C4/S5] to one of the
originator-owned states [C2].

3. Indirect rollover to known successor, without
rollback capability [C1, C2, U1, S3, S4] (see
Figure 3 yellow arrows). This mode allows
offline construction of service-to-PRU
transition certificates, while still preventing
unauthorized entities taking control of the
service-key state [U1].

4. Indirect rollover to any target, through a

service key [C1, C2, U2, S3, S2, S4] (see
Figure 3 violet arrows).  This chain of states
may optionally include [C3], if the originator
wishes to explicitly mark transfer of
ownership to the effectively shared
ownership represented by service keys.
While functionally the intermediate state
[C3] is not relevant, it allows an auditable
handover if the originator intends to show
explicit start of handover (as an example, if
a manufacturer marks a device in inventory
as intended for use by a subsequent user).

The only difference between [C3] and [U2]
is the capability of rollback from [C3],
allowing the originator to take back an object
to its control, without using the service key.
 

1

[S1]

[C1]

[C4]
[S5]

[S3]

[S1]

[S2] [S4]

[C2]

[C3] [U2]

[U1]

UTO1

*designated
successor

UTO2

PRU

NO

PRU

PRU

*

(control)

return to
active use

indirect
handover

complete

indirect
handover

complete

UTO2

*
*

start indirect handover
to known successor

to known
successor

accept
ownership

PRU

*

UTO2

SVC

YES

UTO2

SVC

NOPRU

SVC

PRU

NO

UTO2

SVC

NO
by service key
state is controlled

state name/number

non-revertable transfer

state/transition to audit

* arbitrary contentno content

legend

from current
to previous

owner?

is revertible

release from
manufacturer
control

initial
rollover

UTO2

PRU

YES

start indirect
handover
to unknown
successor

handover
start cancellable

successor
to known

(only PRU
is authorized
successor)

controlled by current owner
Republic of Utopia
(UTO) Country CA

controlled by successor
People's Republic of Utopia

(PRU) Country CA

previous owner

current owner

regular rollover
accept ownership

direct handover

erase history

cancel handover

PRU ``factory state''

erase history

!

!

!

!

(C) Copyright IBM Corp. 2018 All Rights Reserved.

7

8 OCP Tenets
The OCP has defined four tenets to follow when
designing products intended for the compute
infrastructure: efficiency, scalability, openness,
and impact.12

8.1 Efficiency
While it is not the only way to represent
ownership, the storage which retains the
persistent state of ownership as described in
sections 7.1.3 can occupy less than 6K bytes of
storage, even with full X.509 certificates, and
accompanying metadata. The command verifier
and state machine can be implemented in a
small amount of random access memory or in an
FPGA, the largest portion of code being the
signature verification check.

8.2 Scalability
Despite its simplicity, the concept of ownership
as described above can be implemented in a
small amount of memory on a low cost
embedded processor, as well as on subsystems
of large servers. It is small and simple enough
to put on each device, or it can be expanded to
handle the ownership of a

cluster of multiple devices. It can be extended
to include longer audit histories of previous
owners or multiple simultaneous owners.
Additionally, with signed commands or firmware
updates, remote administration is feasible.
Depending on the security design of the device,
the use of digitally signed firmware updates can
eliminate the need for physical presence in all
but the most severe failures of devices and loss
or destruction of keys.

8.3 Openness
The objective of this tutorial paper is to make the
terminology and techniques known to others.
Establishing initial ownership depends heavily
on device features, the configuration of
manufacturing facilities, the supply chain, and
the trust level of customers, so it is difficult to
recommend any one technique as a standard.
However, requiring device manufacturers to
document their device initialization procedures
is recommended. Some of the technology
described herein is patented10.

8.4 Impact
Device manufacturers can use the techniques
described in this paper to improve the security of
their supply chains. Establishing ownership as

early as possible in manufacturing, while write-
protecting the owner’s public key, enable the
device to require digitally signed firmware
updates as soon as possible in the supply chain.
Devices with owners can also manage their own
firmware update processes.

9 Summary
Firmware ownership is important to device and
compute infrastructure security because it
determines who is allowed to update the
firmware on a device. This paper introduces
techniques for establishing initial ownership. It
illustrates several examples and models of
transferring ownership during a device’s
lifecycle. Finally, it relates the OCP’s four tenets
to the concepts in this paper.

References
1. The Open Compute Project,

https://www.opencompute.org/about, retrieved
on 10/1/2018.

2. OCP Security Project,
https://www.opencompute.org/projects/security,
retrieved on 10/1/2018.

3. OCP Open System Firmware Project,
https://www.opencompute.org/projects/open-
system-firmware, retrieved on 10/1/2018.

4. Alex Sotirov, Analyzing the MD5 collision in
Flame,
https://trailofbits.files.wordpress.com/2012/06/fla
me-md5.pdf, retrieved on 11/9/2018

5. Richard Chirgwin, How to nab a HTTPS cert for
a stranger’s website: Step one, shatter those
DNS queries,
https://www.theregister.co.uk/2018/09/06/certific
ate_authority_dns_validation/, retrieved on
11/9/2018.

6. Hagai Bar-El, Known Attacks Against

Smartcards,
https://infosecwriters.com/text_resources/pdf/Kn
own_Attacks_Against_Smartcards.pdf, retrieved
on 9/18/2018.

7. IBM 4767 PCIe Cryptographic Coprocessor,

https://www-
03.ibm.com/security/cryptocards/pciecc2/pdf/47
67_PCIe_Data_Sheet.pdf, retrieved on
9/18/2018.

8. Security Requirements for Cryptographic
Modules, http://csrc.nist.gov/cryptval/140-2.htm,
retrieved on 9/21/2018.

(C) Copyright IBM Corp. 2018 All Rights Reserved.

8

9. Joan Dyer et al., “Building the IBM 4758 Secure
Coprocessor”, IEEE Computer, vol. 34, no. 10,
pp. 57-66.

10. M. Osborne, E. Palmer, and T. Visegrady,
“Managing Transfer of Device Ownership.” US
Patent 9,967,102 B2, issued May 8, 2018.

11. ICAO document 9303, Machine Readable
Travel Documents, Seventh Edition, 2015, part
7: Machine Readable Visas,
https://www.icao.int/publications/Documents/930
3_p7_cons_en.pdf, retrieved on 9/23/2018.

12. OCP Tenets Explained,
https://www.opencompute.org/files/OCP-Tenets-
FINAL2-1.pdf, retrieved on 10/1/2018.

