

NVMe Cloud SSD Specification

Version 0.99r1 (1210019)

Author: Ross Stenfort, Ta-Yu Wu, Facebook

Author: Lee Prewitt, Microsoft

Table of Contents

1	OVERVIEW		4
2	SCOP	E	4
3		EXPRESS REQUIREMENTS	
	3.1	Overview	
	3.2	NVME RESET SUPPORTED	
		NVME CONTROLLER CONFIGURATION AND BEHAVIOR	
	3.3		
	3.4	NVME ADMIN COMMAND SET	
	3.4.1	Namespace Management/Attachment Commands	
	3.4.2	Namespace Utilization (NUSE)	
	3.5	NVME I/O COMMAND SET	
	3.6	OPTIONAL NVME FEATURE SUPPORT	
	3.7	COMMAND TIMEOUT	
	3.8	LOG PAGE REQUIREMENTS	
	3.8.1	Standard Log Page Requirements	
	3.8.2	Telemetry Logging and Interface for Failure Analysis	
	3.8.3	SMART Cloud Heath Log (0xC0) - Vendor Unique Log pagepage 2	
	3.8.4	SMART Cloud Attributes Log Page	
	3.8.5	Error Recovery Log Page	
	3.8.6	Firmware Activation History	
	3.8.7		
	3.9	DE-ALLOCATION REQUIREMENTS	
	3.10	SECTOR SIZE AND NAMESPACE SUPPORT	
	3.11	SET/GET FEATURES REQUIREMENTS	
	3.11.		
	3.11		
	3.11		
	3.11.		
	3.11		
	3.11.		
	3.11.		
	3.11.	Enable IEEE1667 Silo Get Feature Identifier (0xC4)	31
4	PCIE	REQUIREMENTS	32
	4.1	BOOT REQUIREMENTS	32
	4.2	PCIE Error Logging	32
	4.3	Low Power Modes	
	4.4	PCIE EYE CAPTURE	
5	RFI I	BILITY	
•			
	5.1 5.2	UBER Power On/Off Requirements	
		,	
	5.2.1	Time to Ready and Shutdown Requirements	
	5.2.2	Incomplete/ Unsuccessful Shutdown	
	5.3	END TO END DATA PROTECTION	
	5.4	BEHAVIOR ON FIRMWARE CRASH, PANIC OR ASSERT	
	5.5	ANNUAL FAILURE RATE (AFR)	
	5.6	BACKGROUND DATA REFRESH	
	5.7	WEAR-LEVELING	38
5	FNDI	IRANCE	39

	6.1	ENDURANCE DATA	
	6.2	RETENTION CONDITIONS	
	6.3 6.4	SHELF LIFEEND-OF-LIFE (EOL)	
7		RMAL	
•			
	7.1 7.2	DATA CENTER ALTITUDE	
	7.2 7.3	THERMAL THROTTLING TEMPERATURE REPORTING	
	7.3 7.4	THERMAL SHUTDOWN	
8		M FACTOR REQUIREMENTS	
	8.1	GENERIC FORM FACTOR REQUIREMENTS	42
	8.2	Power Consumption Measurement Methodology	
	8.3	Power Levels	
	8.4	M.2 FORM FACTOR REQUIREMENTS	44
	8.5	E1.S FORM FACTOR REQUIREMENTS	44
	8.6	E1.L FORM FACTOR REQUIREMENTS	45
9	SME	BUS SUPPORT	45
	9.1	SMBUS REQUIREMENTS	45
	9.2	SMBUS DATA FORMAT	
10	SEC	URITY	49
	10.1	BASIC SECURITY REQUIREMENTS	49
	10.2	DATA ENCRYPTION AND ERADICATION	51
11	LAB	ELING	51
	11.1	LABEL REQUIREMENTS	52
12	CON	ЛРLIANCE	55
	12.1	ROHS COMPLIANCE	55
	12.2	ESD COMPLIANCE	55
13	SHO	CK AND VIBRATION	55
14	l NVN	ME LINUX CLI PLUG-IN REQUIREMENTS	56
	14.1	NVME CLI MANAGEMENT UTILITY	56
	14.2	NVME CLI PLUGIN REQUIREMENTS	
	14.2		
	14.2	, ,	
ΑI	PPENDI	IX A – FACEBOOK SPECIFIC ITEMS	61
1	CON	NFIGURATION SPECIFICS	61
2	PER	RFORMANCE REQUIREMENTS	61
ΑI	PPENDI	IX B - MICROSOFT SPECIFIC ITEMS	63
1		NFIGURATION SPECIFICS	
2	PER	RFORMANCE REQUIREMENTS	64
	2.1	M.2 PERFORMANCE REQUIREMENTS	
	2.2	E1.S PERFORMANCE REQUIREMENTS	
	2.3	E1.L PERFORMANCE REQUIREMENTS	

1 Overview

This document is to define the requirements for a cloud based $NVMe^{TM}$ SSD for use in data centers.

2 Scope

This document covers PCIe-attached SSDs using NVM Express.

3 NVM Express Requirements

3.1 Overview

Requirement ID	Description
NVMe-1	The device shall comply with all required features of the NVMe 1.4
	specification. Optional features shall be implemented per the
	requirements of this specifications.
NVMe-2	Any optional features supported by the device not described in this
	document shall be clearly documented and disclosed.
NVMe-3	Any vendor unique features supported by the device not described
	in this document shall be clearly documented and disclosed.

3.2 NVMe Reset Supported

Requirement ID	Description
NVMeR-1	NVMe Subsystem reset shall be supported.
NVMeR-2	NVMe controller reset shall be supported.

3.3 NVMe Controller Configuration and Behavior

Requirement ID	Description
NVMe-CFG-1	The default arbitration shall be Round-Robin. Weighted Round
	Robin with urgent Class Priority shall be supported.
NVMe-CFG-2	The device shall support a Maximum Data Transfer Size (MDTS)
	value of at least 256KB.
NVMe-CFG-3	The device firmware shall support reporting of CSTS.CFS as
	indicated in the NVMe Specification.

NVMe-CFG-4	The "Model Number" field in the Identify Controller Data Structure
	(CNS 01h, byte offset 24:63) shall be identical to the Model Part
	Number (MPN) in the product datasheet provided to customer.
NVMe-CFG-5	The minimum supported queue depth shall be 1024 per submission
	queue.
NVMe-CFG-6	The minimum number of IO Queue Pairs shall be 64.
NVMe-CFG-7	Device shall support EIU64 to differentiate namespaces.
NVMe-CFG-8	Device shall support an NGUID per Namespace.

3.4 NVMe Admin Command Set

The device shall support the following mandatory and optional NVMe admin commands:

Requirement ID	Description
NVMe-AD-1	The device shall support all mandatory NVMe admin commands.
NVMe-AD-2	Identify – In addition to supporting all the mandatory CNS values and the associated mandatory fields within the CNS, the following optional fields in the CNS shall be supported: • Format progress indicator (FPI) • IO Performance and Endurance Hints • NSFEAT bit 4 = 0x1
NVMe-AD-3	Namespace Management command shall be supported.
NVMe-AD-4	Namespace Attachment command shall be supported.
NVMe-AD-5	Format NVM command shall be supported. Secure Erase Settings (SES) values 000b, 001b and 010b shall be supported.
NVMe-AD-6	Support for NVMe-MI Send and Receive is not required.

3.4.1 Namespace Management/Attachment Commands

The namespace management command along with the attach/detach commands is used to increase device over-provisioning beyond the default minimum over-provisioning.

Requirement ID	Description
NSM-1	The namespace management commands shall be supported on all
	namespaces.
NSM-2	When creating a namespace, the default "Formatted LBA Size"
	parameter (FLBAS=0) in the Identify Namespace Data Structure
	(Byte 26) shall correspond to the default sector size set at the
	factory.
NSM-3	When formatting the device with the Format command, the default
	"LBA Format" parameter (LBAF=0) in Command Dword 10 bits 3:0
	shall correspond to the default sector size set at the factory.

3.4.2 Namespace Utilization (NUSE)

Requirement ID	Description	
NUSE-1	The NUSE shall be equal to the number of logical blocks currently	
	allocated in the namespace. NUSE cannot be hardcoded to be equal	
	to NCAP. See below for an example on a 200GB device:	
	1. After a physical secure erase (SES = 001b), NUSE would be	
	zero. And the usage data would reflect that: 0.00 GB	
	2. After writing 1 GB worth of data, the usage data would show	
	the following: 1.00 GB	
	3. After filling the device, the usage data would show the	
	following: 200.00 GB	
	4. If the host issues a 10GB de-allocate command, the usage	
	data would show the following: 190.00 GB	

3.5 NVMe I/O Command Set

Requirement ID	Description
NVMe-IO-1	The device shall support all mandatory NVMe I/O commands.
NVMe-IO-2	The device shall support Dataset Management and at a minimum
	De-Allocate.

3.6 Optional NVMe Feature Support

The device shall also support the following NVMe features:

Requirement ID	Description
NVMe-OPT-1	Telemetry shall be supported. Both Host Initiated Telemetry and
	Controller Initiated Telemetry shall be supported.
NVMe-OPT-2	Timestamp shall be supported to align the devices internal logs.

3.7 Command Timeout

Device supplier shall disclose any I/O scenario that could violate these command timeouts.

Requirement ID	Description
CTO-1	ADMIN Commands shall take no more than 10 seconds from
	submission to completion.
CTO-2	The only exceptions to CTO-1 shall be Format and Sanitize and the
	TCG commands Revert, Revert SP and Change Key.
CTO-3	I/O Commands shall take no more than 8 seconds from submission
	to completion. The device shall not have more than 7 IOs take more
	than 2 seconds in one hour.

CTO-4	I/O command processing time shall not be a function of device
	capacity.

3.8 Log Page Requirements

3.8.1 Standard Log Page Requirements

Requirement ID	Description			
STD-LOG-1	Error Information (Log Identifier 01h)			
STD-LOG-2	SMART/Health Information (Log Identifier 02h)			
STD-LOG-3	Under no conditions shall the Percentage Used field in the			
	SMART/Health Information (Log Identifier 02h) be reset.			
STD-LOG-4	The Percentage Used field in the SMART/Health Information (Log			
	Identifier 02h) shall be based on the average P/E cycle of the device.			
	In addition, this field shall be based on the actual P/E cycle count of			
	the media and not on the Power On Hours (POH) of the device.			
STD-LOG-5	Firmware Slot Information (Log Identifier 03h)			
STD-LOG-6	Commands Supported and Effects (Log Page 0x05)			
STD-LOG-7	Telemetry Host-Initiated (Log Page 0x07)			
STD-LOG-8	Telemetry Controller-Initiated (Log Page 0x08)			

3.8.2 Telemetry Logging and Interface for Failure Analysis

The following applies to telemetry logging as the ability to quickly debug failures is required:

Requirement ID	Description
TEL-1	The firmware shall track the device's operational/event history and
	any critical parameters that can be used to debug issues.
TEL-2	The supplier shall provide a table that categorizes the reason
	identifiers.
TEL-3	If any of the following list of conditions occur, the telemetry data
	shall be committed to non-volatile storage so that the data is saved:
	1. Ungraceful/graceful power cycle
	2. Reboot
	3. Any time a SMART critical warning changes to a non-zero value
	4. Any type of firmware asserts
	5. Retrieval of log via the host interface
	6. The device switches to a degraded mode during run-time
	7. The SMART "End to End Correction Counts" count is incremented
TEL-4	The reason identifier shall be the most recent failure identifier and
	shall not be cleared by a power cycle or reset.

TEL-5	The table below provides the specifications for the controller-initiated and the host-initiated log page "data areas". Implementation of Data areas 2 and 3 are optional.							
	Data Area	·						
	1	Periodic logging for monitoring trends/problems	Vendor- specific	< 10ms max				
TEL-6	The default status is "DISABLED" for the controller-initiated log page.							
TEL-7	All device error logs shall be committed to non-volatile memory.							

3.8.3 SMART Cloud Heath Log (0xC0) - Vendor Unique Log page Below are the requirements for the Cloud Health Log Page located at 0xC0:

Requirement ID	Description				
SLOG-1	All values in the Vendor Log pages shall be persistent across power cycles unless otherwise noted.				
SLOG-2	All counters shall be saturating counters (i.e. if the counter reaches the maximum allowable size it stops incrementing and does NOT roll back to 0).				
SLOG-3	All values in logs shall be little endian format.				
SLOG-4	A normalized counter, unless otherwise specified, shall be reported as the following: 100% shall represent the number at factory exit. 1% shall represent the minimum amount to be reliable. A value of 0% means the device shall no longer be considered reliable. 100% shall be represented as 0x64.				
SLOG-5	Devices shall support the attributes listed in section 5.14.1.2 of the NVMe specification version 1.4.				
SLOG-6	A Read of the SMART logs shall not require an update of the SMART values. It shall be a simple read of the current data.				
SLOG-7	Unless otherwise specified, the device shall update these values in the background at least once every ten minutes.				
SLOG-8	The composite and raw temperature sensor values shall be updated when the log page is accessed.				
SLOG-9	All assert events and controller-initiated log captures will require an associated vendor-specific "Reason Identifier" that uniquely identifies the assert /controller condition.				
SLOG-10	The device shall not lose any of the SMART (Health or Cloud Health) data logs which are more than 10 minutes old including across power cycles/resets.				

SLOG-11	The device shall not lose any back up energy source failures and
	SMART (Health or Cloud Health) critical warnings including across
	power cycles/resets.

3.8.4 SMART Cloud Attributes Log Page
The vendor-specific log page, 0xC0 (Cloud Attribute Log Page) shall be 512-bytes and defines the following attributes:

Req ID	Byte Address	Field	# of Bytes		Field description
SMART-1	15:0	Physical Media Units Written	16	media; this written to t possible to	e number of bytes written to the value includes both user and metadata he user and system areas. It shall be use this attribute to calculate the Write on Factor (WAF).
SMART-2	31:16	Physical Media Units Read	16		e number of bytes read from the media he user and system areas.
SMART-3	39:32	Bad User NAND block count	8	NAND block normalized count shall be noted th	rmalized count of the number of user as that have been retired. The value shall be set to 0x64 and the Raw be set to zero on factory exit. It should ere are 2 bytes for normalized and 6 w count. See normalized definition Field Description Normalized value Raw count
SMART-4	47:40	Bad System NAND block count	8	Raw and no system NAN normalized count shall be noted th	rmalized count of the number of ND blocks that have been retired. The value shall be set to 0x64 and the Raw be set to zero on factory exit. It should ere are 2 bytes for normalized and 6 w count. See normalized definition Field Description Normalized value

				A value of 0xFFFF_FFFF_FFFF indicates that the Bad User NAND block count field above represents all blocks on the device and Bad System NAND block count field is invalid
SMART-5	55:48	XOR Recovery count	8	Total number of times XOR was invoked to recover data in NAND. This shall cover all reads from NAND. Data recovery may have succeeded or failed. This shall be set to zero on factory exit
SMART-6	63:56	Uncorrecta ble read error count	8	Total count of NAND reads that were not correctable by read retries, all levels of ECC, or XOR. This shall be a count of the number of times data recovery fails and an uncorrectable read error is returned to the host.
SMART-7	71:64	Soft ECC error count	8	Total count of NAND reads that were not correctable by first level ECC and requires invoking an intermediate recovery. This shall cover all NAND read accesses. Data recovery may have succeeded or failed. If the device has more than one intermediate recovery level, then this counter only increments when intermediate recovery level 1 is invoked.
SMART-8	79:72	End to End Correction Counts	8	A count of the detected and corrected errors by the end to end error correction which includes DRAM, SRAM, or other storage element ECC/CRC protection mechanism (not NAND ECC). All correctable errors shall result in a counter increase no matter what type of data the memory is protecting. All detected errors shall result in a counter increase unless the error is uncorrectable and occurred in the system region. In the latter case, the incomplete shutdown flag shall be flagged/incremented on the next power up. It should be noted there are 4 bytes for count of detected errors and 4 bytes for count of corrected errors. Byte Field Description
				Address Field Description

				79:76 Corrected Errors
				75:72 Detected Errors
SMART-9	80	System data % used	1	A normalized cumulative count of the number of erase cycles per block since leaving the factory for the system (firmware and metadata) area. Starts at 0 and increments. 100 indicates that the estimated endurance has been consumed. Value may exceed 100 up to 255. This count shall increment regardless of what the backing media of the blocks are (e.g. SLC and TLC). If system data is split between media types, then this shall report the worst-case count so that the device wear out is clearly understood. This counter has a different behavior than the normalized counter definition in LOG-4. 100% (0x64) represents the device many no longer function reliably as the max erase cycles has been hit.
SMART- 10	87:81	Refresh Counts	7	This is a count of the number of blocks that have been re-allocated to maintain data integrity. This counter does not include creating free space due to garbage collection.
SMART- 11	95:88	User data erase counts	8	The maximum and minimum erase counts across the user NAND blocks in the device. The host shall not be able to reset this counter. It should be noted there are 4 bytes for the maximum and 4 bytes for the minimum. Bad blocks shall not be included in this count. Byte Field Description Address Field Description Field
				95:92 Minimum User Data Erase Count 91:88 Maximum User Data Erase Count
SMART- 12	97:96	Thermal throttling status and count	2	The current status of thermal throttling (enabled or disabled) and a count of the number of thermal throttling events. Note that there is 1 byte for the current status and 1 byte for the count. For devices that only have 1 throttle point only the first level throttle bit shall be set. This shall be set to zero on factory exit.

