

OCP NIC 3.0 Design Specification

Version 0.81

Author: OCP Server Workgroup, OCP NIC subgroup

Table of Contents

1	Overview		10
	1.1 Licer	nse	10
	1.2 Ackr	owledgements	11
	1.3 Back	ground	12
	1.4 Over	view	
	1.4.1	Mechanical Form factor overview	14
	1.4.2	Electrical overview	16
		NIC Use Cases	
		rences	
	1.6.1	Trademarks	
2		Card Form Factor	
		n Factor Options	
	2.1.1	Small Form Factor (SFF) Faceplate Configurations	
	2.1.2	Large Form Factor (LFF) Faceplate Configurations	
		Side I/O Implementations Level Assembly (SFF and LFF)	
	•	plate Subassembly (SFF and LFF)	
	2.4 Face 2.4.1	Faceplate Subassembly (SFF and LFF)	
	2.4.1	Faceplate Subassembly – Exploded View	
	2.4.3	SFF Generic I/O Faceplate	
	2.4.4	LFF Generic I/O Faceplate	
	2.4.5	Ejector Lever (SFF)	
	2.4.6	Ejector Levers (LFF)	
	2.4.7	Ejector Lock (SFF and LFF)	
	2.4.8	Ejector Bushing (SFF and LFF)	
	2.4.9	Ejector Wave Washer (SFF and LFF)	38
	2.5 Card	Keep Out Zones	39
	2.5.1	Small Card Form Factor Keep Out Zones	39
	2.5.2	Large Card Form Factor Keep Out Zones	42
	2.6 Base	board Keep Out Zones	44
	2.7 Insu	ation Requirements	45
	2.7.1	Small Card Insulator	
	2.7.2	Large Card Insulator	
		cal-to-Function (CTF) Dimensions (SFF and LFF)	
	2.8.1	CTF Tolerances	
	2.8.2	SFF Pull Tab CTF Dimensions	
	2.8.3	SFF OCP NIC 3.0 Card with Ejector Latch CTF Dimensions	
	2.8.4	SFF OCP NIC 3.0 Baseboard CTF Dimensions	
	2.8.5	LFF OCP NIC 3.0 Card CTF Dimensions	
	2.8.6	LFF OCP NIC 3.0 Baseboard CTF Dimensions	
	2.9 Labe 2.9.1	ling Requirements General Guidelines for Label Contents	
	2.9.1	MAC Address Labeling Requirements	
	-	hanical CAD Package Examples	
3		terface Definition – Card Edge and Baseboard	
5		Edge Gold Finger Requirements	
	3.1.1	Gold Finger Mating Sequence	
	-	board Connector Requirements	
	3.2.1	Right Angle Connector	
	3.2.2	Right Angle Offset	
	3.2.3	Straddle Mount Connector	

	3.2.4	Straddle Mount Offset and PCB Thickness Options	
	3.2.5	Large Card Connector Locations	
	3.3 Pin	Definition	70
	3.3.1	Primary Connector	71
	3.3.2	Secondary Connector	73
	3.4 Sig	nal Descriptions	74
	3.4.1	PCIe Interface Pins	
	3.4.2	PCIe Present and Bifurcation Control Pins	79
	3.4.3	SMBus Interface Pins	82
	3.4.4	NC-SI Over RBT Interface Pins	83
	3.4.5	Scan Chain Pins	90
	3.4.6	Power Supply Pins	96
	3.4.7	USB 2.0 (A68/A69) – Primary Connector Only	99
	3.4.8	UART (A68/A69) – Secondary Connector Only	101
	3.4.9	RFU[1:2] Pins	103
	3.5 PCI	e Bifurcation Mechanism	104
	3.5.1	PCIe OCP NIC 3.0 Card to Baseboard Bifurcation Configuration (PRSNTA#, PRSNTB[3:0]#)	104
	3.5.2	PCIe Baseboard to OCP NIC 3.0 Card Bifurcation Configuration (BIF[2:0]#)	104
	3.5.3	PCIe Bifurcation Decoder	
	3.5.4	Bifurcation Detection Flow	107
	3.5.5	PCIe Bifurcation Examples	108
	3.6 PCI	e Clocking Topology	
		e Bifurcation Results and REFCLK Mapping	
		t Numbering and LED Implementations	
	3.8.1	OCP NIC 3.0 Port Naming and Port Numbering	124
	3.8.2	OCP NIC 3.0 Card LED Configuration	
	3.8.3	OCP NIC 3.0 Card LED Ordering	
	3.8.4	Baseboard LEDs Configuration over the Scan Chain	
	3.9 Pov	ver Capacity and Power Delivery	127
	3.9.1	NIC Power Off	128
	3.9.2	ID Mode	128
	3.9.3	Aux Power Mode (S5)	128
	3.9.4	Main Power Mode (S0)	128
	3.10 Pov	ver Supply Rail Requirements and Slot Power Envelopes	129
		Swap Considerations for +12V_EDGE and +3.3V_EDGE Rails	
	3.12 Pov	ver Sequence Timing Requirements	132
	3.13 Dig	ital I/O Specifications	134
4	Managem	ent and Pre-OS Requirements	135
	4.1 Sid	eband Management Interface and Transport	135
	4.2 NC	SI Traffic	136
	4.3 Ma	nagement Controller (MC) MAC Address Provisioning	136
		nperature Reporting	
		ver Consumption Reporting	
		ggable Transceiver Module Status and Temperature Reporting	
		nagement and Pre-OS Firmware Inventory and Update	
	4.7.1	Secure Firmware	
	4.7.2	Firmware Inventory	
	4.7.3	Firmware Inventory and Update in Multi-Host Environments	
	4.8 NC	SI Package Addressing and Hardware Arbitration Requirements	
	4.8.1	NC-SI over RBT Package Addressing	
	4.8.2	Arbitration Ring Connections	
	-	Bus 2.0 Addressing Requirements	
	4.9.1	SMBus Address Map	

	4.10 FRU	EEPROM	143
	4.10.1	FRU EEPROM Address, Size and Availability	143
	4.10.2	FRU EEPROM Content Requirements	143
	4.10.3	FRU Template	147
5	Routing Gu	idelines and Signal Integrity Considerations	147
	5.1 NC-9	SI Over RBT	147
	5.2 SMB	us 2.0	147
	5.3 PCle		147
	5.3.1	Background	147
	5.3.2	Channel Requirements	147
	5.3.3	Test Fixtures	148
	5.3.4	Test Methodology	
	5.3.5	Impedance (Informative)	
6		d Environmental	
	6.1 Airfl	ow Direction	152
	6.1.1	Hot Aisle Cooling	
	6.1.2	Cold Aisle Cooling	
		mal Design Guidelines	
	6.2.1	SFF Card ASIC Cooling – Hot Aisle	
	6.2.2	LFF Card ASIC Cooling – Hot Aisle	
	6.2.3	SFF Card ASIC Cooling – Cold Aisle	
	6.2.4	LFF Card ASIC Cooling – Cold Aisle	
		mal Simulation (CFD) Modeling	
		mal Test Fixture	
	6.4.1	Test Fixture for SFF Card	
	6.4.2	Test Fixture for LFF Card	
	6.4.3	Test Fixture Airflow Direction	
	6.4.4	Thermal Test Fixture Candlestick Sensors	
		l Sensor Requirements	
		l Cooling Tiers	
	6.6.1 6.6.2	Hot Aisle Cooling Tiers	
		Cold Aisle Cooling Tiers	
		-Operational Shock & Vibration Testing	
	6.7.1 6.7.2	Shock & Vibe Test Fixture	
	-	Test Procedure and Pull Test Method	
	•	l Finger Plating Requirements	
	6.9.1	Host Side Gold Finger Plating Requirements	
	6.9.2	Line Side Gold Finger Durability Requirements	
7			
'		uired Compliance	
	7.1.1	Required Environmental Compliance	
	7.1.2	Required EMC Compliance	
	7.1.3	Required Product Safety Compliance	
	7.1.4	Required Immunity (ESD) Compliance	
		ommended Compliance	
	7.2.1	Recommended Environmental Compliance	
	7.2.2	Recommended EMC Compliance	
8	Revision Hi	story	

List of Figures

Figure 1: Representative Small OCP NIC 3.0 Card with Dual QSFP Ports	
Figure 2: Representative Large OCP NIC 3.0 Card with Dual QSFP Ports and on-board DRAM	. 13
Figure 3: Small and Large Card Form-Factors (not to scale)	. 14
Figure 4: Primary Connector (4C+) and Secondary Connector (4C) (Large) OCP NIC 3.0 Cards	
Figure 5: Primary Connector (4C+) Only (Large) OCP NIC 3.0 Cards	
Figure 6: Primary Connector (4C+) with 4C and 2C (Small) OCP NIC 3.0 Cards	
Figure 7: Small Form Factor NIC Configuration Views	
Figure 8: Small Form Factor NIC Line Side 3D Views	
Figure 9: Small Form Factor NIC Chassis Mounted 3D Views	
Figure 10: Large Form Factor NIC Configuration Views	
Figure 11: Large Form Factor NIC Line Side 3D Views	
Figure 12: Large Form Factor NIC Chassis Mounted 3D Views	
Figure 13: PBA Exploded Views (SFF and LFF)	
Figure 14: Faceplate Assembly Exploded Views (SFF and LFF)	
Figure 15: Small Card Generic I/O Faceplate with Pulltab Version (2D View)	
Figure 16: Small Card Generic I/O Faceplate – Ejector Version (2D View)	
Figure 10: Small Card Generic I/O Faceplate – Internal Lock Version (2D View)	
Figure 18: Large Card Generic I/O Faceplate – Dual Ejector Version (2D View)	
Figure 19: Small Card I/O Faceplate – Ejector Lever (2D View)	
Figure 20: Large Card I/O Faceplate – Ejector Lever (2D View)	
Figure 21: Ejector Lock	
Figure 22: Ejector Bushing	
Figure 23: Wave Washer	
Figure 24: Small Form Factor Keep Out Zone – Top View	
Figure 25: Small Form Factor Keep Out Zone – Top View – Detail A	
Figure 26: Small Form Factor Keep Out Zone – Bottom View	
Figure 27: Small Form Factor Keep Out Zone – Side View	
Figure 28: Small Form Factor Keep Out Zone – Side View – Detail D	
Figure 29: Large Form Factor Keep Out Zone – Top View	
Figure 30: Large Form Factor Keep Out Zone – Top View – Detail A	. 43
Figure 31: Large Form Factor Keep Out Zone – Bottom View	. 43
Figure 32: Large Form Factor Keep Out Zone – Side View	. 44
Figure 33: Large Form Factor Keep Out Zone – Side View – Detail D	
Figure 34: Small Card Bottom Side Insulator (3D View)	
Figure 35: Small Card Bottom Side Insulator (Top and Side View)	
Figure 36: Large Card Bottom Side Insulator (3D View)	
Figure 37: Large Card Bottom Side Insulator (Top and Side View)	. 46
Figure 38: Small Form Factor OCP NIC 3.0 Card with Pull Tab CTF Dimensions (Top View)	. 47
Figure 39: Small Form Factor OCP NIC 3.0 Card with Pull Tab CTF Dimensions (Front View)	. 48
Figure 40: Small Form Factor OCP NIC 3.0 Card with Pull Tab CTF Dimensions (Side View)	. 48
Figure 41: Small Form Factor OCP NIC 3.0 Card with Ejector CTF Dimensions (Top View)	. 49
Figure 42: Small Form Factor OCP NIC 3.0 Card with Ejector CTF Dimensions (Front View)	. 49
Figure 43: Small Form Factor OCP NIC 3.0 Card with Ejector CTF Dimensions (Side View)	
Figure 44: Small Form Factor Baseboard Chassis CTF Dimensions (Rear View)	
Figure 45: Small Form Factor Baseboard Chassis to Card Thumb Screw CTF Dimensions (Side View)	
Figure 46: Small Form Factor Baseboard Chassis to Ejector lever Card CTF Dimensions (Side View)	
Figure 47: Small Form Factor Baseboard Chassis CTF Dimensions (Rear Rail Guide View)	
Figure 48: Small Form Factor Baseboard Chassis CTF Dimensions (Rail Guide Detail) – Detail C	
Figure 49: Large Form Factor OCP NIC 3.0 Card with Ejector CTF Dimensions (Top View)	
Figure 50: Large Form Factor OCP NIC 3.0 Card with Ejector CTF Dimensions (Front View)	
Figure 51: Large Form Factor OCP NIC 3.0 Card with Ejector CTF Dimensions (Side View)	
Figure 52: Large Form Factor Baseboard Chassis CTF Dimensions (Rear View)	
Figure 53: Large Form Factor Baseboard Chassis CTF Dimensions (Side View)	
Figure 54: Large Form Factor Baseboard Chassis CTF Dimensions (Rail Guide View)	
Figure 55: Large Form Factor Baseboard Chassis CTF Dimensions (Rail Guide – Detail C)	
Figure 56: Small Card Label Area Example	
Figure 57: MAC Address Label Example 1 – Quad Port with Single Host, Single Managed Controller	