				Byte	Field Description
				Address	
				97	Current Throttling Status
					Current Status Byte definition:
					0x00= unthrottled
					• 0x01 = first level throttle
					• 0x02 = 2 nd level throttle
					• 0x03 = 3 rd level throttle
					0x04-0xFF = Reserved
				96	Number of thermal throttling events
SMART- 13	103:98	Reserved	6	Shall be set	to 0x0.
SMART- 14	111:104	PCIe Correctable Error count	8	(bad TLP, be timeouts, re only increm increment of	counter of all PCIe correctable errors ad DLLP, receiver error, replay eplay rollovers). These counts shall nent during run time. They shall not during training or power fail. This shall ero on factory exit.
SMART- 15	115:112	Incomplete Shutdowns	4	occurred th	the number of shutdowns that have lat did not complete properly for any is shall be set to zero on factory exit.
SMART- 16	119:116	Reserved	4	Shall be set	to 0x0.
SMART- 17	120	% Free Blocks	1	are current of spare (in blocks that all invalid d either mark host (via de the total nu garbage col	ed count of the number of blocks that ly free (available) out of the total pool valid) blocks. Free blocks means both have been erased and blocks that have ata. Invalid blocks are blocks that are sed invalid by device firmware or by the e-allocate or overwrite). For example, if umber of spare blocks is 100 and lection has been able to reclaim blection and erase) 20 blocks, then this is 20%.

SMART- 18	127:121	Reserved	7	Shall be set to 0x0.
SMART- 19	129:128	Capacitor Health	2	This field is an indicator of the capacitor health and represents the capacitor holdup energy margin during operation. If no capacitor is present a value of 0XFFFF shall be reported. 100% represents the passing hold up energy threshold when a device leaves manufacturing. Thus, a device will typically report greater than 100% in this field after leaving manufacturing at beginning of life. 1% is the minimum hold up energy required to conduct a proper shutdown reliably. A value of 0% may or may not result in a device failing to shutdown properly. This value shall never go negative. Zero is the minimum. Typically Device's hold up energy measured at beginning of life Manufacturing exit threshold for hold up energy Device expected to shutdown properly. (Less than 1%) Capacitor Health Value = Amount of hold up energy currently on the drive
SMART- 20	135:130	Reserved	6	Shall be set to 0x0.
SMART- 21	143:136	Unaligned I/O	8	This is a count of the number of write IOs performed by the device that are not aligned to the indirection unit size (IU) of the device. Alignment indicates only the start of each IO. The length does not affect this count. This counter shall reset on power cycle. This counter shall not wrap. This shall be set to zero on factory exit.
SMART- 22	151:144	Security Version Number	8	This is the security version number of the firmware image. The firmware increments this number any time it includes a fix of a security issue.

	1	1		
SMART- 23	159:152	NUSE	8	Namespace Utilization. This is a copy of the Namespace Utilization field defined in the Identify Namespace Data Structure Bytes 23:16.
SMART- 24	175:160	PLP Start Count	16	This is a count of the number of times the device has initiated its power loss protection process due to supply voltage drop. This counter shall be incremented on the initial detection of the power loss condition. This does not include PLP health check operations.
SMART- 25	181:176	Endurance Estimate	16	This field is an estimate of the total number of data bytes that may be written to the device over its lifetime assuming a write amplification of 1. (i.e., no increase in the number of write operations performed by the device beyond the number of write operations requested by a host). This value shall be equivalent to the Endurance Estimate field in the Endurance Group Log (Log Identifier 09h).
SMART- 26	493:182	Reserved	302	Shall be set to 0x0.
SMART- 27	495:494	Log Page Version	2	This indicates the version of the mapping this log page uses. Shall be set to 0x0002.
SMART- 28	511:496	Log Page GUID	16	Shall be set to 0xAFD514C97C6F4F9CA4f2BFEA2810AFC5.

3.8.5 Error Recovery Log Page
The vendor-specific log page, 0xC1 shall be 512-bytes and define the following attributes:

Req ID	Byte Address	Field	# of Bytes	Field description
EREC-1	1:0	Panic Reset Wait Time	2	The amount of time the host should wait for the device panic workflow to complete in msec.
EREC-2	2	Panic Reset Action	1	Bit field indicating potential reset actions that can be taken. If no reset action needed, do not set any of the bits. More than 1 bit can be set and it's up to the host to decide the sequence of action(s) to take. The device should attempt to prioritize

				recovery in the order below. Use Bit 0 if possible. If Bit 0 is not possible use Bit 1, etc. Byte Field Description Address 2 Panic Reset Action Byte definition: • Bit 0 = NVMe Controller Reset • Bit 1 = NVMe Subsystem Reset • Bit 2 = PCle Function Level Reset • Bit 3 = PERST • Bit 4 = Power Cycle Reset • Bit 7:5 = Reserved
EREC-3	3	Device Recovery Action	1	The recovery action to take for handling a device panic condition. Value is dependent on the panic condition. The device should attempt to prioritize recovery in the order below. Use Bit 0 if possible. If Bit 0 is not possible use Bit 1, etc. Byte
EREC-4	11:4	Panic ID	8	ID to identify the panic condition encountered. A Zero value indicates no panic. Value is dependent on the panic condition. The following Panic ID values are reserved for Host defined fault codes for known panic conditions:

				Ox00000000 00000000h - 0x00000000 Byte Field Description Address - 0x000000000
				11:4 Panic ID definition: • 0x00000000 00000001h — Panic caused by flush failures or data loss during power loss handling.
EREC-5	15:12	Device Capabilities	4	Byte Address 15:12 Device Capabilities definition: Bit 0 = Panic AEN Supported: If set, indicates device supports using AEN to notify host of a panic condition*. Bit 1 = Panic CFS Supported: If set, indicates device supports using CFS to notify host of a panic condition*. Bit 31:2 = Reserved *Note: It is valid for a device to indicate support for both Panic AEN Supported and Panic Controller Fatal Status Supported. If the device supports both, the device shall only use one of the panic notification mechanisms when reporting a given panic event.
EREC-6	16	Vendor Specific Recovery Opcode	1	Vendor specific command opcode to recover device from panic condition. Only valid when Device Recovery Action field value is 0x2. When Device Recovery Action field value is not 0x2, this field shall be set to 0x0.
EREC-7	19:17	Reserved	3	Shall be set to 0x0
EREC-8	23:20	Vendor Specific Command CDW12	4	CDW12 value for the Vendor Specific command to recover device from panic condition. Only valid when Device Recovery Action field value is 0x2.

				When Device Recovery Action field value is not 0x2, this field shall be set to 0x0.
EREC-9	27:24	Vendor Specific Command CDW13	4	CDW13 value for the Vendor Specific command to recover device from panic condition. Only valid when Device Recovery Action field value is 0x2. When Device Recovery Action field value is not 0x2, this field shall be set to 0x0.
EREC-10	493:28	Reserved	466	Shall be set to 0x0.
EREC-11	495:494	Log Page Version	2	This indicates the version of the mapping this log page uses. Shall be set to 0x0001.
EREC-12	511:496	Log Page GUID	16	Shall be set to 0x5A1983BA3DFD4DABAE3430FE2131D944.

3.8.6 Firmware Activation HistoryThe vendor-specific log page, 0xC2 shall be 4096-bytes with the following functional requirements and field format.

Requirement ID	Description					
FWHST-LOG-1	Lists the last twenty firmware images that were activated (not downloaded) on the drive. This is a circular buffer where the 21 st entry is placed in entry 0 (byte offset 36 decimal).					
FWHST-LOG-2	When the drive is first shipped from the factory, there are no entries recorded.					
FWHST-LOG-3	An entry shall be recorded whenever a Firmware Commit command is received regardless of the commit action. Firmware downloads shall not generate an entry.					
FWHST-LOG-4						
FWHST-LOG-5	Firmware Activation History's log page format shall follow the requirements below.					

3.8.6.1 Firmware Activation History Log Page Format (Log Identifier 0xC2)

This log page defines the format for recording the Firmware Activation History.

Req ID	Byte Address	Field	# of Bytes	Field description
FAHL-1	0	Log Identifier	1	This field shall be set to 0xC2.
FAHL-2	3:1	Reserved	3	Shall be set to 0x0.
FAHL-3	7:4	Valid Firmware Activation History Entries	4	Contains the number of event entries in the log that are valid. Starts at 0 from the factory or after a Clear Firmware Update Activation History Set Features (See Section 3.11.2). Increments on each new log entry (see FWHST-LOG-4).
FAHL-4	71:8	Firmware Activation History Entry 0	64	This field contains the first firmware activation entry.
	1287:1224	Firmware Activation History Entry 20	64	This field contains the last firmware activation entry.
FAHL-5	4077:1288	Reserved	2788	Shall be set to 0x0.
FAHL-6	4079:4078	Log Page Version	2	This indicates the version of the mapping this log page uses. Shall be set to 0x0001.
FAHL-7	4095:4080	Log Page GUID	16	Shall be set to 0xD11Cf3AC8AB24DE2A3F6DAB4769A796D.

3.8.6.2 Firmware Activation History Entry Format

This defines the History Entry format for recording Firmware Activation History events.

Req ID	Byte Address	Field	# of Bytes	Field description
FAHE-1	0	Entry Version Number	1	Indicates the version of this entry format used in the device. Shall be set to '1' (0x01).
FAHE-2	1	Entry Length (EL)	1	This field indicates the length in bytes of the entry log event data. Shall be set to '64' (0x40).
FAHE-3	3:2	Reserved	2	Shall be set to 0x0.
FAHE-4	5:4	Valid Firmware Activation History Entries	2	This field shall increment every time a firmware activation is attempted regardless of the result. This value shall be set to '0' (0x0) when the drive is shipped from manufacturing. This field shall be a saturating counter.
FAHE-5	13:6	Timestamp	8	This field shall indicate the Timestamp of when the firmware activation occurred. The format of this field shall be as defined in section 5.21.1.14 Timestamp (Feature Identifier 0Eh) of the NVMe 1.4 specification.
FAHE-6	21:14	Reserved	8	Shall be set to 0x0.
FAHE-7	29:22	Power Cycle Count	8	This field shall indicate the power cycle count in which the firmware activation occurred.
FAHE-8	37:30	Previous Firmware	8	This field shall indicate the previous firmware version running on the device before this firmware activation took place. The format of this field shall be as defined in field Firmware Revision (FR) section 5.15.2.2 Identify Controller Data Structure of the NVMe 1.4 specification.
FAHE-9	45:38	Current Firmware	8	This field shall indicate the activated firmware version that is running on the device after the firmware activation took place. The format of this field shall be as defined in field Firmware Revision (FR) section 5.15.2.2 Identify Controller Data Structure of the NVMe 1.4 specification.

FAHE-10	46	Slot Number	1	This field shall indicate the slot that the activated firmware is in.
FAHE-11	47	Commit Action Type	1	This field shall indicate the Commit action type associated with the firmware activation event.
FAHE-12	49:48	Result	2	This field shall indicate the results of the firmware activation event. A value of 0x0 shall represent the firmware commit was successful. A non-zero value shall represent the firmware commit was unsuccessful and the value represents the status code associated with the failure.
FAHE-13	63:50	Reserved	14	Shall be set to 0x0.

3.8.7 Firmware Update RequirementsThis defines the requirements for firmware update in the device.

Requirement ID	Description					
FWUP-1	A firmware activation history log shall be recorded. See section					
	3.8.6.					
FWUP-2	Devices shall not have any restrictions on the number of firmware					
	downloads supported.					
FWUP-3	The firmware Commit command with the following Commit Action					
	(CA) codes shall be supported:					
	000b – Download only					
	001b – Download and activate upon reset					
	010b – Activate upon reset					
	011b – Activate immediately without reset					
FWUP-4	Firmware Image Download Command shall be supported.					
FWUP-5	The Firmware Update Granularity (FWUG) field shall be set to 0x01h					
	indicating that the granularity and alignment requirement of the					
	firmware image being updated is 4096 Bytes.					
FWUP-6	The device shall support a minimum of 2 slots for firmware update					
	and may support up to 7.					
FWUP-7	For firmware commit action 011b (firmware activation without					
	reset), the device shall complete the firmware activation process					
	and be ready to accept host IO and admin commands within 3					
	seconds from the receipt of the firmware commit command.					
FWUP-8	The firmware shall prevent any firmware update operations from					
	completing if the firmware downgrade is incompatible with the					

	current version of firmware. The firmware rollback protection shall cover all cases including security.
FWUP-9	A single corrupted firmware image shall not result in the device no longer functioning. Multiple copies of the same firmware image shall be maintained to ensure the device can reliably boot.

3.9 De-Allocation Requirements

Requirement ID	Description
TRIM-1	The device shall support De-Allocate/TRIM.
TRIM-2	For data that has been De-Allocated (TRIM) the NVMe specification
	requires it to be 0, 1, or unchanged when read. Data returned shall
	only be 0, 1 or unchanged on a sector by sector basis.
TRIM-3	If data has been de-allocated and not written to when an unsafe
	power down event happens, the data shall be 0, 1 or unchanged
	when read.
TRIM-4	De-allocated addresses shall provide the performance and reliability
	benefits of overprovisioned space.

3.10 Sector Size and Namespace Support

Requirement ID	Description
SECTOR-1	Devices 8 TB or less shall support both 4096-byte and 512-byte
	sectors and shall be formatted to one of these sector sizes from the
	factory.
SECTOR-2	Devices greater than 8 TB shall support 4096-byte sectors.
SECTOR-3	The device shall have one Namespace as shipped from the factory.

3.11 Set/Get Features Requirements

The device shall support the following additional vendor unique Set/Get Features Log Pages.

Requirement ID	Description
GETF-1	For any Get Feature Identifier defined in this section (3.11) Selection
	(SEL) values 00b to 11b in Dword 10 shall be supported.

3.11.1 Error Injection Set Feature Identifier (0xC0)

Feature to inject one or more error conditions to be reported by the device. If multiple Set Features commands for this feature are processed, then only information from the most recent successful command is retained (i.e., subsequent commands replace information provided by previous commands).

Req ID	Dword	Field	Bits	Field description
SERRI-1	0	Command Identifier (CID)	31:16	Shall be set as defined in NVMe Specification version 1.4.
SERRI-2	0	PRP or SGL for Data Transfer (PSDT)	15:14	Shall be set to 00b
SERRI-3	0	Reserved	13:10	Shall be set to zero
SERRI-4	0	Fused Operation (FUSE)	9:8	Shall be set to 00b
SERRI-5	0	Opcode (OPC)	7:0	Shall be set to 09h
SERRI-6	1	Namespace Identifier (NSID)	31:0	Shall be set to zero
SERRI-7	2:3	Reserved	31:0	Shall be set to zero
SERRI-8	4:5	Metadata Pointer (MPTR)	31:0	Shall be set to zero
SERRI-9	6:9	Data Pointer (DPTR)	31:0	Shall point to a physically contiguous 4096-byte address range containing 0 to 127 Error Injections Data Structure Entries
SERRI-10	10	Save (SV)	31	Shall be set to 0b
SERRI-11	10	Reserved	30:8	Shall be set to zero
SERRI-12	10	Feature Identifier (FID)	7:0	Shall be set to C0h
SERRI-13	11	Reserved	31:7	Shall be set to zero

SERRI-14	11	Number of Error Injections	6:0	This field shall specify the number of valid Error Injection Data Entries described in the address range pointed to by the Data Pointer (DPTR) field. This is a O's-based value.
SERRI-15	12:15	Reserved	31:0	Shall be set to zero

Requirement ID	Description
ERRI-1	The maximum number of entries in the Number of Error Injections
	field shall be 127.
ERRI-2	A value of 0x0h in the Number of Error Injections field shall clear
	any outstanding error injection events.
ERRI-3	The error injections shall not overlap and may be listed in any order
	(e.g., ordering by error injection type is not required).
ERRI-4	Any unused entries in the Error Injection data structure shall have
	all fields set to 0 and shall be ignored by the device.
ERRI-5	The device shall abort the Error Injection Set Feature command if
	the request contains an error injection type that is not supported or
	the Single Instance value for the given Error Injection Type is not
	valid.
ERRI-6	Once the trigger conditions specified in an Error Injection Entry are
	met, the device shall inject the defined error event such that the
	host can detect the error through either an AEN being sent, the CFS
	bit being set or command being aborted.

3.11.1.1 Error Injection – Data Structure Entry

Req ID	Byte Address	Field	# of Bytes	Field description
ERRIE-1	0	Error Entry Flags	1	 Bit 0 = Error Injection Enable: If cleared to 0, indicates error injection is disabled. If set to 1, indicates error injection is enabled. Bit 1 = Single Instance: If cleared to 0, indicates error injection is enabled until disabled. If set to 1, indicates a single instance error injection where a single error shall be injected. After a single instance error has been created, the error injection is considered disabled. Bit 7:2 = Reserved

ERRIE-2	1	Reserved	1	Shall be se	et to zero
ERRIE-3	3:2	Error Injection Type	2	Error Inject Value Oh 1h 2h 3h 4h 5h 6h 7h 8h 9h	tion type definition: Field Description Reserved Device Panic – CPU/Controller Hang Device Panic – NAND Hang Device Panic – PLP Defect Device Panic – Logical Firmware Error Device Panic – DRAM Corruption Critical Path Device Panic – DRAM Corruption Non-Critical Path Device Panic – NAND Corruption Device Panic – SRAM Corruption Device Panic – SRAM Corruption
				Ah to FFFFh	Reserved
ERRIE-4	31:4	Error Injection Type Specific Definition	28	Error Injec	tion Type specific definition

3.11.1.2 Device Panic Error Injection Type

The device shall inject a device panic that the host can detect through either an AEN or the CFS bit being set. For the Device Panic type, a Single Instance value of 0 is not valid. Host shall perform the Panic Reset and Device Recovery actions specified in Log Page 0xC1.

Req ID	Byte Address	Field	# of Bytes	Field description
ERRIEDP- 1	0	Error Entry Flags	1	 Error Entry Flags definition: Bit 0 = Shall be cleared to 0 Bit 1 = Shall be set to 1 Bit 7:2 = Shall be cleared to 0
ERRIEDP- 2	1	Reserved	1	Shall be set to zero

ERRIEDP- 3	3:2	Error Injection Type	2	Shall be set	to the range of 1h to 9h
ERRIEDP- 4	31:4	Error Injection Type	28	Device Pani Byte Address	c Error Injection information Field Description
	Specific Definition		5:4 31:6	Number of Reads to Trigger Device Panic (NRTDP): Indicates the number of Read commands the device shall process and complete before triggering a device panic. Reserved: Shall be set to zero	

3.11.2 Error Injection Get Feature Identifier (0xC0)

This Get Feature returns the set of error injections that are enabled on the device. The attributes specified in section 3.11.2.1 are returned in Dword 0 of the completion queue entry and the Error Inject data structure specified section 3.11.1.1 is returned for each error injection in the data buffer for that command. If there are no currently enabled error injections, the data buffer returned shall contain all zeros. The device shall clear to zero all unused entries in the Error Injection data structure.

3.11.2.1 Error Injection – Get Features Completion Queue Entry Dword 0

Req ID	Field	Bits	Field description
GERRI-1	Reserved	31:7	Shall be set to zero
GERRI-2	Number of Error Injections (NUM)	6:0	This field indicates the number of enabled error injections returned in the command data buffer. See section 3.11.1.1 for the format of the entries. This is a 0's-based value.

3.11.3 Clear Firmware Update History Set Feature Identifier (0xC1)

Req ID	Dword	Field	Bits	Field description
CFUH-1	0	Command Identifier (CID)	31:16	Shall be set as defined in NVMe Specification version 1.4.

CFUH-2	0	PRP or SGL for Data Transfer (PSDT)	15:14	Shall be set to 00b
CFUH-3	0	Reserved	13:10	Shall be set to zero
CFUH-4	0	Fused Operation (FUSE)	9:8	Shall be set to 00b
CFUH-5	0	Opcode (OPC)	7:0	Shall be set to 09h
CFUH-6	1	Namespace Identifier (NSID)	31:0	Shall be set to zero
CFUH-7	2:3	Reserved	31:0	Shall be set to zero
CFUH-8	4:5	Metadata Pointer (MPTR)	31:0	Shall be set to zero
CFUH-9	6:9	Data Pointer (DPTR)	31:0	Shall be set to zero
CFUH-10	10	Save (SV)	31	Shall be set to 0b
CFUH-11	10	Reserved	30:8	Shall be set to zero
CFUH-12	10	Feature Identifier (FID)	7:0	Shall be set to C1h
CFUH-13	11	Clear Firmware Update History Log	31	Set to 1b to clear the Firmware Activation History Log Page (0xC2). The NVMe CLI plug in command "clear-fwactivate-history" can also perform this operation.
CFUH-14	11	Reserved	30:0	Shall be set to zero
CFUH-15	12:15	Reserved	31:0	Shall be set to zero

3.11.4 PLP Functionality Loss Behavior Set Feature Identifier (0xC2)

Req ID	Dword	Field	Bits	Field description
PLPL-1	0	Command Identifier (CID)	31:16	Shall be set as defined in NVMe Specification version 1.4.
PLPL-2	0	PRP or SGL for Data Transfer (PSDT)	15:14	Shall be set to 00b
PLPL-3	0	Reserved	13:10	Shall be set to zero
PLPL-4	0	Fused Operation (FUSE)	9:8	Shall be set to 00b
PLPL-5	0	Opcode (OPC)	7:0	Shall be set to 09h
PLPL-6	1	Namespace Identifier (NSID)	31:0	Shall be set to zero
PLPL-7	2:3	Reserved	31:0	Shall be set to zero
PLPL-8	4:5	Metadata Pointer (MPTR)	31:0	Shall be set to zero
PLPL-9	6:9	Data Pointer (DPTR)	31:0	Shall be set to zero
PLPL-10	10	Save (SV)	31	Shall be set to 1b
PLPL-11	10	Reserved	30:8	Shall be set to zero
PLPL-12	10	Feature Identifier (FID)	7:0	Shall be set to C2h
PLPL-13	11	PLP Functionality	31:30	Field to indicate device write behavior in the event of loss of PLP functionality.

		Loss		Value	Field Description
		Behavior		00b	Reserved
				01b	The device shall transition to Read
					Only mode
				10b	The device shall transition to Write
					Through mode
				11b	Reserved
PLPL-14	11	Reserved	29:0	Shall be set	to zero
PLPL-15	12:15	Reserved	31:0	Shall be set	to zero

3.11.5 PLP Functionality Loss Behavior Get Feature Identifier (0xC2)

Dword 0 of command completion queue entry.

Req ID	Field	Bits	Field description	
PLPLG-1	PLP Functionality Loss	31:30	Field to indicate what the device write behavior is configured for in the event of loss of PLP functionality.	
	Behavior		Value	Field Description
			00b	Reserved
			01b	The device will transition to Read
				Only mode
			10b	The device will transition to Write
				Through mode
			11b	Reserved
PLPLG-2	Reserved	29:0	Shall be set	to zero

3.11.6 Clear PCIe Correctable Error Counters Set Feature Identifier (0xC3)

Req ID	Dword	Field	Bits	Field description
CPCIE-1	0	Command Identifier (CID)	31:16	Shall be set as defined in NVMe Specification version 1.4.
CPCIE -2	0	PRP or SGL for Data	15:14	Shall be set to 00b

		Transfer (PSDT)		
CPCIE -3	0	Reserved	13:10	Shall be set to zero
CPCIE -4	0	Fused Operation (FUSE)	9:8	Shall be set to 00b
CPCIE-5	0	Opcode (OPC)	7:0	Shall be set to 09h
CPCIE-6	1	Namespace Identifier (NSID)	31:0	Shall be set to zero
CPCIE-7	2:3	Reserved	31:0	Shall be set to zero
CPCIE-8	4:5	Metadata Pointer (MPTR)	31:0	Shall be set to zero
CPCIE-9	6:9	Data Pointer (DPTR)	31:0	Shall be set to zero
CPCIE-10	10	Save (SV)	31	Shall be set to 0b
CPCIE-11	10	Reserved	30:8	Shall be set to zero
CPCIE-12	10	Feature Identifier (FID)	7:0	Shall be set to C3h
CPCIE-13	11	Clear PCle Error Counters	31	Set to 1b to clear all PCIe correctable error counters in log page 0xCA. The NVMe CLI plug in command "clear-pcie-correctable-errors" can also perform this operation.
CPCIE-14	11	Reserved	30:0	Shall be set to zero
CPCIE-15	12:15	Reserved	31:0	Shall be set to zero

3.11.7 Enable IEEE1667 Silo Set Feature Identifier (0xC4)

Req ID	Dword	Field	Bits	Field description
S1667-1	0	Command Identifier (CID)	31:16	Shall be set as defined in NVMe Specification version 1.4.
S1667-2	0	PRP or SGL for Data Transfer (PSDT)	15:14	Shall be set to 00b
S1667-3	0	Reserved	13:10	Shall be set to zero
S1667-4	0	Fused Operation (FUSE)	9:8	Shall be set to 00b
S1667-5	0	Opcode (OPC)	7:0	Shall be set to 09h
S1667-6	1	Namespace Identifier (NSID)	31:0	Shall be set to zero
S1667-7	2:3	Reserved	31:0	Shall be set to zero
S1667-8	4:5	Metadata Pointer (MPTR)	31:0	Shall be set to zero
S1667-9	6:9	Data Pointer (DPTR)	31:0	Shall be set to zero
S1667- 10	10	Save (SV)	31	Shall be set to 1b
S1667- 11	10	Reserved	30:8	Shall be set to zero
S1667- 12	10	Feature Identifier (FID)	7:0	Shall be set to C4h

S1667- 13	11	Enable IEEE1667 Silo	31	If set to 0b, the IEEE 1667 silo shall be disabled on the next power cycle. If set to 1b, the IEEE 1667 silo shall be enabled on the next power cycle. Until the next power cycle, the behavior of the IEEE 1667 silo is unaffected by this Set Feature. If multiple Set Features are sent between power cycles, the last value set takes precedent.
S1667- 14	11	Reserved	30:0	Shall be set to zero
S1667- 15	12:15	Reserved	31:0	Shall be set to zero

3.11.8 Enable IEEE1667 Silo Get Feature Identifier (0xC4) Dword 0 of command completion queue entry.

Req ID	Field	Bits		Field description
G1667-1	Reserved	31:3	Shall be set to zero	
G1667-2	IEEE1667 Silo Enabled			below define the required return each Selection (SEL) state. All other llegal.
			Current sta	te (Selection (SEL) set to 00b)
			Value	Field Description
			000b	The IEEE1667 silo is currently disabled
			001b	The IEEE1667 silo is currently enabled
			Default stat	te (Selection (SEL) set to 01b)
			Value	Field Description
			000b	The IEEE1667 silo factory default is disabled
			001b	The IEEE1667 silo factory default is enabled
			Saved state	(Selection (SEL) set to 10b)
			Value	Field Description

000b	The IEEE1667 silo saved state is disabled
001b	The IEEE1667 silo saved state is enabled
	(Selection (SEL) set to 11b)
Value 101b	This feature is saveable, changeable and not namespace specific

4 PCle Requirements

The following are PCIe requirements.

Requirement ID	Description
PCI-1	The device shall support a PCIe Maximum Payload Size (MPS) of 256
	bytes or larger.
PCI-2	The device Controller shall support modification of PCIe TLP
	completion timeout range as defined by the PCIe Base Spec.
PCI-3	The vendor shall disclose the vendor-specific timeout range
	definition if the controller deviates from the PCI Express Base Spec
	3.1a Table 7-25 which defines Ranges A, B, C and D.
PCI-4	Disabling of PCIe Completion Timeout shall also be supported by the
	device Controller.
PCI-5	PCIe Conventional Reset Shall be supported:
	PCIe Cold or Warm Reset (achieved by toggling of PERST#)
PCI-6	PCIe Function Level Reset shall be supported.
PCI-7	PCIe Hot Reset shall be supported.

4.1 Boot Requirements

Requirement ID	Description		
BOOT-1	The device shall support UEFI.		
BOOT-2 An option ROM shall not be included.			

4.2 PCle Error Logging

The following table indicates where the PCIe physical layer error counters shall be logged. This is in addition to the aggregated PCIe error counters defined in section 3.12 SMART Cloud Attributes Log Page (0xC0).

Requirement ID	Event	Logging mechanism
PCIERR-1	Unsupported Request Error Status (URES)	Uncorrectable Error Status Register, Offset 0x4 in PCIe Base
PCIERR-2	ECRC Error Status (ECRCES)	Specification 3.1a Section 7.10.2
PCIERR-3	Malformed TLP Status (MTS)	
PCIERR-4	Receiver Overflow Status (ROS)	
PCIERR-5	Unexpected Completion Status (UCS)	
PCIERR-6	Completer Abort Status (CAS)	
PCIERR-7	Completion Timeout Status (CTS)	
PCIERR-8	Flow Control Protocol Error Status	
	(FCPES)	
PCIERR-9	Poisoned TLP Status (PTS)	
PCIERR-10	Data Link Protocol Error Status (DLPES)	
PCIERR-11	Advisory Non-Fatal Error Status (ANFES)	Uncorrectable Error Status Register, Offset 0x10 in PCle Base Specification 3.1a Section 7.10.5
PCIERR-12	Replay Timer Timeout Status (RTS)	Correctable PCIe Error Count in
PCIERR-13	REPLAY_NUM Rollover Status (RRS)	the SMART Cloud Attributes Log
PCIERR-14	Bad DLLP Status (BDS)	Page (0xC0).
PCIERR-15	Bad TLP Status (BTS)	
PCIERR-16	Receiver Error Status (RES)	

4.3 Low Power Modes

Requirement ID	Description
LPWR-1	If Active State Power Management (ASPM) is supported, the default
	firmware state shall be disabled.

4.4 PCle Eye Capture

Requirement ID	Description
EYE-1	A utility shall be provided that will allow the user to capture the
	internal eye of the device in order to tune the signal integrity of the
	device to the target platform.

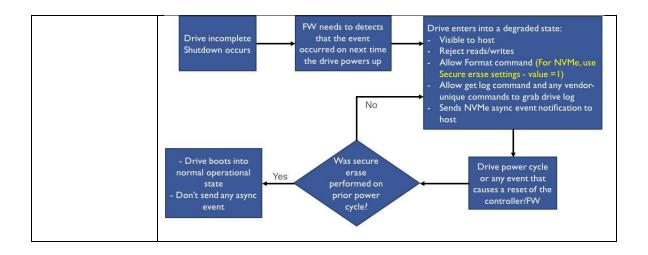
5 Reliability

5.1 UBER

Requirement ID	Description
UBER-1	The device shall support an Uncorrectable Bit Error Rate (UBER) of <
	1 sector per 10 ¹⁷ bits read.

5.2 Power On/Off Requirements

5.2.1 Time to Ready and Shutdown Requirements


Requirement ID	Description
TTR-1	The device shall respond to the identify command 2 seconds from
	PRST#. PRST# may be sent as part of the power on sequence.
TTR-2	The device shall respond to I/O with 20 seconds of PRST#. PRST#
	may be sent as part of the power on sequence.
TTR-3	The device is expected to service I/O and ADMIN commands as soon
	as CSTS.RDY = 1.
TTR-4	The device shall keep CSTS.RDY = 0 until the device comes ready
	internally and is able to service commands.
TTR-5	The Shutdown Notification completion (CSTS.SHST) shall be
	received within 10 seconds of setting SHN bit.
TTR-6	The device Controller shall support the CC.SHN (Normal and Abrupt
	Shutdown Notifications) at a minimum.
TTR-7	When safe shutdown is completed successfully, the device shall not
	enter a rebuild/recovery mode on the next power on.
TTR-8	Shutdown Notification shall trigger flushing of all content within the
	device's internal (SRAM/ DRAM) cache(s) (if one is present)
TTR-9	The device firmware shall support reporting of CSTS.CFS as
	indicated in the NVMe Spec.
TTR-10	The device shall support full power-loss protection for all
	acknowledged data and metadata.
TTR-11	The Power-loss protection health check shall not impact IO latency.
TTR-12	Metadata rebuild due to an unexpected power loss shall not exceed
	120 seconds and the device shall be fully operational after this.
TTR-13	Power-loss protection health check shall be performed by the
	firmware at least once every 24 hours.
TTR-14	While performing the power-loss protection health check, the
	device shall still have enough charge to be able to handle an
	ungraceful power loss properly.
TTR-15	In case of a graceful shutdown operation (CC.SHN = 1 set by the
	NVMe device driver), no data loss is tolerated.

TTR-16	An ungraceful shutdown event shall not make the device non-functional under any conditions.
TTR-17	The firmware algorithm shall deploy safeguards to prevent a false detection of power loss protection failure. Example of a false detection would be a glitch in any of the power loss circuitry readings which would cause a transient event to trigger a false power loss protection failure when the power loss protection hardware is healthy.
TTR-18	The device shall implement a power-loss protection (PLP) health check which can detect the capacitor holdup energy margin for the capacity health SMART attribute SMART-19. The PLP health check shall not just check for open/short capacitor conditions but shall measure the true available margin energy.

5.2.2 Incomplete/ Unsuccessful Shutdown

An incomplete/ unsuccessful shutdown is a graceful or ungraceful power down that did not complete 100% of the shutdown sequence for any reason (firmware hang/crash, capacitor failure, PLP circuit failure, etc.).