Figure 59 MAC Address Label Example 3 Guad Port with Quad Hosts Dual Managed Controllers S8 Figure 61 Small Size Primary Connector Gold Finger Dimensions > x15 – Top Side ("P" Fins) 62 Figure 62 Large Size Card Gold Finger Dimensions > x12 – Top Side ("P" Fins) 62 Figure 63 Large Size Card Gold Finger Dimensions > x12 – Top Side ("P" Fins) 62 Figure 63 Large Size Card Gold Finger Dimensions > x12 – Top Side ("P" Fins) 62 Figure 64 168, pin Base Board Primary Connector - Right Angle 67 Figure 65 169, pin Base Board Scondary Connector - Straddle Mount 68 Figure 65 160, Pin Size Board Scondary Connector - Straddle Mount 68 Figure 61 160, Pin Size Board Scondary Connector - Straddle Mount 68 Figure 71 100 Card and Beasboard PC Sinchress Options for Straddle Mount Connectors 70 Figure 72 100 Card and Beasboard PC Sinchress Options for Straddle Mount Connectors 70 Figure 72 100 Card and Beasboard PC Sinchress Options for Straddle Mount Connectors 70 Figure 73 100 Card and Beasboard PC Sinchress Options for Straddle Mount Connectors 70 Figure 73 100 Card and Beasboard P	Figure 58: MAC Address Label Example 2 – Octal Port with Single Host, Dual Managed Controller	58
Figure 61: MAC Address Label Example 4 – Single Port with Quad Host, Single Managed Controller 99 Figure 63: Marge Size Craft Gold Finger Dimensions – x32 – Top Side ("S" Pins). 61 Figure 63: Large Size Card Gold Finger Dimensions – x32 – Top Side ("S" Pins). 62 Figure 63: Large Size Card Gold Finger Dimensions – x32 – Top Side ("S" Pins). 62 Figure 65: L40-pin Base Board Secondary Connector – Right Angle 67 Figure 65: C10 NC 3 O Card and Host Offset for Right Angle Connectors. 67 Figure 69: OCP NIC 3 O Card and Baseboard PCB Thickness Options for Straddle Mount Connectors. 69 Figure 70: OTM Offset (Coplanar) for O.627 "Thick Baseboards. 69 Figure 72: Damm Offset (Coplanar) (connector Locations for Large Card Support with Right Angle Connectors. 70 Figure 73: Primary and Secondary Connector Locations for Large Card Support with Right Angle Connectors. 70 Figure 73: Primary and Secondary Connector Locations for Large Card Support with Right Angle Connectors. 70 Figure 73: Primary and Secondary Connector Locations for Large Card Support with Right Angle Connectors. 70 Figure 73: NcSi Over RBT Connection Example – Single Primary Connector. 88 Figure 74: NcSi Over RBT Connection Example – Single Primary Connector. 88 Figure 75: Scla Present and Bifurcation Control		
Figure 61: Small Size Primary Connector Gold Finger Dimensions - x42 - Top Side ("A" Pins) 61 Figure 63: Large Size Card Gold Finger Dimensions - x42 - Top Side ("A" Pins) 62 Figure 63: Large Size Card Gold Finger Dimensions - x42 - Top Side ("A" Pins) 62 Figure 64: Depin Base Board Secondary Connector - Right Angle 66 Figure 66: OCP NIC 3.0 Card and Host Offset for Right Angle Connectors. 67 Figure 66: Depin Base Board Secondary Connector - Straddle Mount. 68 Figure 66: Depin Base Board Secondary Connector - Straddle Mount. 68 Figure 69: Depin Base Board Secondary Connector - Straddle Mount. 68 Figure 70: Omn Offset (Copianar) for Do2" Thick Baseboard Secondary Connector Locations for Large Card Support with Right Angle Connectors. 70 Figure 72: Diamary and Secondary Connector Locations for Large Card Support with Right Angle Connectors. 70 Figure 72: Cheresent and Bifurcation Control Pins (Satati BH[C2)#) 81 Figure 75: Kample SMBus Connections Sample – Sugle Primary Connector. 88 Figure 75: Location Store Right Connection Starting Primary Connectors. 89 Figure 71: Cole Present and Bifurcation Control Pins (Satati BH[C2)#) 81 Figure 72: NC: Over RBT Connection Example – Dual Primary Connectors. 89 Figure 74: NC: Overe RBT Connection Example – Dual Primary Con		
Figure 32: Large Size Card Gold Finger Dimensions -x32 - Top Side ("%" Pins) 62 Figure 63: Large Size Card Gold Finger Dimensions -x32 - Bottom Side ("A" Pins) 62 Figure 64: 168-pin Base Board Primary Connector - Right Angle 67 Figure 65: 100-pin Base Board Primary Connector - Right Angle 67 Figure 66: 100-pin Base Board Primary Connector - Straddle Mount 68 Figure 69: 0CP NIC 3.0 Card and Baseboard PCB Thickness Options for Straddle Mount Connectors 69 Figure 69: 0CP NIC 3.0 Card and Baseboard PCB Thickness Options for Straddle Mount Connectors 69 Figure 70: Tomm Offset (copland) for 0.026" Thick Baseboards 70 Figure 72: Primary and Secondary Connector Locations for Large Card Support with Right Angle Connectors 70 Figure 73: Primary and Secondary Connector Locations for Large Card Support with Straddle Mount Connectors 70 Figure 73: Primary and Secondary Connector Locations for Large Card Support with Right Angle Connectors 70 Figure 73: Cle Present and Bifurcation Control Pins (Static BiF[0:2]#) 81 Figure 74: NCS Over RBT Connections Example – Single Primary Connectors 89 Figure 82: USB 2.0 Connection Example – Single Primary Connectors 89 Figure 82: USB 2.0 Connection Example – Single Primary Connectors 89 Figure 82: USB 2.0 Connection Example – Single Pri		
Figure 53: Large Size Card Gold Finger Dimensions – x32 – Bottom Side ("A" Pins). 62 Figure 64: Diskip in Base Board Secondary Connector – Right Angle. 66 Figure 66: OCP NIC 3.0 Card and Host Offset for Right Angle Connectors. 67 Figure 66: Diskip in Base Board Secondary Connector – Straddle Mount. 68 Figure 69: Diskip in Base Board Secondary Connector – Straddle Mount. 68 Figure 69: Diskip in Base Board Secondary Connector – Straddle Mount. 68 Figure 70: Omn Offset (Coplanar) for 0.062" Thick Baseboards. 69 Figure 72: Primary and Secondary Connector Locations for Large Card Support with Right Angle Connectors. 70 Figure 73: Cis Present and Bifurcation Control Pins (Baseboard Controlled BiF[0:2]#). 81 Figure 73: Cis Present and Bifurcation Control Pins (Baseboard Controlled BiF[0:2]#). 81 Figure 73: Example SMBus Connection Example – Single Primary Connector. 83 Figure 79: Example SMBus Connection Example – Dual Primary Connector. 88 Figure 82: Lample SMBus Connection Example – Dual Primary Connector. 89 Figure 82: Lample Sour Chain Connection Example – Dual Primary Connector. 89 Figure 82: Lage Chain		
Figure 64: 168-pin Base Board Primary Connector – Right Angle. 66 Figure 65: 10-pin Base Board Secondary Connector – Stradle Mount. 67 Figure 65: 10-pin Base Board Secondary Connector – Stradle Mount. 68 Figure 66: 10-pin Base Board Secondary Connector – Stradle Mount. 68 Figure 69: 0CP NIC 3.0 Card and Baseboard PCG Thickness Options for Stradle Mount Connectors. 69 Figure 70: Timmary and Secondary Connector - Catalons for Large Card Support with Right Angle. 70 Figure 71: O.Smm Offset (coplandy Connector Locations for Large Card Support with Right Angle Connectors. 70 Figure 72: Primary and Secondary Connector Locations for Large Card Support with Right Angle Connectors. 70 Figure 73: Primary and Secondary Connector Locations for Large Card Support with Right Angle. 83 Figure 74: New BT Connection Example – Single Primary Connector. 88 Figure 78: NC-31 Over RBT Connection Example – Single Primary Connector. 88 Figure 81: NC-31 Over RBT Connection Example – Dual Primary Connectors. 89 Figure 82: USB 2.0 Connection Example – Dual Primary Connector. 88 Figure 82: USB 2.0 Connection Example – Dasi Primary Connector. 88 Figure 82: USB 2.0 Connection Example – Basic Connectivity. 100 Figure 82: USB 2.0 Connection		
Figure 65: CV NIC 3.0 Card and Host Offset for Right Angle. 67 Figure 65: CV NIC 3.0 Card and Host Offset for Right Angle Connectors. 67 Figure 65: CV NIC 3.0 Card and Baseboard PC Trikek Baseboards. 68 Figure 70: Omm Offset (Coplanar) for 0.052' Thick Baseboards. 69 Figure 71: Onm Offset (Coplanar) for 0.052' Thick Baseboards. 69 Figure 72: Primary and Secondary Connector Locations for Large Card Support with Right Angle Connectors. 70 Figure 72: Primary and Secondary Connector Locations for Large Card Support with Right Angle Connectors. 70 Figure 72: Primary and Secondary Connector Locations for Large Card Support with Stradde Mount Connectors. 70 Figure 73: CSI Over R8T Connection Example – Single Primary Connector. 88 Figure 79: CSI Over R8T Connection Example – Single Primary Connector. 88 Figure 79: Example Scan Chain Timing Diagram 91 Figure 82: USB 2.0 Connection Example – Basic Connectivity. 90 Figure 82: USB 2.0 Connection Example – USB-Serial / USB-Strad (Dual Controllers). 100 Figure 82: Single Host (1 x16) and 1 x16 OCP NIC 3.0 Card (Single Controller). 100 Figure 82: Songle Host (2 x8) and 2 x8 OCP NIC 3.0 Card (Single Controller). 101 Figure 82: Songle Host (2 x8) and 2 x8 OCP NIC 3.0 Card (Single Controller). 102		
Figure 65: 0CP NIC 3.0 Card and Host Offset for Hight Angle Connectors. 67 Figure 65: 18: phi Base Board Secondary Connector – Straddle Mount. 68 Figure 68: 140-pin Base Board Secondary Connector – Straddle Mount. 68 Figure 70: Om Offset (Colland) for 0.02" Thick Baseboards. 69 Figure 71: 0. Jmm Offset for 0.076" Thick Baseboards. 69 Figure 72: Primary and Secondary Connector Locations for Large Card Support with Right Angle Connectors. 70 Figure 72: Primary and Secondary Connector Locations for Large Card Support with Straddle Mount Connectors. 70 Figure 73: PCIe Present and Bifurcation Control Pins (Static BIF[0:2]#). 81 Figure 75: SCI Over RBT Connection Example – Single Primary Connector. 88 Figure 77: NCSI Over RBT Connection Example – Single Primary Connectors. 89 Figure 78: NCSI Over RBT Connection Example – Single Primary Connectors. 89 Figure 81: Sangle Scan Chain Connection Example – Single Primary Connectors. 89 Figure 82: USB 2.0 Connection Example – Basic Connectivity. 100 Figure 82: USB 2.0 Connection Example – Basic Connectivity. 100 Figure 82: USB 2.0 Connection Example – Basic Connectivity. 100 Figure 82: USB 2.0 Connection Example – Single Ontroler). 100 Figure 82: USB 2.0 Connection Example –		
Figure 68: CMD NIC 3.0 Card and Baseboard PGE Thickness Options for Straddle Mount Connectors. 69 Figure 70: ONM Offset (Coplanar) for 0.062" Thick Baseboards. 69 Figure 71: 0.3mm Offset for 0.076" Thick Baseboards. 70 Figure 72: Primary and Secondary Connector Locations for Large Card Support with Right Angle Connectors. 70 Figure 73: Primary and Secondary Connector Locations for Large Card Support with Straddle Mount Connectors. 70 Figure 74: PC Present and Bifurcation Control Pins (Static BIF[0.2]#) 81 Figure 75: PCLe Present and Bifurcation Control Pins (Static BIF[0.2]#) 81 Figure 77: NC-SI Over RBT Connection Example – Single Primary Connector. 88 Figure 78: NC-SI Over RBT Connection Example – Single Primary Connectors. 83 Figure 79: Example Scan Chain Timing Diagram. 91 Figure 81: Supple Notpology 99 Figure 82: USB 2.0 Connection Example – Single Ontroller) 100 Figure 83: Single Host (1 x16) and 1 x16 OCP NIC 3.0 Card (Single Controller). 100 Figure 84: UART Connection Example – USB-Serial / USB-ITAG Connectivity. 100 Figure 85: Single Host (4 x4) and 4 x4 OCP NIC 3.0 Card (Single Controller). 100 Figure 85: Single Host (4 x4) and 4 x4 OCP NIC 3.0 Card (Single Controller). 111 Figure 85: Single Host (4 x4		
Figure 69: OCP NIC 3.0 Card and Baseboard PCB Thickness Options for Straddle Mount Connectors. 69 Figure 71: 0.3mm Offset (optionar) for 0.067' Thick Baseboards. 70 Figure 72: Primary and Secondary Connector Locations for Large Card Support with Stradiel Mount Connectors. 70 Figure 73: Primary and Secondary Connector Locations for Large Card Support with Stradiel Mount Connectors. 70 Figure 73: PCIe Present and Bifurcation Control Pins (Baseboard Controlled BiF[0:2]#). 81 Figure 75: PCIe Present and Bifurcation Control Pins (Static BiF[0:2]#). 81 Figure 77: NC-SI Over RBT Connection Example – Single Primary Connector. 88 Figure 78: CS: Over RBT Connection Example – Single Primary Connectors. 89 Figure 81: Example Scan Chain Timing Diagram. 91 Figure 82: USB 2.0 Connection Example 93 Figure 82: USB 2.0 Connection Example 93 Figure 82: USB 2.0 Connection Example 100 Figure 83: USB 2.0 Connection Example 102 Figure 84: UART Connection Example 103 Figure 85: Single Host (1 x16) and 1 x16 OCP NIC 3.0 Card (Single Controller) 100 Figure 84: UART Connection Example 102 Figure 85: Single Host (1 x16) and 1 x4 OCP NIC 3.0 Card (Single Controller) 110 Figure 84: UART Connec	Figure 67: 168-pin Base Board Primary Connector – Straddle Mount	68
Figure 70: Omm Offset (Coplaner) for 0.062" Thick Baseboards. 69 Figure 72: Primary and Secondary Connector Locations for Large Card Support with Right Angle Connectors. 70 Figure 73: Primary and Secondary Connector Locations for Large Card Support with Stradiel Mout Connectors. 70 Figure 73: Pcile Present and Bifurcation Control Pins (Baseboard Controled Bif[0:2]#). 81 Figure 74: Pcile Present and Bifurcation Control Pins (Baseboard Controled Bif[0:2]#). 81 Figure 75: PCie Present and Bifurcation Control Pins (Static Bif[0:2]#). 81 Figure 77: NCSI Over RBT Connection Example – Single Primary Connector. 88 Figure 78: NCSI Over RBT Connection Example – Usal Primary Connectors. 89 Figure 79: Example Some Stopply Topology 99 Figure 82: USB 2.0 Connection Example – Basic Connectivity. 100 Figure 83: USB 2.0 Connection Example – USB-Serial / USB-TAG Connectivity. 100 Figure 84: Calk Connection Example – USB-Serial / USB-TAG Connectivity. 100 Figure 85: Single Host (1 x16) and 1 x16 OCP NIC 3.0 Card (Single Controller). 100 Figure 87: Quad Hosts (4 x4) and 4 x4 OCP NIC 3.0 Card (Cal Controller). 100 Figure 87: Quad Hosts (4 x4) and 4 x4 OCP NIC 3.0 Card (Cal Controller). 111 Figure 89: Power-Down Sequencing. 112 Figur	Figure 68: 140-pin Base Board Secondary Connector – Straddle Mount	68
Figure 72: 0.3mm Offset for 0.076" Thick Baseboards. 70 Figure 73: Primary and Secondary Connector Locations for Large Card Support with Right Angle Connectors. 70 Figure 73: Primary and Secondary Connector Locations for Large Card Support with Straddle Mount Connectors. 70 Figure 73: Primary and Secondary Connector Locations for Large Card Support with Straddle Mount Connectors. 70 Figure 73: PCI Present and Bifurcation Control Pins (Static BI[0.21)) 81 Figure 73: NC-SI Over RBT Connection Example – Single Primary Connector. 88 Figure 73: NC-SI Over RBT Connection Example – Dual Primary Connector. 89 Figure 73: Scan Chain Timing Diagram. 91 Figure 83: USB 2.0 Connection Example – Basic Connectivity. 100 Figure 83: USB 2.0 Connection Example – Basic Connectivity. 100 Figure 84: UART Connection Example – USB-Serial / USB-ITAG Connectivity. 100 Figure 85: Single Host (1 x16) and 1 x16 OCP NIC 3.0 Card (Single Controller). 108 Figure 85: Single Host (1 x16) and 1 x40 OCP NIC 3.0 Card (Single Controller). 110 Figure 84: UART Connection for 1 x16 and 2 x80 OCP NIC 3.0 Card (Dual Controllers). 111 Figure 85: Ongle Host (1 x16) and 4 x40 OCP NIC 3.0 Card (Dual Controllers). 112 Figure 84: UART Connections for a 4 x40 OCP NIC 3.0 Card (Dual Controllers). <t< td=""><td>Figure 69: OCP NIC 3.0 Card and Baseboard PCB Thickness Options for Straddle Mount Connectors</td><td>69</td></t<>	Figure 69: OCP NIC 3.0 Card and Baseboard PCB Thickness Options for Straddle Mount Connectors	69
Figure 72: Primary and Secondary Connector Locations for Large Card Support with Right Angle Connectors. 70 Figure 73: PCIe Present and Bifurcation Control Pins (Baseboard Controlled BIF[0:2]#). 81 Figure 74: PCIe Present and Bifurcation Control Pins (Baseboard Controlled BIF[0:2]#). 81 Figure 75: PCIe Present and Bifurcation Control Pins (Baseboard Controlled BIF[0:2]#). 81 Figure 75: Example SMBU Connection Example – Dual Primary Connector. 88 Figure 78: Example Sanc Chain Timing Diagram. 91 Figure 80: Scan Chain Connection Example – Dual Primary Connectors. 89 Figure 81: Example Scan Chain Timing Diagram. 91 Figure 82: USB 2.0 Connection Example – Dual Primary Connectivity. 100 Figure 83: USB 2.0 Connection Example – USB-Serial / USB-ITAG Connectivity. 100 Figure 84: UART Connection Example – USD-Serial / USB-ITAG Connectivity. 100 Figure 84: UART Connection Example – USD-Serial / USB-ITAG Controller). 102 Figure 85: Single Host (x 4) and 4 x 4 OCP NIC 3.0 Card (Single Controller). 109 Figure 87: Quad Hosts (4 x4) and 4 x 4 OCP NIC 3.0 Card (Single Controller). 110 Figure 87: Power-Down Sequencing. 112 Figure 93: Port and LED Ordering = Example Small Card (Quad Controller). 112 Figure 94: Power-Dy Sequencing.	Figure 70: 0mm Offset (Coplanar) for 0.062" Thick Baseboards	69
Figure 73: Primary and Secondary Connector Locations for Large Card Support with Straddle Mount Connectors		
Figure 74: PCle Present and Bifurcation Control Pins (Baseboard Controlled BIF[0:2]#)	Figure 72: Primary and Secondary Connector Locations for Large Card Support with Right Angle Connectors	70
Figure 75: PCle Present and Bifurcation Control Pins (Static BIF[0:2]#)	Figure 73: Primary and Secondary Connector Locations for Large Card Support with Straddle Mount Connectors	70
Figur 76: Example SMBus Connection Example – Single Primary Connector. 83 Figur 78: NC-SI Over RBT Connection Example – Dual Primary Connectors. 88 Figur 79: Example Scan Chain Timing Diagram. 91 Figure 81: Example Power Supply Topology. 99 Figure 82: USB 2.0 Connection Example – Basic Connectivity. 100 Figure 81: Example Power Supply Topology. 99 Figure 82: USB 2.0 Connection Example – Basic Connectivity. 100 Figure 83: Single Host (1x16) and 1x16 OCP NIC 3.0 Card (Single Controller). 108 Figure 85: Single Host (2x16) and 2x8 OCP NIC 3.0 Card (Single Controller). 109 Figure 85: Single Host (2x4) and 4 x4 OCP NIC 3.0 Card (Single Controller). 110 Figure 85: Single Host (x44) and 4 x4 OCP NIC 3.0 Card (Single Controller). 111 Figure 90: PCle Interface Connections for 1x16 and 2 x8 OCP NIC 3.0 Card (Dual Controllers). 111 Figure 91: PCle Interface Connections for 1 x16 and 2 x8 OCP NIC 3.0 Card. 114 Figure 92: Port and LED Ordering – Example Small Card Link/Activity and Speed LED Placement. 126 Figure 93: Baseboard Power States 127 Figure 94: POLe Base Board Test Fixture for OCP NIC 3.0 SFF. 149 Figure 95: Power-Down Sequencing. 133 Figure 95: Airflow Direction for		
Figure 77: NC-SI Over RBT Connection Example – Single Primary Connector.88Figure 77: NC-SI Over RBT Connection Example – Dual Primary Connectors89Figure 78: NC-SI Over RBT Connection Example91Figure 80: Scan Chain Connection Example95Figure 81: Example Power Supply Topology99Figure 82: USB 2.0 Connection Example – Basic Connectivity100Figure 83: USB 2.0 Connection Example – USB-Serial / USB-JTAG Connectivity.100Figure 83: Single Host (1 x16) and 1 x16 OCP NIC 3.0 Card (Single Controller)108Figure 84: Single Host (1 x16) and 1 x16 OCP NIC 3.0 Card (Qual Controllers)109Figure 85: Single Host (2 x8) and 2 x8 OCP NIC 3.0 Card (Qual Controllers)110Figure 84: Quad Hosts (4 x4) and 4 x4 OCP NIC 3.0 Card (Quad Controllers)111Figure 89: Single Host with no Bifurcation (1 x16) and 2 x8 OCP NIC 3.0 Cards111Figure 91: PCIe Interface Connections for 1 x16 and 2 x8 OCP NIC 3.0 Cards112Figure 92: Port and LED Ordering – Example Small Card Link/Activity and Speed LED Placement126Figure 93: Baeboard Power States127Figure 94: Power-Up Sequencing133Figure 95: Power-Down Sequencing133Figure 97: PCIe Base Board Test Fixture for OCP NIC 3.0 SFF149Figure 98: Airflow Direction for Hot Aisle Cooling (SFF and LFF)153Figure 100: ASIC Supportable Power for Hot Aisle Cooling - FIF Card154Figure 101: OCP NIC 3.0 SFF Reference Design and CFD Geometry153Figure 102: ASIC Supportable Power for Hot Aisle Cooling - FIF Card157Figure 103: ASIC Suppo		
Figure 78: NC-SI Over RBT Connection Example – Dual Primary Connectors88Figure 80: Scan Chain Connection Example91Figure 81: Example Power Supply Topology99Figure 81: USB 2.0 Connection Example – Basic Connectivity100Figure 83: USB 2.0 Connection Example – USB-Serial / USB-/TAG Connectivity100Figure 83: USB 2.0 Connection Example – USB-Serial / USB-/TAG Connectivity100Figure 85: Single Host (1 x6) and 1 x16 OCP NIC 3.0 Card (Single Controller)108Figure 85: Single Host (1 x4) and 4 x4 OCP NIC 3.0 Card (Qual Controller)111Figure 85: Single Host (1 x4) and 4 x4 OCP NIC 3.0 Card (Qual Controller)111Figure 85: Single Host (x4) and 4 x4 OCP NIC 3.0 Card (Qual Controller)111Figure 89: Single Host with no Bifurcation (1 x16) and 2 x8 OCP NIC 3.0 Card (Dual Controllers)111Figure 90: PCle Interface Connections for 1 x16 and 2 x8 OCP NIC 3.0 Card114Figure 91: POT and LED Ordering – Example Small Card Link/Activity and Speed LED Placement126Figure 92: Port and LED Ordering – Example Small Card Link/Activity and Speed LED Placement126Figure 95: Power-Down Sequencing133Figure 95: Power-Down Sequencing133Figure 95: Power-Down Sequencing (SFF and LFF)149Figure 93: Airflow Direction for Hot Aisle Cooling (SFF and LFF)152Figure 101: OCP NIC 3.0 SFF149Figure 102: ASIC Supportable Power for Hot Aisle Cooling – SFR and LFF)153Figure 103: ASIC Supportable Power for Hot Aisle Cooling – SFR and LFF)153Figure 104: OCP NIC 3.0 SFF Reard HFF)153 <t< td=""><td></td><td></td></t<>		
Figure 79: Example Scan Chain Timing Diagram91Figure 80: Scan Chain Connection Example95Figure 81: Example Power Supply Topology99Figure 82: USB 2.0 Connection Example – USB-Serial / USB-ITAG Connectivity100Figure 83: USB 2.0 Connection Example102Figure 84: UART Connection Example102Figure 85: Single Host (1 x16) and 1 x16 OCP NIC 3.0 Card (Single Controller)108Figure 86: Single Host (2 x8) and 2 x8 OCP NIC 3.0 Card (Dual Controllers)109Figure 88: Quad Hosts (4 x4) and 4 x4 OCP NIC 3.0 Card (Quad Controllers)110Figure 89: Single Host (2 x8) and 2 x8 OCP NIC 3.0 Card (Quad Controllers)111Figure 90: PCle Interface Connections for 1 x16 and 2 x8 OCP NIC 3.0 Card (Dual Controllers)111Figure 91: PCle Interface Connections for 1 x16 and 2 x8 OCP NIC 3.0 Card113Figure 91: PCle Interface Connections for 1 x16 and 2 x8 OCP NIC 3.0 Card114Figure 93: Baseboard Power States127Figure 94: Power-Up Sequencing133Figure 95: Power-Down Sequencing133Figure 97: PCle Base Board Test Fixture for OCP NIC 3.0 SFF149Figure 97: PCle Base Board Test Fixture for OCP NIC 3.0 SFF149Figure 101: OCP NIC 3.0 SFF Reference Design and CFD Geometry153Figure 102: Server System Airflow Capability – SFF Card MIC FP)153Figure 103: ASIC Supportable Power for Hot Aisle Cooling (SFF and LFF)154Figure 103: ASIC Supportable Power for Hot Aisle Cooling (SFF and LFF)155Figure 103: SASIC Supportable Power for Cld Aisle Cooling (SFF and LFF)155 <td></td> <td></td>		
Figure 80: Scan Chain Connection Example95Figure 81: Example Power Supply Topology99Figure 82: USB 2.0 Connection Example – Basic Connectivity100Figure 83: USB 2.0 Connection Example – USB-Serial / USB-JTAG Connectivity100Figure 83: Single Host (1 x6) and 1 x16 OCP NIC 3.0 Card (Single Controller)108Figure 85: Single Host (1 x6) and 1 x16 OCP NIC 3.0 Card (Single Controller)109Figure 85: Single Host (1 x4) and 4 x4 OCP NIC 3.0 Card (Qual Controllers)111Figure 85: Single Host (1 x4) and 4 x4 OCP NIC 3.0 Card (Quad Controllers)111Figure 80: Single Host with no Bifurcation (1 x16) and 2 x8 OCP NIC 3.0 Card (Dual Controllers)111Figure 90: PCle Interface Connections for 1 x16 and 2 x8 OCP NIC 3.0 Card113Figure 91: PCle Interface Connections for 1 x40 and 2 x8 OCP NIC 3.0 Card114Figure 92: Port and LED Ordering – Example Small Card Link/Activity and Speed LED Placement126Figure 93: Baseboard Power States127Figure 95: Power-Down Sequencing133Figure 96: PCle Load Board Test Fixture for OCP NIC 3.0 SFF149Figure 97: PCle Base Board Test Fixture for OCP NIC 3.0 SFF149Figure 100: ASIC Supportable Power for Hot Aisle Cooling (SFF and LFF)152Figure 102: Server System Airflow Capability – SFF Card Hot Aisle Cooling155Figure 103: ASIC Supportable Power for Hot Aisle Cooling - SFF Card160Figure 104: ASIC Supportable Power for OCP AIC Aisle Cooling155Figure 105: Server System Airflow Capability – SFF Card Hot Aisle Cooling155Figure 106: ASIC Supportable Pow		
Figure 81: Example Power Supply Topology.99Figure 82: USB 2.0 Connection Example100Figure 82: USB 2.0 Connection Example102Figure 83: UART Connection Example102Figure 85: Single Host (1 x16) and 1 x16 OCP NIC 3.0 Card (Single Controller).100Figure 85: Single Host (2 x8) and 2 x8 OCP NIC 3.0 Card (Dual Controller).109Figure 85: Single Host (2 x8) and 2 x8 OCP NIC 3.0 Card (Single Controller).110Figure 86: Quad Hosts (4 x4) and 4 x4 OCP NIC 3.0 Card (Quad Controllers).111Figure 87: Quad Hosts (4 x4) and 4 x4 OCP NIC 3.0 Card (Quad Controllers).111Figure 89: Single Host with no Bifurcation (1 x16) and 2 x8 OCP NIC 3.0 Card (Dual Controllers).112Figure 90: PCle Interface Connections for 1 x16 and 2 x8 OCP NIC 3.0 Card113Figure 91: PCle Interface Connections for 1 x16 and 2 x8 OCP NIC 3.0 Card114Figure 92: Port and LED Ordering - Example Small Card Link/Activity and Speed LED Placement.126Figure 93: Baseboard Power States127Figure 94: Power-Up Sequencing.133Figure 95: PCle Load Board Test Fixture for OCP NIC 3.0 SFF.149Figure 97: PCle Base Board Test Fixture for OCP NIC 3.0 SFF.149Figure 100: ASIC Supportable Power for Hot Aisle Cooling (SFF and LFF).152Figure 101: ASIC Supportable Power for Hot Aisle Cooling - Small Card Form Factor154Figure 102: Server System Airflow Capability - SFF Card Hot Aisle Cooling.155Figure 103: ASIC Supportable Power Congarison - SFF Card.160Figure 104: SASIC Supportable Power Congarison - SFF Card.160		
Figure 82: USB 2.0 Connection Example – Basic Connectivity100Figure 82: USB 2.0 Connection Example102Figure 83: USB 2.0 Connection Example102Figure 84: UART Connection Example102Figure 85: Single Host (1 x16) and 1 x16 OCP NIC 3.0 Card (Single Controller)108Figure 87: Quad Hosts (4 x4) and 4 x4 OCP NIC 3.0 Card (Qual Controllers)109Figure 87: Single Host (4 x4) and 4 x4 OCP NIC 3.0 Card (Single Controller)110Figure 87: Single Host with no Bifurcation (1 x16) and 2 x8 OCP NIC 3.0 Card (Dual Controllers)111Figure 89: Single Host with no Bifurcation (1 x16) and 2 x8 OCP NIC 3.0 Cards113Figure 91: PCle Interface Connections for a 4 x4 OCP NIC 3.0 Card114Figure 92: Port and LED Ordering – Example Small Card Link/Activity and Speed LED Placement127Figure 93: Baseboard Power States122Figure 94: Power-Up Sequencing133Figure 95: Power-Down Sequencing133Figure 95: Power-Down Sequencing133Figure 96: PCle Daad Board Test Fixture for OCP NIC 3.0 SFF149Figure 97: Airflow Direction for Hot Aisle Cooling (SFF and LFF)152Figure 99: Airflow Direction for Hot Aisle Cooling (SFF and LFF)153Figure 101: OCP NIC 3.0 SFF Reference Design and CFD Geometry155Figure 102: Server System Airflow Capability – SFF Card Hot Aisle Cooling155Figure 103: ASIC Supportable Power for Hot Aisle Cooling – SFF Card155Figure 103: ASIC Supportable Power for Cold Aisle Cooling155Figure 103: ASIC Supportable Power for Cold Aisle Cooling157		
Figure 83: USB 2.0 Connection Example – USB-Serial / USB-JTAG Connectivity.100Figure 83: Single Host (1 x16) and 1 x16 OCP NIC 3.0 Card (Single Controller).108Figure 85: Single Host (2 x8) and 2 x8 OCP NIC 3.0 Card (Dual Controllers)109Figure 87: Quad Hosts (4 x4) and 4 x4 OCP NIC 3.0 Card (Single Controller)110Figure 88: Quad Hosts (4 x4) and 4 x4 OCP NIC 3.0 Card (Quad Controllers)111Figure 89: Single Host (1 x16) and 2 x8 OCP NIC 3.0 Card (Dual Controllers)111Figure 90: PCle Interface Connections for 1 x16 and 2 x8 OCP NIC 3.0 Card (Dual Controllers)112Figure 91: PCle Interface Connections for 1 x16 and 2 x8 OCP NIC 3.0 Card114Figure 92: Port and LED Ordering – Example Small Card Link/Activity and Speed LED Placement126Figure 93: Baseboard Power States127Figure 94: Power-Up Sequencing133Figure 95: Power-Down Sequencing133Figure 95: Power-Down Sequencing152Figure 97: PCle Base Board Test Fixture for OCP NIC 3.0 SFF149Figure 98: Airflow Direction for tot Aisle Cooling (SFF and LFF)152Figure 100: ASIC Supportable Power for Hot Aisle Cooling – Small Card Form Factor154Figure 101: OCP NIC 3.0 SFF Reference Design and CFD Geometry.155Figure 102: Server System Airflow Capability – SFF Card Hot Aisle Cooling156Figure 103: ASIC Supportable Power for Hot Aisle Cooling – SFF Card160Figure 104: OCP NIC 3.0 LFF Reference Design and CFD Geometry.157Figure 105: Server System Airflow Capability – LFF Card Hot Aisle Cooling156Figure 104: OCP NIC 3.0 LFF		
Figure 84: UART Connection Example102Figure 85: Single Host (1 x16) and 1 x16 OCP NIC 3.0 Card (Single Controller)108Figure 85: Single Host (2 x8) and 2 x8 OCP NIC 3.0 Card (Single Controllers)109Figure 87: Quad Hosts (4 x4) and 4 x4 OCP NIC 3.0 Card (Quad Controllers)110Figure 88: Quad Hosts (4 x4) and 4 x4 OCP NIC 3.0 Card (Quad Controllers)111Figure 80: PCle Interface Connections for 1 x16 and 2 x8 OCP NIC 3.0 Card (Dual Controllers)111Figure 91: PCle Interface Connections for a 4 x4 OCP NIC 3.0 Card.114Figure 92: Port and LED Ordering – Example Small Card Link/Activity and Speed LED Placement126Figure 92: Port and LED Ordering – Example Small Card Link/Activity and Speed LED Placement126Figure 95: Power-Down Sequencing133Figure 95: Power-Down Sequencing133Figure 95: Power-Down Sequencing149Figure 98: Airflow Direction for Hot Aisle Cooling (SFF and LFF)152Figure 99: Airflow Direction for Hot Aisle Cooling (SFF and LFF)153Figure 101: OCP NIC 3.0 SFF Reference Design and CFD Geometry155Figure 102: Server System Airflow Capability – SFF Card Hot Aisle Cooling156Figure 103: SAIC Supportable Power for Hot Aisle Cooling157Figure 104: OCP NIC 3.0 LFF Reference Design and CFD Geometry157Figure 105: Server System Airflow Capability – SFF Card Hot Aisle Cooling157Figure 105: Server System Airflow Capability – LFF Card157Figure 105: Server System Airflow Capability – LFF Card157Figure 106: ASIC Supportable Power for Col Aisle Cooling – SFF Card </td <td></td> <td></td>		
Figure 85: Single Host (1 x16) and 1 x16 OCP NIC 3.0 Card (Dual Controller)108Figure 86: Single Host (2 x8) and 2 x8 OCP NIC 3.0 Card (Dual Controllers)109Figure 87: Quad Hosts (4 x4) and 4 x4 OCP NIC 3.0 Card (Quad Controllers)110Figure 89: Single Host with no Bifurcation (1 x16) and 2 x8 OCP NIC 3.0 Card (Dual Controllers)111Figure 90: PCle Interface Connections for 1 x16 and 2 x8 OCP NIC 3.0 Card113Figure 91: PCle Interface Connections for 1 x16 and 2 x8 OCP NIC 3.0 Card114Figure 92: Port and LED Ordering – Example Small Card Link/Activity and Speed LED Placement126Figure 93: Baseboard Power States127Figure 94: Power-Up Sequencing133Figure 95: Power-Down Sequencing133Figure 97: PCLe Base Board Test Fixture for OCP NIC 3.0 SFF149Figure 98: Airflow Direction for tot Aisle Cooling (SFF and LFF)152Figure 100: ASIC Supportable Power for Hot Aisle Cooling (SFF and LFF)153Figure 101: OCP NIC 3.0 SFF Carl Hot Aisle Cooling (SFF and LFF)154Figure 102: Server System Airflow Capability – SFF Card Hot Aisle Cooling155Figure 102: Server System Airflow Capability – SFF Card Hot Aisle Cooling156Figure 103: ASIC Supportable Power for Hot Aisle Cooling – SFF Card157Figure 104: OCP NIC 3.0 LFF Reference Design and CFD Geometry155Figure 105: Server System Airflow Capability – LFF Cord Aisle Cooling156Figure 104: OCP NIC 3.0 LFF Reference Design and CFD Geometry157Figure 105: ASIC Supportable Power for Hot Aisle Cooling – LFF Card156Figure 105: ASIC Suppor		
Figure 86: Single Host (2 x8) and 2 x8 OCP NIC 3.0 Card (Dual Controllers)109Figure 87: Quad Hosts (4 x4) and 4 x4 OCP NIC 3.0 Card (Single Controller)110Figure 88: Single Host with no Bifurcation (1 x16) and 2 x8 OCP NIC 3.0 Card (Dual Controllers)111Figure 90: PCle Interface Connections for 1 x16 and 2 x8 OCP NIC 3.0 Card (Dual Controllers)112Figure 91: PCle Interface Connections for a 4 x4 OCP NIC 3.0 Card20 Card (Dual Controllers)Figure 92: Port and LED Ordering – Example Small Card Link/Activity and Speed LED Placement126Figure 93: Baseboard Power States127Figure 94: Power-Up Sequencing132Figure 95: Power-Down Sequencing133Figure 95: Power-Down Sequencing133Figure 96: PCle Base Board Test Fixture for OCP NIC 3.0 SFF149Figure 97: PCle Base Board Test Fixture for OCP NIC 3.0 SFF149Figure 98: Airflow Direction for Hot Aisle Cooling (SFF and LFF)152Figure 99: Airflow Direction for Cold Aisle Cooling (SFF and LFF)153Figure 101: OCP NIC 3.0 SFF Reference Design and CFD Geometry155Figure 102: Server System Airflow Capability – SFF Card Hot Aisle Cooling157Figure 103: ASIC Supportable Power for Hot Aisle Cooling – SFF Card157Figure 104: OCP NIC 3.0 LFF Card Hot Aisle Cooling157Figure 105: Server System Airflow Capability – SFF Card Hot Aisle Cooling157Figure 104: OCP NIC 3.0 SFF Reference Design and CFD Geometry155Figure 105: Server System Airflow Capability – SFF Card Hot Aisle Cooling157Figure 104: OCP NIC 3.0 LFF Reference Design and CFD G	-	
Figure 87: Quad Hosts (4 x4) and 4 x4 OCP NIC 3.0 Card (Single Controller)110Figure 88: Quad Hosts (4 x4) and 4 x4 OCP NIC 3.0 Card (Quad Controllers)111Figure 89: Single Host with no Bifurcation (1 x16) and 2 x8 OCP NIC 3.0 Card (Dual Controllers)112Figure 90: PCIe Interface Connections for 1 x16 and 2 x8 OCP NIC 3.0 Cards113Figure 91: PCIe Interface Connections for a 4 x4 OCP NIC 3.0 Card114Figure 92: Port and LED Ordering – Example Small Card Link/Activity and Speed LED Placement126Figure 93: Baseboard Power States127Figure 94: Power-Up Sequencing133Figure 95: Power-Down Sequencing133Figure 95: POLe Load Board Test Fixture for OCP NIC 3.0 SFF149Figure 97: PCIe Base Board Test Fixture for OCP NIC 3.0 SFF149Figure 98: Airflow Direction for Hot Aisle Cooling (SFF and LFF)152Figure 99: Airflow Direction for Cold Aisle Cooling (SFF and LFF)153Figure 101: OCP NIC 3.0 SFF Reference Design and CFD Geometry.155Figure 102: Server System Airflow Capability – SFF Card Hot Aisle Cooling155Figure 103: ASIC Supportable Power for Hot Aisle Cooling – LFF Card157Figure 105: Server System Airflow Capability – SFF Card Hot Aisle Cooling159Figure 105: Server System Airflow Capability – SFF Card Hot Aisle Cooling159Figure 105: ASIC Supportable Power for Cold Aisle Cooling – SFF Card160Figure 105: ASIC Supportable Power for Cold Aisle Cooling – SFF Card160Figure 105: ASIC Supportable Power for Cold Aisle Cooling – SFF Card160Figure 105: ASIC Supportable Power		
Figure 88: Quad Hosts (4 x4) and 4 x4 OCP NIC 3.0 Card (Quad Controllers)111Figure 89: Single Host with no Bifurcation (1 x16) and 2 x8 OCP NIC 3.0 Card (Dual Controllers)112Figure 90: PCIe Interface Connections for 1 x16 and 2 x8 OCP NIC 3.0 Cards113Figure 91: PCIe Interface Connections for a 4 x4 OCP NIC 3.0 Card114Figure 92: Port and LED Ordering – Example Small Card Link/Activity and Speed LED Placement126Figure 93: Baseboard Power States127Figure 94: Power-Up Sequencing133Figure 95: Power-Down Sequencing133Figure 95: Power-Down Sequencing133Figure 96: PCIe Load Board Test Fixture for OCP NIC 3.0 SFF149Figure 97: PCIe Base Board Test Fixture for OCP NIC 3.0 SFF149Figure 98: Airflow Direction for Hot Aisle Cooling (SFF and LFF)152Figure 99: Airflow Direction for Cold Aisle Cooling (SFF and LFF)153Figure 100: ASIC Supportable Power for Hot Aisle Cooling – Small Card Form Factor154Figure 101: OCP NIC 3.0 SFF Reference Design and CFD Geometry155Figure 102: Server System Airflow Capability – SFF Card Hot Aisle Cooling157Figure 103: ASIC Supportable Power for Hot Aisle Cooling – SFF Card160Figure 104: OCP NIC 3.0 LFF Reference Design and CFD Geometry157Figure 105: Server System Airflow Capability – SFF Card Hot Aisle Cooling159Figure 106: ASIC Supportable Power for Cold Aisle Cooling – SFF Card160Figure 107: Server System Airflow Capability – LFF Card Hot Aisle Cooling159Figure 108: ASIC Supportable Power Comparison – SFF Card161 <td></td> <td></td>		
Figure 89: Single Host with no Bifurcation (1 x16) and 2 x8 OCP NIC 3.0 Card (Dual Controllers)112Figure 90: PCIe Interface Connections for 1 x16 and 2 x8 OCP NIC 3.0 Card113Figure 91: PCIe Interface Connections for a 4 x4 OCP NIC 3.0 Card114Figure 92: Port and LED Ordering – Example Small Card Link/Activity and Speed LED Placement126Figure 93: Baseboard Power States127Figure 94: Power-Up Sequencing132Figure 95: Power-Down Sequencing133Figure 95: POLe Load Board Test Fixture for OCP NIC 3.0 SFF149Figure 96: PCIe Load Board Test Fixture for OCP NIC 3.0 SFF149Figure 98: Airflow Direction for Hot Aisle Cooling (SFF and LFF)152Figure 99: Airflow Direction for Cold Aisle Cooling (SFF and LFF)153Figure 100: ASIC Supportable Power for Hot Aisle Cooling – Small Card Form Factor154Figure 101: OCP NIC 3.0 SFF Reference Design and CFD Geometry155Figure 102: Server System Airflow Capability – SFF Card Hot Aisle Cooling157Figure 103: ASIC Supportable Power for Hot Aisle Cooling – LFF Card157Figure 105: Server System Airflow Capability – SFF Cold Hot Aisle Cooling159Figure 105: Server System Airflow Capability – SFF Cold Aisle Cooling160Figure 107: Server System Airflow Capability – SFF Cold Aisle Cooling160Figure 108: ASIC Supportable Power for Cold Aisle Cooling – LFF Card161Figure 109: ASIC Supportable Power for Cold Aisle Cooling – LFF Card162Figure 109: ASIC Supportable Power for Cold Aisle Cooling – LFF Card163Figure 110: Server System Airflow Cap		
Figure 90: PCIe Interface Connections for 1 x16 and 2 x8 OCP NIC 3.0 Cards113Figure 91: PCIe Interface Connections for a 4 x4 OCP NIC 3.0 Card.114Figure 92: Port and LED Ordering – Example Small Card Link/Activity and Speed LED Placement.126Figure 93: Baseboard Power States127Figure 94: Power-Up Sequencing.132Figure 95: Power-Down Sequencing.133Figure 96: PCIe Load Board Test Fixture for OCP NIC 3.0 SFF149Figure 97: PCIe Base Board Test Fixture for OCP NIC 3.0 SFF149Figure 97: PCIe Base Board Test Fixture for OCP NIC 3.0 SFF149Figure 99: Airflow Direction for Hot Aisle Cooling (SFF and LFF)152Figure 99: Airflow Direction for Hot Aisle Cooling (SFF and LFF)153Figure 100: ASIC Supportable Power for Hot Aisle Cooling - Small Card Form Factor154Figure 101: OCP NIC 3.0 SFF Reference Design and CFD Geometry.155Figure 103: ASIC Supportable Power for Hot Aisle Cooling – LFF Card157Figure 103: ASIC Supportable Power for Hot Aisle Cooling – SFF Card160Figure 104: OCP NIC 3.0 LFF Reference Design and CFD Geometry.157Figure 105: Server System Airflow Capability – LFF Card Hot Aisle Cooling.159Figure 106: ASIC Supportable Power for Cold Aisle Cooling – LFF Card160Figure 107: Server System Airflow Capability – LFF Card Hot Aisle Cooling.159Figure 108: ASIC Supportable Power for Cold Aisle Cooling – LFF Card160Figure 108: ASIC Supportable Power for Cold Aisle Cooling – LFF Card161Figure 108: ASIC Supportable Power Comparison – SFF Card162 </td <td></td> <td></td>		
Figure 91: PCle Interface Connections for a 4 x4 OCP NIC 3.0 Card.114Figure 92: Port and LED Ordering – Example Small Card Link/Activity and Speed LED Placement.126Figure 93: Baseboard Power States127Figure 94: Power-Up Sequencing.132Figure 95: Power-Down Sequencing.133Figure 95: POLe Load Board Test Fixture for OCP NIC 3.0 SFF149Figure 96: PCle Load Board Test Fixture for OCP NIC 3.0 SFF149Figure 97: PCle Base Board Test Fixture for OCP NIC 3.0 SFF149Figure 98: Airflow Direction for Hot Aisle Cooling (SFF and LFF)152Figure 99: Airflow Direction for Hot Aisle Cooling (SFF and LFF)153Figure 100: ASIC Supportable Power for Hot Aisle Cooling – Small Card Form Factor154Figure 101: OCP NIC 3.0 SFF Reference Design and CFD Geometry.155Figure 102: Server System Airflow Capability – SFF Card Hot Aisle Cooling156Figure 103: ASIC Supportable Power for Hot Aisle Cooling – LFF Card157Figure 104: OCP NIC 3.0 LFF Reference Design and CFD Geometry.157Figure 105: Server System Airflow Capability – LFF Card Hot Aisle Cooling156Figure 106: ASIC Supportable Power for Cold Aisle Cooling – LFF Card160Figure 107: Server System Airflow Capability – LFF Card Hot Aisle Cooling160Figure 108: ASIC Supportable Power for Cold Aisle Cooling – SFF Card160Figure 109: ASIC Supportable Power for Cold Aisle Cooling – LFF Card161Figure 109: ASIC Supportable Power for Cold Aisle Cooling – LFF Card162Figure 109: ASIC Supportable Power for Cold Aisle Cooling – LFF Card		
Figure 92: Port and LED Ordering – Example Small Card Link/Activity and Speed LED Placement.126Figure 93: Baseboard Power States127Figure 94: Power-Up Sequencing.132Figure 95: Power-Down Sequencing133Figure 96: PCle Load Board Test Fixture for OCP NIC 3.0 SFF149Figure 97: PCle Base Board Test Fixture for OCP NIC 3.0 SFF149Figure 97: PCle Base Board Test Fixture for OCP NIC 3.0 SFF149Figure 97: PCle Base Board Test Fixture for OCP NIC 3.0 SFF152Figure 98: Airflow Direction for Hot Aisle Cooling (SFF and LFF)152Figure 99: Airflow Direction for Cold Aisle Cooling (SFF and LFF)153Figure 100: ASIC Supportable Power for Hot Aisle Cooling – Small Card Form Factor154Figure 101: OCP NIC 3.0 SFF Reference Design and CFD Geometry.155Figure 102: Server System Airflow Capability – SFF Card Hot Aisle Cooling156Figure 103: ASIC Supportable Power for Hot Aisle Cooling – LFF Card157Figure 104: OCP NIC 3.0 LFF Reference Design and CFD Geometry.157Figure 105: Server System Airflow Capability – LFF Card Hot Aisle Cooling159Figure 106: ASIC Supportable Power for Cold Aisle Cooling – SFF Card.160Figure 107: Server System Airflow Capability – LFF Cold Aisle Cooling160Figure 108: ASIC Supportable Power for Cold Aisle Cooling – LFF Card.162Figure 110: Server System Airflow Capability – LFF Cold Aisle Cooling163Figure 110: Server System Airflow Capability – LFF Cold Aisle Cooling163Figure 110: Server System Airflow Capability – LFF Cold Aisle Cooling163 <td></td> <td></td>		
Figure 93: Baseboard Power States127Figure 93: Baseboard Power States132Figure 94: Power-Up Sequencing133Figure 95: Power-Down Sequencing133Figure 96: PCIe Load Board Test Fixture for OCP NIC 3.0 SFF149Figure 97: PCIe Base Board Test Fixture for OCP NIC 3.0 SFF149Figure 98: Airflow Direction for Hot Aisle Cooling (SFF and LFF)152Figure 99: Airflow Direction for Cold Aisle Cooling (SFF and LFF)153Figure 100: ASIC Supportable Power for Hot Aisle Cooling - Small Card Form Factor154Figure 101: OCP NIC 3.0 SFF Reference Design and CFD Geometry.155Figure 102: Server System Airflow Capability – SFF Card Hot Aisle Cooling156Figure 103: ASIC Supportable Power for Hot Aisle Cooling – LFF Card157Figure 104: OCP NIC 3.0 LFF Reference Design and CFD Geometry.157Figure 105: Server System Airflow Capability – LFF Card Hot Aisle Cooling159Figure 105: Server System Airflow Capability – LFF Card Hot Aisle Cooling159Figure 105: ASIC Supportable Power for Cold Aisle Cooling – SFF Card160Figure 106: ASIC Supportable Power for Cold Aisle Cooling – SFF Card160Figure 106: ASIC Supportable Power for Cold Aisle Cooling – SFF Card160Figure 107: Server System Airflow Capability – LFF Cold Aisle Cooling160Figure 108: ASIC Supportable Power for Cold Aisle Cooling – LFF Card160Figure 109: SSIC Supportable Power Comparison – SFF Card161Figure 109: ASIC Supportable Power Comparison – SFF Card162Figure 110: Server System Airflow Capability – LFF		
Figure 94: Power-Up Sequencing.132Figure 95: Power-Down Sequencing.133Figure 95: Pole Load Board Test Fixture for OCP NIC 3.0 SFF149Figure 97: PCIe Base Board Test Fixture for OCP NIC 3.0 SFF149Figure 97: PCIe Base Board Test Fixture for OCP NIC 3.0 SFF149Figure 98: Airflow Direction for Hot Aisle Cooling (SFF and LFF)152Figure 99: Airflow Direction for Cold Aisle Cooling (SFF and LFF)153Figure 100: ASIC Supportable Power for Hot Aisle Cooling - Small Card Form Factor154Figure 101: OCP NIC 3.0 SFF Reference Design and CFD Geometry.155Figure 102: Server System Airflow Capability – SFF Card Hot Aisle Cooling156Figure 103: ASIC Supportable Power for Hot Aisle Cooling – LFF Card157Figure 104: OCP NIC 3.0 LFF Reference Design and CFD Geometry.157Figure 105: Server System Airflow Capability – LFF Card Hot Aisle Cooling159Figure 106: ASIC Supportable Power for Cold Aisle Cooling – SFF Card160Figure 106: ASIC Supportable Power for Cold Aisle Cooling – SFF Card160Figure 107: Server System Airflow Capability – SFF Cold Aisle Cooling160Figure 108: ASIC Supportable Power for Cold Aisle Cooling – SFF Card161Figure 109: ASIC Supportable Power for Cold Aisle Cooling – LFF Card162Figure 109: ASIC Supportable Power for Cold Aisle Cooling – SFF Card162Figure 109: ASIC Supportable Power for Cold Aisle Cooling – LFF Card162Figure 109: ASIC Supportable Power for Cold Aisle Cooling – LFF Card163Figure 110: Server System Airflow Capability – LFF Cold Aisle Cooli		
Figure 95: Power-Down Sequencing133Figure 95: Power-Down Sequencing149Figure 96: PCIe Load Board Test Fixture for OCP NIC 3.0 SFF149Figure 97: PCIe Base Board Test Fixture for OCP NIC 3.0 SFF149Figure 98: Airflow Direction for Hot Aisle Cooling (SFF and LFF)152Figure 99: Airflow Direction for Cold Aisle Cooling (SFF and LFF)153Figure 100: ASIC Supportable Power for Hot Aisle Cooling – Small Card Form Factor154Figure 101: OCP NIC 3.0 SFF Reference Design and CFD Geometry155Figure 102: Server System Airflow Capability – SFF Card Hot Aisle Cooling156Figure 103: ASIC Supportable Power for Hot Aisle Cooling – LFF Card157Figure 104: OCP NIC 3.0 LFF Reference Design and CFD Geometry157Figure 103: ASIC Supportable Power for Hot Aisle Cooling – LFF Card157Figure 104: OCP NIC 3.0 LFF Reference Design and CFD Geometry157Figure 105: Server System Airflow Capability – LFF Card Hot Aisle Cooling159Figure 105: Server System Airflow Capability – SFF Cold Aisle Cooling160Figure 107: Server System Airflow Capability – SFF Card161Figure 108: ASIC Supportable Power for Cold Aisle Cooling – LFF Card161Figure 110: Server System Airflow Capability – LFF Cold Aisle Cooling162Figure 110: Server System Airflow Capability – LFF Card162Figure 110: Server System Airflow Capability – LFF Card161Figure 110: Server System Airflow Capability – LFF Card161Figure 111: ASIC Supportable Power for Cold Aisle Cooling – LFF Card163Figure 112: Small Car	-	
Figure 96: PCIe Load Board Test Fixture for OCP NIC 3.0 SFF149Figure 97: PCIe Base Board Test Fixture for OCP NIC 3.0 SFF149Figure 98: Airflow Direction for Hot Aisle Cooling (SFF and LFF)152Figure 99: Airflow Direction for Cold Aisle Cooling (SFF and LFF)153Figure 100: ASIC Supportable Power for Hot Aisle Cooling - Small Card Form Factor154Figure 101: OCP NIC 3.0 SFF Reference Design and CFD Geometry.155Figure 102: Server System Airflow Capability - SFF Card Hot Aisle Cooling156Figure 103: ASIC Supportable Power for Hot Aisle Cooling - LFF Card157Figure 104: OCP NIC 3.0 LFF Reference Design and CFD Geometry.157Figure 103: ASIC Supportable Power for Hot Aisle Cooling - LFF Card157Figure 104: OCP NIC 3.0 LFF Reference Design and CFD Geometry.157Figure 105: Server System Airflow Capability - LFF Card Hot Aisle Cooling159Figure 106: ASIC Supportable Power for Cold Aisle Cooling - SFF Card.160Figure 107: Server System Airflow Capability - SFF Cold Aisle Cooling160Figure 108: ASIC Supportable Power for Cold Aisle Cooling - SFF Card.161Figure 109: ASIC Supportable Power for Cold Aisle Cooling - LFF Card161Figure 109: ASIC Supportable Power for Cold Aisle Cooling - LFF Card162Figure 110: Server System Airflow Capability - LFF Cold Aisle Cooling.163Figure 110: Server System Airflow Capability - LFF Cold Aisle Cooling.163Figure 110: Server System Airflow Capability - LFF Cold Aisle Cooling.163Figure 110: Server System Airflow Capability - LFF Cold Aisle Cooling.163<		
Figure 97: PCIe Base Board Test Fixture for OCP NIC 3.0 SFF149Figure 98: Airflow Direction for Hot Aisle Cooling (SFF and LFF)152Figure 99: Airflow Direction for Cold Aisle Cooling (SFF and LFF)153Figure 100: ASIC Supportable Power for Hot Aisle Cooling – Small Card Form Factor154Figure 101: OCP NIC 3.0 SFF Reference Design and CFD Geometry.155Figure 102: Server System Airflow Capability – SFF Card Hot Aisle Cooling156Figure 103: ASIC Supportable Power for Hot Aisle Cooling – LFF Card157Figure 104: OCP NIC 3.0 LFF Reference Design and CFD Geometry.157Figure 104: OCP NIC 3.0 LFF Reference Design and CFD Geometry157Figure 105: Server System Airflow Capability – LFF Card Hot Aisle Cooling159Figure 106: ASIC Supportable Power for Hot Aisle Cooling – SFF Card.160Figure 107: Server System Airflow Capability – LFF Card Hot Aisle Cooling160Figure 108: ASIC Supportable Power for Cold Aisle Cooling – SFF Card.160Figure 109: ASIC Supportable Power for Cold Aisle Cooling – SFF Card.161Figure 109: ASIC Supportable Power for Cold Aisle Cooling – SFF Card.162Figure 109: ASIC Supportable Power for Cold Aisle Cooling – LFF Card.162Figure 110: Server System Airflow Capability – LFF Cold Aisle Cooling.163Figure 110: Server System Airflow Capability – LFF Card.163Figure 111: ASIC Supportable Power for Cold Aisle Cooling.163Figure 112: Small Card Thermal Test Fixture Preliminary Design – Cover Removed165Figure 113: SFF Card Thermal Test Fixture Preliminary Design – Cover Removed <td< td=""><td></td><td></td></td<>		
Figure 98: Airflow Direction for Hot Aisle Cooling (SFF and LFF)152Figure 99: Airflow Direction for Cold Aisle Cooling (SFF and LFF)153Figure 100: ASIC Supportable Power for Hot Aisle Cooling – Small Card Form Factor154Figure 101: OCP NIC 3.0 SFF Reference Design and CFD Geometry155Figure 102: Server System Airflow Capability – SFF Card Hot Aisle Cooling156Figure 103: ASIC Supportable Power for Hot Aisle Cooling – LFF Card157Figure 104: OCP NIC 3.0 LFF Reference Design and CFD Geometry157Figure 105: Server System Airflow Capability – LFF Card Hot Aisle Cooling159Figure 106: ASIC Supportable Power for Hot Aisle Cooling – SFF Card160Figure 107: Server System Airflow Capability – LFF Card Hot Aisle Cooling160Figure 108: ASIC Supportable Power for Cold Aisle Cooling – SFF Card161Figure 109: ASIC Supportable Power Comparison – SFF Card162Figure 110: Server System Airflow Capability – LFF Cold Aisle Cooling163Figure 111: ASIC Supportable Power Comparison – LFF Card163Figure 111: ASIC Supportable Power Comparison – LFF Card163Figure 112: Small Card Thermal Test Fixture Preliminary Design165Figure 114: SFF Card Thermal Test Fixture Preliminary Design – Cover Removed165Figure 114: SFF Card Thermal Test Fixture PCB166		
Figure 99: Airflow Direction for Cold Aisle Cooling (SFF and LFF)153Figure 100: ASIC Supportable Power for Hot Aisle Cooling – Small Card Form Factor154Figure 101: OCP NIC 3.0 SFF Reference Design and CFD Geometry155Figure 102: Server System Airflow Capability – SFF Card Hot Aisle Cooling156Figure 103: ASIC Supportable Power for Hot Aisle Cooling – LFF Card157Figure 104: OCP NIC 3.0 LFF Reference Design and CFD Geometry157Figure 105: Server System Airflow Capability – LFF Card Hot Aisle Cooling157Figure 105: Server System Airflow Capability – LFF Card Hot Aisle Cooling159Figure 106: ASIC Supportable Power for Cold Aisle Cooling – SFF Card160Figure 107: Server System Airflow Capability – SFF Cold Aisle Cooling160Figure 108: ASIC Supportable Power for Cold Aisle Cooling – LFF Card161Figure 109: ASIC Supportable Power for Cold Aisle Cooling – LFF Card162Figure 110: Server System Airflow Capability – LFF Cold Aisle Cooling163Figure 110: Server System Airflow Capability – LFF Cold Aisle Cooling163Figure 111: ASIC Supportable Power for Cold Aisle Cooling – LFF Card163Figure 111: ASIC Supportable Power Comparison – LFF Card163Figure 112: Small Card Thermal Test Fixture Preliminary Design – Cover Removed165Figure 114: SFF Card Thermal Test Fixture Preliminary Design – Cover Removed165Figure 114: SFF Card Thermal Test Fixture PCB166		
Figure 100: ASIC Supportable Power for Hot Aisle Cooling – Small Card Form Factor154Figure 101: OCP NIC 3.0 SFF Reference Design and CFD Geometry.155Figure 102: Server System Airflow Capability – SFF Card Hot Aisle Cooling156Figure 103: ASIC Supportable Power for Hot Aisle Cooling – LFF Card157Figure 104: OCP NIC 3.0 LFF Reference Design and CFD Geometry.157Figure 105: Server System Airflow Capability – LFF Card Hot Aisle Cooling159Figure 106: ASIC Supportable Power for Cold Aisle Cooling – SFF Card160Figure 107: Server System Airflow Capability – SFF Cold Aisle Cooling160Figure 108: ASIC Supportable Power for Cold Aisle Cooling – SFF Card161Figure 109: ASIC Supportable Power for Cold Aisle Cooling – LFF Card162Figure 110: Server System Airflow Capability – LFF Cold Aisle Cooling – LFF Card163Figure 111: ASIC Supportable Power for Cold Aisle Cooling – LFF Card163Figure 111: ASIC Supportable Power Comparison – LFF Card163Figure 111: ASIC Supportable Power Comparison – LFF Card163Figure 111: ASIC Supportable Power Comparison – LFF Card163Figure 112: Small Card Thermal Test Fixture Preliminary Design165Figure 113: SFF Card Thermal Test Fixture Preliminary Design – Cover Removed165Figure 114: SFF Card Thermal Test Fixture PCB166		
Figure 101: OCP NIC 3.0 SFF Reference Design and CFD Geometry.155Figure 102: Server System Airflow Capability – SFF Card Hot Aisle Cooling156Figure 103: ASIC Supportable Power for Hot Aisle Cooling – LFF Card157Figure 104: OCP NIC 3.0 LFF Reference Design and CFD Geometry.157Figure 105: Server System Airflow Capability – LFF Card Hot Aisle Cooling159Figure 106: ASIC Supportable Power for Cold Aisle Cooling – SFF Card160Figure 107: Server System Airflow Capability – SFF Cold Aisle Cooling160Figure 108: ASIC Supportable Power for Cold Aisle Cooling – SFF Card160Figure 109: Server System Airflow Capability – SFF Cold Aisle Cooling161Figure 109: ASIC Supportable Power for Cold Aisle Cooling – LFF Card162Figure 110: Server System Airflow Capability – LFF Cold Aisle Cooling163Figure 111: ASIC Supportable Power for Cold Aisle Cooling – LFF Card163Figure 112: Small Card Thermal Test Fixture Preliminary Design165Figure 114: SFF Card Thermal Test Fixture PCB166		
Figure 102: Server System Airflow Capability – SFF Card Hot Aisle Cooling156Figure 103: ASIC Supportable Power for Hot Aisle Cooling – LFF Card157Figure 104: OCP NIC 3.0 LFF Reference Design and CFD Geometry157Figure 105: Server System Airflow Capability – LFF Card Hot Aisle Cooling159Figure 106: ASIC Supportable Power for Cold Aisle Cooling – SFF Card160Figure 107: Server System Airflow Capability – SFF Cold Aisle Cooling160Figure 108: ASIC Supportable Power for Cold Aisle Cooling – SFF Card160Figure 109: Server System Airflow Capability – SFF Cold Aisle Cooling161Figure 109: ASIC Supportable Power for Cold Aisle Cooling – LFF Card162Figure 110: Server System Airflow Capability – LFF Cold Aisle Cooling163Figure 111: ASIC Supportable Power Comparison – LFF Card163Figure 112: Small Card Thermal Test Fixture Preliminary Design165Figure 113: SFF Card Thermal Test Fixture Preliminary Design – Cover Removed165Figure 114: SFF Card Thermal Test Fixture PCB166		
Figure 103: ASIC Supportable Power for Hot Aisle Cooling – LFF Card157Figure 104: OCP NIC 3.0 LFF Reference Design and CFD Geometry.157Figure 105: Server System Airflow Capability – LFF Card Hot Aisle Cooling159Figure 106: ASIC Supportable Power for Cold Aisle Cooling – SFF Card160Figure 107: Server System Airflow Capability – SFF Cold Aisle Cooling160Figure 108: ASIC Supportable Power Comparison – SFF Card161Figure 109: ASIC Supportable Power for Cold Aisle Cooling – LFF Card161Figure 110: Server System Airflow Capability – LFF Cold Aisle Cooling162Figure 111: ASIC Supportable Power for Cold Aisle Cooling – LFF Card163Figure 112: Small Card Thermal Test Fixture Preliminary Design165Figure 113: SFF Card Thermal Test Fixture PCB165Figure 114: SFF Card Thermal Test Fixture PCB166		
Figure 104: OCP NIC 3.0 LFF Reference Design and CFD Geometry.157Figure 105: Server System Airflow Capability – LFF Card Hot Aisle Cooling.159Figure 106: ASIC Supportable Power for Cold Aisle Cooling – SFF Card.160Figure 107: Server System Airflow Capability – SFF Cold Aisle Cooling160Figure 108: ASIC Supportable Power Comparison – SFF Card161Figure 109: ASIC Supportable Power for Cold Aisle Cooling – LFF Card161Figure 110: Server System Airflow Capability – LFF Cold Aisle Cooling162Figure 110: Server System Airflow Capability – LFF Cold Aisle Cooling163Figure 111: ASIC Supportable Power Comparison – LFF Card163Figure 112: Small Card Thermal Test Fixture Preliminary Design165Figure 113: SFF Card Thermal Test Fixture Preliminary Design – Cover Removed165Figure 114: SFF Card Thermal Test Fixture PCB166		
Figure 106: ASIC Supportable Power for Cold Aisle Cooling – SFF Card160Figure 107: Server System Airflow Capability – SFF Cold Aisle Cooling160Figure 108: ASIC Supportable Power Comparison – SFF Card161Figure 109: ASIC Supportable Power for Cold Aisle Cooling – LFF Card162Figure 110: Server System Airflow Capability – LFF Cold Aisle Cooling163Figure 111: ASIC Supportable Power Comparison – LFF Card163Figure 112: Small Card Thermal Test Fixture Preliminary Design165Figure 113: SFF Card Thermal Test Fixture PCB165		
Figure 107: Server System Airflow Capability – SFF Cold Aisle Cooling160Figure 108: ASIC Supportable Power Comparison – SFF Card161Figure 109: ASIC Supportable Power for Cold Aisle Cooling – LFF Card162Figure 110: Server System Airflow Capability – LFF Cold Aisle Cooling163Figure 111: ASIC Supportable Power Comparison – LFF Card163Figure 112: Small Card Thermal Test Fixture Preliminary Design165Figure 113: SFF Card Thermal Test Fixture PCB165	Figure 105: Server System Airflow Capability – LFF Card Hot Aisle Cooling	159
Figure 108: ASIC Supportable Power Comparison – SFF Card161Figure 109: ASIC Supportable Power for Cold Aisle Cooling – LFF Card162Figure 110: Server System Airflow Capability – LFF Cold Aisle Cooling163Figure 111: ASIC Supportable Power Comparison – LFF Card163Figure 112: Small Card Thermal Test Fixture Preliminary Design165Figure 113: SFF Card Thermal Test Fixture Preliminary Design – Cover Removed165Figure 114: SFF Card Thermal Test Fixture PCB166	Figure 106: ASIC Supportable Power for Cold Aisle Cooling – SFF Card	160
Figure 109: ASIC Supportable Power for Cold Aisle Cooling – LFF Card162Figure 110: Server System Airflow Capability – LFF Cold Aisle Cooling163Figure 111: ASIC Supportable Power Comparison – LFF Card163Figure 112: Small Card Thermal Test Fixture Preliminary Design165Figure 113: SFF Card Thermal Test Fixture Preliminary Design – Cover Removed165Figure 114: SFF Card Thermal Test Fixture PCB166	Figure 107: Server System Airflow Capability – SFF Cold Aisle Cooling	160
Figure 110: Server System Airflow Capability – LFF Cold Aisle Cooling.163Figure 111: ASIC Supportable Power Comparison – LFF Card.163Figure 112: Small Card Thermal Test Fixture Preliminary Design165Figure 113: SFF Card Thermal Test Fixture Preliminary Design – Cover Removed165Figure 114: SFF Card Thermal Test Fixture PCB166		
Figure 111: ASIC Supportable Power Comparison – LFF Card 163 Figure 112: Small Card Thermal Test Fixture Preliminary Design 165 Figure 113: SFF Card Thermal Test Fixture Preliminary Design – Cover Removed 165 Figure 114: SFF Card Thermal Test Fixture PCB 166	Figure 109: ASIC Supportable Power for Cold Aisle Cooling – LFF Card	162
Figure 112: Small Card Thermal Test Fixture Preliminary Design 165 Figure 113: SFF Card Thermal Test Fixture Preliminary Design – Cover Removed 165 Figure 114: SFF Card Thermal Test Fixture PCB 166		
Figure 113: SFF Card Thermal Test Fixture Preliminary Design – Cover Removed		
Figure 114: SFF Card Thermal Test Fixture PCB		
•		
Figure 115: LFF Card Thermal Test Fixture Design	•	
	Figure 115: LFF Card Thermal Test Fixture Design	

Open Compute Project • OCP NIC 3.0 Rev 0.81

Figure 116: LFF Card Thermal Test Fixture Design – Cover Removed	
Figure 117: LFF Card Thermal Test Fixture PCB	
Figure 118: Thermal Test Fixture Airflow Direction	
Figure 119: SFF Fixture, Hot Aisle Flow - Candlestick Air Velocity vs. Volume Flow	
Figure 120: LFF Fixture, Hot Aisle Flow - Candlestick Air Velocity vs. Volume Flow	
Figure 121: Dye and Pull Type Locations	
Figure 122: Dye Coverage Percentage	

List of Tables

Table 1: Acknowledgements – By Company	11
Table 2: OCP 3.0 Form Factor Dimensions	
Table 3: Baseboard to OCP NIC Form factor Compatibility Chart	15
Table 4: Example Non-NIC Use Cases	17
Table 5: OCP NIC 3.0 Card Definitions	
Table 6: OCP NIC 3.0 Line Side I/O Implementations	
Table 7: Bill of Materials for the SFF and LFF Faceplates for the Large Card Assembly	33
Table 8: CTF Default Tolerances (SFF and LFF OCP NIC 3.0)	
Table 9: MAC Address Label Example 1 – Quad Port with Single Host, Single Managed Controller	57
Table 10: MAC Address Label Example 2 – Octal Port with Single Host, Dual Managed Controller	
Table 11: MAC Address Label Example 3 – Quad Port with Dual Hosts, Dual Managed Controller	
Table 12: MAC Address Label Example 4 – Single Port with Quad Host, Single Managed Controller	
Table 13: NIC Implementation Examples and 3D CAD	
Table 14: Contact Mating Positions for the Primary Connector	
Table 15: Contact Mating Positions for the Secondary Connector	64
Table 15: Right Angle Connector Options	66
Table 16: Straddle Mount Connector Options	
Table 17: Primary Connector Pin Definition (x16) (4C+)	
Table 18: Secondary Connector Pin Definition (x16) (4C)	
Table 19: Pin Descriptions – PCIe	
Table 20: Pin Descriptions – PCIe Present and Bifurcation Control Pins	79
Table 21: Pin Descriptions – SMBus	
Table 22: Pin Descriptions – NC-SI Over RBT	
Table 23: Pin Descriptions – Scan Chain	
Table 24: Pin Descriptions – Scan Chain DATA_OUT Bit Definition	
Table 25: Pin Descriptions – Scan Chain DATA_IN Bit Definition	
Table 26: Pin Descriptions – Power	
Table 28: Pin Descriptions – USB 2.0 – Primary Connector only	
Table 28: Pin Descriptions – UART – Secondary Connector Only	
Table 27: Pin Descriptions – RFU[1:2]	
Table 28: PCle Bifurcation Decoder for x16 and x8 Card Widths	
Table 29: PCIe Clock Associations	
Table 30: Bifurcation for Single Host, Single Socket and Single Upstream Link (BIF[2:0]#=0b000)	
Table 31: Bifurcation for Single Host, Single Socket and Single/Dual Upstream Links (BIF[2:0]#=0b000)	
Table 32: Bifurcation for Single Host, Single Socket and Single/Dual/Quad Upstream Links (BIF[2:0]#=0b000)	
Table 33: Bifurcation for Single Host, Dual Sockets and Dual Upstream Links (BIF[2:0]#=0b001)	
Table 34: Bifurcation for Single Host, Quad Sockets and Quad Upstream Links (BIF[2:0]#=0b010)	
Table 35: Bifurcation for Single Host, Quad Sockets and Quad Upstream Links – First 8 PCIe Lanes (BIF[2:0]#=0b011)	
Table 36: Bifurcation for Dual Host, Dual Sockets and Dual Upstream Links (BIF[2:0]#=0b101)	
Table 37: Bifurcation for Quad Host, Quad Sockets and Quad Upstream Links (BIF[2:0]#=0b110)	
Table 38: Bifurcation for Quad Host, Quad Sockets and Quad Upstream Links – First 8 lanes (BIF[2:0]#=0b111)	
Table 39: OCP NIC 3.0 Card LED Configuration with Two Physical LEDs per Port	
Table 40: Power States	
Table 41: Baseboard Power Supply Rail Requirements – Slot Power Envelopes	
Table 42: Power Sequencing Parameters	
Table 43: Digital I/O DC specifications	
Table 44: Digital I/O AC specifications	
Table 45: OCP NIC 3.0 Management Implementation Definitions	
Table 46: Sideband Management Interface and Transport Requirements	
Table 47: NC-SI Traffic Requirements	
Table 48: MC MAC Address Provisioning Requirements	
Table 49: Temperature Reporting Requirements	
Table 50: Power Consumption Reporting Requirements	
Table 51: Pluggable Module Status Reporting Requirements	
Table 52: Management and Pre-OS Firmware Inventory and Update Requirements	
Table 53: Slot_ID[1:0] to Package ID[2:0] Mapping	
Table 54: FRU EEPROM Address Map	143

Open Compute Project • OCP NIC 3.0 Rev 0.81

Table 55: FRU EEPROM Record – OEM Record 0xC0, Offset 0x00	
Table 56: PCIe Electrical Budgets	
Table 56: PCIe Test Fixtures for OCP NIC 3.0	
Table 56: Hot Aisle Air Temperature Boundary Conditions	
Table 57: Hot Aisle Airflow Boundary Conditions	
Table 58: Cold Aisle Air Temperature Boundary Conditions	
Table 59: Cold Aisle Airflow Boundary Conditions	
Table 60: Reference OCP NIC 3.0 SFF Card Geometry	
Table 61: Reference OCP NIC 3.0 LFF Card Geometry	
Table 62: Hot Aisle Card Cooling Tier Definitions (LFM)	
Table 63: Cold Aisle Card Cooling Tier Definitions (LFM)	
Table 64: Random Virbation Testing 1.88G _{RMS} Profile	
Table 65: FCC Class A Radiated and Conducted Emissions Requirements Based on Geographical Location	
Table 66: Safety Requirements	
Table 67: Immunity (ESD) Requirements	

1 Overview

1.1 License

As of January 23rd, 2018, the following persons or entities have made this Specification available under the Open Compute Project Hardware License (Permissive) Version 1.0 (OCPHL-P)

OCP NIC Subgroup

An electronic copy of the OCPHL-P is available at:

http://www.opencompute.org/assets/download/01-Contribution-Licenses/OCPHL-Permissive-v1.0.pdf

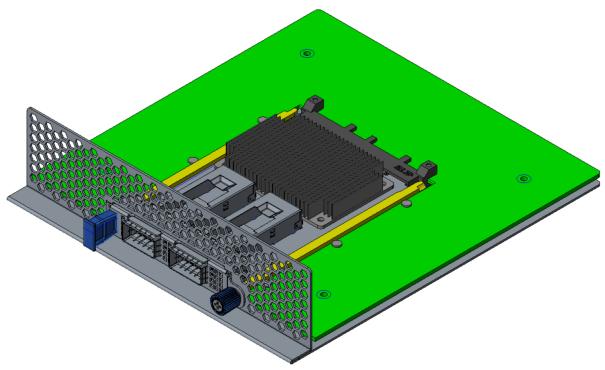
Your use of this Specification may be subject to other third party rights. THIS SPECIFICATION IS PROVIDED "AS IS." The contributors expressly disclaim any warranties (express, implied, or otherwise), including implied warranties of merchantability, non-infringement, fitness for a particular purpose, or title, related to the Specification. The Specification implementer and user assume the entire risk as to implementing or otherwise using the Specification. IN NO EVENT WILL ANY PARTY BE LIABLE TO ANY OTHER PARTY FOR LOST PROFITS OR ANY FORM OF INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES OF ANY CHARACTER FROM ANY CAUSES OF ACTION OF ANY KIND WITH RESPECT TO THIS SPECIFICATION OR ITS GOVERNING AGREEMENT, WHETHER BASED ON BREACH OF CONTRACT, TORT (INCLUDING NEGLIGENCE), OR OTHERWISE, AND WHETHER OR NOT THE OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

1.2 Acknowledgements

The OCP NIC 3.0 specification was created under a collaboration from many OCP member companies, and facilitated by the OCP NIC Subgroup under the OCP Server Workgroup.

The OCP NIC Subgroup would like to acknowledge the following member companies for their contributions to the OCP NIC 3.0 specification:

Table 1: Acknowledgements – By Company


Amphenol Corporation	Keysight Technologies
Broadcom Limited	Lenovo Group Ltd
Cavium, Inc.	Mellanox Technologies, Ltd
Dell, Inc.	Netronome Systems, Inc.
Facebook, Inc.	Quanta Computer Inc.
Hewlett Packard Enterprise Company	TE Connectivity Corporation
Intel Corporation	University of New Hampshire InterOperability Lab

1.3 Background

The OCP NIC 3.0 specification is a follow-on to the OCP Mezz 2.0 rev 1.00 design specification. The OCP NIC 3.0 specification supports two basic card sizes: Small Card, and Large Card. The Small Card allows for up to 16 PCIe lanes on the card edge while the Large Card supports up to 32 PCIe lanes. Compared to the OCP Mezz Card 2.0 Design Specification, the updated OCP NIC 3.0 specification provides a broader solution space for the NIC and system vendors to support the following use case scenarios:

- NICs with a higher Thermal Design Power (TDP)
- Power delivery supports up to 80W to a single connector (Small) card, and up to 150W to a dual connector (Large) card
 - Note: Baseboard vendors need to evaluate if there is sufficient airflow to thermally cool the OCP NIC 3.0 card. Refer to Section 6 for additional details.
 - Supports up to PCIe Gen 4 (16 GT/s) on the baseboard and OCP NIC 3.0 card
 - Connector is electrically compatible with PCIe Gen 5 (32 GT/s)
- Support for up to 32 lanes of PCIe per OCP NIC 3.0 card
- Support for single host, multi-root complex, and multi-host environments
- Supports a greater board area for more complex OCP NIC 3.0 card designs
- Support for Smart NIC implementations with on-board DRAM and accelerators
- Simplification of FRU installation and removal while reducing overall down time

A representative Small Card OCP NIC 3.0 card is shown in Figure 1 and a representative Large Card is shown in Figure 2.

Figure 1: Representative Small OCP NIC 3.0 Card with Dual QSFP Ports

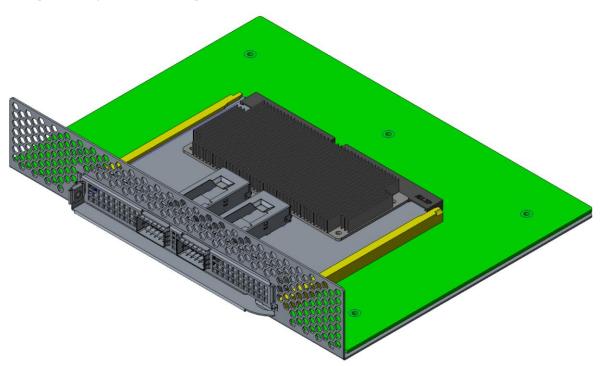


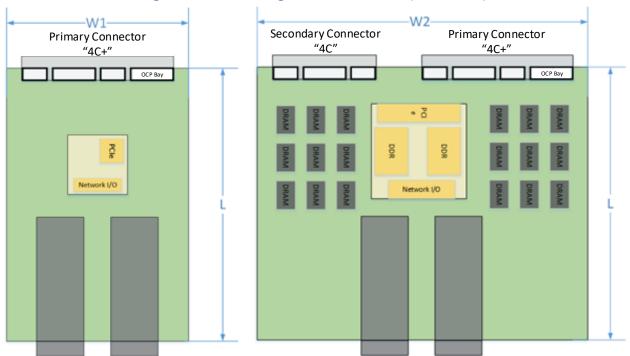
Figure 2: Representative Large OCP NIC 3.0 Card with Dual QSFP Ports and on-board DRAM

In order to achieve the features outlined in this specification, OCP NIC 3.0 compliant cards are not backwards compatible with OCP Mezz 2.0 cards.

This specification is created under OCP Server workgroup – OCP NIC subgroup. An electronic copy of this specification can be found on the Open Compute Project and the OCP Marketplace websites:

http://www.opencompute.org/wiki/Server/Mezz#Specifications and Designs

https://www.opencompute.org/contributions?query=OCP%20NIC%203.0


1.4 Overview

1.4.1 Mechanical Form factor overview

The OCP NIC 3.0 specification defines a third generation mechanical form factor that allows for interoperability between compliant baseboards and OCP NIC 3.0 cards.