Requirement ID	Description
INCS-1	When the power-loss protection mechanism fails for any reason
	while power is applied, the device shall generate an AEN to the host
	and transition to the write behavior as defined in the Power Loss
	Behavior Set Feature Identifier (0xC2).
INCS-2	The device shall incorporate a shutdown checksum or flag as the
	very last piece of data written to flash to detect incomplete
	shutdown.
INCS-3	This checksum in INCS-2 shall be used on power-up to confirm that
	the previous shutdown was 100% successful.
INCS-4	The incomplete shutdown shall result in an increase in the Cloud
	SMART "Incomplete Shutdowns" counter and the NVMe standard
	SMART log (Log page 0x02) "critical warning" field shall have bit 2
	set (NVM subsystem reliability).
INCS-5	The device shall still support data eradication as defined in section
	10.2 Data Encryption and Eradication even if it is operating in
	"Read-only" mode, and it shall support admin commands to enable
	reading the sensor or SMART data.
INCS-6	When the device increments the "Incomplete Shutdowns" counter
	(SMART-15), it shall use the following recovery procedure at the
	next power up:

5.3 End to End Data Protection

Requirement ID	Description
E2E-1	All user data shall be protected using overlapping ECC and CRC protection mechanisms throughout the entire read and write path in the device including all storage elements (registers, caches, SRAM, DRAM, NAND, etc.).
E2E-2	At least one bit of correction and 2 bits of detection is required for all memories. This shall be for all memories regardless of function.
E2E-3	The entire DRAM addressable space shall to be protected with at least one-bit correction and 2 bits of detection scheme (SECDED). This includes but not limited to the following: • Flash translation layer (FTL) • Mapping tables (including metadata related to deallocated LBAs) • Journal entries • Firmware scratch pad • System variables • Firmware code
E2E-4	Silent data corruption shall not be tolerated under any circumstances.
E2E-5	The device shall include a mechanism to protect against returning the data from the wrong logical block address (LBA) to the host. It is acceptable that device stores additional/modified information to provides protection against returning wrong data to host. Device shall perform host LBA integrity checking on all transfers to and from the media.
E2E-6	All device metadata, firmware, firmware variables, and other device system data shall be protected by at least a single bit detection scheme.

5.4 Behavior on Firmware Crash, Panic or Assert

Requirement ID	Description
CRASH-1	After a firmware crash, panic or assert the device shall not allow
	read or write access to the media.
CRASH-2	After a firmware crash, panic or assert the device the device shall
	still support ADMIN commands including the ability to read any
	failure logs from the device to determine the nature of the failure.
CRASH-3	After the host performs the action specified in Device Recovery
	Action (EREC-3), the device shall allow full read and write access at
	full performance.
CRASH-4	If after a firmware crash, panic or assert there is the possibility of
	user data corruption, the Device Recovery Action shall require a
	Format.

5.5 Annual Failure Rate (AFR)

Requirement ID	Description		
REL-1	The device shall meet an MTBF of 2.5 million hours (AFR of <= 0.35%) under the following environmental conditions:		
	Specification	Environment	Requirement
	Temperature	Operational	• 0°C to 50°C (32°F to 112°F)
	Humidity	Operational	 10% to 90% non-condensing Yearly weighted average: 80% RH 90% of year: < 80% 10% of year: 80% to 90% Maximum dewpoint: 29.4°C (85°F)
		Non-Operational	 5% to 95% non- condensing 38°C (100.4°F) maximum wet bulb temperature
REL-2			0 million hours (AFR of <=
	0.44%) under the following environmental conditions:		
	Specification	Environment	Requirement
	Temperature	Operational	• 0°C to 55°C (32°F to 158°F)

	Humidity	Operational	 10% to 90% non-condensing Maximum dewpoint: 29.4°C (85°F)
	Humidity	Non-operational	 5% to 95% non-condensing 38°C (100.4°F) maximum wet bulb temperature
REL-3	Supplier shall provide the temperature and humidity conditions		
	used to determ	ine the MTBF.	
REL-4	Supplier shall provide UBER and AFR de-rating curves for the		
	combined Temperature and Relative Humidity range shown in		
	requirement RE	EL-2 for up to 70°C (1	58°F).

5.6 Background Data Refresh

Requirement ID	Description
BKGND-1	The device shall support background data refresh while the device is
	powered on to ensure there is no data-loss due to power-on
	retention issues.
BKGND-2	The device shall be designed and tested to support the normal
	NAND operating temperature. For example, if the device is cooled
	to a composite temperature of 70°C (158°F) which in turn implies a
	NAND temperature of 80°C (176°F) this shall be accounted for.
BKGND-3	Background data refresh shall cover the entire device and be
	designed to continuously run in the background and not just during
	idle periods.

5.7 Wear-leveling

Requirement ID	Description
WRL-1	The device shall utilize the entire Endurance Group media capacity
	range whenever the device needs to wear-level a block. The device
	shall not restrict the wear-leveling range to a subset of the
	Endurance Group media capacity unless otherwise specified. If the
	device does not support Endurance Groups, it shall wear-level
	across the entire physical media of the Namespace.

6 Endurance

6.1 Endurance Data

Requirement ID	Description
ENDUD-1	The device documentation shall include the number of physical bytes
	able to be written to the device assuming a write amplification of 1.
	The units should be gigabytes (10^9 bytes).
ENDUD-2	The conditions to test device Endurance are:
	 90/10 Read/Write workload (by number of I/Os)
	 4kiB Read accesses aligned to 4kiB boundaries
	 128kiB Write accesses aligned to 128kiB boundaries
	Random pattern of Read addresses
	Sequential pattern of Write addresses
	100% active range
	80% full device
	0% compressible data
	 Ambient temperature 35°C (95°F)
	Short stroked device if capacity is 2TB or greater (See EOL-2).
ENDUD-3	The Percentage Used in the SMART Heath Log shall track linearly
	with bytes written and at 100% it shall match the EOL value specified
	in ENDUD-1.

6.2 Retention Conditions

Since there are several factors that impact the device endurance, the table below provides the requirements for the datacenter environment.

Requirement ID	Description
RETC-1	Non-Operational (Powered-off) data retention (end of life) shall be
	at least 1 month at 25°C (77°F).
RETC-2	Operating (Powered-on) data retention shall be at least 7 years. For purposes of this requirement, the assumption is that the TerraBytes Written (TBW) capability of the devices is used linearly over the lifetime. This requirement does not imply any specific warranty period.
RETC-3	The device shall not throttle its performance based on the
	endurance metric (endurance throttling).

6.3 Shelf Life

Requirement ID	Description
----------------	-------------

SLIFE-1	A new device may be kept as a datacenter spare and therefore shall
	be fully functional even if it sits on the shelf for up to 1 year at 40°C
	(104°F) before getting installed in the server. Device can be
	considered to be in new in box factory state.

6.4 End-of-Life (EOL)

Requirement ID	Description
EOL-1	Various types of samples are required for EOL testing: 1. Beginning of Life (Short stroked if required by EOL-2)
	 End of Life (Short stroked if required by EOL-2) End of Life (Not short stroked if different than #2)
EOL-2	On 2 TB or larger devices, there shall be a method to "short stroke" the device. Media reserved for background operations shall be proportionally adjusted. If a "short stroked" firmware or tool is required, the "short stroked" capacity shall be 10% of the native device capacity.
EOL-3	Upon reaching 100% of specified device endurance, the device shall notify the host with an AEN.
EOL-4	The device shall continue to operate in a read/write mode as long as data is not at risk.
EOL-5	The device shall switch to read-only mode when the available spares field in the SMART / Health Information (Log Identifier 02h) reaches 0%. A value of 0% represents the device state where there is an insufficient number of spare blocks to support Host writes. After the drive switches to read-only mode, bit 2 of the Critical Warning field of section 5.14.1.2 SMART Attributes in the NVMe specification shall be set.
	The device shall generate a Critical Warning async notification (AEN) when the available spares value falls below the available spare threshold.

7 Thermal

7.1 Data Center Altitude

Requirement ID	Description
THERM-1	Support for data centers being located at an altitude of up to 10,000
	feet above sea level is required. There shall be no de-rating up to
	6,000 feet above sea level. Above 6,000 feet the derating shall be
	0.9°C (1.6°F)/1000ft.

THRM-2	A thermal study with each platform is required. The thermal design shall be validated up to 35°C (95°F) ambient temperature for the platform with a worst-case airflow of 1.5 meters per second.	
THRM-3	The device shall operate normally with relative humidity to be between 10% and 90%.	

7.2 Thermal Throttling

Requirement ID	Description
TTROTTLE-1	The device shall implement a thermal throttling mechanism to protect the device in case of a failure or excursion that causes the device temperature to increase above its maximum specified temperature.
TTROTTLE-2	When a temperature throttle occurs, a Temperature Async Event Notification shall be issued to the host.
TTROTTLE-3	Thermal throttling shall only engage under certain failure conditions such as excessive server ambient temperature or multiple fan failures. The required behavior is illustrated below: SSD SMART (Composite) temperature may overshoot up to 77°C for brief durations (< 1% of the SSD life) 77°C Typical Steady State SSD Temperature (70°C Max)
TTROTTLE-4	The firmware algorithm shall deploy safeguards to prevent a false activation of either thermal throttling or thermal shutdown. Example of a false activation would be a glitch in any of the sensor readings which would cause the composite temperature to reach the thermal throttling or thermal shutdown limit.
TTROTTLE-5	A composite temperature of 77°C (170.6°F) shall be used for throttling.
TTROTTLE-6	Thermal throttling shall not start based on the rate of temperature increase or slew rate.

7.3 Temperature Reporting

Requirement ID	Description
TRPT-1	The device shall expose the current raw sensor readings from all the
	sensors on the device.

TRPT-2	The device's device-to-device composite temperature variation shall be +/- 1 degrees C. Two different devices shall not report a
	composite temperature greater than 2 degrees apart under the
	same environmental conditions, slot location, and workload.
TRPT-3	The device's within device composite temperature variation shall be
	+/- 1 degrees C. A single device's composite temperature shall not
	vary by more than 2 degrees once it is in a steady state under the
	same environmental conditions, slot location, and workload.
TRPT-4	The supplier shall provide the equation, settings, and thresholds
	used to calculate the composite temperature.

7.4 Thermal Shutdown

Requirement ID	Description
THRMS-1	If the device implemented a mechanism to shut down or halt the
	device at a given temperature, that temperature value shall be at
	85°C (185°F) composite temperature or higher.

8 Form Factor Requirements

8.1 Generic Form Factor Requirements

Requirement ID	Description
GFF-1	The device shall be compliant to PCIe base specification 3.1a.
GFF-2	Vendor shall provide a PCIe compliance report.
GFF-3	The device shall support lane reversal with all lanes connected or
	partially connected lanes. (e.g. a x4 device shall support it for x4, x2,
	and x1 connections).
GFF-4	The device shall train to x1 when only one upstream port is
	available, to x2 when the upstream device provides only 2 lanes per
	device and to x4 when 4 lanes are present.
GFF-5	The device shall support hot swap on form factors that support hot
	swap.

8.2 Power Consumption Measurement Methodology

Requirement ID	Description
PCM-1	The device max average power consumption for any workload shall
	not exceed the maximum average power as configured in PWR-2 in
	a 500ms window with a sampling rate of 2ms or better. The

	measurement duration shall be at least 15 minutes on a preconditioned device.
PCM-2	The device peak power for any workload shall not exceed the max form factor power in a 100us window with a sampling rate of 4uS or better. The measurement duration shall be at least 15 minutes on a pre-conditioned device.
PCM-3	The peak power shall be no more than 1.5X higher than the max average power as defined in PWR-3.

8.3 Power Levels

Requirement ID	Description			
PWR-1	The Power Management Set Feature (0x02) and the Power State			
	descriptor table shall be supported.			
PWR-2	The following power state descriptor table shall be supported.			
		ver states greater th	an 35W are allowe	d.
	Power State	Maximum	Entry Latency	Exit Latency
		Average Power	(ENTLAT)	(EXLAT)
		(MAP)		
	0	8.25W	IHV*	IHV
	1	10W	IHV	IHV
	2	12W	IHV	IHV
	3	14W	IHV	IHV
	4	16W	IHV	IHV
	5	18W	IHV	IHV
	6	20W	IHV	IHV
	7	25W	IHV	IHV
	8	35W	IHV	IHV
	*Table entries	containing IHV (Inde	ependent Hardware	e Vendor) are to
	be filled out by	the manufacturer.	If a given power st	ate is not
	supported, the	en the device shall re	eport 0h for the Ent	ry Latency
		Exit Latency (EXLAT)		
		es in the power state	•	
PWR-3	The method of defined in PCN	f measurement for N N-1.	Maximum Average	Power (MAP) is
PWR-4	Power state er	ntries above the max	ximum rated power	envelope of the
	device shall no	t be in the table.		
PWR-5	The Set Featur	es for Power Manag	gement with the SV	bit 31 in
	Command Dwo	ord 10 shall be supp	orted so that the p	ower level can be
	set and will be	saved across power	r cycles.	
PWR-6	The device, reg power of 5 Wa	gardless of form fact otts or less.	tor or capacity, sha	l have an idle

8.4 M.2 Form Factor Requirements

Require	Description
ment ID	
FFM2-1	The device shall adhere to the M.2 specification with a size of 22mm x
	110mm.
FFM2-2	The bottom-side height shall not exceed 1.5mm.
FFM2-3	The top-side height shall not exceed 2mm.
FFM2-4	The device shall use an M key.
FFM2-5	The device shall support PCIe Gen3 x4.
FFM2-6	The device shall support driving an activity LED through the connector.
FFM2-7	The LED should be lit solidly when power is applied and flashing when there
	is traffic going to the SSD.
FFM2-8	The device shall not use any pins that are defined in the m.2 specification for
	vendor unique functionality.
FFM2-9	The device shall support a protection scheme that protects against NAND
	block level failures.
FFM2-	The protection scheme must also support NAND plane level failures without
10	data or metadata loss.
FFM2-	The Label shall be placed on the top side of the device.
11	
FFM2-	The device electricals shall follow the SMBUS connection as described below
12	and in the PCI SIG ECN.
	(

8.5 E1.S Form Factor Requirements

Requirement ID	Description
FFE1S-1	The device shall adhere to the latest revision of SFF-TA-1006.
FFE1S-2	At a minimum the device shall support PCIe Gen3 x4.
FFE1S-3	The device shall support activity and error LEDs.
FFE1S-4	The activity LED shall be lit solidly when power is applied and
	flashing when there is traffic going to the device.
FFE1S-5	The device shall support a protection scheme that protects against
	NAND block level failures.
FFE1S-6	The protection scheme must also support NAND plane level failures
	without data or metadata loss.
FFE1S-7	The amber LED shall meet the Panel Indicator Specification 1.0 in
	OCP.

FFE1S-8	The thermal performance of the 9.5mm and 25mm cases and their
	associated pressure drops needs to be provided.
FFE1S-9	The PWRDIS pin shall be supported.
FFE1S-10	The SMBUS electrical connections shall follow the "DC Specification
	For 3.3V Logic Signaling" as defined in SFF-TA-1009 revision 2.0.
	Including Vih1 with a max of 3.465V.
FFE1S-11	The device's SMBUS protocol shall comply to version 2.0
	(http://smbus.org/specs/smbus20.pdf)

8.6 E1.L Form Factor Requirements

Requirement ID	Description
FFE1L-1	The device shall adhere to the latest revision of SFF-TA-1007.
FFE1L-2	At a minimum the device shall support PCIe Gen3 x4.
FFE1L-5	The device shall support activity and error LEDs.
FFE1L-6	The activity LED shall be lit solidly when power is applied and
	flashing when there is traffic going to the device.
FFE1L-7	The amber LED shall meet the Panel Indicator Specification 1.0 in
	OCP.
FFE1L-8	The thermal performance of the 9.5mm and 18mm cases and their
	associated pressure drops shall be provided.
FFE1L-9	The PWRDIS pin shall be supported.
FFE1L-10	The SMBUS electrical connections shall follow the "DC Specification
	For 3.3V Logic Signaling" as defined in SFF-TA-1009 revision 2.0.
	Including Vih1 with a max of 3.465V.
FFE1L-11	The device's SMBUS protocol shall comply to version 2.0
	(http://smbus.org/specs/smbus20.pdf)

9 SMBUS support

9.1 SMBUS Requirements

Requirement	Description					
ID						
SMBUS-1	The device shall support the NVMe Simple Management Interface					
	specification as defined in Appendix A of the NVMe Management					
	Interface 1.0a specification.					
	(http://www.nvmexpress.org/wp-					
	content/uploads/NVM Express Management Interface 1 0a 2017.04					
	<u>.08 - gold.pdf</u>). The primary purpose is for sideband access to					

	temperature information for fan control. There's no requirement to
	implement anything else outside of Appendix A in the NVMe
	Management Interface specification.
SMBUS-2	Both SMBUS block read/write and byte read/write commands shall be
	supported.
SMBUS-3	The device shall implement the SMBus format as show in section 9.2.
SMBUS-4	Unless otherwise noted, the default value for the Firmware Update
	Flags field (Byte 91) in the SMBUS Data structure shall be set 0xFF.
SMBUS-5	The Secure Boot Failure Feature Reporting Supported bit at offset 243
	shall be supported and set to 0x1.
SMBUS-6	When there is a secure boot failure it shall be reported with the
	following behavior:
	Command Code 0:
	Bit 6: Drive not ready = 1
	Bit 5 Drive Functional = 0
	Command Code 242:
	Bit 7 Secure Boot Failure Feature Reporting Supported = 1
	Bit 6 Secure Boot Failure Status = 1
SMBUS-7	The device shall take no longer than the CAP.TO timeout value to
	produce stable SMBUS output through the NVMe Simple Management
	Interface protocol.