OCP NIC 3.0 cards have two form factors – Small and Large. These cards are shown in Figure 3 below. The components shown in the figures are for illustrative purposes. The Small form factor card has one connector (Primary Connector) on the baseboard. The Large form factor card has one or two connectors (Primary Connector only or both the Primary and Secondary Connectors) on the baseboard.

Both the Primary and Secondary Connectors and card edge gold fingers are defined in and compliant to SFF-TA-1002. The Primary Connector is the "4C+" variant, the Secondary Connector is the "4C" version. On the OCP NIC 3.0 card side, the card edge is implemented with gold fingers. The Small Card gold finger area only occupies the Primary Connector area for up to 16 PCIe lanes. The Large Card gold finger area may occupy both the Primary and Secondary Connectors for up to 32 PCIe lanes, or optionally just the Primary Connector for up to 16 PCIe lane implementations.

Figure 3: Small and Large Card Form-Factors (not to scale)

The two form factor dimensions are shown in Table 2.

Form Factor	Width	Depth	Primary Connector	Secondary Connector	Typical Use Case
Small	W1 = 76 mm	L = 115 mm	"4C+" 168 pins	N/A	Low profile and NIC with a similar profile as an OCP NIC 2.0 card; up to 16 PCIe lanes.
Large	W2 = 139 mm	L = 115 mm	"4C+" 168 pins	"4C" 140 pins	Larger PCB width to support additional NICs; up to 32 PCIe lanes.

The OCP NIC 3.0 design allows downward compatibility between the two card sizes. Table 3 shows the compatibility between the baseboard and NIC combinations. A Small size baseboard slot may only accept a small sized NIC. A Large size baseboard slot may accept a small or large sized NIC.

|--|

Baseboard	NIC Size / Supported PCIe Width		
Slot Size	Small	Large	
Small	Up to 16 PCIe lanes	Not Supported	
Large	Up to 16 PCIe lanes	Up to 32 PCIe lanes	

There are two baseboard connector mounting options available for system designers: straddle mount and right angle (RA). The straddle mount connector option allows the OCP NIC and baseboard to exist in a co-planer position. To achieve this, a cutout exists on the baseboard and is defined in this specification. Alternatively, the right angle option allows the OCP NIC to be installed on top of the baseboard. A baseboard cutout is not required for the right angle connector. The right angle option allows the baseboard to use this area for additional routing or backside component placement. The straddle mount and right angle connectors are shown in Section 3.2.

For both the baseboard and OCP NIC 3.0 card, this specification defines the component and routing keep out areas. Refer to Section 2.5 for details.

Both the straddle mount and right angle implementations shall accept the same OCP NIC 3.0 card and shall be supported in the baseboard chassis regardless of the baseboard connector selection (right angle or straddle mount) so long as the baseboard slot and OCP NIC 3.0 card sizes are a supported combination as shown in Table 3.

This specification defines the form factor at the OCP NIC 3.0 card level, including the front panel, latching mechanism and card guide features.

More details about the card form-factor is shown in Section 2.

1.4.2 Electrical overview

This specification defines the electrical interface between baseboard and the OCP NIC 3.0 card. The electrical interface is implemented with a right angle or straddle mount connector on baseboard and gold finger on the OCP NIC 3.0 card. As previously noted in the mechanical overview, each card may implement a Primary Connector or Primary + Secondary Connector. Cards using only the Primary Connector are suitable for both the Small and Large form-factors and may support up to 16 lanes of PCIe. The Secondary Connector, when used in conjunction with the Primary Connector, allows Large form-factor implementations and may support up to 32 lanes of PCIe.

1.4.2.1 Primary Connector

The Primary Connector provides all OCP specific management functions as well as up to 16 lanes of PCIe between the OCP NIC and the system motherboard.

Management Function Overview (OCP Bay):

- DMTF DSP0222 1.1 compliant Network Controller Sideband Interface (NC-SI) RMII Based Transport (RBT) Physical Interface
- Power management and status reporting
 - Power break for emergency power reduction
 - State change control
- Control / status serial bus
 - NIC-to-Host status
 - Port LED Link/Activity
 - Environmental Indicators
 - Host-to-NIC configuration Information
- Multi-host PCIe support signals (2x PCIe resets, 2x reference clocks)
 - The OCP bay provides PERST2#, PERST3#, REFCLK2 and REFCLK3. This enables support for up to four hosts when used in conjunction with PERST0#, PERST1#, REFCLK0 and REFCLK1 in the Primary 4C region.
- PCIe Wake signal

See Section 3.4 for a complete list of pin and function descriptions for the OCP Bay portion of the Primary Connector. The OCP Bay pins are prefixed with "OCP_" in the pin location column.

Interface Overview (4C Connector):

- 16x differential transmit/receive pairs
 - Up to PCIe Gen 4 (16 GT/s) support
 - Connector is electrically compatible with PCIe Gen 5 (32 GT/s)
- 2x 100 MHz differential reference clocks
- Control signals
 - o 2x PCIe Resets
 - Link Bifurcation Control
 - Card power disable/enable
- SMBus 2.0
- USB 2.0 interface

- Power
 - +12V_EDGE
 - +3.3V_EDGE
 - o Power distribution between the aux and main power domains is up to the baseboard vendor

See Section 3.4 for a complete list of pin and function descriptions for the 4C+ connector.

1.4.2.2 Secondary Connector

The Secondary Connector provides an additional 16 lanes of PCIe and their respective control signals.

Interface Overview (4C Connector):

- 16x differential transmit/receive pairs
 - Up to PCIe Gen 4 (16 GT/s) support
 - Connector is electrically compatible with PCIe Gen 5 (32 GT/s)
- 2x 100 MHz differential reference clocks
- Control signals
 - 2x PCIe Resets
 - Link Bifurcation Control
 - Card power disable/enable
- SMBus 2.0
- UART (transmit and receive)
- Power
 - o +12V_EDGE
 - +3.3V_EDGE
 - Power distribution between the aux and main power domains is up to the baseboard vendor

See Section 3.4 for a complete list of pin and function descriptions for the 4C connector.

1.5 Non-NIC Use Cases

The OCP NIC 3.0 specification is mainly targeted for Network Interface Card applications. It is possible to use the same OCP NIC 3.0 card form-factor, baseboard interface and mechanical design to enable non-NIC use cases. These non-NIC use cases use the same baseboard/OCP NIC 3.0 card interface as defined in Section 3. The non-NIC use cases are not covered in the current revision of the OCP NIC 3.0 specification. Example non-NIC use cases implement various external I/O interfaces and are shown in Table 4.

Example Use Case	Card External I/O Interface(s)
PCIe Retimer Card	PCIe
Accelerator Card	N/A
NVMe Card	N/A
Storage HBA / RAID Card	TBD

Table 4: Example Non-NIC Use Cases

1.6 References

- DMTF Standard. *DSP0222, Network Controller Sideband Interface (NC-SI) Specification.* Distributed Management Task Force (DMTF), Rev 1.1.0, September 23rd, 2015.
- DMTF Standard. *DSP0222, Network Controller Sideband Interface (NC-SI) Specification.* Distributed Management Task Force (DMTF), Rev 1.2.0, Work-In-Progress.
- DMTF Standard. DSP0236, Management Component Transport Protocol (MCTP) Base Specification. Distributed Management Task Force (DMTF), Rev 1.3.0, November 24th, 2016.
- DMTF Standard. DSP0237, Management Component Transport Protocol (MCTP) SMBus/I2C Transport Binding Specification. Distributed Management Task Force (DMTF), Rev 1.1.0, May 21st, 2017.
- DMTF Standard. DSP0238, Management Component Transport Protocol (MCTP) PCIe VDM Transport Binding Specification. Distributed Management Task Force (DMTF), Rev 1.0.2, December 7th, 2014.
- DMTF Standard. DSP0239, MCTP IDs and Codes Specification. Distributed Management Task Force (DMTF), Rev 1.5.0, December 17th, 2017.
- DMTF Standard. DSP0240, Platform Level Data Model (PLDM) Base Specification. Distributed Management Task Force (DMTF), Rev 1.0.0, April 23rd, 2009.
- DMTF Standard. DSP0240, Platform Level Data Model (PLDM) over MCTP Binding Specification. Distributed Management Task Force (DMTF), Rev 1.0.0, April 23rd, 2009.
- DMTF Standard. DSP0245, Platform Level Data Model (PLDM) IDs and Codes Specification. Distributed Management Task Force (DMTF), Rev 1.2.0, November 24th, 2016.
- DMTF Standard. DSP0248, Platform Level Data Model (PLDM) for Platform Monitoring and Control Specification. Distributed Management Task Force (DMTF), Rev 1.1.1, January 10th, 2017.
- DMTF Standard. DSP0249, Platform Level Data Model (PLDM) State Sets Specification. Distributed Management Task Force (DMTF), Rev 1.0.0, March 16th, 2009.
- DMTF Standard. DSP0261, NC-SI over MCTP Binding Specification. Distributed Management Task Force (DMTF), Rev 1.2.0, August 26th, 2017.
- EDSFF. *Enterprise and Datacenter SSD Form Factor Connector Specification*. Enterprise and Datacenter SSD Form Factor Working Group, Rev 0.9 (draft), August 2nd 2017.
- IPC. IPC-TM-650 Test Methods Manual number 2.4.53. Dye and Pull Test Method (Formerly Known as Dye and Pry), Association Connecting Electronics Industries, August 2017.
- IPMI Platform Management FRU Information Storage Definition, v1.0 Document Revision 1.3, March 24th, 2015.
- National Institute of Standards and Technology (NIST). *Special Publication 800-193, Platform Firmware Resiliency Guidelines,* draft, May 2017.
- NXP Semiconductors. *I*²*C*-bus specification and user manual. NXP Semiconductors, Rev 6, April 4th, 2014.
- Open Compute Project. OCP NIC Subgroup. Online. <u>http://www.opencompute.org/wiki/Server/Mezz</u>
- PCIe Base Specification. *PCI Express Base Specification*, Revision 3.0 December 7th, 2015.
- PCIe Base Specification. *PCI Express Base Specification*, Revision 4.0 Version 1.0, October 5th, 2017.

- PCIe CEM Specification. *PCI Express Card Electromechanical Specification*, Revision 3.0, July 21st, 2013.
- PCIe CEM Specification. PCI Express Card Electromechanical Specification, Revision 4.0 (draft).
- SMBus Management Interface Forum. *System Management Bus (SMBus) Specification*. System Management Interface Forum, Inc, Version 2.0, August 3rd, 2000.
- SNIA. SFF-TA-1002, Specification for Protocol Agnostic Multi-Lane High Speed Connector. SNIA SFF TWG Technology Affiliate, Rev 1.1 draft, January 18th, 2018.
- UEFI Specification Version 2.5, <u>http://www.uefi.org/sites/default/files/resources/UEFI%202_5.pdf</u>, April 2015.
- USB Implementers Forum. *Universal Serial Bus Specification,* Revision 2.0, April 27th, 2000.

1.6.1 Trademarks

Names and brands may be claimed as trademarks by their respective companies.

2 Mechanical Card Form Factor

2.1 Form Factor Options

OCP NIC 3.0 provides two fundamental form factor options: a Small Card (76mm x 115mm) and a Large Card (139mm x 115mm).

These form factors support a Primary Connector and optionally, a Secondary Connector. The Primary Connector is defined to be a SFF-TA-1002 compliant 4C+ connector. The 4C+ connector is a 4C complaint implementation plus a 28-pin bay for OCP NIC 3.0 specific pins. The Secondary Connector is the 4C connector as defined in SFF-TA-1002. The 4C specification supports up to 32 differential pairs for a x16 PCIe connection per connector. For host platforms, the 28-pin OCP bay is required for the Primary Connector. This is also mandatory for OCP NIC 3.0 cards.

The Small Card uses the Primary 4C+ connector to provide up to a x16 PCIe interface to the host. The additional 28-pin OCP bay carries sideband management interfaces as well as OCP NIC 3.0 specific control signals for multi-host PCIe support. The small size card provides sufficient faceplate area to accommodate up to 2x QSFP modules, 4x SFP modules, or 4x RJ-45 for BASE-T operation. The Small Card form factor supports up to 80W of delivered power to the card edge. An example Small Card form factor is shown in Figure 1.

The Large Card uses the Primary 4C+ connector to provide the same functionality as the Small Card along with an additional Secondary 4C connector to provide up to a x32 PCIe interface. The Large Card may utilize both the Primary and Secondary Connectors, or just the Primary Connector for lower PCIe lane count applications. Table 5 summarizes the Large Card permutations. The Large Card supports higher power envelopes and provides additional board area for more complex designs. The Large Card form factor supports up to 150W of delivered power to the card edge across the two connectors. An example Large Card form factor is shown in Figure 2.

For Large Cards, implementations may use both the Primary and Secondary Connector (as shown in Figure 4), or may use the Primary Connector only (as shown in Figure 5) for the card edge gold fingers.

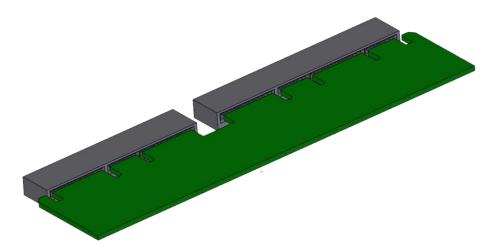
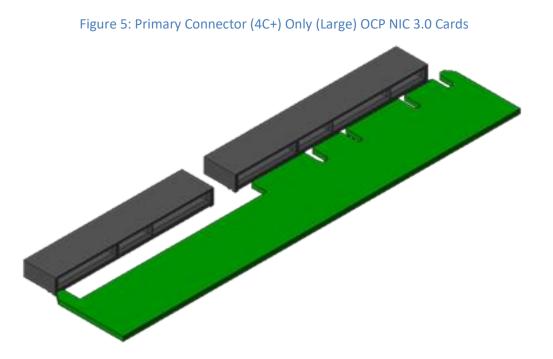



Figure 4: Primary Connector (4C+) and Secondary Connector (4C) (Large) OCP NIC 3.0 Cards

For both form-factors, an OCP NIC 3.0 card may optionally implement a subset of pins to support less than a x16 PCIe connection. This may be implemented using a 2C+ card edge per SFF-TA-1002. The baseboard Primary Connector shall use a 4C+ in all cases. Figure 6 illustrates the supported 4C+ and 2C+ card edge configurations on a 4C+ Primary Connector.

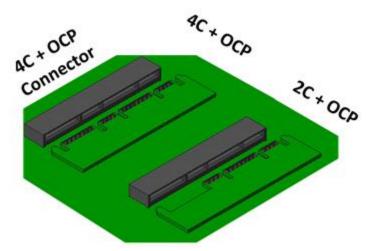


Figure 6: Primary Connector (4C+) with 4C and 2C (Small) OCP NIC 3.0 Cards

Table 5 summarizes the supported card form factors. Small form factors cards support the Primary Connector and up to 16 PCIe lanes. Large form factor cards support implementations with both the Primary and Secondary Connectors and up to 32 PCIe lanes, or a Primary Connector only implementation with up to 16 PCIe lanes.

Table 5: OCP NIC 3.0 Card Definitions

OCP NIC 3.0 Card	Baseboard Secondary	Baseboard Primary		
Size and PCIe Lane	Connector (4C)	Connector (4C+)		
Count	x16 PCle	x16 PCle O		OCP Bay
Small (x8)	Not used with SFF 2C+ Card Edge	x8 (Lanes 7:0) PCIe		OCP Bay
Small (x16)	Not used with SFF 4C+ Card Edge	x16 (Lanes 15:0) PCIe OCP		OCP Bay
Large (x8)	Not used with LFF 2C+ Card Edge		x8 (Lanes 7:0) PCIe	OCP Bay
Large (x16)	Not used with LFF 4C+ Card Edge	x16 (Lanes 15:0) PCle 0		OCP Bay
Large (x32)	x16 (Lanes 31:16) PCIe	x32 (Lanes 15:0) PCIe OCP B		OCP Bay

2.1.1 Small Form Factor (SFF) Faceplate Configurations

The small form factor (SFF) configuration views are shown below. Three different faceplates are available for the SFF – a pull tab, ejector latch and an internal lock version are available. The same SFF OCP NIC 3.0 PBA assembly accepts all three faceplates types and may be interchanged depending on the end application. The drawings shown in Figure 7 below illustrate a representative front, side and top views of the SFF.

Where space is permitted on the faceplate, square vents sized to a maximum of 3.0mm x 3.0mm must be added to help optimize airflow while maintaining the integrity of the faceplate structure. EMI considerations should also be taken into account during the design process. Refer to the images shown in Figure 8 for example square vent configurations depending on the line side I/O connectors.

Depending on the OCP NIC 3.0 card implementation, I/O connectors may be placed anywhere within the allowable connector keep in regions as defined by the SFF PBA mechanical drawings and faceplate drawings of Section 2.5.1.

The OCP NIC 3.0 outline provides an optional feature to lock the card into the chassis. This is accomplished with two notches – one on each side of the card guide rail. A baseboard may choose to use one or both notches for the internal locking mechanism. Only one notch is required to hold the card in place. The OCP NIC 3.0 outline provides a notch location on both guide rails to provide flexible configurations to baseboard vendors. If the locking feature is implemented on the baseboard, the OCP NIC 3.0 card may only be inserted or removed after pressing on an internal locking mechanism. This retention notch is compatible with all chassis implementations. Please refer to the SFF dimensions in Section 2.5.1 for details. The internal locking mechanism is not available on LFF cards.

Note: The OCP NIC 3.0 card supplier shall add port identification on the faceplate assembly that meet their manufacturing and customer requirements.

All of the OCP NIC 3.0 CAD files are available for download and use on the OCP NIC 3.0 Wiki site: <u>http://www.opencompute.org/wiki/Server/Mezz</u>

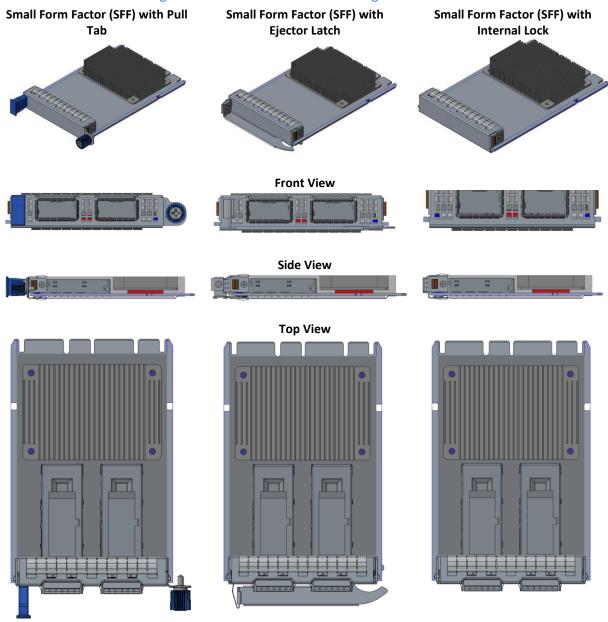


Figure 7: Small Form Factor NIC Configuration Views

Figure 8 illustrates example SFF 3D views for the supported line side I/O implementations. The line side I/O implementations are discussed in Section 2.2.

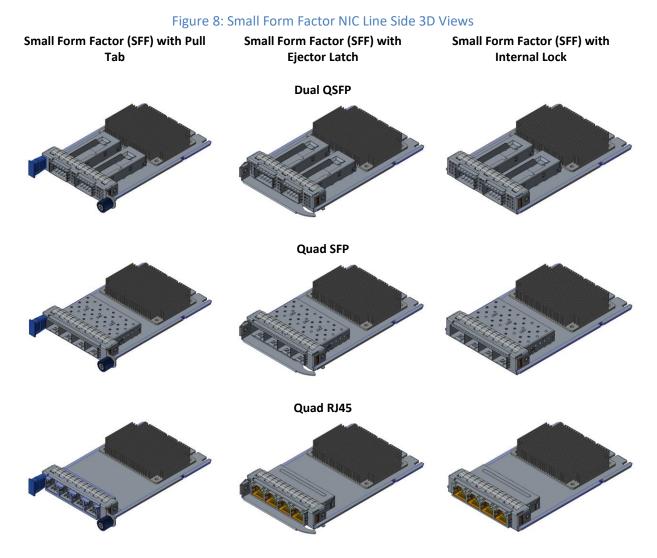
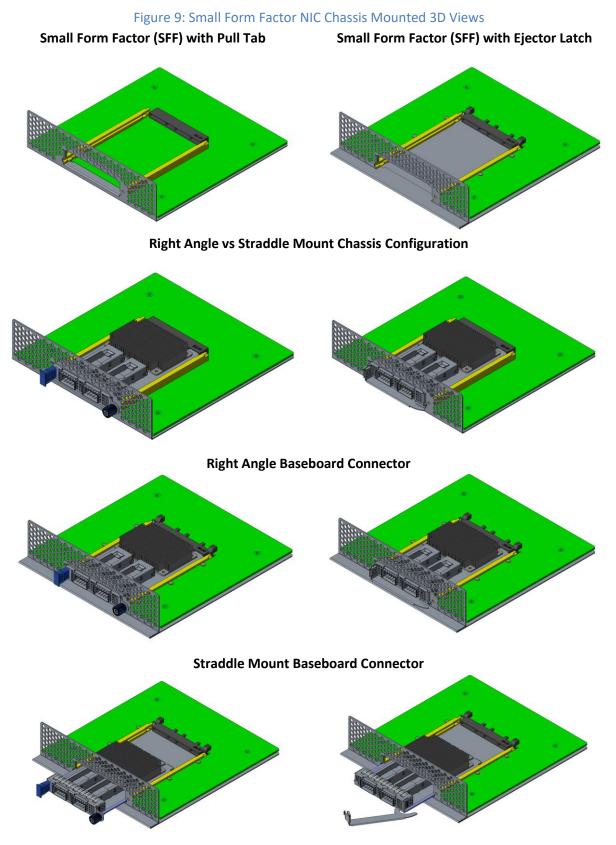
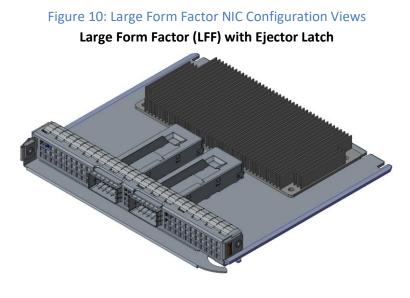



Figure 9 illustrates example SFF 3D views of the pull tab and ejector latch assemblies mounted in a chassis utilizing a straddle mount connector and a right angle connector. The baseboard connector options are discussed in Section 3.2. The SFF OCP NIC 3.0 card is identical for both chassis connector options.

As previously noted, the OCP NIC 3.0 card provides a notch on the rail edge for an internal locking mechanism to prevent card insertion and removal. The internal locking mechanism is an optional feature and is not shown in the views below.

NIC Insertion / Removal (Shown with a Straddle Mount Connector)

2.1.2 Large Form Factor (LFF) Faceplate Configurations


The large form factor (LFF) configuration views are shown below. A single faceplate implementation is available for the LFF – with a single ejector latch. The long ejector is the default configuration, however, a short ejector version is available for non-shadowed front I/O configurations and is being considered for future development. Similar to the SFF, if additional LFF faceplate implementations become available, the same LFF OCP NIC 3.0 PBA assembly shall be able to accept new faceplate types and may be interchanged depending on the end application. The drawings shown in Figure 10 below illustrate a representative front, side and top views of the LFF.

Where space is permitted on the faceplate, square vents sized to a maximum of 3.0mm x 3.0mm must be added to help optimize airflow while maintaining the integrity of the faceplate structure. EMI considerations should also be taken into account during the design process. Refer to the images shown in Figure 11 for example square vent configurations depending on the line side I/O connectors.

Depending on the OCP NIC 3.0 card implementation, I/O connectors may be placed anywhere within the allowable connector keep in regions as defined by the PBA mechanical drawings and faceplate drawings of Section 2.5

Note: The OCP NIC 3.0 card supplier shall add port identification on the faceplate assembly that meet their manufacturing and customer requirements.

All of the OCP NIC 3.0 CAD files are available for download and use on the OCP NIC 3.0 Wiki site: <u>http://www.opencompute.org/wiki/Server/Mezz</u>

Front View

Side View

Top View

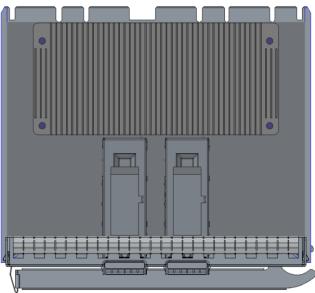
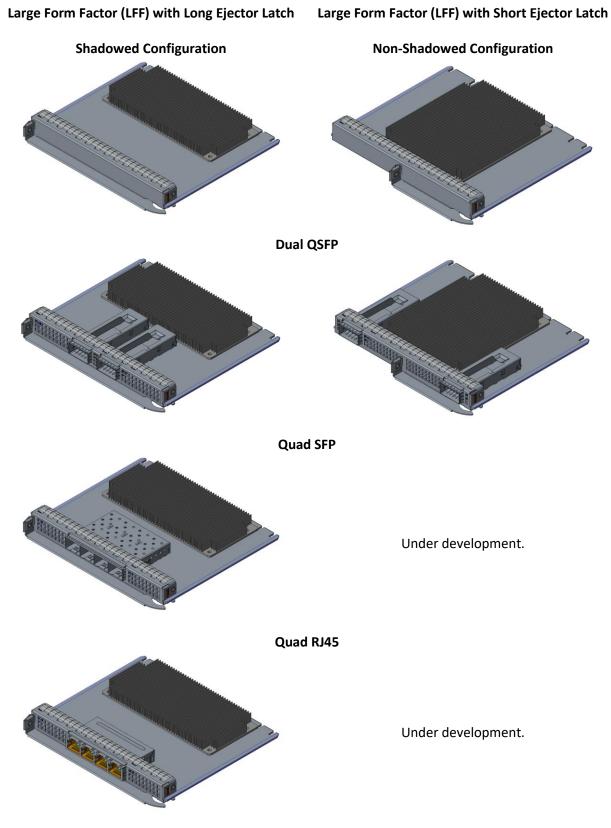



Figure 11 illustrates example LFF 3D views for the supported line side I/O implementations. The line side I/O implementations are discussed in Section 2.2.

Figure 11: Large Form Factor NIC Line Side 3D Views

Figure 12 illustrates example LFF 3D views of the ejector latch assembly mounted in a chassis utilizing a straddle mount connector and a right angle connector. The baseboard connector options are discussed in Section 3.2. The LFF OCP NIC 3.0 card is identical for both chassis connector options.

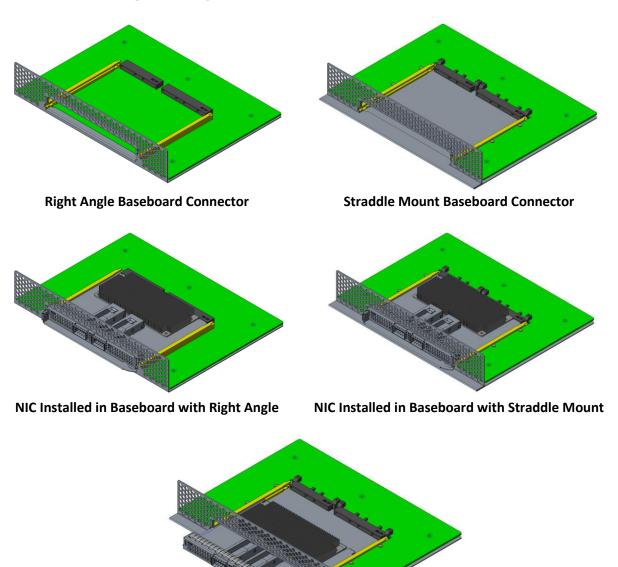
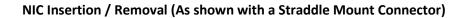



Figure 12: Large Form Factor NIC Chassis Mounted 3D Views

2.2 Line Side I/O Implementations

At the time of this writing, the Small and Large form-factor implementations have been optimized to support the following standard line side I/O implementations:

Form Factor	Max Topology Connector Count	
Small	2x QSFP+/QSFP28	
Small	4x SFP28+/SFP28	
Small	4x RJ-45	
Large	2x QSFP+/QSFP28	
Large	4x SFP+/SFP28	
Large	4x RJ-45	

Table 6: OCP NIC 3.0 Line Side I/O Implementations

Note: For brevity, references to QSFP+, and QSFP28 shall be referred to as QSFP for the remainder of this document. Similarly, references to SFP+, and SFP28 shall be referred to as SFP.

Additional combinations and connector types are permissible as I/O form-factor technologies and thermal capabilities evolve.

2.3 Top Level Assembly (SFF and LFF)

The images in Figure 13 illustrate the exploded top level assemblies for both the SFF and the LFF.

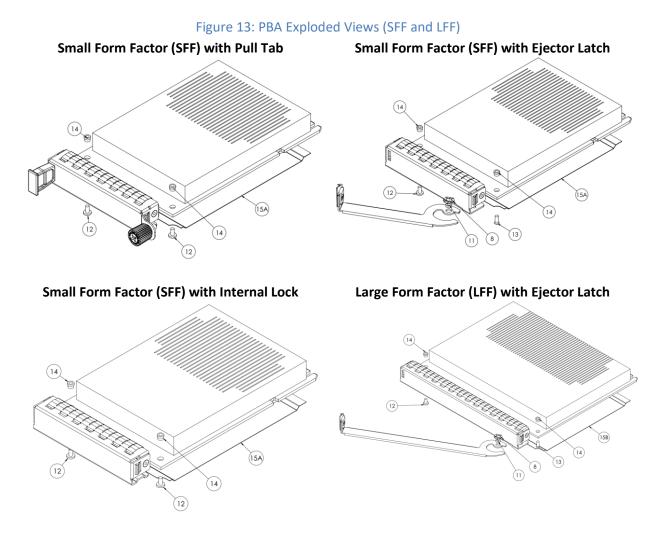
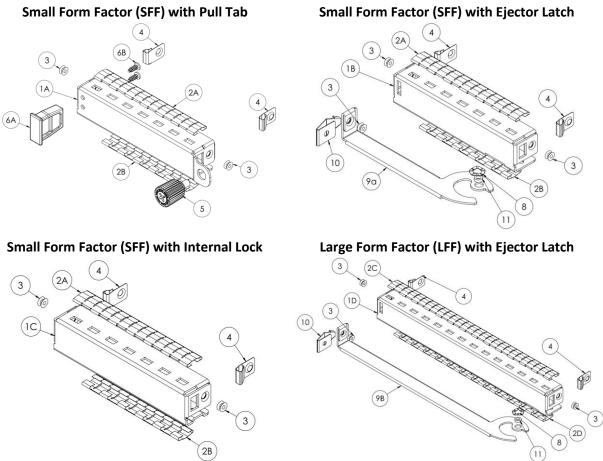


Diagram callouts #8, and #11 through #15 are installed at the NIC assembly level:


Item #8 and #11 – Wave washer and bushing are part of the ejector latch mechanism. Item #12 & #13 – Screws used to attach the faceplate assembly to the OCP NIC 3.0 PBA. Item #14 – 2x SMT nuts installed on to the PBA assembly using the reflow process. Item #15 – Insulator is located on the secondary side and is installed on the PBA prior to the faceplate.

2.4 Faceplate Subassembly (SFF and LFF)

The following section define the generic small form factor and large form factor faceplates.

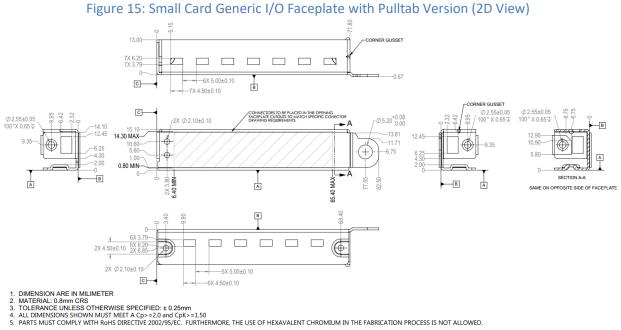
2.4.1 Faceplate Subassembly – Exploded View

The images in Figure 14 illustrate the three faceplates subassemblies as exploded views. The bill of materials is shown in Section 2.4.2.