9.2 SMBUS Data Format

Command Code	Offset (Decimal)	Description			
(Decimal)					
0	0	Defined in NVM Express Management Interface 1.0a.			
8	8	Defined in NVM Express Management Interface 1.0a.			
32	32	Length of GUID. This is the number of bytes until the PEC			
		code. This shall be 16 decimal (0x10).			
	48:33	GUID: This is a 16-byte Global Unique Identifier. The GUID			
		shall be 738920e5-6bee-4258-9a7a-cebdb35f0085			
	49	PEC:			
		An 8-bit CRC calculated over the slice address, command			
		code, second slave address and returned data. Algorithm is			
		defined in SMBus Specifications.			
50	50 Length of Telemetry: Indicated the number of additi				
		bytes to read before encountering PEC. This value should			
		always be 49 (0x31) in implementations of this version of the			
		spec.			

		T				
	51	Temperature Flags: This field reports the effect of				
		temperature on the device's performance.				
		Temperature Throttling – Bit 7 is set to 1b when the drive is				
		throttling performance to prevent overheating. Clear to 0b				
		when the device is not throttling.				
		Bits 6-0 shall be set to 1b.				
	52	Max Power Supported: This shall denote the max average				
		power supported by this device rounded to the nearest				
		watt. Some examples of how to use this is a 50W device is				
		0x32, a 25W device is 0x19, a 15W device is 0xF, an 8.25W				
		device is 8W which is 0x8.				
	84:53	Configured Power state. This is the power level entry that is				
		currently set based on Set Features.				
	88:85	This is the device raw capacity in GB in Hex (2048 GB in raw				
		capacity = 0x800). Does not include any extra spare blocks				
		within the NAND.				
	89	PEC:				
		An 8-bit CRC calculated over the slice address, command				
		code, second slave address and returned data. Algorithm in				
		SMBus Specifications.				
90	90	Length of Status of firmware Update Field: Indicates number				
		of additional bytes to read before encountering PEC. This				
		value should always be 5 (0x05) in implementations of this				
		version of the spec.				
	91	Firmware Update Flags: This field allows the host to control				
		whether the current firmware allows new firmware images				
		to be activated. Please see the "Security" section of this				
		specification for more information.				
		specification for more imprination.				
		Enable Firmware Update Bit 7				
		Written by host, read by drive				
		1 Unlock Firmware Update				
		Drive shall enable Firmware update				
		0 Lock Firmware Update				
		Drive shall block and error on Firmware download				
		and activate commands				
		and activate communities				
		Firmware Undate Enabled - Dit 6				
		Firmware Update Enabled Bit 6				
İ		Written by drive, read by host				
		1 Firmware Update Unlocked				

	94:92	Drive shall allow Firmware download and activate commands O Firmware Update Locked Drive shall block and error on Firmware download and activate commands The default shall persist across power cycles. Bits 5-0 shall be set to '1'. Reserved. Shall be set to 0x0. PEC: An 8-bit CRC calculated over the slice address, command code, second slave address and returned data. Algorithm in
96	96	SMBus Specifications. Length of Version: Indicates number of additional bytes to read before encountering PEC. This value should always be 56 (38h) in implementations of this version of the spec.
	104:97	Firmware Version Number: This field shall indicate the activated firmware version that is running on the device after the firmware activation took place. The format of this field shall be as defined in field Firmware Revision (FR) section 5.15.2.2 Identify Controller Data Structure of the NVMe specification.
	112:105	Reserved: Shall be set to 0x0.
	152:113	Product Part/Model Number. The reason for 40 bytes is to keep this consistent with NVMe that already has this field in the identify command.
	153	PEC: An 8-bit CRC calculated over the slice address, command code, second slave address and returned data. Algorithm in SMBus Specifications.
154	241:154	Reserved: Shall be set to 0x0.
242	242	Length of Version: Indicates number of additional bytes to read before encountering PEC. This value should always be 5 (0x5h).
	243	Bit 7: Secure Boot Failure Feature Reporting Supported When set to 0x1 the secure boot feature reporting is supported. When set to 0x0 the secure boot failure feature reporting is not supported.
		Bit 6: Secure Boot Failure Status: When set to 0b there is no secure boot failure. When set to 1b there is a secure boot

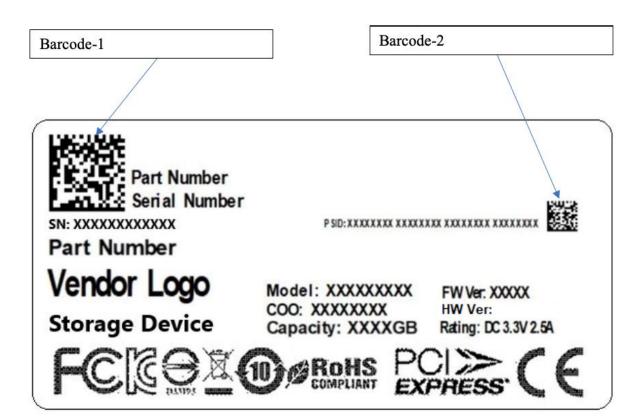
		failure. This bit shall only be set if the Secure Boot Feature Supported bit is set to 1b and there is a secure boot failure.
		Bit 5:0 Reserved. Shall be set to 0x0.
	246:244	Reserved:
		Shall be set to 0x0.
	247	PEC:
		An 8-bit CRC calculated over the slice address, command
		code, second slave address and returned data. Algorithm in
		SMBus Specifications.
248	248	Length of Specification Version: Indicates number of
		additional bytes to read before encountering PEC. This value
		should always be 6 (0x06) in implementations of this version
		of the spec.
	250:249	Log Page Version Number: Indicates the version of this
		mapping used in the device. Shall be set to '3' (0x03) after an
		SMBus block read is completed.
	254:251	Reserved: Shall be set to 0000h.
	255	PEC: An 8-bit CRC calculated over the slice address,
		command code, second slave address and returned data.
		Algorithm in SMBus Specifications.

10 Security

10.1 Basic Security Requirements

Requirement ID	Description
SEC-1	The device shall support signed firmware binary update which is
	checked before firmware is activated. The device firmware shall be
	authenticated using cryptographic keys on every reboot and during
	firmware update
SEC-2	The device shall have XTS-AES-256 or AES-256 hardware-based data
	encryption or better is required.
SEC-3	The device shall have anti-rollback protection for firmware. The
	anti-rollback protection shall be implemented with a security
	version which is different than the firmware version. If the security
	version of the firmware being activated is greater or equal to the
	current security version the firmware may be activated. If the
	security version of the firmware being activated is not equal or
	greater than the firmware being activated the firmware update shall
	fail.

SEC-4 The device shall support Crypto Erase. SEC-5 The device shall support Secure Boot. SEC-6 The device shall have a method of identifying a secure boot failure which does not require physical access to the device. SEC-7 The device shall be FIPS 140-2 capable (not required to get FIPS certificate). SEC-8 The device shall support Key revocation allowing a new key to be used for firmware validation on update. Preferred implementation is to allow for up to 3 key revocations. SEC-9 The device shall support Opal v2.01 with mandatory support for the Locking feature, the Opal SSC feature and the Datastore Table feature. SEC-10 The device shall support Single User Mode feature set Version 1.00, revision 1.00. SEC-11 The device shall support Configurable Namespace Locking (CNL) feature set Version 1.00, revision 1.00 with mandatory support for the Namespace Global Range Locking object. The Namespace Non-Global Range Locking object may be supported. SEC-12 For some models, IEEE 1667 will be required. SEC-13 Supplier shall follow the Security Development Lifecycle (SDL), and provide a report with the following for each qualification-ready or production-ready firmware version: • The Threat Model • Fuzz & Pen Tests • Static Analysis • Build Logs and Compiler Settings Additional information about the SDL is available here: https://www.microsoft.com/en-us/sdl/default.aspx SEC-14 Security audits, including firmware source code review, shall be required. SEC-15 All signing keys shall be stored in a hardware security module (HSM). SEC-16 Access/use of signing keys should be restricted to a small set of developers, following the principle of least privilege. Number of people with access and their corresponding roles shall be provided. SEC-17 All debug ports shall be disabled before the device leaves the factory. Alternatively, the port may be accessible in the field only after a strong crypto authentication process. SEC-18 All vendor unique commands, log pages or set features that are not explicitly defined in this speci		
SEC-6 The device shall have a method of identifying a secure boot failure which does not require physical access to the device. SEC-7 The device shall be FIPS 140-2 capable (not required to get FIPS certificate). SEC-8 The device shall support Key revocation allowing a new key to be used for firmware validation on update. Preferred implementation is to allow for up to 3 key revocations. SEC-9 The device shall support Opal v2.01 with mandatory support for the Locking feature, the Opal SSC feature and the Datastore Table feature. SEC-10 The device shall support Single User Mode feature set Version 1.00, revision 1.00. SEC-11 The device shall support Configurable Namespace Locking (CNL) feature set Version 1.00, revision 1.00 with mandatory support for the Namespace Global Range Locking object. The Namespace Non-Global Range Locking object may be supported. SEC-12 For some models, IEEE 1667 will be required. SEC-13 Supplier shall follow the Security Development Lifecycle (SDL), and provide a report with the following for each qualification-ready or production-ready firmware version: • The Threat Model • Fuzz & Pen Tests • Static Analysis • Build Logs and Compiler Settings Additional information about the SDL is available here: https://www.microsoft.com/en-us/sdl/default.aspx SEC-14 SEC-15 All signing keys shall be stored in a hardware security module (HSM). SEC-16 Access/use of signing keys should be restricted to a small set of developers, following the principle of least privilege. Number of people with access and their corresponding roles shall be provided. All debug ports shall be disabled before the device leaves the factory. Alternatively, the port may be accessible in the field only after a strong crypto authentication process. All vendor unique commands, log pages or set features that are not explicitly defined in this specification shall be disabled before the	SEC-4	The device shall support Crypto Erase.
which does not require physical access to the device. SEC-7 The device shall be FIPS 140-2 capable (not required to get FIPS certificate). SEC-8 The device shall support Key revocation allowing a new key to be used for firmware validation on update. Preferred implementation is to allow for up to 3 key revocations. SEC-9 The device shall support Opal v2.01 with mandatory support for the Locking feature, the Opal SSC feature and the Datastore Table feature. SEC-10 The device shall support Single User Mode feature set Version 1.00, revision 1.00. SEC-11 The device shall support Configurable Namespace Locking (CNL) feature set Version 1.00, revision 1.00 with mandatory support for the Namespace Global Range Locking object. The Namespace Non-Global Range Locking object may be supported. SEC-12 For some models, IEEE 1667 will be required. SEC-13 Supplier shall follow the Security Development Lifecycle (SDL), and provide a report with the following for each qualification-ready or production-ready firmware version: • The Threat Model • Fuzz & Pen Tests • Static Analysis • Build Logs and Compiler Settings Additional information about the SDL is available here: https://www.microsoft.com/en-us/sdl/default.aspx SEC-14 Security audits, including firmware source code review, shall be required. SEC-15 All signing keys shall be stored in a hardware security module (HSM). SEC-16 Access/use of signing keys should be restricted to a small set of developers, following the principle of least privilege. Number of people with access and their corresponding roles shall be provided. SEC-17 All debug ports shall be disabled before the device leaves the factory. Alternatively, the port may be accessible in the field only after a strong crypto authentication process. All vendor unique commands, log pages or set features that are not explicitly defined in this specification shall be disabled before the	SEC-5	The device shall support Secure Boot.
SEC-7 The device shall be FIPS 140-2 capable (not required to get FIPS certificate). SEC-8 The device shall support Key revocation allowing a new key to be used for firmware validation on update. Preferred implementation is to allow for up to 3 key revocations. SEC-9 The device shall support Opal v2.01 with mandatory support for the Locking feature, the Opal SSC feature and the Datastore Table feature. SEC-10 The device shall support Single User Mode feature set Version 1.00, revision 1.00. SEC-11 The device shall support Configurable Namespace Locking (CNL) feature set Version 1.00, revision 1.00 with mandatory support for the Namespace Global Range Locking object. The Namespace Non-Global Range Locking object may be supported. SEC-12 For some models, IEEE 1667 will be required. SEC-13 Supplier shall follow the Security Development Lifecycle (SDL), and provide a report with the following for each qualification-ready or production-ready firmware version: • The Threat Model • Fuzz & Pen Tests • Static Analysis • Static Analysis • Build Logs and Compiler Settings Additional information about the SDL is available here: https://www.microsoft.com/en-us/sdl/default.aspx SEC-14 SEC-15 All signing keys shall be stored in a hardware security module (HSM). SEC-16 Access/use of signing keys should be restricted to a small set of developers, following the principle of least privilege. Number of people with access and their corresponding roles shall be provided. SEC-17 All debug ports shall be disabled before the device leaves the factory. Alternatively, the port may be accessible in the field only after a strong crypto authentication process. SEC-18 All vendor unique commands, log pages or set features that are not explicitly defined in this specification shall be disabled before the	SEC-6	The device shall have a method of identifying a secure boot failure
certificate). SEC-8 The device shall support Key revocation allowing a new key to be used for firmware validation on update. Preferred implementation is to allow for up to 3 key revocations. SEC-9 The device shall support Opal v2.01 with mandatory support for the Locking feature, the Opal SSC feature and the Datastore Table feature. SEC-10 The device shall support Single User Mode feature set Version 1.00, revision 1.00. SEC-11 The device shall support Configurable Namespace Locking (CNL) feature set Version 1.00, revision 1.00 with mandatory support for the Namespace Global Range Locking object. The Namespace Non-Global Range Locking object may be supported. SEC-12 For some models, IEEE 1667 will be required. SEC-13 Supplier shall follow the Security Development Lifecycle (SDL), and provide a report with the following for each qualification-ready or production-ready firmware version: • The Threat Model • Fuzz & Pen Tests • Static Analysis • Build Logs and Compiler Settings Additional information about the SDL is available here: https://www.microsoft.com/en-us/sdl/default.aspx SEC-14 SEC-15 All signing keys shall be stored in a hardware security module (HSM). SEC-16 Access/use of signing keys should be restricted to a small set of developers, following the principle of least privilege. Number of people with access and their corresponding roles shall be provided. SEC-17 All debug ports shall be disabled before the device leaves the factory. Alternatively, the port may be accessible in the field only after a strong crypto authentication process. SEC-18 All vendor unique commands, log pages or set features that are not explicitly defined in this specification shall be disabled before the		which does not require physical access to the device.
SEC-8 The device shall support Key revocation allowing a new key to be used for firmware validation on update. Preferred implementation is to allow for up to 3 key revocations. SEC-9 The device shall support Opal v2.01 with mandatory support for the Locking feature, the Opal SSC feature and the Datastore Table feature. SEC-10 The device shall support Single User Mode feature set Version 1.00, revision 1.00. SEC-11 The device shall support Configurable Namespace Locking (CNL) feature set Version 1.00, revision 1.00 with mandatory support for the Namespace Global Range Locking object. The Namespace Non-Global Range Locking object may be supported. SEC-12 For some models, IEEE 1667 will be required. SEC-13 Supplier shall follow the Security Development Lifecycle (SDL), and provide a report with the following for each qualification-ready or production-ready firmware version: • The Threat Model • Fuzz & Pen Tests • Static Analysis • Build Logs and Compiler Settings Additional information about the SDL is available here: https://www.microsoft.com/en-us/sdl/default.aspx SEC-14 SEC-14 SEC-15 All signing keys shall be stored in a hardware security module (HSM). SEC-15 Access/use of signing keys should be restricted to a small set of developers, following the principle of least privilege. Number of people with access and their corresponding roles shall be provided. SEC-17 All debug ports shall be disabled before the device leaves the factory. Alternatively, the port may be accessible in the field only after a strong crypto authentication process. SEC-18 All vendor unique commands, log pages or set features that are not explicitly defined in this specification shall be disabled before the	SEC-7	The device shall be FIPS 140-2 capable (not required to get FIPS
used for firmware validation on update. Preferred implementation is to allow for up to 3 key revocations. SEC-9 The device shall support Opal v2.01 with mandatory support for the Locking feature, the Opal SSC feature and the Datastore Table feature. SEC-10 The device shall support Single User Mode feature set Version 1.00, revision 1.00. SEC-11 The device shall support Configurable Namespace Locking (CNL) feature set Version 1.00, revision 1.00 with mandatory support for the Namespace Global Range Locking object. The Namespace Non-Global Range Locking object may be supported. SEC-12 For some models, IEEE 1667 will be required. SEC-13 Supplier shall follow the Security Development Lifecycle (SDL), and provide a report with the following for each qualification-ready or production-ready firmware version: • The Threat Model • Fuzz & Pen Tests • Static Analysis • Build Logs and Compiler Settings Additional information about the SDL is available here: https://www.microsoft.com/en-us/sdl/default.aspx SEC-14 SEC-14 SEC-15 All signing keys shall be stored in a hardware security module (HSM). SEC-15 Access/use of signing keys should be restricted to a small set of developers, following the principle of least privilege. Number of people with access and their corresponding roles shall be provided. SEC-17 All debug ports shall be disabled before the device leaves the factory. Alternatively, the port may be accessible in the field only after a strong crypto authentication process. All vendor unique commands, log pages or set features that are not explicitly defined in this specification shall be disabled before the		certificate).
is to allow for up to 3 key revocations. SEC-9 The device shall support Opal v2.01 with mandatory support for the Locking feature, the Opal SSC feature and the Datastore Table feature. SEC-10 The device shall support Single User Mode feature set Version 1.00, revision 1.00. SEC-11 The device shall support Configurable Namespace Locking (CNL) feature set Version 1.00, revision 1.00 with mandatory support for the Namespace Global Range Locking object. The Namespace Non-Global Range Locking object may be supported. SEC-12 For some models, IEEE 1667 will be required. SEC-13 Supplier shall follow the Security Development Lifecycle (SDL), and provide a report with the following for each qualification-ready or production-ready firmware version: The Threat Model Fuzz & Pen Tests Static Analysis Build Logs and Compiler Settings Additional information about the SDL is available here: https://www.microsoft.com/en-us/sdl/default.aspx SEC-14 SEC-15 All signing keys shall be stored in a hardware security module (HSM). SEC-15 All signing keys shall be stored in a hardware security module (HSM). SEC-16 Access/use of signing keys should be restricted to a small set of developers, following the principle of least privilege. Number of people with access and their corresponding roles shall be provided. SEC-17 All debug ports shall be disabled before the device leaves the factory. Alternatively, the port may be accessible in the field only after a strong crypto authentication process. SEC-18 All vendor unique commands, log pages or set features that are not explicitly defined in this specification shall be disabled before the	SEC-8	The device shall support Key revocation allowing a new key to be
SEC-9 The device shall support Opal v2.01 with mandatory support for the Locking feature, the Opal SSC feature and the Datastore Table feature. SEC-10 The device shall support Single User Mode feature set Version 1.00, revision 1.00. SEC-11 The device shall support Configurable Namespace Locking (CNL) feature set Version 1.00, revision 1.00 with mandatory support for the Namespace Global Range Locking object. The Namespace Non-Global Range Locking object may be supported. SEC-12 For some models, IEEE 1667 will be required. SEC-13 Supplier shall follow the Security Development Lifecycle (SDL), and provide a report with the following for each qualification-ready or production-ready firmware version: The Threat Model Fuzz & Pen Tests Static Analysis Build Logs and Compiler Settings Additional information about the SDL is available here: https://www.microsoft.com/en-us/sdl/default.aspx SEC-14 Security audits, including firmware source code review, shall be required. SEC-15 All signing keys shall be stored in a hardware security module (HSM). SEC-16 Access/use of signing keys should be restricted to a small set of developers, following the principle of least privilege. Number of people with access and their corresponding roles shall be provided. SEC-17 All debug ports shall be disabled before the device leaves the factory. Alternatively, the port may be accessible in the field only after a strong crypto authentication process. SEC-18 All vendor unique commands, log pages or set features that are not explicitly defined in this specification shall be disabled before the		· · · · · · · · · · · · · · · · · · ·
Locking feature, the Opal SSC feature and the Datastore Table feature. SEC-10 The device shall support Single User Mode feature set Version 1.00, revision 1.00. SEC-11 The device shall support Configurable Namespace Locking (CNL) feature set Version 1.00, revision 1.00 with mandatory support for the Namespace Global Range Locking object. The Namespace Non-Global Range Locking object may be supported. SEC-12 For some models, IEEE 1667 will be required. SEC-13 Supplier shall follow the Security Development Lifecycle (SDL), and provide a report with the following for each qualification-ready or production-ready firmware version: • The Threat Model • Fuzz & Pen Tests • Static Analysis • Build Logs and Compiler Settings Additional information about the SDL is available here: https://www.microsoft.com/en-us/sdl/default.aspx SEC-14 Security audits, including firmware source code review, shall be required. SEC-15 All signing keys shall be stored in a hardware security module (HSM). SEC-16 Access/use of signing keys should be restricted to a small set of developers, following the principle of least privilege. Number of people with access and their corresponding roles shall be provided. SEC-17 All debug ports shall be disabled before the device leaves the factory. Alternatively, the port may be accessible in the field only after a strong crypto authentication process. SEC-18 All vendor unique commands, log pages or set features that are not explicitly defined in this specification shall be disabled before the		is to allow for up to 3 key revocations.
feature. SEC-10 The device shall support Single User Mode feature set Version 1.00, revision 1.00. SEC-11 The device shall support Configurable Namespace Locking (CNL) feature set Version 1.00, revision 1.00 with mandatory support for the Namespace Global Range Locking object. The Namespace Non-Global Range Locking object may be supported. SEC-12 For some models, IEEE 1667 will be required. SEC-13 Supplier shall follow the Security Development Lifecycle (SDL), and provide a report with the following for each qualification-ready or production-ready firmware version: • The Threat Model • Fuzz & Pen Tests • Static Analysis • Build Logs and Compiler Settings Additional information about the SDL is available here: https://www.microsoft.com/en-us/sdl/default.aspx SEC-14 Security audits, including firmware source code review, shall be required. SEC-15 All signing keys shall be stored in a hardware security module (HSM). SEC-16 Access/use of signing keys should be restricted to a small set of developers, following the principle of least privilege. Number of people with access and their corresponding roles shall be provided. SEC-17 All debug ports shall be disabled before the device leaves the factory. Alternatively, the port may be accessible in the field only after a strong crypto authentication process. SEC-18 All vendor unique commands, log pages or set features that are not explicitly defined in this specification shall be disabled before the	SEC-9	The device shall support Opal v2.01 with mandatory support for the
SEC-10 The device shall support Single User Mode feature set Version 1.00, revision 1.00. SEC-11 The device shall support Configurable Namespace Locking (CNL) feature set Version 1.00, revision 1.00 with mandatory support for the Namespace Global Range Locking object. The Namespace Non-Global Range Locking object may be supported. SEC-12 For some models, IEEE 1667 will be required. SEC-13 Supplier shall follow the Security Development Lifecycle (SDL), and provide a report with the following for each qualification-ready or production-ready firmware version: • The Threat Model • Fuzz & Pen Tests • Static Analysis • Build Logs and Compiler Settings Additional information about the SDL is available here: https://www.microsoft.com/en-us/sdl/default.aspx SEC-14 Security audits, including firmware source code review, shall be required. SEC-15 All signing keys shall be stored in a hardware security module (HSM). SEC-16 Access/use of signing keys should be restricted to a small set of developers, following the principle of least privilege. Number of people with access and their corresponding roles shall be provided. SEC-17 All debug ports shall be disabled before the device leaves the factory. Alternatively, the port may be accessible in the field only after a strong crypto authentication process. SEC-18 All vendor unique commands, log pages or set features that are not explicitly defined in this specification shall be disabled before the		
revision 1.00. SEC-11 The device shall support Configurable Namespace Locking (CNL) feature set Version 1.00, revision 1.00 with mandatory support for the Namespace Global Range Locking object. The Namespace Non-Global Range Locking object may be supported. SEC-12 For some models, IEEE 1667 will be required. SEC-13 Supplier shall follow the Security Development Lifecycle (SDL), and provide a report with the following for each qualification-ready or production-ready firmware version: • The Threat Model • Fuzz & Pen Tests • Static Analysis • Build Logs and Compiler Settings Additional information about the SDL is available here: https://www.microsoft.com/en-us/sdl/default.aspx SEC-14 Security audits, including firmware source code review, shall be required. SEC-15 All signing keys shall be stored in a hardware security module (HSM). SEC-16 Access/use of signing keys should be restricted to a small set of developers, following the principle of least privilege. Number of people with access and their corresponding roles shall be provided. SEC-17 All debug ports shall be disabled before the device leaves the factory. Alternatively, the port may be accessible in the field only after a strong crypto authentication process. SEC-18 All vendor unique commands, log pages or set features that are not explicitly defined in this specification shall be disabled before the		feature.
SEC-11 The device shall support Configurable Namespace Locking (CNL) feature set Version 1.00, revision 1.00 with mandatory support for the Namespace Global Range Locking object. The Namespace Non-Global Range Locking object may be supported. SEC-12 For some models, IEEE 1667 will be required. SEC-13 Supplier shall follow the Security Development Lifecycle (SDL), and provide a report with the following for each qualification-ready or production-ready firmware version: • The Threat Model • Fuzz & Pen Tests • Static Analysis • Build Logs and Compiler Settings Additional information about the SDL is available here: https://www.microsoft.com/en-us/sdl/default.aspx SEC-14 Security audits, including firmware source code review, shall be required. SEC-15 All signing keys shall be stored in a hardware security module (HSM). SEC-16 Access/use of signing keys should be restricted to a small set of developers, following the principle of least privilege. Number of people with access and their corresponding roles shall be provided. SEC-17 All debug ports shall be disabled before the device leaves the factory. Alternatively, the port may be accessible in the field only after a strong crypto authentication process. SEC-18 All vendor unique commands, log pages or set features that are not explicitly defined in this specification shall be disabled before the	SEC-10	
feature set Version 1.00, revision 1.00 with mandatory support for the Namespace Global Range Locking object. The Namespace Non-Global Range Locking object may be supported. SEC-12 For some models, IEEE 1667 will be required. SEC-13 Supplier shall follow the Security Development Lifecycle (SDL), and provide a report with the following for each qualification-ready or production-ready firmware version: • The Threat Model • Fuzz & Pen Tests • Static Analysis • Build Logs and Compiler Settings Additional information about the SDL is available here: https://www.microsoft.com/en-us/sdl/default.aspx SEC-14 Security audits, including firmware source code review, shall be required. SEC-15 All signing keys shall be stored in a hardware security module (HSM). SEC-16 Access/use of signing keys should be restricted to a small set of developers, following the principle of least privilege. Number of people with access and their corresponding roles shall be provided. SEC-17 All debug ports shall be disabled before the device leaves the factory. Alternatively, the port may be accessible in the field only after a strong crypto authentication process. SEC-18 All vendor unique commands, log pages or set features that are not explicitly defined in this specification shall be disabled before the		
the Namespace Global Range Locking object. The Namespace Non- Global Range Locking object may be supported. SEC-12 For some models, IEEE 1667 will be required. SEC-13 Supplier shall follow the Security Development Lifecycle (SDL), and provide a report with the following for each qualification-ready or production-ready firmware version: • The Threat Model • Fuzz & Pen Tests • Static Analysis • Build Logs and Compiler Settings Additional information about the SDL is available here: https://www.microsoft.com/en-us/sdl/default.aspx SEC-14 Security audits, including firmware source code review, shall be required. SEC-15 All signing keys shall be stored in a hardware security module (HSM). SEC-16 Access/use of signing keys should be restricted to a small set of developers, following the principle of least privilege. Number of people with access and their corresponding roles shall be provided. SEC-17 All debug ports shall be disabled before the device leaves the factory. Alternatively, the port may be accessible in the field only after a strong crypto authentication process. SEC-18 All vendor unique commands, log pages or set features that are not explicitly defined in this specification shall be disabled before the	SEC-11	
Global Range Locking object may be supported. SEC-12 For some models, IEEE 1667 will be required. SEC-13 Supplier shall follow the Security Development Lifecycle (SDL), and provide a report with the following for each qualification-ready or production-ready firmware version: • The Threat Model • Fuzz & Pen Tests • Static Analysis • Build Logs and Compiler Settings Additional information about the SDL is available here: https://www.microsoft.com/en-us/sdl/default.aspx SEC-14 Security audits, including firmware source code review, shall be required. SEC-15 All signing keys shall be stored in a hardware security module (HSM). SEC-16 Access/use of signing keys should be restricted to a small set of developers, following the principle of least privilege. Number of people with access and their corresponding roles shall be provided. SEC-17 All debug ports shall be disabled before the device leaves the factory. Alternatively, the port may be accessible in the field only after a strong crypto authentication process. SEC-18 All vendor unique commands, log pages or set features that are not explicitly defined in this specification shall be disabled before the		
SEC-12 For some models, IEEE 1667 will be required. SEC-13 Supplier shall follow the Security Development Lifecycle (SDL), and provide a report with the following for each qualification-ready or production-ready firmware version: • The Threat Model • Fuzz & Pen Tests • Static Analysis • Build Logs and Compiler Settings Additional information about the SDL is available here: https://www.microsoft.com/en-us/sdl/default.aspx SEC-14 Security audits, including firmware source code review, shall be required. SEC-15 All signing keys shall be stored in a hardware security module (HSM). SEC-16 Access/use of signing keys should be restricted to a small set of developers, following the principle of least privilege. Number of people with access and their corresponding roles shall be provided. SEC-17 All debug ports shall be disabled before the device leaves the factory. Alternatively, the port may be accessible in the field only after a strong crypto authentication process. SEC-18 All vendor unique commands, log pages or set features that are not explicitly defined in this specification shall be disabled before the		
SEC-13 Supplier shall follow the Security Development Lifecycle (SDL), and provide a report with the following for each qualification-ready or production-ready firmware version: • The Threat Model • Fuzz & Pen Tests • Static Analysis • Build Logs and Compiler Settings Additional information about the SDL is available here: https://www.microsoft.com/en-us/sdl/default.aspx SEC-14 SEC-14 SEC-15 All signing keys shall be stored in a hardware security module (HSM). SEC-16 Access/use of signing keys should be restricted to a small set of developers, following the principle of least privilege. Number of people with access and their corresponding roles shall be provided. SEC-17 All debug ports shall be disabled before the device leaves the factory. Alternatively, the port may be accessible in the field only after a strong crypto authentication process. SEC-18 All vendor unique commands, log pages or set features that are not explicitly defined in this specification shall be disabled before the		
provide a report with the following for each qualification-ready or production-ready firmware version: • The Threat Model • Fuzz & Pen Tests • Static Analysis • Build Logs and Compiler Settings Additional information about the SDL is available here: https://www.microsoft.com/en-us/sdl/default.aspx SEC-14 SEC-14 SEC-15 All signing keys shall be stored in a hardware security module (HSM). SEC-16 Access/use of signing keys should be restricted to a small set of developers, following the principle of least privilege. Number of people with access and their corresponding roles shall be provided. SEC-17 All debug ports shall be disabled before the device leaves the factory. Alternatively, the port may be accessible in the field only after a strong crypto authentication process. SEC-18 All vendor unique commands, log pages or set features that are not explicitly defined in this specification shall be disabled before the		, i
production-ready firmware version: • The Threat Model • Fuzz & Pen Tests • Static Analysis • Build Logs and Compiler Settings Additional information about the SDL is available here: https://www.microsoft.com/en-us/sdl/default.aspx SEC-14 SEC-14 SEC-15 All signing keys shall be stored in a hardware security module (HSM). SEC-16 Access/use of signing keys should be restricted to a small set of developers, following the principle of least privilege. Number of people with access and their corresponding roles shall be provided. SEC-17 All debug ports shall be disabled before the device leaves the factory. Alternatively, the port may be accessible in the field only after a strong crypto authentication process. SEC-18 All vendor unique commands, log pages or set features that are not explicitly defined in this specification shall be disabled before the	SEC-13	
 The Threat Model Fuzz & Pen Tests Static Analysis Build Logs and Compiler Settings Additional information about the SDL is available here: https://www.microsoft.com/en-us/sdl/default.aspx SEC-14 Security audits, including firmware source code review, shall be required. SEC-15 All signing keys shall be stored in a hardware security module (HSM). SEC-16 Access/use of signing keys should be restricted to a small set of developers, following the principle of least privilege. Number of people with access and their corresponding roles shall be provided. SEC-17 All debug ports shall be disabled before the device leaves the factory. Alternatively, the port may be accessible in the field only after a strong crypto authentication process. SEC-18 All vendor unique commands, log pages or set features that are not explicitly defined in this specification shall be disabled before the 		· · · · · · · · · · · · · · · · · · ·
 Fuzz & Pen Tests Static Analysis Build Logs and Compiler Settings Additional information about the SDL is available here: https://www.microsoft.com/en-us/sdl/default.aspx SEC-14 Security audits, including firmware source code review, shall be required. SEC-15 All signing keys shall be stored in a hardware security module (HSM). SEC-16 Access/use of signing keys should be restricted to a small set of developers, following the principle of least privilege. Number of people with access and their corresponding roles shall be provided. SEC-17 All debug ports shall be disabled before the device leaves the factory. Alternatively, the port may be accessible in the field only after a strong crypto authentication process. SEC-18 All vendor unique commands, log pages or set features that are not explicitly defined in this specification shall be disabled before the 		
Static Analysis Build Logs and Compiler Settings Additional information about the SDL is available here: https://www.microsoft.com/en-us/sdl/default.aspx SEC-14 Security audits, including firmware source code review, shall be required. SEC-15 All signing keys shall be stored in a hardware security module (HSM). SEC-16 Access/use of signing keys should be restricted to a small set of developers, following the principle of least privilege. Number of people with access and their corresponding roles shall be provided. SEC-17 All debug ports shall be disabled before the device leaves the factory. Alternatively, the port may be accessible in the field only after a strong crypto authentication process. SEC-18 All vendor unique commands, log pages or set features that are not explicitly defined in this specification shall be disabled before the		The Threat Model
Additional information about the SDL is available here: https://www.microsoft.com/en-us/sdl/default.aspx SEC-14 Security audits, including firmware source code review, shall be required. SEC-15 All signing keys shall be stored in a hardware security module (HSM). SEC-16 Access/use of signing keys should be restricted to a small set of developers, following the principle of least privilege. Number of people with access and their corresponding roles shall be provided. SEC-17 All debug ports shall be disabled before the device leaves the factory. Alternatively, the port may be accessible in the field only after a strong crypto authentication process. SEC-18 All vendor unique commands, log pages or set features that are not explicitly defined in this specification shall be disabled before the		Fuzz & Pen Tests
Additional information about the SDL is available here: https://www.microsoft.com/en-us/sdl/default.aspx SEC-14 SEC-14 Security audits, including firmware source code review, shall be required. SEC-15 All signing keys shall be stored in a hardware security module (HSM). SEC-16 Access/use of signing keys should be restricted to a small set of developers, following the principle of least privilege. Number of people with access and their corresponding roles shall be provided. SEC-17 All debug ports shall be disabled before the device leaves the factory. Alternatively, the port may be accessible in the field only after a strong crypto authentication process. SEC-18 All vendor unique commands, log pages or set features that are not explicitly defined in this specification shall be disabled before the		Static Analysis
SEC-14 Security audits, including firmware source code review, shall be required. SEC-15 All signing keys shall be stored in a hardware security module (HSM). SEC-16 Access/use of signing keys should be restricted to a small set of developers, following the principle of least privilege. Number of people with access and their corresponding roles shall be provided. SEC-17 All debug ports shall be disabled before the device leaves the factory. Alternatively, the port may be accessible in the field only after a strong crypto authentication process. SEC-18 All vendor unique commands, log pages or set features that are not explicitly defined in this specification shall be disabled before the		 Build Logs and Compiler Settings
SEC-14 Security audits, including firmware source code review, shall be required. SEC-15 All signing keys shall be stored in a hardware security module (HSM). SEC-16 Access/use of signing keys should be restricted to a small set of developers, following the principle of least privilege. Number of people with access and their corresponding roles shall be provided. SEC-17 All debug ports shall be disabled before the device leaves the factory. Alternatively, the port may be accessible in the field only after a strong crypto authentication process. SEC-18 All vendor unique commands, log pages or set features that are not explicitly defined in this specification shall be disabled before the		Additional information about the SDL is available here:
required. SEC-15 All signing keys shall be stored in a hardware security module (HSM). SEC-16 Access/use of signing keys should be restricted to a small set of developers, following the principle of least privilege. Number of people with access and their corresponding roles shall be provided. SEC-17 All debug ports shall be disabled before the device leaves the factory. Alternatively, the port may be accessible in the field only after a strong crypto authentication process. SEC-18 All vendor unique commands, log pages or set features that are not explicitly defined in this specification shall be disabled before the		https://www.microsoft.com/en-us/sdl/default.aspx
SEC-15 All signing keys shall be stored in a hardware security module (HSM). SEC-16 Access/use of signing keys should be restricted to a small set of developers, following the principle of least privilege. Number of people with access and their corresponding roles shall be provided. SEC-17 All debug ports shall be disabled before the device leaves the factory. Alternatively, the port may be accessible in the field only after a strong crypto authentication process. SEC-18 All vendor unique commands, log pages or set features that are not explicitly defined in this specification shall be disabled before the	SEC-14	Security audits, including firmware source code review, shall be
(HSM). SEC-16 Access/use of signing keys should be restricted to a small set of developers, following the principle of least privilege. Number of people with access and their corresponding roles shall be provided. SEC-17 All debug ports shall be disabled before the device leaves the factory. Alternatively, the port may be accessible in the field only after a strong crypto authentication process. SEC-18 All vendor unique commands, log pages or set features that are not explicitly defined in this specification shall be disabled before the		required.
SEC-16 Access/use of signing keys should be restricted to a small set of developers, following the principle of least privilege. Number of people with access and their corresponding roles shall be provided. SEC-17 All debug ports shall be disabled before the device leaves the factory. Alternatively, the port may be accessible in the field only after a strong crypto authentication process. SEC-18 All vendor unique commands, log pages or set features that are not explicitly defined in this specification shall be disabled before the	SEC-15	All signing keys shall be stored in a hardware security module
developers, following the principle of least privilege. Number of people with access and their corresponding roles shall be provided. SEC-17 All debug ports shall be disabled before the device leaves the factory. Alternatively, the port may be accessible in the field only after a strong crypto authentication process. SEC-18 All vendor unique commands, log pages or set features that are not explicitly defined in this specification shall be disabled before the		(HSM).
people with access and their corresponding roles shall be provided. SEC-17 All debug ports shall be disabled before the device leaves the factory. Alternatively, the port may be accessible in the field only after a strong crypto authentication process. SEC-18 All vendor unique commands, log pages or set features that are not explicitly defined in this specification shall be disabled before the	SEC-16	Access/use of signing keys should be restricted to a small set of
SEC-17 All debug ports shall be disabled before the device leaves the factory. Alternatively, the port may be accessible in the field only after a strong crypto authentication process. SEC-18 All vendor unique commands, log pages or set features that are not explicitly defined in this specification shall be disabled before the		developers, following the principle of least privilege. Number of
factory. Alternatively, the port may be accessible in the field only after a strong crypto authentication process. SEC-18 All vendor unique commands, log pages or set features that are not explicitly defined in this specification shall be disabled before the		people with access and their corresponding roles shall be provided.
after a strong crypto authentication process. SEC-18 All vendor unique commands, log pages or set features that are not explicitly defined in this specification shall be disabled before the	SEC-17	
SEC-18 All vendor unique commands, log pages or set features that are not explicitly defined in this specification shall be disabled before the		factory. Alternatively, the port may be accessible in the field only
explicitly defined in this specification shall be disabled before the		after a strong crypto authentication process.
	SEC-18	
device leaves the factory. Alternatively, the commands may be		
		device leaves the factory. Alternatively, the commands may be