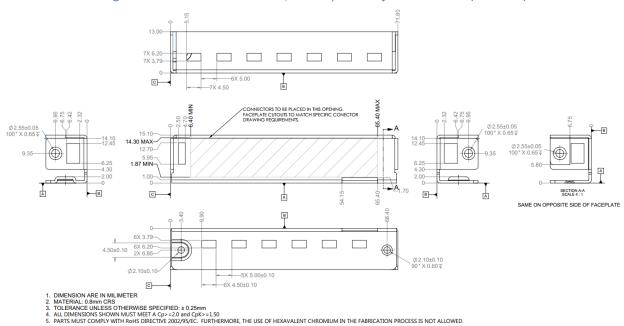
Figure 14: Faceplate Assembly Exploded Views (SFF and LFF)

2.4.2 Faceplate Subassembly – Bill of Materials (BOM)

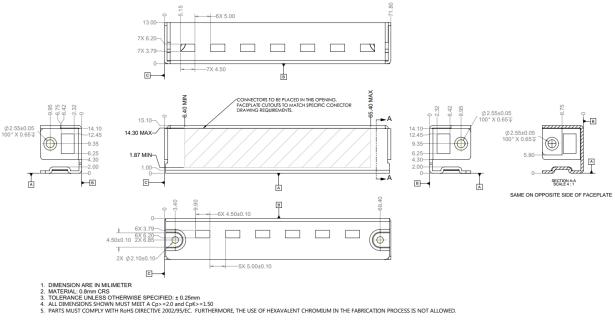
Table 7 shows the bill of materials for the SFF and LFF assemblies. Item number call outs align with the SFF and LFF numbering of Figure 14.


Note: Dimensionally identical equivalent parts and equivalent materials may be substituted in the assembly. Substituted parts and materials shall meet or exceed the tolerances and requirements specified by the supplier part numbers of Table 7. Refer to the 3D CAD files for hardware specifics not covered by this table.

Item #	Item description	Part Number / Drawing	Supplier
1A	Faceplate	See Section 2.4.3:	Custom
1B		1A NIC_OCPv3_SFF_Faceplate_Pulltab_20180601.pdf	
1C		1B NIC OCPv3 SFF Faceplate Latch 20180601.pdf	
1D		1C NIC_OCPv3_SFF_Faceplate_IntLock_20180601.pdf	
		See Section 2.4.4:	
		1D NIC_OCPv3_LFF_Faceplate_Latch_20180601.pdf	
2.4			
2A	Top and Bottom	2A LT18CJ1921 – 13 fingers (Laird)	Laird,
2B	EMI Fingers	TF187VE32F11-2.41-08 (Tech-Etch)	Tech-ETCH
2C		2B LT18CJ1920 – 11 fingers (Laird)	
2D		TF187VE32F11-2.04-08 (Tech-Etch)	
		2C LT18CJ1923 – 27 fingers (Laird)	
		TF187VE32F11-5.03-08 (Tech-Etch)	
		2D LT18CJ1922 – 25 fingers (Laird)	
		TF187VE32F11-4.66-08 (Tech-Etch)	
3	Rivet	1-AC-2421-03_2.4x2.1	Dong Guan KSETT
		_	Hardware
			Technology
4	Side EMI Fingers	LT18DP1911	Laird
5	Thumbscrew	4С-99-343-К077	Southco, Inc.
6A	Pull tab w/2x	CN-99-459	Southco, Inc.
6B	screws		
8	Ejector Wave	See Section 2.4.9 and drawing	Custom
	Compression	NIC_OCPv3_EjectorWasher_20180601.pdf	
	Washer		
9A	Ejector Handle	SFF Ejector: See Section 2.4.5 and drawing	Custom
9B	-	9A NIC_OCPv3_EjectorHandle_Short_20180601.pdf	
		Note: The SFF ejector is also used on the LFF non-	
		shadowed I/O faceplate configuration.	
		LFF Ejector: See Section 2.4.6 & Drawing	
		9B NIC_OCPv3_EjectorHandle_Long_20180601.pdf	
10	Ejector Lock	See Section 2.4.7 and drawing	Custom
10		NIC OCPv3 EjectorLock 20180601.pdf	Custom
11	Ejector Bushing	See Section 2.4.8 and drawing	Custom
TT	Liector Busining	NIC_OCPv3_EjectorBushing_20180601.pdf	
12	Screw for securing	ICMMAJ200403N3	WUJIANG Screw
	faceplate to NIC		Tech Precision
			Industry
13	Screw for attaching	FCMMQ200503N	WUJIANG Screw
	faceplate and		Tech Precision
	ejector to NIC		Industry
14	SMT nut (on NIC)	82-950-22-010-01-RL	Fivetech
			Technology Inc.
15A	Insulator	Refer to Section 2.7 for the SFF (15A) and LFF (15B)	Custom
15A 15B		insulator mechanical requirements	50000.00
100			


Table 7: Bill of Materials for the SFF and LFF Faceplates for the Large Card Assembly

2.4.3 SFF Generic I/O Faceplate


Figure 15 shows the standard Small Card form factor I/O bracket with a thumbscrew and pull tab assembly.

1

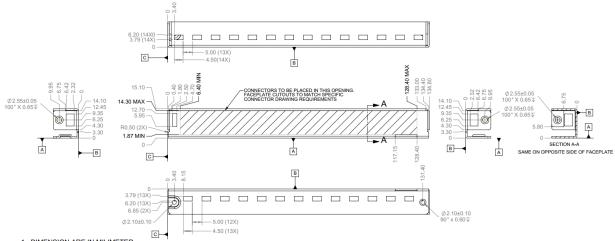
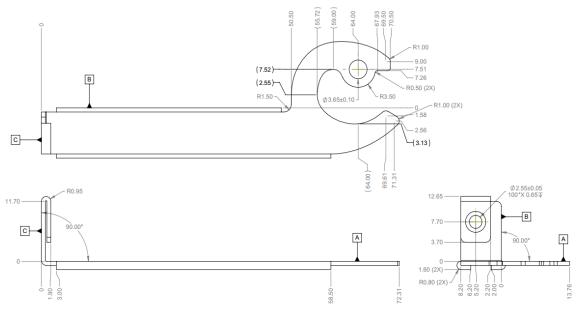

Figure 16: Small Card Generic I/O Faceplate – Ejector Version (2D View)

Figure 17: Small Card Generic I/O Faceplate – Internal Lock Version (2D View)

2.4.4 LFF Generic I/O Faceplate



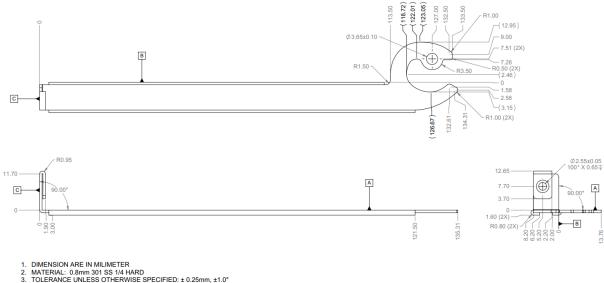
1. DIMENSION ARE IN MILIMETER

DIMENSION ArKE IN MILLINE LER
 MATERIAL: 0.8mm CRS
 TOLERANCE UNLESS OTHERWISE SPECIFIED: ± 0.25mm
 ALL DIMENSIONS SHOWN MUST MEET A Cp>=2.0 and CpK>=1.50
 PARTS MUST COMPLY WITH RoHS DIRECTIVE 2002/95/EC. FURTHERMORE, THE USE OF HEXAVALENT CHROMIUM IN THE FABRICATION PROCESS IS NOT ALLOWED.

2.4.5 Ejector Lever (SFF)

This section defines the SFF lever dimensions. Note: this SFF ejector lever is also used on the non-shadowed LFF faceplate configuration.

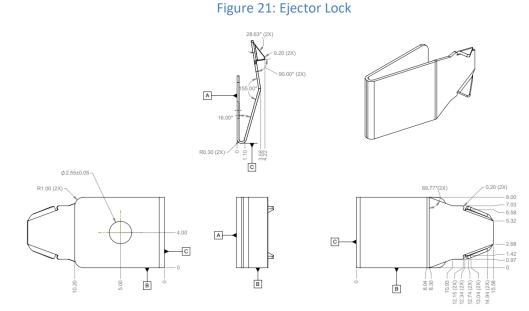
Figure 19: Small Card I/O Faceplate – Ejector Lever (2D View)


1. DIMENSION ARE IN MILIMETER

MATERIAL: 0.8mm 301 SS 1/4 HARD
 TOLERANCE UNLESS OTHERWISE SPECIFIED: ± 0.25mm, ±1.0°

2.4.6 Ejector Levers (LFF)

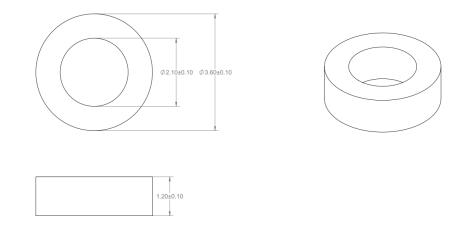
This section defines the LFF ejector lever dimensions.


Figure 20: Large Card I/O Faceplate – Ejector Lever (2D View)

4. PARTS MUST COMPLY WITH ROHS DIRECTIVE 2002/95/EC. FURTHERMORE, THE USE OF HEXAVALENT CHROMIUM IN THE FABRICATION PROCESS IS NOT ALLOWED.

2.4.7 Ejector Lock (SFF and LFF)

The Small and Large Card ejector uses a locking mechanism at the end of the handle to retain the lever position. This is shown in Figure 21.

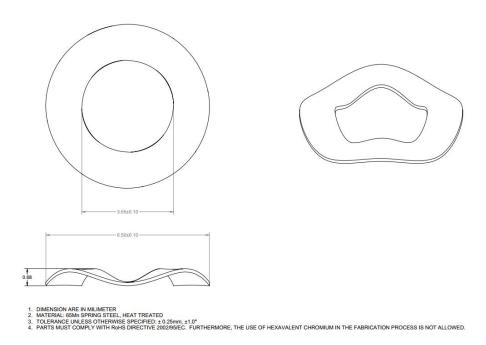


DIMENSION ARE IN MILIMETER
 MATERIAL: 0.3mm 301 SS 1/2 HARD
 TOLERANCE UNLESS OTHERWISE SPECIFIED: ± 0.25mm, ±1.0*
 PARTS MUST COMPLY WITH RoHS DIRECTIVE 2002/95/EC. FURTHERMORE, THE USE OF HEXAVALENT CHROMIUM IN THE FABRICATION PROCESS IS NOT ALLOWED.

Ejector Bushing (SFF and LFF) 2.4.8

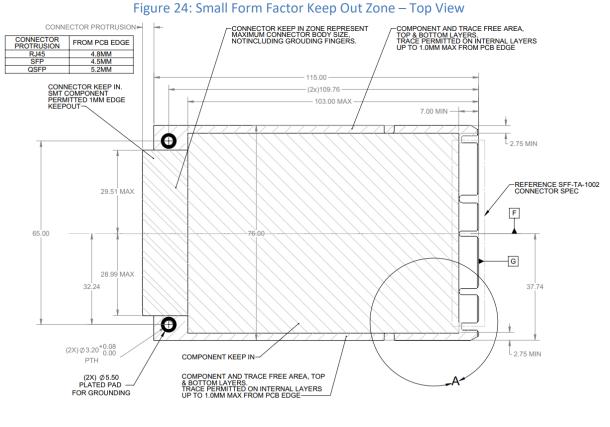
The SFF and LFF card ejector handle uses a bushing as a spacer and rotation anchor. This is shown in Figure 22.

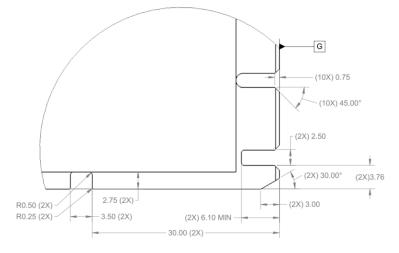
Figure 22: Ejector Bushing



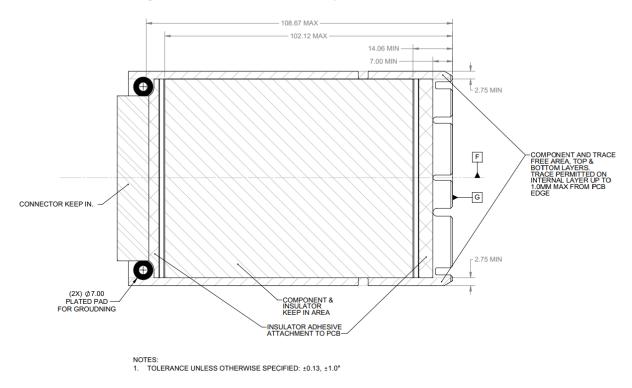
DIMENSION ARE IN MILIMETER MATERIAL: STEEL SAE 1215 TOLERANCE UNLESS OTHERWISE SPECIFIED: ± 0.25mm, ±1.0° PARTS MUST COMPLY WITH RoHS DIRECTIVE 2002/95/EC. FURTHERMORE, THE USE OF HEXAVALENT CHROMIUM IN THE FABRICATION PROCESS IS NOT ALLOWED. 1. 2. 3. 4.

2.4.9 Ejector Wave Washer (SFF and LFF)


The SFF and LFF card ejector handle uses a wave washer between the handle and faceplate assembly. This is shown in Figure 23.

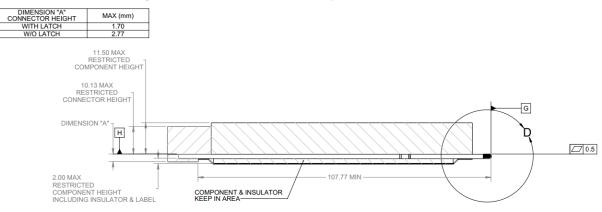

2.5 Card Keep Out Zones

2.5.1 Small Card Form Factor Keep Out Zones



NOTES: 1. TOLERANCE UNLESS OTHERWISE SPECIFIED: ±0.13, ±1.0°

Figure 25: Small Form Factor Keep Out Zone – Top View – Detail A



DETAIL A SCALE 4 : 1

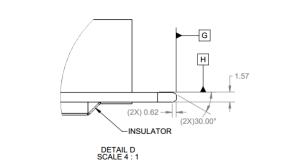
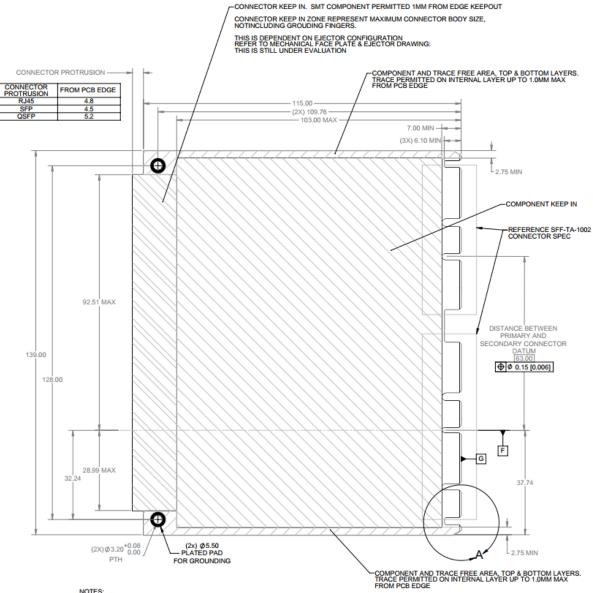


Figure 26: Small Form Factor Keep Out Zone – Bottom View



NOTES: 1. TOLERANCE UNLESS OTHERWISE SPECIFIED: ±0.13, ±1.0°

Figure 28: Small Form Factor Keep Out Zone – Side View – Detail D

2.5.2 Large Card Form Factor Keep Out Zones

Figure 29: Large Form Factor Keep Out Zone – Top View

NOTES: 1. TOLERANCE UNLESS OTHERWISE SPECIFIED: ±0.13, ±1.0°

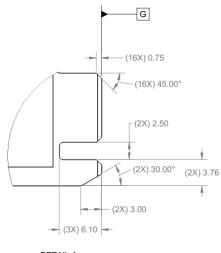
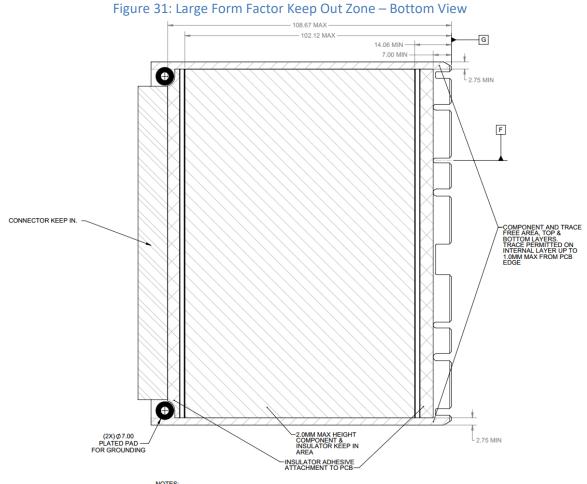
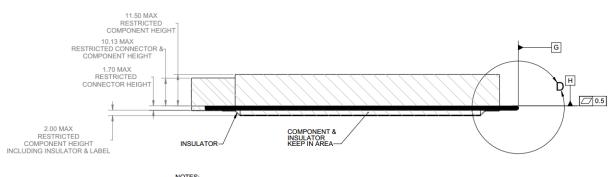




Figure 30: Large Form Factor Keep Out Zone – Top View – Detail A

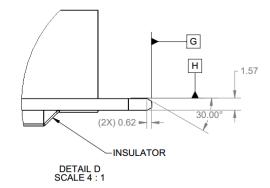
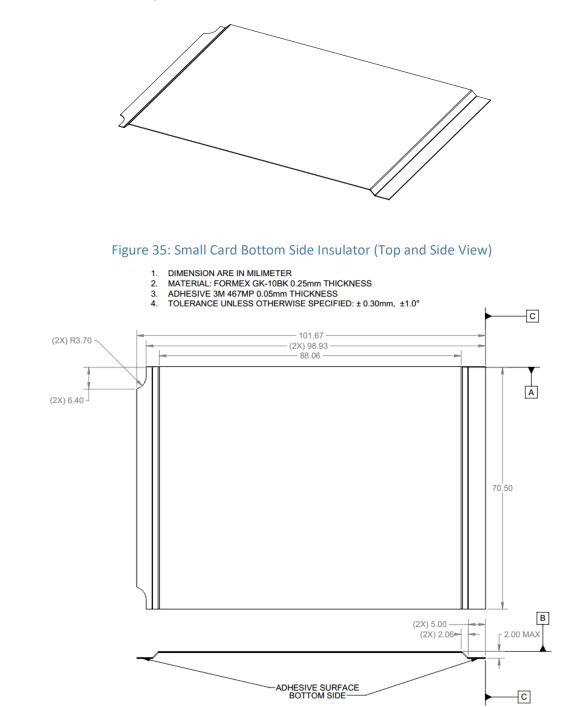

NOTES: 1. TOLERANCE UNLESS OTHERWISE SPECIFIED: ±0.13, ±1.0°

Figure 32: Large Form Factor Keep Out Zone – Side View

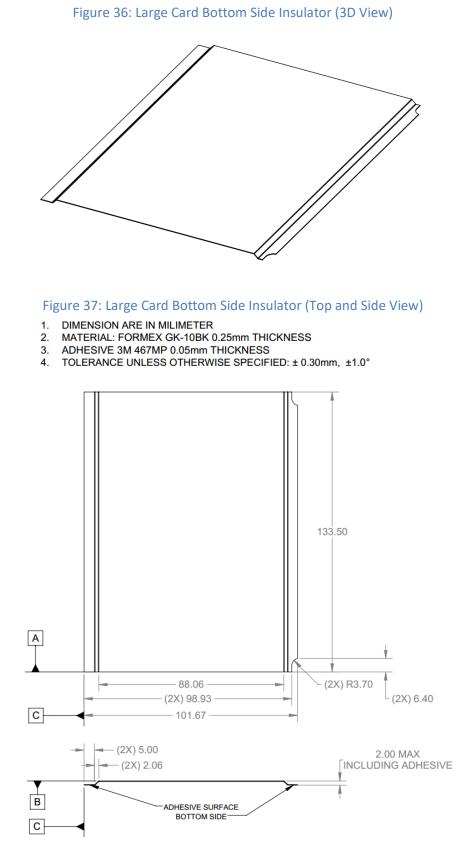
NOTES: 1. TOLERANCE UNLESS OTHERWISE SPECIFIED: ±0.13, ±1.0°

Figure 33: Large Form Factor Keep Out Zone – Side View – Detail D

2.6 Baseboard Keep Out Zones


Refer to the 3D CAD files for the baseboard keep out zones for both the Small and Large Card form factor designs. The 3D CAD files are available for download on the OCP NIC 3.0 Wiki: <u>http://www.opencompute.org/wiki/Server/Mezz</u>

2.7 Insulation Requirements


All OCP NIC 3.0 cards shall implement an insulator to prevent the bottom side card components from shorting out to the baseboard chassis. The recommended insulator thickness is 0.25mm and shall reside within the following mechanical envelope for the Small and Large size cards.

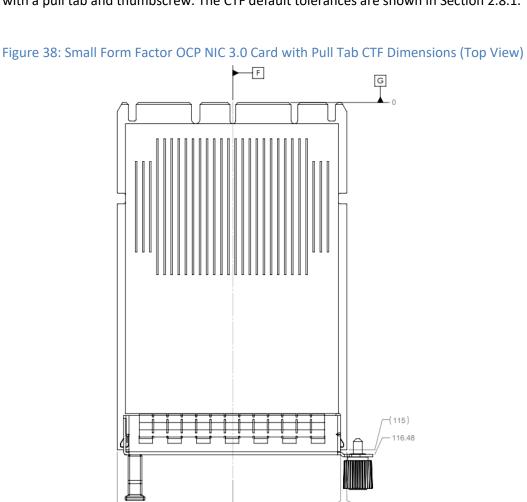
2.7.1 Small Card Insulator

Figure 34: Small Card Bottom Side Insulator (3D View)

2.7.2 Large Card Insulator

2.8 Critical-to-Function (CTF) Dimensions (SFF and LFF)

2.8.1 CTF Tolerances


The following CTF tolerances are used in this section and are the same for both the small form factor and large form factor cards.

CTF DEFAULT TOLERANCES				
DIMENSION RANGE	TOLERANCE			
	TWO PLACE DECIMALS: X.XX			
LINEAR:	± 0.30			
ANGULAR:	± 1.00 DEGREES			
HOLE DIAMETER:	± 0.13			

Table 8: CTF Default Tolerances (SFF and LFF OCP NIC 3.0)

2.8.2 SFF Pull Tab CTF Dimensions

The following dimensions are considered critical-to-function (CTF) for each small form factor OCP NIC 3.0 card with a pull tab and thumbscrew. The CTF default tolerances are shown in Section 2.8.1.

Figure 39: Small Form Factor OCP NIC 3.0 Card with Pull Tab CTF Dimensions (Front View)

2.8.3 SFF OCP NIC 3.0 Card with Ejector Latch CTF Dimensions

The following dimensions are considered critical-to-function (CTF) for each small form factor OCP NIC 3.0 card with ejector latch. The CTF default tolerances are shown in Section 2.8.1.

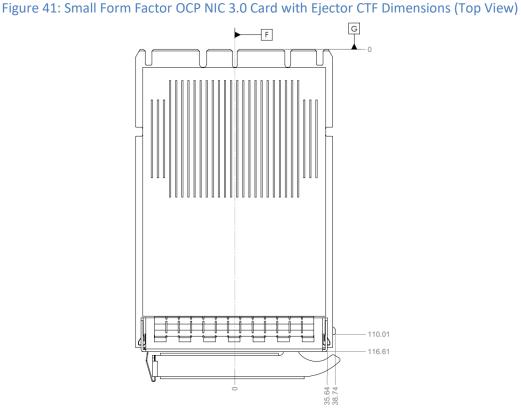
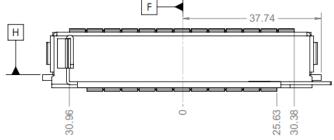
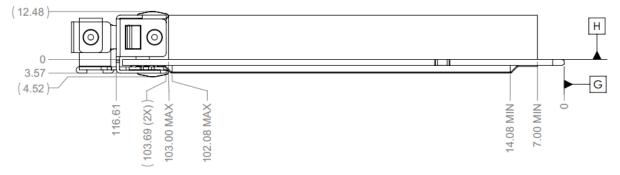
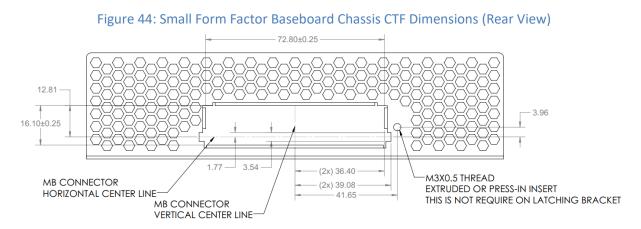
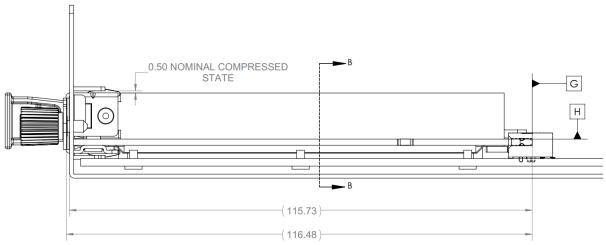


Figure 42: Small Form Factor OCP NIC 3.0 Card with Ejector CTF Dimensions (Front View)


Figure 43: Small Form Factor OCP NIC 3.0 Card with Ejector CTF Dimensions (Side View)


2.8.4 SFF OCP NIC 3.0 Baseboard CTF Dimensions

The following dimensions are considered critical-to-function (CTF) for each small form factor baseboard chassis. The CTF default tolerances are shown in Section 2.8.1.

Note: The SFF baseboard CTF dimensions are applicable to both the right angle and straddle mount connector configurations. The faceplate opening relative to the baseboard changes due to the connector vertical offset, but all CTF dimensions remain identical.

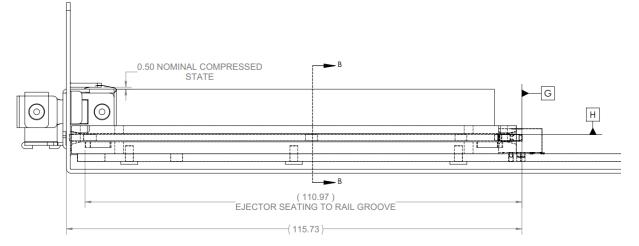


Figure 46: Small Form Factor Baseboard Chassis to Ejector lever Card CTF Dimensions (Side View)

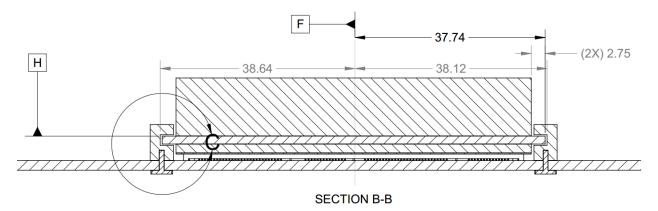
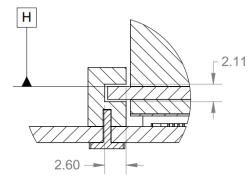
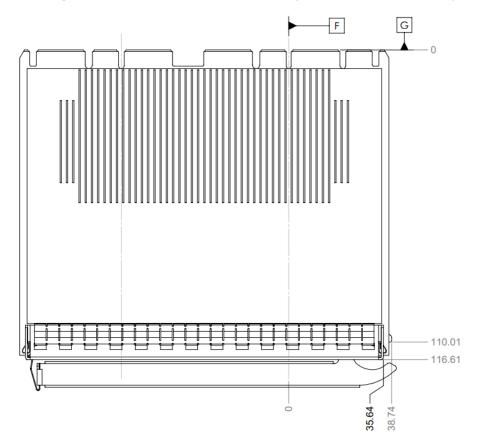
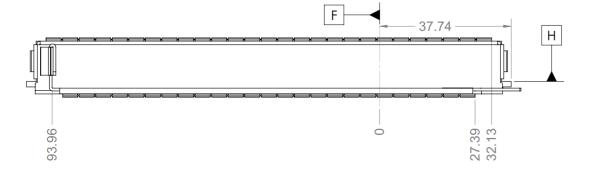



Figure 48: Small Form Factor Baseboard Chassis CTF Dimensions (Rail Guide Detail) - Detail C



DETAIL C

The right angle and straddle mount card guides are identical between the Small and Large form factor cards. The card guide model is included in the 3D CAD packages and may be downloaded from the OCP NIC 3.0 Wiki site: <u>http://www.opencompute.org/wiki/Server/Mezz</u>.

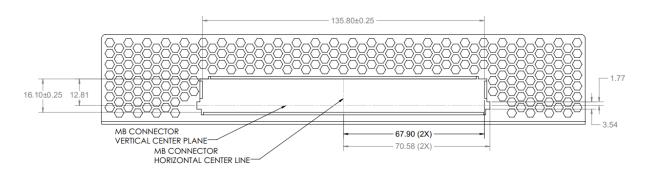

2.8.5 LFF OCP NIC 3.0 Card CTF Dimensions

The following dimensions are considered critical-to-function (CTF) for each large form factor OCP NIC 3.0 card. The CTF default tolerances are shown in Section 2.8.1.

Figure 49: Large Form Factor OCP NIC 3.0 Card with Ejector CTF Dimensions (Top View)

Figure 50: Large Form Factor OCP NIC 3.0 Card with Ejector CTF Dimensions (Front View)

(12.42) 0 3.57 (4.47) 19:01 10:03 NIM (4.47) 10:03 NIM 10:


Figure 51: Large Form Factor OCP NIC 3.0 Card with Ejector CTF Dimensions (Side View)

2.8.6 LFF OCP NIC 3.0 Baseboard CTF Dimensions

The following dimensions are considered critical-to-function (CTF) for each large form factor baseboard chassis. The CTF default tolerances are shown in Section 2.8.1.

Note: The LFF baseboard CTF dimensions are applicable to both the right angle and straddle mount connector configurations. The faceplate opening relative to the baseboard changes due to the connector vertical offset, but all CTF dimensions remain identical.

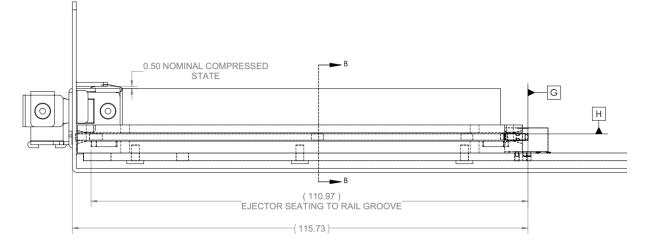
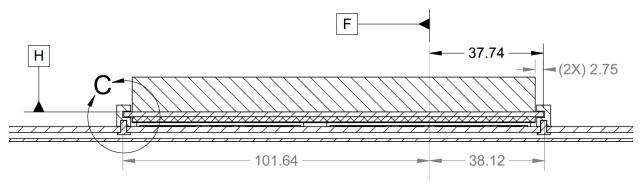




Figure 53: Large Form Factor Baseboard Chassis CTF Dimensions (Side View)

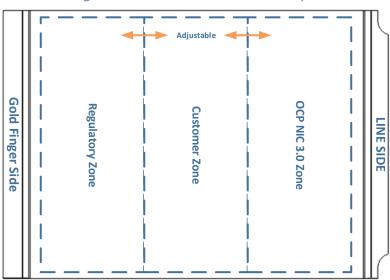
SECTION B-B

Figure 55: Large Form Factor Baseboard Chassis CTF Dimensions (Rail Guide – Detail C)

DETAIL C

The right angle and straddle mount card guides are identical between the Small and Large form factor cards. The card guide models are included in the 3D CAD packages and may be downloaded from the OCP NIC 3.0 Wiki site: <u>http://www.opencompute.org/wiki/Server/Mezz</u>.