	accessible in the field only after a strong crypto authentication			
SEC-19	Adversarial testing using red teams shall be conducted before qualification start. A report of items attempted, and results shall be provided.			
SEC-20	Vendor shall provide timely notification of security issues and delivery of fixes: • Vendor shall document all security fixes with each firmware update • Vendor shall notify end customer within 7 days of discovering security issues in the device hardware or firmware. • Notification of issues shall include the process and timeline of the vendor's commitment to fix the issue: • For privately disclosed vulnerabilities, the duration shall be no longer than 90 days • For publicly disclosed vulnerabilities, the duration shall be no longer than 7 days • Vendors shall notify the customers about the known CVEs and security issues and provide security-related updates before public announcement			
SEC-21	All Telemetry and debugging logs shall be human readable.			

10.2 Data Encryption and Eradication

Requirement ID	Description		
DATAE-1	The device shall support AES-256 encryption (or better), or NAND-		
	level data eradication using the NVMe Format Feature.		

11 Labeling

The following sample label is meant to be used to refer to the label requirements in section 11.1:

11.1 Label Requirements

Requiremen t ID	Description							
LABL-1	The following label:	fields are required inform	ation that s	hall be plac	ced on the			
	Item Format Text Barcode Barcode Required Type							
	Barcode-1	'PartNumber' 'Underscore' 'Serial Number' /n	No	Yes	2d			
	Part Number	Same as the MPN used for Ordering.	Yes	No	N/A			
	Serial Number	Alpha-Numeric. 12-20 digits with first 4 digits indicating: Date of Manufacturing in WorkWeek and Year WWYY1234567890123456	Yes	No	N/A			
	Model Name		Yes	No	N/A			
	Capacity	Number of GB	Yes	No	N/A			
	STORAGE DEVICE	Text shall be "STORAGE DEVICE"	Yes	No	N/A			

	PSID	TCC ODAL Spoc	Yes	No	N/A
	Barcode-2	TCG-OPAL Spec 'PSID' /n	No	Yes	2d
	HW	וון טוניז	INO	163	Zu
	Revision		Yes	No	N/A
	Firmware				
	Name		Yes	No	N/A
	& Revision		103	110	14/7
	Regulatory				
	Mark		Yes	No	N/A
	Country	If device has certain			
	Certificatio	country certifications, the	y Yes	No	N/A
	n Numbers	shall be displayed			
	Certificatio		Vac	No	NI/A
	n Logos		Yes	No	N/A
	RoHS/		Yes	No	N/A
	Green		163	INO	IN/A
LABL-2	The Model Na	me on the shipping labe	el shall mato	ch the mode	l name
	used during q	ualification.			
LABL-3	The minimum	font size shall be 3 poir	nts and the	typical size s	hould be 6
	points.				
LABL-4	For the Capac	ity field, if there are spa	ce constrair	nts, the man	ufacturer
	may remove "	Capacity:" and just show	w "XXXXGB'	' .	
LABL-5	To distinguish	Part Number and Seria	Number, t	he label shal	l have a
	_	" between the Part Nur			
	Examples:	•			
	·				
	Part Number:	SSD0001			
	Serial Number	r: abcdefghi			
		0			
	SSD0001_abc	defghi			
		6			
LABL-6	There shall be a line with "STORAGE DEVICE".				
LABL-7				t can be plac	ed on the
2, (32)	The following fields are optional information that can be placed on the label at the discretion of the device maker. Placement is also at the device makers discretion as long as such information does not interfere with the mandatory information above. No additional barcode shall be				
	present.				
	_ Label Barcode Barcode				
	Item	Format	Required	Required	Туре
	Processer		Required	Nequired	Type
	Processor		Optional	No	N/A
	Code (BA) Maker Logo			_	N/A
			Optional	No	

	Rated Voltage & Current		Optional	No	N/A
	Production Date	DDMMYYYY: DD(Date), MM(Month), YYYY(Year)	Optional	No	N/A
	Weekly Code	YYWW: YY(Year), WW(Week)	Optional	No	N/A
	Warranty VOID IF REMOVED		Optional	No	N/A
	Country of Origin		Optional	No	N/A
	Makers Own Label Material Number		Optional	No	N/A
	Website, Company Address		Optional	No	N/A
	SSD		Optional	No	N/A
	Product Series Name		Optional	No	N/A
	SA: Value used within manufacturin g		Optional	No	N/A
	PBA: Physical Board Address (identifies the physical configuration of the device)		Optional	No	N/A
	WWN: World Wide Number (unique for each device)		Optional	No	N/A
	US FCC Regulatory		Optional	No	N/A
LABL-8	To ensure that datacenter operations personnel can quickly and easily identify devices that have been ticketed for field replacement, it is mandatory to have the proper identifying fields on the label(s), in the format specified below.				

LABL-9	The label shall not degrade over the standard SSD lifetime under		
	standard operating conditions.		
LABL-10	For each formfactor, the label shall be placed as specified below:		
	M.2: the label shall be placed on the top side of the device as		
	defined in the PCI-Sig M.2 formfactor specification		
	E1.S: the label shall be placed on the Primary side of the device		
	as defined in the SFF TA-1006 formfactor specification		
	E1.L: the label shall be placed on the either the Primary or		
	Secondary side of the device as defined in the SFF TA-1007		
	formfactor specification		

12 Compliance

12.1 ROHS Compliance

Requirement ID	Description
ROHS-1	The Supplier shall provide component-level reporting on the use of
	listed materials by concentration (ppm) for all homogenous
	materials.

12.2 ESD Compliance

Requirement ID	Description		
ESD-1	Device manufacturer needs to provide ESD immunity level (HBM-		
	Human Body Model) measured in accordance with IEC-61000-4-2.		

13 Shock and Vibration

Below are the shock and vibration specifications for storage devices:

Requirement ID	Description		
SV-1	The non-operational shock requirement is 700G, half-sine, 0.5ms,		
	total 6 shocks, along all three axes (+/-).		
SV-2	The vibration requirement during operation is: 1.8G _{rms} , 5-500-5 Hz,		
	Random Vibe, 20 min along all three axes.		
SV-3	The vibration requirement during non-operation is: 3.13G _{rms} , 5-		
	800-5 Hz, total 6 sweeps along all three axes, 20 minutes per sweep.		
SV-4	Validation flow for Shock and Vibration:		
	1. UUT (Unit Under Test), test fixture should be visually		
	inspected and ensured that everything is torqued or		
	secured as needed. Pictures of test fixture with and w/o		
	UUT should be provided.		

 Baseline performance of device should be gathered and used as a reference against post S&V data to ensure no performance impact incurred.
 Once S&V testing is completed, repeat visual inspection to the UUT and test fixture to ensure no physical damage or performance impact has occurred to the UUT or test fixture.
 Re-run stress test on the UUT in case of non-op test and provide data indicating no performance impact incurred to the unit

14 NVMe Linux CLI Plug-In Requirements

14.1 NVMe CLI Management Utility

The NVMeCLI utility (https://github.com/linux-nvme/nvme-cli) shall be used as the management utility for NVMe devices.

Requirement ID	Description		
UTIL-1	The SSD supplier must test their SSDs with this utility and ensure		
	compatibility. The following is the minimum list of commands that		
	need to be tested with NVMeCLI:		
	Format		
	Secure erase		
	FW update		
	Controller reset to load FW		
	Health status		
	 Log page reads including vendor log pages 		
	 SMART status 		
	List devices		
	Get/set features		
	Namespace management		
	Identify controller and namespace		
	Effects log page		

14.2 NVMe CLI Plugin Requirements

The device supplier shall develop and provide a Linux NVMe CLI plugin that meets the following requirements:

Requirement ID	Description		
UTIL-PI-1	A single, common plugin for all of the supplier's NVMe-based		
	products		

UTIL-PI-2	Vendor and additional log page decoding including into a human readable format and JSON output
UTIL-PI-3	Access to OEM commands
UTIL-PI-4	The ability to pull crash dumps or FW logs (binary output is acceptable)
UTIL-PI-5	The plugin's subcommand nomenclature must adhere to section 14.2.1 and cannot change across versions.
UTIL-PI-6	The plugin shall use the existing NVMe CLI interface to access any vendor unique commands that are supported by the device.
UTIL-PI-7	If the NVMe CLI interface needs to transfer greater than 16 MB of data, the NVMe vendor unique Command shall have the ability to do multiple scatter/gather elements on the data buffer.

14.2.1 NVMe CLI Plug-In Nomenclature/Functional Requirements

The NVMe CLI plugin must meets the following naming and functional requirements:

Requirement ID	NVMe CLI Nomenclature	Purpose
UTIL-NM-1	vs-smart-add-log	Retrieve extended SMART cloud Information from section 3.8.4. The SMART cloud attributes must use the exact same attribute name as indicated in that section.
UTIL-NM-2	vs-internal-log	Retrieves internal drive telemetry/debug logging.
UTIL-NM-3	vs-fw-activate-history	Outputs the firmware activation history log page (0xC2) in table format. See section 14.2.2.1 for the table output format.
UTIL-NM-4	vs-drive-info	Outputs the following information: 1. Drive_HW_revision — Displays the current HW rev of the drive. Any BOM or HW change must increment this version number. The value starts at 0 for pre-MP units and starts at 1.0 for MP units. The value increments by 0.1 for any HW changes in the pre-MP or MP stage. Qualification samples sent to Customer ODMs at the beginning of qualification is considered MP stage and needs to start at 1.0. 2. FTL_unit_size — Display FTL unit size. Units are in KB, so "4" means the FTL unit size is 4KB.

UTIL-NM-5	clear-pcie-correctable- errors	VUC that clears the correctable PCle error counter. See section 3.11.6 for more details.
UTIL-NM-6	clear-fw-activate- history	VUC that clears the output of the "vs-fw-activate-history" and also the Firmware activation History Log page (0xC2). See section Error! Reference source not found. for more details.
UTIL-NM-7	log-page-directory	VUC that lists all the log pages and a description of their contents
UTIL-NM-8	cloud-SSD-plugin- version	Prints version "1.0"
UTIL-NM-9	Help	Display this help

14.2.2 NVMe CLI Plug-In FW Activation History Requirements

Requirement ID	Description		
UTIL-FWHST-1	A table with entries that indicate the history of Firmware activation on the device		
UTIL-FWHST-2	Using the plugin command in UTIL-NM-4 will retrieve the table		
UTIL-FWHST-3	Lists the last twenty firmware that were activated (not downloaded) on the drive. Oldest entries is on top.		
UTIL-FWHST-4	When the drive is first shipped from the factory, there are no entries recorded.		
UTIL-FWHST-5	An entry must be recorded whenever a FW activation is taking place and does not matter if there's a reset or not. FW downloads do not generate an entry.		
UTIL-FWHST-6	Redundant activation events shall not generate a new entry to prevent the scrolling out of useful information. An entry is considered to be redundant if they meet ALL the criteria below: 8. POH is within 1 minute from the last RECORDED entry 9. Power cycle count is the same 10. Current firmware is the same 11. New FW activated is the same 12. Slot number is the same 13. Commit Action Type is the same 14. Results are the same		
UTIL-FWHST-7	Firmware Activation History's output column headers shall follow the requirements below.		

Requirement ID	Firmware Activation History Column Header	Purpose		
UTIL- FWHST -8	Firmware Activation Counter	Increments every time a firmware activation is attempted no matter if the result is good or bad. When the drive is shipped from manufacturing, this value is '0x0'.		
UTIL- FWHST -9	UTIL- FWHST -9 Power on Hour Disp the f Accused			
UTIL- FWHST -10	Power Cycle Count	Display the power cycle count that the firmware activation occurred.		
UTIL- FWHST -11	Current Firmware	Displays the firmware currently running on the SSD before the firmware activation took place		
UTIL- FWHST -12	New Firmware Activated	Displays the activated firmware version that is running on the SSD after the firmware activation took place.		
UTIL- FWHST -13	Slot Number	Displays the slot that the firmware is being activated from.		
UTIL- FWHST -14	Commit Action Type	Displays the Commit action type associated with the firmware activation event.		
UTIL- FWHST -15	Result	Records the results of the firmware activation event. A passing event shall state a "Pass" for the result. A failing event shall state a "Failed" + the error code associated with the failure.		

14.2.2.1 NVMe CLI Plug-In FW Activation History Example Outputs

FW Activation Examples:

Host FW download and activation events and initial states:

Initial State: Slot1=101

POH 1:00:00, PC 1, FW Commit CA=011b Slot=1 FW=102

POH 2:00:00, PC 1, FW Commit CA=001b Slot=1 FW=103

POH 3:00:00, PC 1, FW Commit CA=001b Slot=1 FW=104

POH 4:00:00, PC 1, FW Commit CA=001b Slot=1 FW=105

Reset

POH 5:00:00, PC 1, FW Commit CA=011b Slot=1 FW=106

POH 6:00:00, PC 1, FW Commit CA=001b Slot=1 FW=107

Power Cycle

POH 7:00:00, PC 2, FW Commit CA=001b Slot=1 FW=108

NVMe-CLI Plugin Output:

Firmware	Power	Power	Current	New FW	Slot	Commit	Result
Activation	on Hour	cycle	firmware	activated	number	Action Type	
Counter		count					
1	1:00:00	1	101	102	1	011b	pass
2	4:00:00	1	102	105	1	001b	pass
3	5:00:00	1	105	106	1	011b	pass
4	7:00:00	2	106	107	1	001b	pass

Repeated Activation Events examples:

Host FW download and activation events and initial states:

Initial State: Slot1=101

POH 1:00:01, PC 1, FW Commit CA=011b Slot=1 FW=102, pass

POH 1:00:10, PC 1, FW Commit CA=0011b Slot=1 FW=102, fail reason #1

POH 1:00:30, PC 1, FW Commit CA=0011b Slot=1 FW=102, fail reason #1 (not recorded)

POH 1:01:15, PC 1, FW Commit CA=0011b Slot=1 FW=102, fail reason #1 (recorded as the

time difference is greater than 1 minute from the last recorded event)

POH 1:01:25, PC 1, FW Commit CA=0011b Slot=1 FW=102, fail reason #2 (recorded as the

failure reason changed)

NVMe-CLI Plugin Output:

Firmware	Power	Power	Current	New FW	Slot	Commit	Result
Activation	on Hour	cycle	firmware	activated	number	Action	
Counter		count				Туре	
1	1:00:01	1	101	102	1	011b	pass
2	1:00:10	1	102	102	1	011b	Fail #1
3	1:01:15	1	102	102	1	011b	Fail #1
4	1:01:25	1	102	102	1	011b	Fail #2

Appendix A – Facebook Specific Items

The following items apply specifically to devices delivered to Facebook.

1 Configuration Specifics

Requirement ID	Description
FB-CONF-1	Devices shall be formatted to 4096-byte sectors from the factory.
FB-CONF-2	IEEE 1667 shall not be supported. Devices shall not support Set
	Features for IEEE1667 Silo Set Feature Identifier (0xC4).
FB-CONF-3	SMBUS byte 91 bit 6, "Firmware Update Unlocked", bit shall be set
	to 0x1 by default from the factory.
FB-CONF-4	The PLP Functionality Loss Behavior (0xC2) shall default to Read
	Only (01b).
FB-CONF-5	Devices shall not support Set Features (0xC0) Error Injection.

2 Performance Requirements

The following numbers are the Facebook performance targets for data storage SSD across all form factors. They are provided to serve as a guidance for SSD Vendors. Items related to the items below may be available on GitHub at https://github.com/facebook

The targets are broken down into the following segments:

Requirement ID	Description
FB_PERF-1	FB-FIO Synth Flash Targets (for all capacities)
FB-PERF-2	fb-FIOSynthFlash TRIM Rate targets
FB-PERF-3	IO.go benchmark target
FB-PERF-4	Fileappend benchmark target
FB-PERF-5	Sequential write bandwidth
FB-PERF-6	Cache bench target
FB-PERF-7	All targets shall be achieved by using "kyber" as the I/O scheduler.
FB-PERF-8	All targets shall be achieved with the SSD max average power
	consumption not exceeding 10W based on the power methodology
	described in PCM-1, PCM-2 and PCM-3.

1a. Performance Targets for FB-FIO Synth Flash - HE_Flash_Short_TRIM_2H19 (for all capacities)_

Workload	Read MiB/s per TB	Write MiB/s per TB	TRIM BW per TB	P99 Read Latency	P99.99 Read Latency	P99.9999 Read Latency	P99.99 Write Latency	P99.9999 Write Latency
4K_L2R6DWPD_ wTRIM	68 MiB/s	72 MiB/s	117 MiB/s	2,000 us	5,000 us	8,500 us	15,000 us	25,000 us
4K_L2R9DWPD_ wTRIM	68 MiB/s	93 MiB/s	156 MiB/s	2,200 us	5,500 us	9,500 us	15,000 us	25,000 us
MyRocks_Heavy_ wTRIM	120 MiB/s	101 MiB/s	22 MiB/s	2,000 us	5,000 us	8,500 us	10,000 us	15,000 us
Fleaf	320MiB/s	87 MiB/s	89 MiB/s	3,000 us	6,000 us	10,000 us	20,000 us	25,000 us

Performance Targets for FB-FIO Synth Flash – Cache

	Read	Write	TRIM BW	P99	P99.99	P99.9999	P99.99	P99.9999
Workload	MiB/s per	MiB/s	per TB	Read	Read	Read	Write	Write
	ТВ	per TB		Latency	Latency	Latency	Latency	Latency
B_Cache	164 MiB/s	96 MiB/s	0 MiB/s	2,000us	5,500 us	15,000 us	20,000 us	25,000 us

Performance Targets for FB-FIO Synth Flash – Search_2H19

Workload	Read MiB per Node	Write MiB/s per Node	TRIM MiB/s per Node	P99 Read Latency	P99.99 Read Latency	P99.9999 Read Latency	P99.99 Write Latency	P99.9999 Write Latency
SearchLM_	2,550	12	130	1,500 us	10,000	15,000 us	20,000 us	25,000 us
wTRIM	MiB/s	MiB/s	MiB/s	1,500 us	us	15,000 us	20,000 us	25,000 us

1b. Trim Rate Targets

- This test measures raw trim performance which no background I/O
- 64M trim >= 50GiB/s & <= 10ms P99 trim latency
- 3GB trim >= 500GiB/s & <= 10ms P99 trim latency

1c. IO.go Benchmark Targets

- This test measures how long the file system is blocked from writing/overwriting a file while a different file is deleted
- Less than 4 file sizes total with latency outliers > 10ms
- No more than 2 latency outliers per file size
- No single latency outlier above 15ms

1d. Fileappend Benchmark Targets

- This test measures how long the file system is blocked from appending to a file while a different file is deleted.
- No measurable stalls reported by this tool
- Max acceptable latency outlier is 10ms when deleting 1GiB or 2GiB file

1e. Sequential Write Bandwidth

- Full drive (all available user capacity, all namespaces) must be written/filled in 180 minutes or less
- Simple single-threaded sequential write FIO script to fill drive

1f. Cache bench target

- A benchmarking tool that's a supplement for FB FIO Synth Flash tool on measuring performance for cache applications. This is different than the "B Cache" workload in FB FIO Synth Flash.
- Two workloads need to be tested:
 - Tao Leader
 - Memcache
- The final allocator and throughput stats from the benchmark will be used to see if the targets are met.
- Vendor NVMe CLI plug-in with "physical NAND bytes written" metric in the SMART Cloud Health Log (0xC0) needs to be working to get the write amplification.

Workload	Get Rate	Set Rate	Read Latency P99 (us)	Read Latency P99.99 (us)	Read Latency P100 (us)	Write Latency P99.99 (us)	Write Latency P100 (us)	Write Amp
Tao Leader	87,000	16,000	400	3,000	12,000	700	8,000	1.3
Memcache WC	3,200	1,500	1,700	14,000	15,000	7,000	8,000	1.4

Appendix B – Microsoft Specific Items

The following items apply specifically to Microsoft.

1 Configuration Specifics

Requirement ID	Description
MS-CONF-1	E1.S and M.2 devices shall be formatted to 512-byte sectors from
	the factory
MS-CONF-2	E1.L devices shall be formatted to 4096-byte sectors from the
	factory.
MS-CONF-3	IEEE 1667 shall be supported.

MS-CONF-4	For E1.S and M.2 SMBUS byte 91 bit 6, "Firmware Update
	Unlocked", bit shall be set to 0x1 (Firmware Update is Enabled) by
	default from the factory.
MS-CONF-5	For E1.L SMBUS byte 91 bit 6, "Firmware Update Unlocked", bit
	shall be set to 0x0 (Firmware Update is Disabled) by default from
	the factory.
MS-CONF-6	The PLP Functionality Loss Behavior (0xC2) shall default to Write
	Through (10b).

Performance Requirements

Requirement ID	Description
MS-PERF-1	The device shall meet the performance targets with these assumptions: • Entropy of all workloads is 100% (uncompressible) • Active range is 100% • Maximum power draw as specified • Operations are "naturally aligned," meaning they are aligned to IO-sized boundaries
MS-PERF-2	The vendor shall provide a performance test report using the preconditioning methodology to achieve steady state performance for the given device, e.g. SNIA Solid State Storage Performance Test Specification (PTSE).
MS-PERF-3	As the devices will support Power Loss Protection (PLP), the performance shall not be degraded by the following: • PLP - backed cache(s) shall enable fast performance. • FUA – forced unit access shall not incur a performance penalty. • Flush Cache – flush cache shall be ignored but acknowledged. • SET FEATURE write-cache disable - command shall be ignored but acknowledged.
MS-PERF-4	Random read latency shall match or beat the distribution listed in each form factor performance requirements below under the following test conditions: • Queue Depth = 1 • Device is near End-of-Life, with or without utilizing "short stroked" firmware • Starting state: Device is trimmed then written sequentially with 1MiB accesses

256KiB sequential writes with the rate adjusted so that 10% of the volume is writes, or
 256KiB random writes with the rate adjusted so that 5% of the volume is writes
 (whichever is worse)
 4KiB, 8KiB, or 64KiB random reads with the rate adjusted so that 90% of the volume is reads

2.1 M.2 Performance Requirements

Requirement ID	Description					
MS-PFM2-1	When the device is set to an RMS average of 8.25W it shall exceed the minimum throughput numbers for the followin workloads (up to the limit of the PCIe bus):					
	Metric Workload				Minimum Throughput	
	Sequential Read (MiB/s)		128kiB, QD = 128, 0% writes			400/TiB
	Sequential Write (MiB/s)		128kiB, QD = 128, 100% writes			200/TiB
	Random Re	ead (IOPS)	4kiB, QD = 2/TiB, 0% writes			10k/TiB
	Random Write (IOPS)		4kiB, QD = 128, 100% write commands		8k/TiB	
	Random M	ix (IOPS)	4kiB, QD = 128, 30% write commands			50k/TiB
MS-PFM2-2	Device shall not exceed the following latency requirements:					ients:
			4KiB	8KiB	64KiB	Operations
			(μs)	(µs)	(μs)	Needed in Test*
	Average		240	250	450	
	99 %	(2 nines)	300	360	770	>100
	99.9 %	(3 nines)	500	650	1,200	>1,000
	99.99 %	(4 nines)	900	1,000	2,000	>10,000
	99.999 %	(5 nines)	1,200	2,000	3,500	>1e5
	Maximum		8	8	8	
	Timeout		seconds	seconds	seconds	
	*The test shall apply the minimum number of operations listed in the right-most column.					

2.2 E1.S Performance Requirements

Requirement ID	Description					
MS-PFE1S-1	When the device is set to an RMS average of 20W it shall meet or					
	exceed the minimum throughput numbers for the following					
	workloads (up to the limit of the PCIe bus):					
	Metric		Workload			Minimum Throughput
	Sequential Read (MiB/s)		128kiB, QD = 128, 0% writes			200/TiB
	Sequential Write (MiB/s) Random Read (IOPS) Random Write (IOPS)		128kiB, QD = 128, 100% writes			100/TiB
			4kiB, QD = 2/TiB, 0% writes			10k/TiB
			4kiB, QD = 128, 100% write volume			5k/TiB
	Random Mix (IOPS)		4kiB, QD = 128, 10% write volume			7.5k/TiB
PFE1S-2	Device shall	not exceed	the follow	ving latenc	y requirem	ients:
	4KiB 8KiB 64KiB				Operations	
			4κιδ (μs)	δΚΙΒ (μs)	64KIB (μs)	Operations Needed
			(μ3)	(μ3)	(μs)	in Test*
	Average		240	250	450	
	99 %	(2	300	360	770	>100
	22.2.4	nines)		650	4 222	1 000
	99.9 %	(3 nines)	500	650	1,200	>1,000
	99.99 %	(4 nines)	900	1,000	2,000	>10,000
	99.999 %	(5 nines)	1,200	2,000	3,500	>1e5
	Maximum		8	8	8	
	Timeout		seconds	seconds	seconds	
	*The test shall apply the minimum number of operations listed in					
	the right-most column.					

2.3 E1.L Performance Requirements

Requirement ID	Description
MS-PFE1L-1	Bandwidth and Throughput for use in xDirect: When the device is
	set to an RMS average of 20W it shall meet or exceed the minimum
	throughput numbers for the following workloads (up to the limit of
	the PCIe bus):

	Metric		Workloa	ad		Minimum	
	Soquential Boad		128kiB, QD = 128, 0%			Throughput 200/TiB	
	Sequential Read (MiB/s)		writes	QD – 126, (U /0	200/116	
	Sequential Write		128kiB, QD = 128, 100%			100/TiB	
	(MiB/s)		writes			10k/TiB	
	Random Re		 	4kiB, QD = 2/TiB, 0% writes			
	Random Write (IOPS) Random Mix (IOPS)		4kiB, QD = 128, 100% write volume			5k/TiB	
			4kiB, QD = 128, 10% write volume			7.5k/TiB	
MS-PFE1L-2	Bandwidth and Throughput for use in XIO: When the device is set to a max RMS of 20W it shall meet or exceed the minimum throughput numbers for the following workloads (up to the limit of the PCIe bus):						
	Metric Sequential Read (MiB/s) Sequential Write (MiB/s) Random Read (IOPS) Random Write (IOPS) Random Mix (IOPS)		Workload			Minimum Throughput	
			128kiB, QD = 128, 0% writes			200/TiB	
			128kiB, QD = 128, 100% writes			50/TiB	
			4kiB, QD = 2/TiB, 0% writes			6k/TiB	
			16kiB, QD = 128, 100% write volume			5k/TiB	
			4kiB random read, 16kiB sequential write, QD = 128, 10% write volume			5k/TiB	
PFE1L-3	Device shall not exceed the following latency requirements:						
			4KiB (μs)	8KiB (μs)	64KiB (μs)	Operations Needed in Test*	
	Average		240	250	450		
	99 %	(2 nines)	300	360	770	>100	
	99.9 %	(3 nines)	500	650	1,200	>1,000	
	99.99 %	(4 nines)	900	1,000	2,000	>10,000	
	99.999 %	(5 nines)	1,200	2,000	3,500	>1e5	
	Maximum		8	8	8		
	Timeout		seconds	seconds	seconds		

	*The test shall apply the minimum number of operations listed in the right-most column.
PFE1L-4	No more than 5 IOs in one hour shall take more than 2 seconds to
	complete.