2.9 Labeling Requirements


OCP NIC 3.0 cards shall implement all (or a subset of) label items listed below as required by each customer. All labels shall be placed on the exposed face of the insulator and within their designated zones. All labels shall be placed within the insulator edge and insulator bend lines to prevent labels from peeling or interfering with the faceplate, chassis card guides and card gold finger edge.

The insulator shall be divided into three different zones:

- **Regulatory Zone** Used for all regulatory markings and filing numbers
- Customer Zone Used for manufacturer markings or any ODM specific labels
- **OCP NIC 3.0 Zone** Used for MAC addresses, part number labels and optionally the board serial number label if there are no manufacturer requirements to place it on the primary side

Notes:

- Some NIC vendor(s) may require serial number labels to be placed on the primary side of the PBA. This is permitted but it is up to the NIC vendor(s) to find the appropriate location(s) to affix the label. If a label is to be adhered to the PCB, then the label must be ESD safe as defined by ANSI/ESD S541-2008 (between 10⁴ and 10¹¹ Ohms).
- Regulatory marks may be printed on the insulator or affixed via a label
- Each zone size shall be adjustable to accommodate each vendor's labeling requirements
- All labels shall be oriented and readable in the same direction. The readable direction should be with the line side I/O interfaces facing "up"
- Additional labels may be placed on the primary side or on the PCB itself. This is up to the NIC vendor(s) to find the appropriate location(s)

Figure 56: Small Card Label Area Example

2.9.1 General Guidelines for Label Contents

Each board shall have a unique label for identification. The label information shall be both in human readable and machine readable formats (linear or 2D data matrix). The labels may include:

- Serial number
- Part Number
- MAC Address
- Manufacturing Date
- Manufacturing Site Information

Barcode Requirements

- Linear Barcodes
- Code 93, Code 128 Auto or Code 128 Subset B
- Minimum narrow bar width X ≥5mil (0.127mm)
- 2D data matrix
- Data matrix shall use ECC200 error correction
- Minimum cell size $X \ge 10$ mil (0.254mm)
- All linear barcode and data matrix labels shall meet the contrast and print growth requirements per ISO/IEC 16022
- All linear barcode and data matrix labels shall have a quality level C or higher per ISO/IER 15415
- All linear barcode and data matrix labels shall define a minimum Quiet Zone (QZ) to ensure the label is correctly registered by the scanner per ISO/IEC 15415
- Linear barcode labels shall use a QZ that is 10 times the width of the narrowest bar or 1/8th inch, whichever is greater.
- Data matrix labels shall have a Quiet Zone (QZ) that is at least one module (X dimension) around the perimeter of the data matrix.
- Multiple Serial Numbers, MAC address may exist in one 2D data matrix, each separated by a comma

Human Readable Font

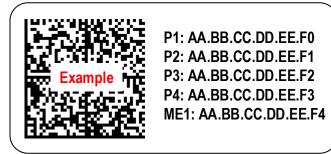
- Arial or printer font equivalent
- Minimum 5 point font size. 3 point font is acceptable when using 600 DPI printers
- Text must be easily legible under normal lighting 6-to-8 inches away.

The label size and typeface may vary based on each vendor and/or customer's label content and requirements.

2.9.2 MAC Address Labeling Requirements

For an OCP NIC 3.0 card with *m* line side interfaces and *n* RBT management interfaces, the MAC address label shall list the MAC addresses in sequential order starting with line side port 1 to port *m* followed by the controller #0 MAC address to controller *n*. For cards that support multi-host configurations, the label shall associate each MAC address with a host number. The examples below show the MAC addresses presented as a single column, for labels with many MAC addresses, the label may also be formatted in multiple columns for greater readability.

2.9.2.1 MAC Address Label Example 1 – Quad Port with Single Host, Single Managed Controller

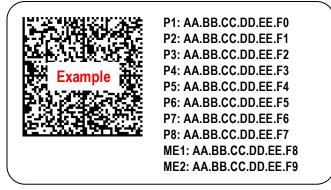

As an example, the label content of a quad SFP OCP NIC 3.0 card with a single management MAC address shall be constructed to show human readable data per the Label Data column of Table 9. The

constructed label is shown in Figure 57. For each human readable line, there is a MAC prefix "Px:" for a line side Port, or "MEx:" for a managed controller instance, followed by the MAC address. The port/controller association for each row is shown in the far right column.

Label Data	MAC Prefix	MAC Address	Association
P1: AA.BB.CC.DD.EE.FO	P1:	AA.BB.CC.DD.EE.F0	Port 1
P2: AA.BB.CC.DD.EE.F1	P2:	AA.BB.CC.DD.EE.F1	Port 2
P3: AA.BB.CC.DD.EE.F2	P3:	AA.BB.CC.DD.EE.F2	Port 3
P4: AA.BB.CC.DD.EE.F3	P4:	AA.BB.CC.DD.EE.F3	Port 4
ME1: AA.BB.CC.DD.EE.F4	ME1:	AA.BB.CC.DD.EE.F4	Controller #0

Table O. MAC Address Labe	Evample 1 Ound Part	with Cingle Heat C	ingle Managed Controller
Table 9: MAC Address Labe	i Example I – Quad Pori	t with single nost, s	ingle Managed Controller

Figure 57: MAC Address Label Example 1 – Quad Port with Single Host, Single Managed Controller

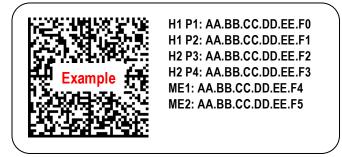

2.9.2.2 MAC Address Label Example 2 – Octal Port with Single Host, Dual Managed Controllers

As a second example, the label content of an octal port (2xQSFP with "breakout" support) OCP NIC 3.0 card with two managed silicon instances is constructed per Table 10. The constructed label is shown in Figure 58. The MAC address label shall also list the four MAC addresses associated with QSFP lanes [1:4] for QSFP connectors that allow "breakout" modes. The Host-MAC address presentation may also be formatted horizontally for easier readability.

MAC Prefix Label Data MAC Address Association P1: AA.BB.CC.DD.EE.FO P1: AA.BB.CC.DD.EE.F0 QSFP1, Port 1 P2: AA.BB.CC.DD.EE.F1 P2: AA.BB.CC.DD.EE.F1 QSFP1, Port 2 P3: AA.BB.CC.DD.EE.F2 P3: AA.BB.CC.DD.EE.F2 QSFP1, Port 3 P4: AA.BB.CC.DD.EE.F3 P4: AA.BB.CC.DD.EE.F3 QSFP1, Port 4 P5: AA.BB.CC.DD.EE.F4 P5: AA.BB.CC.DD.EE.F4 QSFP2, Port 5 P6: AA.BB.CC.DD.EE.F5 P6: AA.BB.CC.DD.EE.F5 QSFP2, Port 6 P7: AA.BB.CC.DD.EE.F6 P7: QSFP2, Port 7 AA.BB.CC.DD.EE.F6 P8: AA.BB.CC.DD.EE.F7 P8: AA.BB.CC.DD.EE.F7 QSFP2, Port 8 ME1: AA.BB.CC.DD.EE.F8 ME1: AA.BB.CC.DD.EE.F8 Controller #0 ME2: AA.BB.CC.DD.EE.F9 ME2: AA.BB.CC.DD.EE.F9 Controller #1

Table 10: MAC Address Label Example 2 – Octal Port with Single Host, Dual Managed Controller

Figure 58: MAC Address Label Example 2 – Octal Port with Single Host, Dual Managed Controller


2.9.2.3 MAC Address Label Example 3 – Quad Port with Dual Hosts, Dual Managed Controllers

For multi-host implementations, each MAC address shall be prefixed with the host association "Hx" prior to the port number, where x represents the host number. An example of this is shown in Table 11 and Figure 59.

Table 11: MAC Address Label Example 3	- Quad Port with Dual Hosts	, Dual Managed Controller
---------------------------------------	-----------------------------	---------------------------

Label Data	Host	MAC Prefix	MAC Address	Association
P1: AA.BB.CC.DD.EE.F0	H1	P1:	AA.BB.CC.DD.EE.F0	Port 1
P2: AA.BB.CC.DD.EE.F1	H1	P2:	AA.BB.CC.DD.EE.F1	Port 2
P3: AA.BB.CC.DD.EE.F2	H2	P3:	AA.BB.CC.DD.EE.F2	Port 3
P4: AA.BB.CC.DD.EE.F3	H2	P4:	AA.BB.CC.DD.EE.F3	Port 4
ME1: AA.BB.CC.DD.EE.F4	n/a	ME1:	AA.BB.CC.DD.EE.F4	Controller #0
ME2: AA.BB.CC.DD.EE.F5	n/a	ME2:	AA.BB.CC.DD.EE.F5	Controller #1

Figure 59: MAC Address Label Example 3 – Quad Port with Dual Hosts, Dual Managed Controllers

2.9.2.4 MAC Address Label Example 4 – Singe Port with Quad Host, Single Managed Controller

The following example shows a single port device with quad hosts. To conserve space on the MAC address label, this example only shows the MAC addresses for Port 1 through Port 4. The MAC address for each managed host is Px+1. This is shown in Table 12 and Figure 60.

Label Data	Host	MAC Prefix	MAC Address	Association
P1: AA.BB.CC.DD.EE.F0	H1	P1:	AA.BB.CC.DD.EE.F0	Port 1
ME1: AA.BB.CC.DD.EE.F1	ME1	P1:	AA.BB.CC.DD.EE.F1	Port 1
P2: AA.BB.CC.DD.EE.F2	H2	P1:	AA.BB.CC.DD.EE.F2	Port 1
ME2: AA.BB.CC.DD.EE.F3	ME2	P1:	AA.BB.CC.DD.EE.F3	Port 1
P3: AA.BB.CC.DD.EE.F4	H3	P1:	AA.BB.CC.DD.EE.F4	Port 1
ME3: AA.BB.CC.DD.EE.F5	ME3	P1:	AA.BB.CC.DD.EE.F5	Port 1
P4: AA.BB.CC.DD.EE.F6	H4	P1:	AA.BB.CC.DD.EE.F6	Port 1
ME4: AA.BB.CC.DD.EE.F7	ME4	P1:	AA.BB.CC.DD.EE.F7	Port 1

Table 12: MAC Address Label Example 4 – Single Port with Quad Host, Single Managed Controller

Figure 60: MAC Address Label Example 4 – Single Port with Quad Host, Single Managed Controller

H1 P1: AA.BB.CC.DD.EE.F0 H2 P1: AA.BB.CC.DD.EE.F2 H3 P1: AA.BB.CC.DD.EE.F4 H4 P1: AA.BB.CC.DD.EE.F6

2.10 Mechanical CAD Package Examples

Typical OCP NIC 3.0 implementation examples are included in the 3D CAD package. The purpose of these examples is to demonstrate the implementation feasibility. Additional use cases beyond the implementation examples are possible as long they adhere to the OCP NIC 3.0 specification.

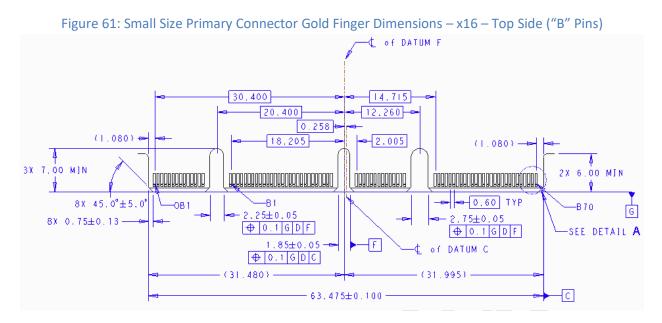
Note: For brevity, references to QSFP+, and QSFP28 shall be referred to as QSFP in this document. Similarly, references to SFP+, and SFP28 shall be referred to as SFP.

The 3D CAD files may be obtained from the OCP NIC 3.0 Wiki: <u>http://www.opencompute.org/wiki/Server/Mezz</u>

Implementation Example	3D CAD File name				
Small form factor Single/Dual QSFP ports	01_nic_v3_sff2q_1tab_asm.stp				
	01_nic_v3_sff2q_latch_asm.stp				
Small form factor Single/Dual SFP ports	N/A				
Small form factor Quad SFP ports	01_nic_v3_sff4s_1tab_asm.stp				
	01_nic_v3_sff4s_latch_asm.stp				
Small form factor Quad 10GBASE-T ports	01_nic_v3_sff4r_1tab_asm.stp				
	01_nic_v3_sff4r_latch_asm.stp				
Large form factor Single/Dual QSFP ports	01_nic_v3_lff2q_asm.stp				
Large form factor Single/Dual SFP ports	N/A				
Large form factor Quad SFP ports	01_nic_v3_lff4s_asm.stp				
Large form factor Quad 10GBASE-T ports	01_nic_v3_lff4r_asm.stp				

Table 13: NIC Implementation Examples and 3D CAD

3 Electrical Interface Definition – Card Edge and Baseboard


3.1 Card Edge Gold Finger Requirements

The OCP NIC 3.0 cards are compliant to the SFF-TA-1002 specification with respect to the gold fingers and connectors.

Small Size cards fit in the Primary Connector. Primary Connector compliant cards are 76mm x 115mm and may implement the full 168-pins. The Primary Connector cards may optionally implement a subset of gold finger pins if there is a reduced PCIe width requirement (such as 1 x8 and below). In this case, the card edge gold finger may implement a 2C design. The overall board thickness is 1.57mm. The gold finger dimensions for the Primary Connector compliant cards are shown below.

Large Size Cards support up to a x32 PCIe implementation and may use both the Primary and Secondary (4C) Connectors. Large Size Cards may implement a reduced PCIe lane count and optionally implement only the Primary Connector 4C+, or 2C OCP bay.

Note: The "B" pins on the connector are associated with the top side of the OCP NIC 3.0 card. The "A" pins on the connector are associated with the bottom side of the OCP NIC 3.0 card. The A and B side pins are physically on top of each other with zero x-axis offset.

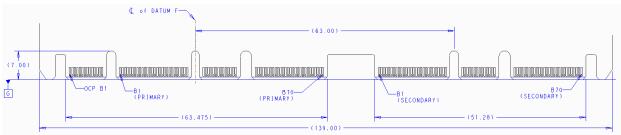
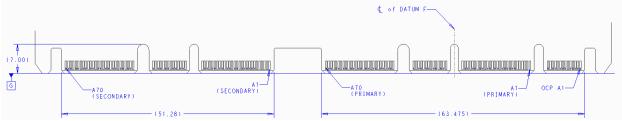



Figure 62: Large Size Card Gold Finger Dimensions – x32 – Top Side ("B" Pins)

3.1.1 Gold Finger Mating Sequence

Per the SFF-TA-1002 specification, the Primary and Secondary Connectors are protocol agnostic and are optimized for high speed differential pairs. For use in the OCP NIC 3.0 application, some pin locations are used for single ended control nets or power and would benefit from a shorter pin length for staggering. As such, the required OCP NIC 3.0 card gold finger staging is shown in Table 14 for a two stage, first-mate, last-break functionality. The two-stage finger length is a normative requirement for the OCP NIC 3.0 card. The host connectors have a single stage mating and do not implement different pin lengths.

The AIC Plug (Free) side refers to the OCP NIC 3.0 card gold fingers; the receptacle (Fixed) side refers to the physical connector on the host platform. This table is based on the SFF-TA-1002 Table A-1 with modifications for OCP NIC 3.0. Refer to the mechanical drawings for pin the first-mate and second-mate lengths.

Note: Pin names in Table 14 and Table 15 are used for first mate/second mate reference only. Full pin definitions are described in Sections 3.3 and 3.4.

	Sic	de B		Side A				
	Gold Finger Side (Free)		Receptacle		Gold Finger S	Receptacle		
	2 nd Mate	1 st Mate	(Fixed)		2 nd Mate	1 st Mate	(Fixed)	
OCP B1	NIC_PWR_GOOD			OCP A1	PERST2#			
OCP B2	MAIN_PWR_EN			OCP A2	PERST3#			
OCP B3	LD#			OCP A3	WAKE#			
OCP B4	DATA_IN			OCP A4	RBT_ARB_IN			
OCP B5	DATA_OUT			OCP A5	RBT_ARB_OUT			
OCP B6	CLK			OCP A6	SLOT_ID1			
OCP B7	SLOT_ID0			OCP A7	RBT_TX_EN			
OCP B8	RBT_RXD1			OCP A8	RBT_TXD1			
OCP B9	RBT_RXD0			OCP A9	RBT_TXD0			
OCP B10	GND			OCP A10	GND			
OCP B11	REFCLKn2			OCP A11	REFCLKn3			
OCP B12	REFCLKp2			OCP A12	REFCLKp3			
OCP B13	GND			OCP A13	GND			

Table 14: Contact Mating Positions for the Primary Connector

Open Compute Project • OCP NIC 3.0 Rev 0.81

OCP B14	RBT_CRS_DV		BT_CLK_IN
		Mechanical Key	
B1	+12V_EDGE		ND
B2	+12V_EDGE		ND
B3 B4	+12V_EDGE +12V_EDGE		IND IND
B5	+12V_EDGE +12V_EDGE		IND IND
B5 B6	+12V_EDGE		ND ND
B7	BIFO#		MCLK
B7 B8	BIF1#		MDAT
B9	BIF2#		MRST#
B10	PERSTO#		RSNTA#
B11	+3.3V_EDGE	A11 P	ERST1#
B12	AUX_PWR_EN	A12 P	RSNTB2#
B13	GND		iND
B14	REFCLKnO		EFCLKn1
B15	REFCLKp0		EFCLKp1
B16	GND		ND
B17	PETn0		ERn0
B18	PETp0		ERp0
B19 B20	GND PETn1		ND ERn1
B20 B21	PETP1		ERp1
B21 B22	GND		IND
B22 B23	PETn2		ERn2
B23	PETp2		ERp2
B25	GND		ind
B26	PETn3		ERn3
B27	PETp3	A27 P	ERp3
B28	GND		ND
		Mechanical Key	
B29	GND		IND
B30	PETn4		ERn4
B31	PETp4		ERp4
B32	GND		ND
B33 B34	PETn5 PETp5		ERn5 ERp5
B35	GND		ind
B35	PETn6		ERn6
B30 B37	PETp6		ERp6
B38	GND		ind
B39	PETn7		ERn7
B40	PETp7		ERp7
B41	GND		ND
B42	PRSNTB0#		RSNTB1#
		Mechanical Key	
B43	GND	A43 G	iND
B44	PETn8		
DAF			ERn8
B45	PETp8	A45 P	ERn8 ERp8
B46	PETp8 GND	A45 P A46 G	ERn8 ERp8 IND
B46 B47	PETp8 GND PETn9	A45 P A46 G A47 P	ERn8 ERp8 IND ERn9
B46 B47 B48	PETp8 GND PETn9 PETp9	A45 P A46 G A47 P A48 P	ERn8 ERp8 IND ERn9 ERp9
B46 B47	PETp8 GND PETn9	A45 P A46 G A47 P A48 P A49 G	ERn8 ERp8 IND ERn9
B46 B47 B48 B49	PETp8 GND PETn9 PETp9 GND	A45 P A46 G A47 P A48 P A49 G A50 P	ERn8 ERp8 ND ERn9 ERp9 ND
B46 B47 B48 B49 B50	PETp8 GND PETn9 PETp9 GND PETn10	A45 P A46 G A47 P A48 P A49 G A50 P	ERn8 ERp8 ND ERn9 ERp9 ND ERn10
B46 B47 B48 B49 B50 B51	PETp8 GND PETn9 GND PETp9 GND PETn10 PETp10	A45 P A46 G A47 P A48 P A49 G A50 P A51 P A52 G	ERn8 ERp8 ERp9 ERn9 ERp9 IND ERn10 ERp10
B46 B47 B48 B49 B50 B51 B52 B53 B54	PETp8 GND PETn9 GND PETp10 GND	A45 P A46 G A47 P A48 P A49 G A50 P A51 P A52 G A53 P A54 P	ERn8 ERp8 IND ERn9 ERp9 ERn9 IND ERn10 ERn10 ERn10 ERp10 END
846 847 848 850 851 852 853 854 855	PETp8 GND PETn9 GND PETn10 PETp10 GND PETn11	A45 P A46 G A47 P A48 P A49 G A50 P A51 P A52 G A53 P A54 P A55 G	ERn8 ERp8 IND ERn9 IND ERp10 IND ERp11 ERp11
B46 B47 B48 B49 B50 B51 B52 B53 B54 B55 B56	PETp8 GND PETp9 GND PETn10 PETp10 GND PETp11 PETp11 GND PETp11 GND PETp11 GND	A45 P A46 G A47 P A48 P A49 G A50 P A51 P A53 P A54 P A55 G A55 P	ERn8 ERp8 IND ERn9 IND ERn10 ERp10 IND ERn11 ERp11 IND ERp12
B46 B47 B48 B49 B50 B51 B52 B53 B54 B55 B55 B56 B57	PETp8 GND PETp9 GND PETn10 PETp10 GND PETn11 PETp11 GND PETn12 PETn12	A45 P A46 G A47 P A48 P A49 G A50 P A51 P A52 G A53 P A54 P A55 G A55 G A55 P A55 P A55 P A55 P A55 P A56 P A57 P	ERn8 ERp8 IND ERn9 IND ERn10 ERn10 ERn11 ERp11 IND ERn12 ERn12
B46 B47 B48 B49 B50 B51 B52 B53 B54 B55 B56 B57 B58	PETp8 GND PETp9 GND PETn10 PETp10 GND PETp11 GND PETp12 GND	A45 P A46 G A47 P A48 P A49 G A50 P A51 P A52 G A53 P A54 P A55 G A56 P A57 P A58 G	ERn8 ERp8 IND ERn9 ERp9 IND ERn10 ERp10 IND ERn11 ERp12 IND
B46 B47 B48 B49 B50 B51 B52 B53 B54 B55 B56 B57 B58 B59	PETp8 GND PETp9 GND PETn10 PETp11 GND PETp11 GND PETn12 PETp12 GND PETn12 PETp13	A45 P A46 G A47 P A48 P A49 G A50 P A51 P A52 G A53 P A54 P A55 G A56 P A57 P A58 G A59 P	ERn8 ERp8 IND ERn9 ERp9 IND ERn10 ERp10 IND ERn11 ERp12 IND ERn13
B46 B47 B48 B49 B50 B51 B52 B53 B54 B55 B56 B57 B58 B59 B60	PETp8 GND PETn9 GND PETn10 PETp10 GND PETn11 PETp11 GND PETp12 GND PETn13 PETp13	A45 P A46 G A47 P A48 P A49 G A50 P A51 P A52 G A53 P A54 P A55 G A56 P A57 P A58 G A59 P A60 P	ERn8 ERp8 IND ERn9 IND ERn10 ERn11 ERn11 ERn12 ERn12 ERn13 ERn13
B46 B47 B48 B49 B50 B51 B52 B53 B54 B55 B56 B57 B58 B59 B60 B61	PETp8 GND PETn9 GND PETn10 PETp10 GND PETp11 GND PETp12 GND PETn13 PETp13 GND	A45 P A46 G A47 P A48 P A49 G A50 P A51 P A53 P A54 P A55 G A54 P A55 G A56 P A57 P A58 G A59 P A60 P A61 G	ERn8 ERp8 IND ERn9 IND ERn10 ERp10 IND ERn11 ERp11 IND ERn12 ERn13 ERp13 IND
B46 B47 B48 B49 B50 B51 B52 B53 B54 B55 B56 B57 B58 B59 B60 B61 B62	PETp8 GND PETn9 GND PETn10 PETp10 GND PETp11 GND PETp12 GND PETn13 PETn14	A45 P A46 G A47 P A48 P A49 G A50 P A51 P A52 G A53 P A54 P A55 G A56 P A57 P A58 G A59 P A60 P A61 G	ERn8 ERp8 IND ERn9 SND ERp10 SND ERp11 IND ERp12 SND ERn13 ERp13 SND ERn14
B46 B47 B48 B49 B50 B51 B52 B53 B54 B55 B56 B57 B58 B50 B60 B61 B62 B63	PETp8 GND PETn9 PETp9 GND PETn10 PETp10 GND PETn11 PETp12 GND PETn13 PETp13 GND PETn14 PETp14	A45 P A46 G A47 P A48 P A49 G A50 P A51 P A53 P A54 P A55 G A54 P A55 G A56 P A57 P A58 G A59 P A60 P A61 G A62 P	ERn8 ERp8 IND ERn9 SND ERn10 ERp10 IND ERn11 ERp11 IND ERn12 ERn13 ERp13 IND ERn14
B46 B47 B48 B49 B50 B51 B52 B53 B54 B55 B56 B57 B58 B59 B61 B62 B63 B64	PETp8 GND PETp9 GND PETn10 PETp10 GND PETp11 GND PETp12 GND PETn13 PETp13 GND PETn14 PETp14 GND	A45 P A46 G A47 P A48 P A49 G A50 P A51 P A52 G A53 P A54 P A55 G A56 P A57 P A58 G A59 P A60 P A61 G A63 P	ERn8 ERp8 IND ERn9 SND ERn10 ERp10 SND ERn11 ERp11 SND ERn12 ERn13 ERp14 SND
B46 B47 B48 B49 B50 B51 B52 B53 B54 B55 B56 B57 B58 B59 B61 B62 B63 B64 B65	PETp8 GND PETp9 GND PETn10 PETp10 GND PETp11 GND PETp12 GND PETp13 GND PETn14 PETp14 GND PETn14 PETp15 GND	A45 P A46 G A47 P A48 P A49 G A50 P A51 P A53 P A54 P A55 G A56 P A57 P A58 G A59 P A60 P A63 P A63 P A64 G	ERn8 ERp8 IND ERn9 IND ERp10 IND ERn11 ERp11 IND ERn12 ERn13 ERp14 ERp14 ERn15
B46 B47 B48 B49 B50 B51 B52 B53 B54 B55 B56 B57 B58 B59 B60 B61 B62 B63 B64	PETp8 GND PETp9 GND PETn10 PETp10 GND PETp11 GND PETp12 GND PETn13 PETp13 GND PETn14 PETp14 GND	A45 P A46 G A47 P A48 P A49 G A50 P A51 P A52 G A53 P A54 P A55 G A56 P A57 P A58 G A59 P A60 P A61 G A62 P A64 G A65 P	ERn8 ERp8 IND ERn9 SND ERn10 ERp10 SND ERn11 ERp11 SND ERn12 ERn13 ERp14 SND

Open Compute Project • OCP NIC 3.0

Rev 0.81

B68	RFU1, N/C		A68	USB_DATn	
B69	RFU2, N/C		A69	USB_DATp	
B70	PRSNTB3#		A70	PWRBRK#	

	Si	de B			Sic	de A	
	Gold Finger Si	de (Free)	Receptacle		Gold Finger Si	ide (Free)	Receptacle
	2 nd Mate	1 st Mate	(Fixed)		2 nd Mate	1 st Mate	(Fixed)
B1	+12V_EDGE			A1	GND		
B2	+12V_EDGE			A2	GND		
B3	+12V_EDGE			A3	GND		
B4	+12V_EDGE			A4	GND		
B5	+12V_EDGE			A5	GND		
B6	+12V_EDGE			A6	GND		
B7	BIFO#			A7	SMCLK		_
B8	BIF1#			A8	SMDAT		_
B9	BIF2#		_	A9	SMRST#		_
B10	PERSTO#		_	A10	PRSNTA#		
B11	+3.3V_EDGE		_	A11	PERST1#		
B12	AUX_PWR_EN		_	A12	PRSNTB2#		
B13	GND		_	A13	GND		
B14	REFCLKn0		_	A14	REFCLKn1		
B15	REFCLKp0		_	A15	REFCLKp1		_
B16	GND		-	A16	GND		_
B17	PETn0		-	A17	PERn0		_
B18	PETp0		-	A18	PERp0		_
B19	GND		-	A19	GND DERp1		_
B20	PETn1		-	A20	PERn1		_
B21 B22	PETp1 GND		-	A21 A22	PERp1 GND		_
			-				_
B23 B24	PETn2 PETp2		-	A23 A24	PERn2 PERp2		-
B24 B25	GND		-	A24 A25	GND		-
B25 B26	PETn3		-	A25 A26	PERn3		-
B20 B27	PETp3		-	A20 A27	PERp3		_
B28	GND		-	A28	GND		-
020	GND		Mec	hanical Key	0110		
B29	GND			A29	GND		
B30	PETn4		-	A30	PERn4		
B31	PETp4			A31	PERp4		
B32	GND			A32	GND		
B33	PETn5			A33	PERn5		
B34	PETp5			A34	PERp5		
B35	GND			A35	GND		
B36	PETn6			A36	PERn6		
B37	PETp6			A37	PERp6		_
B38	GND			A38	GND		
B39	PETn7			A39	PERn7		_
B40	PETp7			A40	PERp7		
B41	GND			A41	GND		
B42	PRSNTB0#			A42	PRSNTB1#		
B.16	0110		Mec	hanical Key			
B43	GND		-	A43	GND		_
B44	PETn8		-	A44	PERn8		
B45	PETp8		-	A45	PERp8		-
B46	GND		-	A46	GND		_
B47	PETn9		-	A47	PERn9		
B48	PETp9		-	A48	PERp9		
B49	GND		-	A49	GND DERp10		_
B50	PETn10		-	A50	PERn10		_
B51	PETp10		-	A51	PERp10		
B52	GND		-	A52	GND		-
B53	PETn11		-	A53	PERn11		
B54	PETp11		-	A54	PERp11		
B55	GND		-	A55	GND		
B56	PETn12		-	A56	PERn12		_
B57	PETp12		-	A57	PERp12		_
B58	GND		-	A58	GND DEPro12		_
B59	PETn13			A59	PERn13		

Table 15: Contact Mating Positions for the Secondary Connector

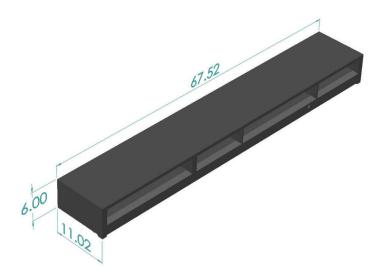
Open Compute Project • OCP NIC 3.0 Rev 0.81

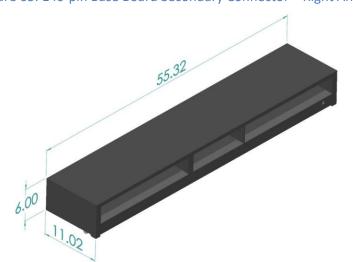
B60	PETp13	A60	PERp13	
B61	GND	A61	GND	
B62	PETn14	A62	PERn14	
B63	PETp14	A63	PERp14	
B64	GND	A64	GND	
B65	PETn15	A65	PERn15	
B66	PETp15	A66	PERp15	
B67	GND	A67	GND	
B68	RFU1, N/C	A68	UART_RX	
B69	RFU2, N/C	A69	UART_TX	
B70	PRSNTB3#	A70	PWRBRK#	

3.2 Baseboard Connector Requirements

The OCP NIC 3.0 connectors are compliant to the "4C+" and "4C" connectors as defined in the SFF-TA-1002 specification for a right angle or straddle mount form-factor. The Primary Connector is a 4C+ implementation with 168-pins. The Secondary Connector is a 4C implementation with 140-pins. Both the Primary and Secondary Connectors includes support for up to 32 differential pairs to support a x16 PCIe connection. Each connector also provides 6 pins of +12V_EDGE, and 1 pin of +3.3V_EDGE for power. This implementation is common between both the Primary and Secondary Connectors. In addition, the 4C+ implementation of the Primary Connector has a 28-pin OCP Bay used for management and support for up to a 4 x2 and 4 x4 multi-host configuration on the Primary Connector. The Primary and Secondary Connector drawings are shown below.

All diagram units are in mm unless otherwise noted.


3.2.1 Right Angle Connector


The following offset and height options are available for the right angle Primary and Secondary Connectors.

Name	Pins	Style and Baseboard Thickness	Offset (mm)
Primary Connector – 4C+	168 pins	Right Angle	4.05mm
Secondary Connector – 4C	140 pins	Right Angle	4.05mm

Table 16: Right Angle Connector Options

Figure 64: 168-pin Base Board Primary Connector – Right Angle

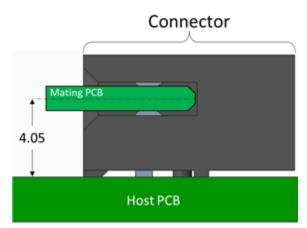


Figure 65: 140-pin Base Board Secondary Connector – Right Angle

3.2.2 Right Angle Offset

The OCP NIC 3.0 right angle connectors have a 4.05mm offset from the baseboard (pending SI simulation results). This is shown in Figure 66.

3.2.3 Straddle Mount Connector

The following offset and height options are available for the straddle mount Primary and Secondary Connectors.

Name	Pins	Style and Baseboard Thickness	Offset (mm)
Primary Connector – 4C+	168 pins	Straddle Mount for 0.062"	Coplanar (0mm)
Primary Connector – 4C+	168 pins	Straddle Mount for 0.076"	-0.3mm
Primary Connector – 4C+	168 pins	Straddle Mount for 0.093"	Coplanar (0mm)
Secondary Connector – 4C	140 pins	Straddle Mount for 0.062"	Coplanar (0mm)
Secondary Connector – 4C	140 pins	Straddle Mount for 0.076"	-0.3mm

Table 17: Straddle Mount Connector Options

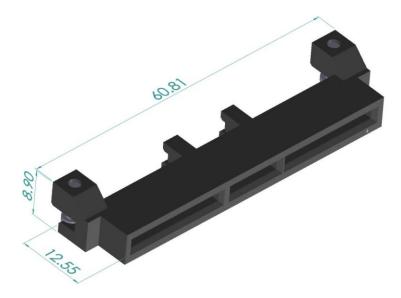
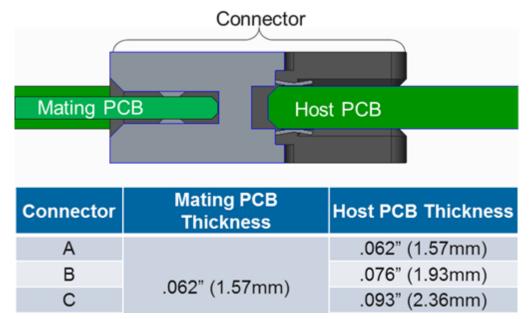
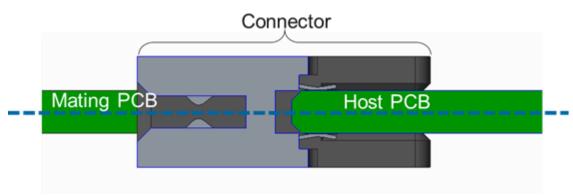



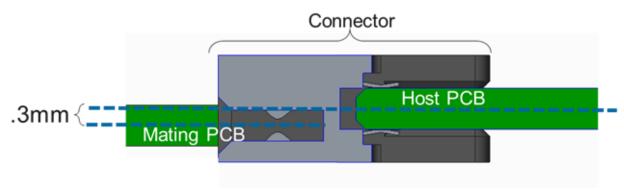
Figure 67: 168-pin Base Board Primary Connector – Straddle Mount

Figure 68: 140-pin Base Board Secondary Connector – Straddle Mount

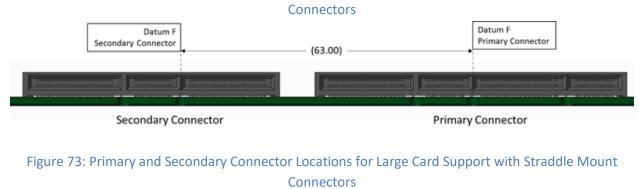
3.2.4 Straddle Mount Offset and PCB Thickness Options

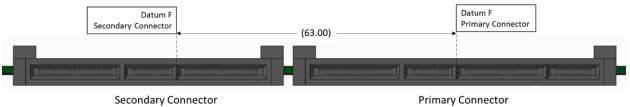
The OCP NIC 3.0 straddle mount connectors have three baseboard PCB thicknesses they can accept. The available options are shown in Figure 69. The thicknesses are 0.062'', 0.076'', and 0.093''. These PCBs must be controlled to a thickness of $\pm 10\%$. These are available for both the Primary and Secondary Connector locations. At the time of this writing, the most commonly used part is expected to be the 0.076'' baseboard thickness.


Figure 69: OCP NIC 3.0 Card and Baseboard PCB Thickness Options for Straddle Mount Connectors

The connectors are capable of being used coplanar as shown in Figure 70. Additionally, the connectors are also capable of having a 0.3mm offset from the centerline of the host board as shown in Figure 71.





3.2.5 Large Card Connector Locations

In order to support the large form factor, systems must locate the Primary and Secondary Connectors per the mechanical drawing shown in Figure 72 and Figure 73.

Figure 72: Primary and Secondary Connector Locations for Large Card Support with Right Angle

3.3 **Pin Definition**

The pin definitions of an OCP NIC 3.0 card with up to a x32 PCIe interface are shown in Table 18 and Table 19. All signal directions are shown from the perspective of the baseboard.

A baseboard system may provide a combination of Primary Connectors only, or Primary and Secondary Connectors to support multiple sizes of OCP NIC 3.0 cards. Both connectors share common functionality with power, SMBus 2.0, x16 PCIe and bifurcation control. The Primary Connector 4C+ definition has an additional OCP Bay (pins OCP_A[1:14], OCP_B[1:14]) with additional REFCLKs for supporting up to four PCIe hosts, NC-SI over RBT connectivity and a Scan Chain for information exchange between the host and card. The NIC is required to implement the Scan Chain, while the baseboard may choose to optionally implement it. Depending on the baseboard form-factor, multiple OCP NIC 3.0 compliant cards may be designed into the system.

The pins common to the Primary and Secondary Connectors are shown in Section 3.4. The OCP Bay pins on the Primary Connector only are explicitly called out with the prefix "OCP_" in pin location column.

Cards or systems that do not require the use of a PCIe x16 connection may optionally implement a subset electrical connections as applicable to the design. For example, a x8 (or smaller) card using the first 8 PCIe lanes that is compliant with the Primary Connector pinout. Refer to Sections 3.1 and 3.2 for mechanical details. For these cases, the Primary Connector matches the 2C dimensions as defined in SFF-TA-1002.

In all cases, the physical baseboard connectors shall support x16 PCIe widths and must be implemented with the Primary (4C+) and Secondary (4C) connectors.

3.3.1 Primary Connector

	Table 16. Fillidiy	Connector Pin Definition (x16)	(4C+)	_	
	Side B	Side A			
OCP_B1	NIC_PWR_GOOD	PERST2#	OCP_A1	Р	Р
OCP_B2	MAIN_PWR_EN	PERST3#	OCP_A2	rim	ri m
OCP_B3	LD#	WAKE#	OCP_A3	ary	ary
OCP_B4	DATA_IN	RBT_ARB_IN	OCP_A4	Ĉ	Ĉ
OCP_B5	DATA_OUT	RBT_ARB_OUT	OCP_A5	nn	'n
OCP_B6	CLK	SLOT_ID1	OCP_A6	ect	ect
OCP_B7	SLOT_ID0	RBT_TX_EN	OCP_A7	or (or (
OCP_B8	RBT_RXD1	RBT_TXD1	OCP_A8	4 <u>C</u>	2C-
OCP_B9	RBT_RXD0	RBT_TXD0	OCP_A9	, ×	,+, ×
OCP_B10	GND	GND	OCP_A10	16,	, 8, 1
OCP_B11	REFCLKn2	REFCLKn3	OCP_A11	Primary Connector (4C+, x16, 168-pin OCP NIC 3.0 card with OCP Bay)	Primary Connector (2C+, x8, 112-pin OCP NIC 3.0 card with OCP bay)
OCP_B12	REFCLKp2	REFCLKp3	OCP_A12	8-p	-pir
OCP_B13	GND	GND	OCP_A13	ii o	õ
OCP_B14	RBT_CRS_DV	RBT_CLK_IN	OCP_A14	ÖÇF	ę
	Mechan	ical Key		ž	NO
B1	+12V_EDGE	GND	A1	IC 3	ω.
B2	+12V_EDGE	GND	A2	.0	0 ca
B3	+12V_EDGE	GND	A3	care	hrd
B4	+12V_EDGE	GND	A4	ξ	¥i;
B5	+12V_EDGE	GND	A5	ith	0 C
B6	+12V_EDGE	GND	A6	0 C	ČP
B7	BIFO#	SMCLK	A7	РВ	ba
B8	BIF1#	SMDAT	A8	ay)	5
B9	BIF2#	SMRST#	A9		
B10	PERSTO#	PRSNTA#	A10		
B11	+3.3V_EDGE	PERST1#	A11		
B12	AUX_PWR_EN	PRSNTB2#	A12		
B13	GND	GND	A13		
B14	REFCLKn0	REFCLKn1	A14		
B15	REFCLKp0	REFCLKp1	A15		
B16	GND	GND	A16		
B17	PETn0	PERn0	A17		
B18	PETp0	PERp0	A18		
B19	GND	GND	A19		

Table 18: Primary Connector Pin Definition (x16) (4C+)

Open Compute Project • OCP NIC 3.0 Rev 0.81

B20	PETn1	PERn1	A20	
B21	PETp1	PERp1	A21	
B22	GND	GND	A22	
B23	PETn2	PERn2	A23	
B24	PETp2	PERp2	A24	
B25	GND	GND	A25	
B26	PETn3	PERn3	A26	
B27	PETp3	PERp3	A27	
B28	GND	GND	A28	
	Mechan	ical Key		
B29	GND	GND	A29	
B30	PETn4	PERn4	A30	
B31	PETp4	PERp4	A31	
B32	GND	GND	A32	
B33	PETn5	PERn5	A33	
B34	PETp5	PERp5	A34	
B35	GND	GND	A35	
B36	PETn6	PERn6	A36	
B37	РЕТр6	PERp6	A37	
B38	GND	GND	A38	
B39	PETn7	PERn7	A39	
B40	РЕТр7	PERp7	A40	
B41	GND	GND	A41	
B42	PRSNTB0#	PRSNTB1#	A42	
	Mechan			
B43	GND	GND	A43	
B44	PETn8	PERn8	A44	
B45	PETp8	PERp8	A45	
B46	GND	GND	A46	
B47	PETn9	PERn9	A47	
B48	PETp9	PERp9	A48	
B49	GND	GND	A49	
B50	PETn10	PERn10	A50	
B51	PETp10	PERp10	A51	
B52	GND	GND	A52	
B53	PETn11	PERn11	A53	
B54	PETp11	PERp11	A54	
B55	GND	GND	A55	
B56	PETn12	PERn12	A56	
B57	PETp12	PERp12	A57	
B58	GND	GND	A58	
B59	PETn13	PERn13	A59	
B60	PETp13	PERp13	A60	
B61	GND	GND	A61	
B61 B62	PETn14	PERn14	A61	
B63	PETp14	PERp14	A62 A63	
B64	GND	GND	A63	
B65	PETn15	PERn15	A65	
B66	PETP15		A65 A66	
B667	GND	PERp15 GND	A66 A67	
B68	RFU1, N/C	USB_DATn	A68	
B69	RFU2, N/C	USB_DATp	A69	
B70	PRSNTB3#	PWRBRK#	A70	

3.3.2 Secondary Connector

	Side B	Side A			
B1	+12V EDGE	GND	A1	S	
B2	+12V EDGE	GND	A2	ieco	
B3	+12V EDGE	GND	A3	ond	
B4	+12V_EDGE	GND	A4	ary	
B5	+12V_EDGE	GND	A5	Ĉ	
B6	+12V EDGE	GND	A6	nn	
B7	BIFO#	SMCLK	A7	ecto	
B8	BIF1#	SMDAT	A8	or (
В9	BIF2#	SMRST#	A9	4C,	
B10	PERSTO#	PRSNTA#	A10	Secondary Connector (4C, x16, 140-pin OCP NIC 3.0 card)	
B11	+3.3V_EDGE	PERST1#	A11	6, 1	
B12	AUX_PWR_EN	PRSNTB2#	A12	40-	
B13	GND	GND	A13	pin	
B14	REFCLKn0	REFCLKn1	A14	0	
B15	REFCLKp0	REFCLKp1	A15	CPI	
B16	GND	GND	A16	VIC	
B17	PETn0	PERnO	A17	3.0	
B18	PETp0	PERpO	A18) ca	
B19	GND	GND	A19	rd)	
B20	PETn1	PERn1	A20		
B21	PETp1	PERp1	A21		
B22	GND	GND	A22		
B23	PETn2	PERn2	A23		
B24	PETp2	PERp2	A24		
B25	GND	GND	A25		
B26	PETn3	PERn3	A26		
B27	PETp3	PERp3	A27		
B28	GND	GND	A28		
	Mechan				
B29	GND	GND	A29		
B30	PETn4	PERn4	A30		
B31	PETp4	PERp4	A31		
B32	GND	GND	A32		
B33	PETn5	PERn5	A33		
B34	PETp5	PERp5	A34		
B35	GND	GND	A35		
B36	PETn6	PERn6	A36		
B37	PETp6	PERp6	A37		
B38	GND	GND	A38		
B39	PETn7	PERn7	A39		
B40	PETp7	PERp7	A40		
B41	GND	GND	A41		
B42	PRSNTB0#	PRSNTB1#	A42		
D42	Mechan		A 4 2		
B43	GND	GND	A43		
B44	PETn8	PERn8	A44		
B45	PETp8	PERp8	A45		
B46	GND	GND	A46		
B47	PETn9	PERn9	A47		
B48	PETp9	PERp9	A48		
B49	GND	GND	A49		

Table 19: Secondary Connector Pin Definition (x16) (4C)

B50	PETn10	PERn10	A50	
B51	PETp10	PERp10	A51	
B52	GND	GND	A52	
B53	PETn11	PERn11	A53	
B54	PETp11	PERp11	A54	
B55	GND	GND	A55	
B56	PETn12	PERn12	A56	
B57	PETp12	PERp12	A57	
B58	GND	GND	A58	
B59	PETn13	PERn13	A59	
B60	PETp13	PERp13	A60	
B61	GND	GND	A61	
B62	PETn14	PERn14	A62	
B63	PETp14	PERp14	A63	
B64	GND	GND	A64	
B65	PETn15	PERn15	A65	
B66	PETp15	PERp15	A66	
B67	GND	GND	A67	
B68	RFU1, N/C	UART_RX	A68	
B69	RFU2, N/C	UART_TX	A69	
B70	PRSNTB3#	PWRBRK#	A70	

3.4 Signal Descriptions

The pins shown in this section are common for both the Primary and Secondary Connectors unless otherwise noted. Pins that exist only for the Primary Connector OCP Bay are explicitly called out in the pin location column with the prefix "OCP_xxx". USB is only defined on the Primary Connector. UART is only defined on the secondary connector. All pin directions are from the perspective of the baseboard.

Note: The OCP NIC 3.0 card shall implement protection methods to prevent leakage or low impedance paths between the V_{AUX} and V_{MAIN} power domains in the event that a powered-down NIC is physically present in a powered-up baseboard. This specification provides example isolation implementations in the signal description text and appropriate figures. OCP NIC 3.0 implementers may choose to do a different implementation as long as the isolation requirements are met and the same result is achieved.

3.4.1 PCIe Interface Pins

This section provides the pin assignments for the PCIe interface signals. The AC/DC specifications are defined in the PCIe CEM Specification, Rev 4.0. Example connection diagrams for are shown in Figure 90 and Figure 91.

Signal Name	Pin #	Baseboard Direction	Signal Description
REFCLKn0	B14	Output	PCIe compliant differential reference clock #0, #1, #2
REFCLKp0	B15		and #3. 100MHz reference clocks are used for the
REFCLKn1	A14	Output	OCP NIC 3.0 card PCIe core logic.
REFCLKp1	A15		
REFCLKn2 REFCLKp2	OCP_B11 OCP_B12	Output	REFCLK0 is always available to all OCP NIC 3.0 cards. The card should not assume REFCLK1, REFCLK2 or

Table 20: Pin Descriptions – PCle

REFCLKn3		Output	REECLK2 are available until the hiturection
	OCP_A11	Output	REFCLK3 are available until the bifurcation
REFCLKp3	OCP_A12		negotiation process is complete.
			For baseboards, the REFCLK0, REFCLK1, REFCLK2 and REFCLK3 signals shall be available at the connector for supported designs. Separate REFCLK0 and REFCLK1 instances are available for the Primary and Secondary connectors. REFCLK2 and REFCLK3 are only available on the Primary connector in the OCP Bay.
			REFCLK0 is required for all designs.
			 REFCLK1, REFCLK2 and REFCLK3 are required for designs that support 2 xn, 4 xn, 8 xn bifurcation implementations.
			Baseboards that implement REFCLK1, REFCLK2 and REFCLK3, should disable the appropriate REFCLKs not used by the OCP NIC 3.0 card.
			The baseboard shall not advertise the corresponding bifurcation modes if REFCLK1, REFCLK2 or REFCLK3 are not implemented.
			For OCP NIC 3.0 cards, the required REFCLKs shall be connected per the endpoint datasheet. Unused REFCLKs on the OCP NIC 3.0 card shall be left as a no connect.
			Note: For cards that only support 1 x16, REFCLKO is used. For cards that support 2 x8, REFCLKO is used for the first eight PCIe lanes, and REFCLK1 is used for the second eight PCIe lanes. REFCLK2 and REFCLK3 are only used for cards that only support a four link PCIe bifurcation mode.
			Refer to Section 2.1 in the PCIe CEM Specification, Rev 4.0 for electrical details.
PETn0	B17	Output	Transmitter differential pairs [0:15]. These pins are
РЕТрО	B18		connected from the baseboard transmitter
PETn1	B20	Output	differential pairs to the receiver differential pairs on
PETp1	B21		the OCP NIC 3.0 card.
PETn2	B23	Output	
PETp2	B24		The PCIe transmit pins shall be AC coupled on the
PETn3	B26	Output	baseboard with capacitors. The AC coupling capacitor
РЕТр3	B27		value shall use the C_{TX} parameter value specified in
PETn4	B30	Output	the PCIe Base Specification Rev 4.0 Section 8.3.9.

PETp4	B31		
PETn5	B33	Output	For baseboards, the PET[0:15] signals are required at
PETp5	B34		the connector.
PETn6	B36	Output	-
PETp6	B37		For OCP NIC 3.0 cards, the required PET[0:15] signals
PETn7	B39	Output	shall be connected to the endpoint silicon. For silicon
PETp7	B40	Carpar	that uses less than a x16 connection, the appropriate
PETn8	B44	Output	PET[0:15] signals shall be connected per the endpoint
PETp8	B45	Carpar	datasheet.
PETn9	B47	Output	-
PETp9	B48	Carpar	Refer to Section 6.1 in the PCIe CEM Specification,
PETn10	B50	Output	Rev 4.0 for details.
PETp10	B51	Carpar	
PETn11	B53	Output	_
PETp11	B54		
PETn12	B56	Output	1
PETp12	B57		
PETn13	B59	Output	
PETp13	B60		
PETn14	B62	Output	
PETp14	B63		
PETn15	B65	Output	
PETp15	B66		
PERn0	A17	Input	Receiver differential pairs [0:15]. These pins are
PERp0	A18		connected from the OCP NIC 3.0 card transmitter
PERn1	A20	Input	differential pairs to the receiver differential pairs on
PERp1	A21		the baseboard.
PERn2	A23	Input	
PERp2	A24		The PCIe receive pins shall be AC coupled on the OCP
PERn3	A26	Input	NIC 3.0 card with capacitors. The AC coupling
PERp3	A27		capacitor value shall use the $C_{\mbox{\tiny TX}}$ parameter value
PERn4	A30	Input	specified in the PCIe Base Specification Rev 4.0
PERp4	A31		Section 8.3.9.
PERn5	A33	Input	
PERp5	A34		For baseboards, the PER[0:15] signals are required at
PERn6	A36	Input	the connector.
PERp6	A37		
PERn7	A39	Input	For OCP NIC 3.0 cards, the required PER[0:15] signals
PERp7	A40		shall be connected to the endpoint silicon. For silicon
PERn8	A44	Input	that uses less than a x16 connection, the appropriate
PERp8	A45		PER[0:15] signals shall be connected per the endpoint
PERn9	A47	Input	datasheet.
PERp9	A48		Defer to Section 6.1 in the DCIs CENA Specification
PERn10	A50	Input	Refer to Section 6.1 in the PCIe CEM Specification,
PERp10	A51		Rev 4.0 for details.
PERn11	A53	Input	
PERp11	A54		

PERn12	A56	Input	
PERp12	A57	mpac	
PERn13	A59	Input	
PERp13	A60		
PERn14	A62	Input	
PERp14	A63		
PERn15	A65	Input	
PERp15	A66		
PERSTO#	B10	Output	PCIe Reset #0, #1, #2, and #3. Active low.
PERST1#	A11	output	
PERST2#	OCP_A1		When PERSTn# is deasserted, the signal shall indicate
PERST3#	OCP_A2		the power state is already in Main Power Mode and is within tolerance and stable for the OCP NIC 3.0 card.
			PERST# shall be deasserted at least 1s after the NIC_PWR_GOOD assertion to Main Power Mode. This ensures the card power rails are within the operating limits. This value is longer than the minimum value specified in the PCIe CEM Specification. The PCIe REFCLKs shall also become stable within this period of time.
			PERST shall be pulled high to +3.3V_EDGE on the baseboard.
			For baseboards that support bifurcation, the PERST[0:1]# signals are required at the Primary and Secondary connectors, PERST[2:3]# are only supported for the Primary Connector.
			For OCP NIC 3.0 cards, the required PERST[0:3]# signals shall be connected to the endpoint silicon. Unused PERST[0:3]# signals shall be left as a no connect.
			Note: For cards that only support 1 x16, PERSTO# is used. For cards that support 2 x8, PERSTO# is used for the first eight PCIe lanes, and PERST1# is used for the second eight PCIe lanes. PERST2# and PERST3# are only used for cards that support a four link PCIe bifurcation mode.
			PERSTO# is always available to all OCP NIC 3.0 cards. The card should not assume PERST1#, PERST2# or PERST3# is available until the bifurcation negotiation process is complete.

			Refer to Section 2.2 in the PCIe CEM Specification,
			Rev 4.0 for details.
WAKE#	OCP_A3	Input, OD	WAKE#. Open drain. Active low.
			This signal shall be driven by the OCP NIC 3.0 card to notify the baseboard to restore PCIe link. For OCP NIC 3.0 cards that support multiple WAKE# signals, their respective WAKE# pins may be tied together as the signal is open-drain to form a wired-OR. For multi- homed host configurations, the WAKE# signal assertion shall wake all nodes.
			For baseboards, this signal shall be pulled up to +3.3V_EDGE on the baseboard with a 10kOhm resistor. This signals shall be connected to the system WAKE# signal.
			For OCP NIC 3.0 cards, this signal shall be connected between the endpoint silicon WAKE# pin(s) and the card edge through an isolation buffer. The WAKE# signal shall not assert until the PCIe card is in the D3 state according to the PCIe CEM specification to prevent false WAKE# events. For OCP NIC 3.0, the WAKE# pin shall be buffered or otherwise isolated from the host until the aux voltage source is present. Examples of this are shown in Section 3.5.5 by gating via an on-board "AUX_PWR_GOOD" signal to indicate all the NIC AUX power rails are stable. The PCIe CEM specification also shows an example in the WAKE# signal section.
			This pin shall be left as a no connect if WAKE# is not supported by the silicon. Refer to Section 2.3 in the PCIe CEM Specification,
			Rev 4.0 for details.
PWRBRK#	A70	Output, OD	Power break. Active low, open drain. This signal shall be pulled up to +3.3V_EDGE on the OCP NIC 3.0 card with a minimum of 95kOhm. The pull up on the baseboard shall be a stiffer resistance in-order to meet the timing specs as shown in the PCIe CEM Specification.
			When this signal is driven low by the baseboard, the Emergency Power Reduction State is requested. The OCP NIC 3.0 card shall move to a lower power consumption state.

For baseboards, the PWRBRK# pin shall be implemented and available on the Primary Connector.
For OCP NIC 3.0 cards, the PWRBRK# pin usage is optional. If used, the PWRBRK# should be connected to the network silicon to enable reduced power state. If not used, the PWRBRK# signal shall be left as a no connect.

3.4.2 PCIe Present and Bifurcation Control Pins

This section provides the pin assignments for the PCIe present and bifurcation control signals. The AC/DC specifications are defined in Section 3.12. Example connection diagrams are shown in Figure 74 and Figure 75.

The PRSNTA#/PRSNTB[0:3]# state shall be used to determine if a card has been physically plugged in. The BIF[0:2]# pins shall be latched before PWR_EN assertion to ensure the correct values are detected by the system. Changing the pin states after this timing window is not allowed. Refer to the AC timing diagram in Section 3.12 for details.

Signal Name	Pin #	Baseboard Direction	Signal Description
PRSNTA#	A10	Output	Present A is used for OCP NIC 3.0 card presence and
			PCIe capabilities detection.
			For baseboards, this pin shall be directly connected
			to GND.
			For OCP NIC 3.0 cards, this pin shall be directly
			connected to the PRSNTB[3:0]# pins.
PRSNTB0#	B42	Input	Present B [0:3]# are used for OCP NIC 3.0 card
PRSNTB1#	A42		presence and PCIe capabilities detection.
PRSNTB2#	A12		
PRSNTB3#	B70		For baseboards, these pins shall be connected to the
			I/O hub and pulled up to +3.3V_EDGE using 1kOhm resistors.
			For OCP NIC 3.0 cards, these pins shall be strapped to
			PRSNTA# per the encoding definitions described in
			Section 3.5.
			Note: PRSNTB3# is located at the bottom of the 4C
			connector and is only applicable for OCP NIC 3.0
			cards with a PCIe width of x16 (or greater). OCP NIC
			3.0 cards that implement a 2C card edge do not use

Table 21: Pin Descriptions – PCIe Present and Bifurcation Control Pins

			the PRSNTB3# pin for capabilities or present detection
BIFO# BIF1# BIF2#	B7 B8 B9	Output	detection.Bifurcation [0:2]# pins allow the baseboard to force configure the OCP NIC 3.0 card bifurcation.For baseboards, these pins shall be outputs driven from the baseboard I/O hub and allow the system to force configure the OCP NIC 3.0 card bifurcation. The baseboard may optionally pull the BIF[0:2]# signals to AUX_PWR_EN or to ground per the definitions are described in Section 3.5 if no dynamic bifurcation
			 configuration is required. The BIF[0:2]# pins shall be low until AUX_PWR_EN is asserted to prevent leakage paths into an unpowered card. For baseboards that allow dynamic bifurcation, the BIF[0:2] pins are driven low prior to AUX_PWR_EN.
			Refer to Figure 74 for an example configuration. For baseboards with static bifurcation, the BIF pins that are intended to be a logical '1' shall be connected to a pull up to AUX_PWR_EN. BIF pins that are a logical '0' may be directly tied to ground. Refer to Figure 75 for an example configuration.
			For OCP NIC 3.0 cards, these signals shall connect to the endpoint bifurcation pins if it is supported. The BIF[0:2]# signals shall be left as no connects if end point bifurcation is not supported. Note: the required combinatorial logic output for endpoint bifurcation is dependent on the specific silicon and is not defined in this specification.

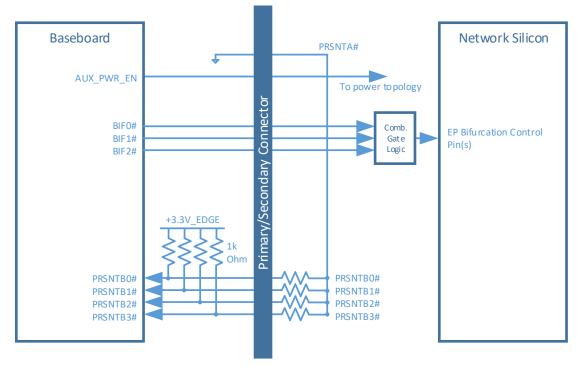
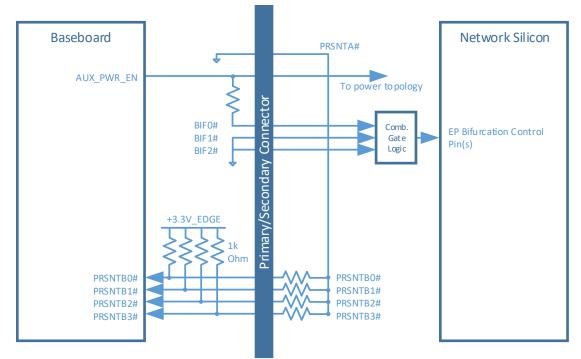



Figure 74: PCIe Present and Bifurcation Control Pins (Baseboard Controlled BIF[0:2]#)

Figure 75: PCIe Present and Bifurcation Control Pins (Static BIF[0:2]#)

3.4.3 SMBus Interface Pins

This section provides the pin assignments for the SMBus interface signals. The AC/DC specifications are defined in the SMBus 2.0 and I²C bus specifications. An example connection diagram is shown in Figure 76.

Signal Name	Pin #	Baseboard Direction	Signal Description
SMCLK	Α7	Output, OD	SMBus clock. Open drain, pulled up to +3.3V_EDGE on the baseboard.
			For baseboards, the SMCLK from the platform SMBus master shall be connected to the connector.
			For OCP NIC 3.0 cards, the SMCLK from the endpoint silicon shall be connected to the card edge gold fingers.
SMDAT	A8	Input / Output, OD	SMBus Data. Open drain, pulled up to +3.3V_EDGE on the baseboard.
			For baseboards, the SMDAT from the platform SMBus master shall be connected to the connector.
			For OCP NIC 3.0 cards, the SMDAT from the endpoint silicon shall be connected to the card edge gold fingers.
SMRST#	A9	Output, OD	SMBus reset. Open drain.
			For baseboards, this pin shall be pulled up to +3.3V_EDGE. The SMRST pin may be used to reset optional downstream SMBus devices (such as temperature sensors). The SMRST# implementation shall be mandatory for baseboard implementations.
			For OCP NIC 3.0 cards, SMRST# is optional and is dependent on the OCP NIC 3.0 card implementation. If used, the SMRST# is on the +3.3V_EDGE power domain. Isolation logic may be required if the target
			device(s) exist on a different power domain to prevent a leakage path. The SMRST# signal shall be left as a no connect if it is not used on the OCP NIC 3.0 card.

Table	22: P	n Descrip	tions – S	MBus
-------	-------	-----------	-----------	------

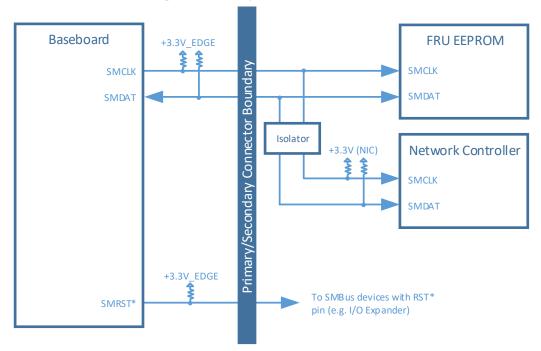


Figure 76: Example SMBus Connections

3.4.4 NC-SI Over RBT Interface Pins

This section provides the pin assignments for the NC-SI over RBT interface signals on the Primary Connector OCP bay. The AC/DC specifications for NC-SI over RBT are defined in the DMTF DSP0222 NC-SI specification. An example connection diagram is shown in Figure 77 and Figure 78.

Note: The RBT pins must provide the ability to be isolated on the baseboard side when AUX_PWR_EN=0 or when (AUX_PWR_EN=1 and NIC_PWR_GOOD=0). The RBT pins shall not be isolated when the power state machine has transitioned to AUX power mode or the transition to Main Power Mode. This prevents a leakage path through unpowered silicon. The RBT REF_CLK must also be disabled until AUX_PWR_EN=1. Example buffering implementations are shown in Figure 77 and Figure 78. The isolator shall be controlled on the baseboard with a signal called RBT_ISOLATE#.

Signal Name	Pin #	Baseboard Direction	Signal Description
RBT_REF_CLK	OCP_A14	Output	Reference clock input. Synchronous clock reference for receive, transmit and control interface. The clock shall have a typical frequency of 50MHz. For baseboards, this pin shall be connected between the baseboard NC-SI over RBT PHY and the Primary Connector OCP bay. This signal requires a 100kOhm pull down resistor on the baseboard. If the baseboard does not support NC-SI over RBT, then

Table 23. Pin	Descriptions –	NC-SI Over RBT

		this signal shall be terminated to ground through a 100kOhm pull down resistor. The RBT_REF_CLK shall not be driven until the card has transitioned into AUX Power Mode.
		For OCP NIC 3.0 cards, this pin shall be connected between the gold finger to the endpoint silicon. This pin shall be left as a no connect if NC-SI over RBT is not supported.
OCP_B14	Input	Carrier sense/receive data valid. This signal is used to indicate to the baseboard that the carrier sense/receive data is valid.
		For baseboards, this pin shall be connected between the baseboard NC-SI over RBT PHY and the connector. This signal requires a 100kOhm pull down resistor on the baseboard. If the baseboard does not support NC-SI over RBT, then this signal shall be terminated to ground through a 100kOhm pull down resistor.
		For OCP NIC 3.0 cards, this pin shall be connected between the gold finger to the endpoint silicon. This pin shall be left as a no connect if NC-SI over RBT is not supported.
OCP_B9 OCP_B8	Input	Receive data. Data signals from the network controller to the BMC.
		For baseboards, this pin shall be connected between the baseboard NC-SI over RBT PHY and the connector. This signal requires a 100kOhm pull down resistor to GND on the baseboard. If the baseboard does not support NC-SI over RBT, then this signal shall be terminated to GND through a 100kOhm pull down.
		For OCP NIC 3.0 cards, this pin shall be connected between the gold finger and the RBT_RXD[0:1] pins on endpoint silicon. This pin shall be left as a no connect if NC-SI over RBT is not supported.
OCP_A7	Output	Transmit enable. For baseboards, this pin shall be connected between the baseboard NC-SI over RBT PHY and the connector. This signal requires a 100kOhm pull down resistor to ground on the baseboard. If the baseboard does not support NC-SI over RBT, then
	OCP_B9 OCP_B8	OCP_B9 OCP_B8 OCP_B8

			this signal shall be terminated to ground through a 100kOhm pull down.
			For OCP NIC 3.0 cards, this pin shall be connected between the gold finger to the endpoint silicon. This pin shall be left as a no connect if NC-SI over RBT is not supported.
RBT_TXD0 RBT_TXD1	OCP_A9 OCP_A8	Output	Transmit data. Data signals from the BMC to the network controller.
			For baseboards, this pin shall be connected between the baseboard NC-SI over RBT PHY and the connector. This signal requires a 100kOhm pull down resistor to GND on the baseboard. If the baseboard does not support NC-SI over RBT, then this signal shall be terminated to GND through a 100kOhm pull down.
			For OCP NIC 3.0 cards, this pin shall be connected between the gold finger to the RBT_TXD[0:1] pins on the endpoint silicon. This pin shall be left as a no connect if NC-SI over RBT is not supported.
RBT_ARB_OUT	OCP_A5	Output	NC-SI hardware arbitration output.
			If the baseboard does not support NC-SI over RBT or implements only one OCP NIC 3.0 interface, this signal shall be directly connected to the RBT_ARB_IN pin to complete the hardware arbitration ring on the OCP NIC 3.0 card. If the baseboard supports multiple OCP NIC 3.0 cards connected to the same RBT interface, it shall implement logic that connects the RBT_ARB_OUT pin of the first populated OCP NIC 3.0 card to its RBT_ARB_IN pin if it is the only card present or to the RBT_ARB_IN pin of the next populated card and so on sequentially for all cards on the specified RBT bus to ensure the arbitration ring is complete. A two OCP NIC 3.0 card example using an analog mux is shown in Figure 78.
			For OCP NIC 3.0 cards that support hardware arbitration, this pin shall be connected between the gold finger to the RBT_ARB_IN pin on the endpoint silicon. If the card implements two controllers, both must be connected internally to complete the ring, see Figure 78. If hardware arbitration is not supported, then this pin shall be directly connected to the card edge RBT_ARB_IN pin. This allows the

			hardware arbitra		-
RBT ARR IN	ΟΓΡ Δ4	Innut	MC-SL bardware		
RBT_ARB_IN	OCP_A4	Input	NC-SI hardware a If the baseboard implements only signal shall be di RBT_ARB_OUT p arbitration ring of baseboard support connected to the implement logic of the first popul RBT_ARB_OUT p the RBT_ARB_OUT p the COP NIC 3.0 arbitration, this p gold finger to the silicon. If the car must be connect see Figure 78. If supported, then	arbitration input does not suppor one OCP NIC 3.0 rectly connected in to complete th on the OCP NIC 3 orts multiple OCF e same RBT inter that connects th lated OCP NIC 3.0 in if it is the only JT pin of the nex ntially for all card re the arbitration card example us 78. cards that suppo pin shall be conn e RBT_ARB_OUT d implements two re d internally to ch hardware arbitration this pin shall be RBT_ARB_OUT p ation signals to pontion	rt NC-SI over RBT or D interface, this I to the he hardware .0 card. If the P NIC 3.0 cards face, it shall e RBT_ARB_IN pin 0 card to its r card present or to at populated card ds on the specified or ring is complete. A sing an analog mux is ort hardware ected between the pin on the endpoint to controllers, both complete the ring, ation is not directly connected pin. This allows the ass through in a
SLOT_ID0 SLOT_ID1	OCP_B7 OCP_A6	Output	Package ID. This EEPROM address For baseboards, physically tied to SLOT[1:0] values mapping: Physical Slot (Decimal) 0] pins shall be us pin is also used i s. the SLOT_ID[1:0 0 GND or to +3.3 are based on the SLOT_ID1 OCP_A6 0	ed to set the RBT n setting the FRU] pins shall be V_EDGE. The e following SLOT_IDO OCP_B7 0
			1	0	1
			2	1	0
			3	1	1

For OCP NIC 3.0 cards, SLOT_ID0 shall be connected to the endpoint device GPIO associated with Package ID[0]. SLOT_ID1 shall be associated with Package ID[1]. Refer to Section 4.8.1 and the device datasheet for details.
For OCP NIC 3.0 cards with multiple endpoint devices, Package ID[2] shall be used to identify a second physical RBT capable controller on the same physical card.
For Package ID addressing, the SLOT_ID[1:0] pins shall be buffered on NIC side with a FET switch (or a similar implementation) to prevent a leakage path when the OCP NIC 3.0 card is in ID mode. The SLOT_ID[1:0] buffers shall isolate the signals to the network silicon until an "Aux Power Good" is generated locally from the NIC. This indication shall be generated from an on-board voltage monitor or similar logic. OCP NIC 3.0 designers may omit isolation logic for the Package ID addressing if the target silicon properly isolates the signals when it is unpowered.
For FRU EEPROM addressing, the SLOT_ID0 pin shall be directly connected to the EEPROM A1 address pin; SLOT_ID1 shall be connected to the EEPROM A2 address pin. No isolation shall be used for the FRU EEPROM connections.
For endpoint devices without NC-SI over RBT support, these pins shall only be connected to the FRU EEPROM as previously described.

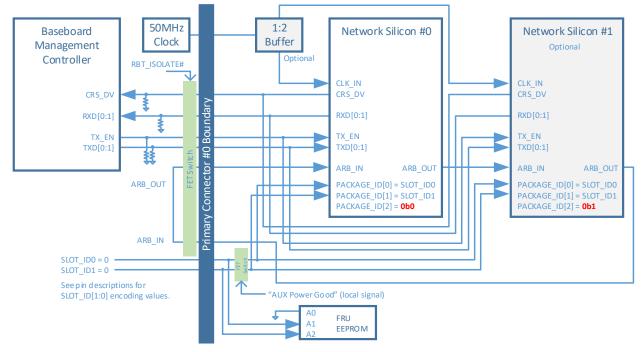
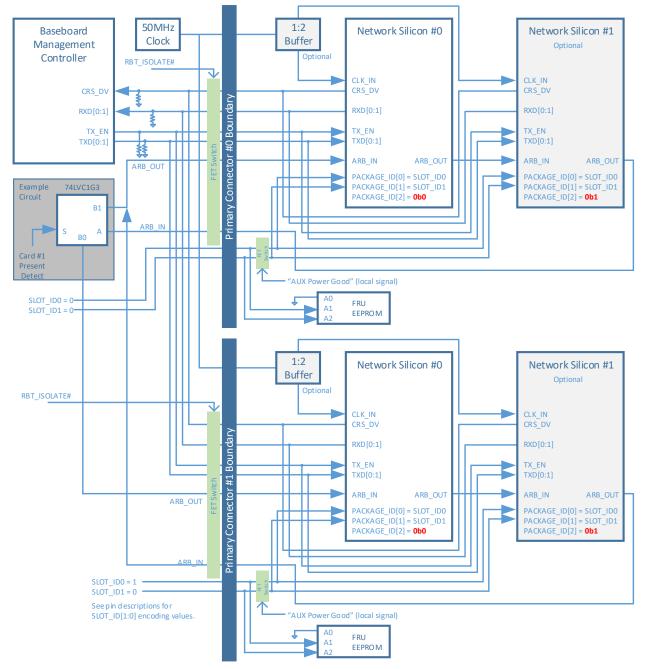



Figure 77: NC-SI Over RBT Connection Example – Single Primary Connector

Figure 78: NC-SI Over RBT Connection Example – Dual Primary Connectors

Note 1: For baseboard designs with a single Primary Connector, connect ARB_IN to ARB_OUT to complete the NC-SI hardware arbitration ring. For designs with multiple Primary Connectors, connect ARB_IN and ARB_OUT to an analog mux to complete the NC-SI arbitration ring based on the number of cards installed in the system. An example dual Primary Connector implementation is shown in Figure 78.

Note 2: For baseboard implementations having two or more RBT busses, the baseboard hardware arbitration rings shall remain within their respective bus and shall not cross RBT bus domains.

Note 3: The logical implementation of the hardware arbitration ring shall maintain the arbitration ring integrity when there exists one or more cards that are plugged in, but are powered off (e.g in ID Mode).

Note 4: For OCP NIC 3.0 cards with two discrete endpoint silicon, the Package ID[2] bit shall be statically set based on the silicon instance. For example, the figure above shows Network Silicon #0 and Network Silicon #1. Network Silicon #0 has Package ID[2] = 0b0, Network Silicon #1 has Package ID[2] = 0b1.

Note 5: Designs that implement a clock fan out buffer will affect the RBT timing budget. Careful analysis of the timing budget is required. Refer to Section 5.1 for RBT signal integrity and timing budget considerations.

3.4.5 Scan Chain Pins

This section provides the pin assignments for the Scan Chain interface signals on the Primary Connector OCP Bay. The scan chain is a point-to-point bus on a per OCP slot basis. The scan chain consists of two unidirectional busses, a common clock and a common load signal. The DATA_OUT signal serially shifts control signals from the baseboard to the OCP NIC 3.0 card. The DATA_IN signal serially shifts bits from the OCP NIC 3.0 card to the baseboard. The DATA_OUT and DATA_IN chains are independent of each other. The scan chain CLK is driven from the baseboard. The LD pin, when asserted by the baseboard, allows loading of the data on to the shift registers. An example timing diagram is shown in Figure 79. An example connection diagram is shown in Figure 80.

Note: The DATA_OUT chain is provisioned, but is not used on OCP NIC 3.0 cards for this revision of the specification.

Signal Name	Pin #	Baseboard Direction	Signal Description
CLK	OCP_B6	Output	Scan clock. The CLK is an output pin from the baseboard to the OCP NIC 3.0 card. The CLK may run up to 12.5MHz.
			For baseboard implementations, the CLK pin shall be connected to the Primary Connector. The CLK pin shall be tied directly to GND if the scan chain is not used.
			For NIC implementations, the CLK pin shall be connected to Shift Registers 0 & 1, and optionally connected to Shift Registers 2 & 3 (if implemented) as defined in the text and Figure 80, below. The CLK pin shall be pulled up to +3.3V_EDGE through a 1kOhm resistor.
DATA_OUT	OCP_B5	Output	Scan data output from the baseboard to the OCP NIC 3.0 card. This bit stream is used to shift configuration data out to the NIC.

Table 24: Pin Descriptions – Scan Chain

			For baseboard implementations, the DATA_OUT pin shall be connected to the Primary Connector. The DATA_OUT pin shall be pulled down to GND through a 1kOhm resistor if the scan chain is not used. For NIC implementations, the DATA_OUT pin shall be pulled down to GND on the OCP NIC 3.0 card through a 10kOhm resistor.
DATA_IN	OCP_B4	Input	Scan data input to the baseboard. This bit stream is used to shift out NIC status bits to the baseboard. For baseboard implementations, the DATA_IN pin shall be pulled up to +3.3V_EDGE through a 10kOhm resistor to prevent the input signal from floating if a card is not installed. This pin may be left as a no connect if the scan chain is not used. For NIC implementations, the DATA_IN scan chain is required. The DATA_IN pin shall be connected to Shift Register 0, as defined in the text and Figure 80.
LD#	OCP_B3	Output	Scan shift register load. Used to latch configuration data on the OCP NIC 3.0 card.For baseboard implementations, the LD# pin shall be pulled up to +3.3V_EDGE through a 1kOhm resistor if the scan chain is not used to prevent the OCP NIC 3.0 card from erroneous data latching.For NIC implementations, the LD# pin implementation is required. The LD# pin shall be connected to Shift Registers 0 & 1, and optionally connected to Shift Registers 2 & 3 (if implemented) as defined in the text and Figure 80. The LD# pin shall be pulled up to +3.3V_EDGE through a 10kOhm resistor.

Figure 79: Example Scan Chain Timing Diagram

🐓 /scan_chain_example/CLK	-No Data-		M	mm			າດດາດ	MML.		າດດາດດ	າດດາດ					
🐓 /scan_chain_example/LD_N	-No Data-															
🕵 🔸 /scan_chain_example/byte_data_in	-No Data-	x	(bytel	(7:0) b	yte1[7:0]	(byte2[7:0]	byte3[7:	0] (byte0[7:0]	(byte1[7:0]	(byte2[7:	0] (byte	3[7:0]	(byte0[7:0]	(byte1[7:	0] (
₽-�/scan_chain_example/byte_data_out	-No Data-	X) byte:	[7:0])b	yte2[7:0]	[byte1[7:0]	byte0[7:	0] (byte3[7:0]	(byte2[7:0]	(byte1[7:	0] (byte	0[7:0]	(byte3[7:0]	(byte2[7:	0] (

The scan chain provides sideband status indication between the OCP NIC 3.0 card and the baseboard. The scan chain bit definition is defined in the two tables below. The scan chain data stream is 32-bits in length for both the DATA_OUT and the DATA_IN streams. The scan chain implementation is optional on

the host, but its implementation is mandatory per Table 25 and Table 26 on all OCP NIC 3.0 cards. The scan chain components operates on the +3.3V_EDGE power domain.

The DATA_OUT bus is an output from the host. The DATA_OUT bus provides initial configuration options to the OCP NIC 3.0 card. At the time of this writing, the DATA_OUT bus is not used. All baseboard systems that implement the Scan Chain shall connect DATA_OUT between the platform and the Primary Connector for subsequent revisions of this specification. The DATA_OUT data stream shall shift out all 0's prior to AUX_PWR_EN assertion to prevent leakage paths into unpowered silicon.

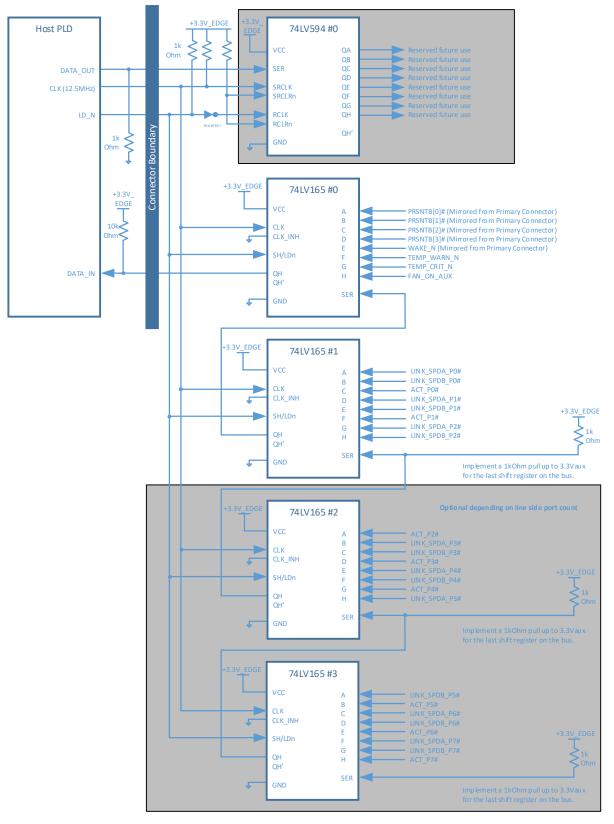
Byte.bit	DATA_OUT Field Name	Default Value	Description
0.[07]	RSVD	0h00	Reserved. Byte 0 value is 0h00.
1.[07]	RSVD	0h00	Reserved. Byte 1 value is 0h00.
2.[07]	RSVD	0h00	Reserved. Byte 2 value is 0h00.
3.[07]	RSVD	0h00	Reserved. Byte 3 value is 0h00.

Table 25: Pin Descriptions – Scan Chain DATA_OUT Bit Definition

The DATA_IN bus is an input to the host and provides NIC status indication. The default implementation is completed with two 8-bit 74LV165 parallel in to serial out shift registers in a cascaded implementation. Up to four shift registers may be implemented to provide additional NIC status indication to the host platform.

DATA_IN shift register 0 shall be mandatory for scan chain implementations for the card present, WAKE_N and thermal threshold features. DATA_IN shift registers 1, 2 & 3 are optional depending on the line side I/O and LED fields being reported to the host. Dual port LED applications require shift register 1. Quad port LED applications require shift registers 1 & 2. Octal port applications require shift registers 1, 2 & 3.

The host should read the DATA_IN bus multiple times to qualify the incoming data stream. The number of data qualification reads is dependent on the baseboard implementation.


On the OCP NIC 3.0 card, a 1kOhm pull up resistor shall be connected to the SER input of the last DATA_IN shift register. Doing so ensures the default bit value of 0b1 for implementations using less than four shift registers.

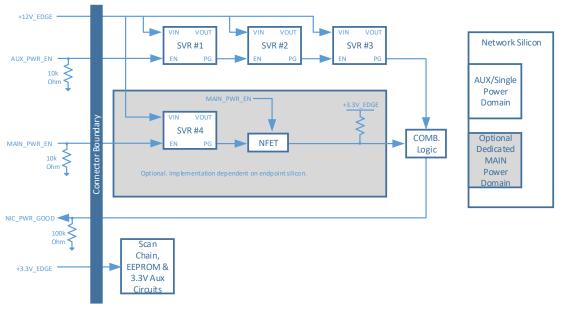
Byte.bit	DATA_IN Field Name	Default Value	Description
0.0	PRSNTB[0]#	0bX	PRSNTB[3:0]# bits shall reflect the same state as
0.1	PRSNTB[1]#	0bX	the signals on the Primary Connector. Connect
0.2	PRSNTB[2]#	0bX	these scan chain signals directly to the OCP NIC
0.3	PRSNTB[3]#	0bX	3.0 card edge PRSNTB[3:0]# pins. The OCP NIC 3.0 implementer may alternatively choose to locally
			populate pull up and pull down resistors to these scan chain inputs as long as the PRSNTB[3:0]#

Table 26: Pin Descriptions – Scan Chain DATA IN Bit Definition

			values are the same on the scan chain and card edge.
0.4	WAKE_N	0bX	PCIe WAKE_N signal shall reflect the same state as the signal on the Primary Connector.
0.5	TEMP_WARN_N	0b1	Temperature monitoring pin from the on-card thermal solution. This pin shall be asserted low when temperature sensor exceeds the temperature warning threshold.
0.6	TEMP_CRIT_N	Ob1	Temperature monitoring pin from the on-card thermal solution. This pin shall be asserted low when temperature sensor exceeds the temperature critical threshold.
0.7	FAN_ON_AUX	0b0	When high, FAN_ON_AUX shall request the system fan to be enabled for extra cooling in the S5 state.
			0b0 – The system fan is not requested/off in S5. 0b1 – The system fan is requested/on in S5.
1.0	LINK_SPDA_P0#	0b1	Port 0 link and speed A indication (max speed). Active low.
			0b0 – Link LED is illuminated on the host platform. 0b1 – Link LED is not illuminated on the host platform.
			Steady = link is detected on the port and is at the maximum speed.Off = the physical link is down, not at the maximum speed or is disabled.
			Note: The link and speed A LED may also be blinked for use as port identification.
1.1	LINK_SPDB_P0#	0b1	Port 0 link and speed B indication (not max speed). Active low.
			0b0 – Link LED is illuminated on the host platform. 0b1 – Link LED is not illuminated on the host platform.
			Steady = link is detected on the port and is not at the max speed. Off = the physical link is down, or is disabled.
			Note: The link and speed B LED may also be blinked for use as port identification.
1.2	ACT_P0#	0b1	Port 0 activity indication. Active low.

			0b0 – ACT LED is illuminated on the host platform. 0b1 – ACT LED is not illuminated on the host platform.
			Steady = no activity is detected on the port.
			Blinking = activity is detected on the port. The
			blink rate should blink low for 50-500ms during
			activity periods.
			Off = the physical link is down or disabled.
1.3	LINK_SPDA_P1#	0b1	Port 1 link and speed A indication. Active low.
1.4	LINK_SPDB_P1#	0b1	Port 1 link and speed B indication. Active low.
1.5	ACT_P1#	0b1	Port 1 activity indication. Active low.
1.6	LINK_SPDA_P2#	0b1	Port 2 link and speed A indication. Active low.
1.7	LINK_SPDB_P2#	0b1	Port 2 link and speed B indication. Active low.
2.0	ACT_P2#	0b1	Port 2 activity indication. Active low.
2.1	LINK_SPDA_P3#	0b1	Port 3 link and speed A indication. Active low.
2.2	LINK_SPDB_P3#	0b1	Port 3 link and speed B indication. Active low.
2.3	ACT_P3#	0b1	Port 3 activity indication. Active low.
2.4	LINK_SPDA_P4#	0b1	Port 4 link and speed A indication. Active low.
2.5	LINK_SPDB_P4#	0b1	Port 4 link and speed B indication. Active low.
2.6	ACT_P4#	0b1	Port 4 activity indication. Active low.
2.7	LINK_SPDA_P5#	0b1	Port 5 link and speed A indication. Active low.
3.0	LINK_SPDB_P5#	0b1	Port 5 link and speed B indication. Active low.
3.1	ACT_P5#	0b1	Port 5 activity indication. Active low.
3.2	LINK_SPDA_P6#	0b1	Port 6 link and speed A indication Active low.
3.3	LINK_SPDB_P6#	0b1	Port 6 link and speed B indication. Active low.
3.4	ACT_P6#	0b1	Port 6 activity indication. Active low.
3.5	LINK_SPDA_P7#	0b1	Port 7 link and speed A indication. Active low.
3.6	LINK_SPDB_P7#	0b1	Port 7 link and speed B indication. Active low.
3.7	ACT_P7#	0b1	Port 7 activity indication. Active low.

Figure 80: Scan Chain Connection Example


3.4.6 Power Supply Pins

This section provides the pin assignments for the power supply interface signals. The AC/DC specifications are defined in the PCIe CEM Specification, Rev 4.0 and amended in Section 3.10. An example connection diagram is shown in Figure 81.

Signal Name	Pin #	Baseboard Direction	Signal Description
GND	Various	GND	Ground return; a total of 46 ground pins are on the main 140-pin connector area. Additionally, a total of 4 ground pins are in the OCP bay area. Refer to Section 3.3 for details.
+12V_EDGE	B1, B2, B3, B4, B5, B6	Power	+12V main or +12V aux power; total of 6 pins per connector. The +12V_EDGE pins shall be rated to 1.1A per pin with a maximum derated power delivery of 80W.
			The +12V_EDGE power pins shall be within the rail tolerances as defined in Section 3.10 when the PWR_EN pin is driven high by the baseboard.
			The OCP NIC 3.0 card may optionally implement a fuse on +12V_EDGE to protect against electrical faults.
+3.3V_EDGE	B11	Power	+3.3V main or +3.3V aux power; total of 1 pin per connector. The +3.3V_EDGE pin shall be rated to 1.1A for a maximum derated power delivery of 3.63W.
			The +3.3V_EDGE power pin shall be within the rail tolerances as defined in Section 3.10 when the PWR_EN pin is driven high by the baseboard.
			The OCP NIC 3.0 card may optionally implement a fuse on +3.3V_EDGE to protect against electrical faults.
AUX_PWR_EN	B12	Output	Aux Power enable. Active high.
			This pin indicates that the +12V_EDGE and +3.3V_EDGE power is from the baseboard aux power rails.
			This signal shall be pulled down to GND through a 10kOhm resistor on the baseboard. This ensures the OCP NIC 3.0 card power is disabled until instructed to turn on by the baseboard.
			When low, the OCP NIC 3.0 card supplies running on aux power shall be disabled.

power" domain circuitry (or can operate in a single power domain), the AUX_PWR_EN signal serves as the primary method to enable all the card power supplies. It is expected that a baseboard will not drive signals other than SMBus and the Scan Chain to the OCP NIC 3.0 card when this signal is low. MAIN_PWR_EN OCP_B2 Output Main Power Enable. Active high. This pin indicates that the +12_EDGE and +3.3V_EDGE power is from the baseboard main power rails. Additionally, this signal notifies the OCP NIC 3.0 card the enable any power supplies that run only in the Main Power Mode. The MAIN_PWR_EN pin is driven by the baseboard. This pin must be implemented on baseboard systems, but may optionally be used by the OCP NIC 3.0 card depending on the end point silicon implementation. Depending on the end point silicon implementation. Depending on the silicon vendor, end point devices may be able to operate in a single power domain, or may require separate power domains to function. For baseboard implementations, this signal shall be pulled down to GND through a 10kOhm resistor on the baseboard. This nesures the OCP NIC 3.0 card power is disabled until instructed to turn on by the baseboard. When low, the OCP NIC 3.0 card supplies running on main power shall be disabled. When high, the OCP NIC 3.0 card supplies running on main power shall be enabled. This pin may be left as a no connect for OCP NIC 3.0				
MAIN_PWR_EN OCP_B2 Output Main Power domain, the AUX_PVR_EN signal serves as the primary method to enable all the card power supplies. It is expected that a baseboard will not drive signals other than SMBus and the Scan Chain to the OCP NIC 3.0 card when this signal is low. MAIN_PWR_EN OCP_B2 Output Main Power Enable. Active high. This pin indicates that the +12_EDGE and +3.3V_EDGE power is from the baseboard main power rails. Additionally, this signal notifies the OCP NIC 3.0 card the enable any power supplies that run only in the Main Power Mode. The MAIN_PWR_EN pin is driven by the baseboard. This pin must be implemented on baseboard systems, but may optionally be used by the OCP NIC 3.0 card the enable any power domains to function. Depending on the silicon vendor, end point devices may be able to operate in a single power domain, or may require separate power domains to function. For baseboard implementations, this signal shall be pulled down to GND through a 10kOhm resistor on the baseboard. This ensures the OCP NIC 3.0 card power is disabled until instructed to turn on by the baseboard. When low, the OCP NIC 3.0 card supplies running on main power shall be enabled. When high, the OCP NIC 3.0 card supplies running on main power shall be enabled. NIC_PWR_GOOD OCP_B1 Input NIC PWR_GODD signal is used to indicate when the aux power domain, and main power domain rails				
MAIN_PWR_EN OCP_B2 Output Main Power Enable. Active high. MAIN_PWR_EN OCP_B2 Output Main Power Enable. Active high. This pin indicates that the +12_EDGE and +3.3V_EDGE power is from the baseboard main power rails. Additionally, this signal notifies the OCP NIC 3.0 card the enable any power supplies that run only in the Main Power Mode. The MAIN_PWR_EN OCP_B2 The MAIN_PWR_EN pin is driven by the baseboard. This pin must be implemented on baseboard systems, but may optionally be used by the OCP NIC 3.0 card depending on the silicon wendor, end point divices may be able to operate in a single power domain, or may require separate power domains to function. For baseboard implementations, this signal shall be pulled down to GND through a 10kOhm resistor on the baseboard. This ensures the OCP NIC 3.0 card power is disabled until instructed to turn on by the baseboard. When low, the OCP NIC 3.0 card supplies running on main power shall be enabled. NIC_PWR_GOOD OCP_B1 Input Nic Power Good. Active high. This signal is driven by the OCP NIC 3.0 card. This pin may be left as a no connect for OCP NIC 3.0 card supplies running on main power shall be enabled.				
MAIN_PWR_EN OCP_B2 Output Main Power Enable. Active high. This pin indicates that the +12_EDGE and +3.3V_EDGE power is from the baseboard main power rails. Additionally, this signal notifies the OCP NIC 3.0 card the enable any power supplies that run only in the Main Power Mode. The MAIN_PWR_EN pin is driven by the baseboard. This pin must be implemented on baseboard systems, but may optionally be used by the OCP NIC 3.0 card depending on the end point silicon implementation. Depending on the end point silicon wendor, end point devices may be able to operate in a single power is disabled until instructed to turn on by the baseboard. This ensures the OCP NIC 3.0 card power is disabled until instructed to turn on by the baseboard. When low, the OCP NIC 3.0 card supplies running on main power shall be enabled. NIC_PWR_GOOD OCP_B1 Input NIC PWR_GOD bignal is used to indicate when the aux power Good. Active high. This signal is driven by the OCP NIC 3.0 card.				primary method to enable all the card power supplies.
MAIN_PWR_EN OCP_B2 Output Main Power Enable. Active high. This pin indicates that the +12_EDGE and +3.3V_EDGE power is from the baseboard main power rails. Additionally, this signal notifies the OCP NIC 3.0 card t enable any power supplies that run only in the Main Power Mode. The MAIN_PWR_EN pin is driven by the baseboard. This pin must be implemented on baseboard systems, but may optionally be used by the OCP NIC 3.0 card depending on the end point silicon implementation. Depending on the silicon vendor, end point devices may be able to operate in a single power domain, or may require separate power domains to function. For baseboard. This ensures the OCP NIC 3.0 card power is disabled until instructed to turn on by the baseboard. When low, the OCP NIC 3.0 card supplies running on main power shall be disabled. When low, the OCP NIC 3.0 card supplies running on main power shall be enabled. This pin may be left as a no connect for OCP NIC 3.0 card stat do not use a separate "main power" domain SVR circuitry. NIC_PWR_GOOD OCP_B1 Input NIC PWR_GOOD signal is used to indicate when the aux power domain, and main power domain, and main power domain rails				other than SMBus and the Scan Chain to the OCP NIC
power is from the baseboard main power rails. Additionally, this signal notifies the OCP NIC 3.0 card to enable any power supplies that run only in the Main Power Mode. The MAIN_PWR_EN pin is driven by the baseboard. This pin must be implemented on baseboard systems, but may optionally be used by the OCP NIC 3.0 card depending on the silicon vendor, end point devices may be able to operate in a single power domain, or may require separate power domains to function. For baseboard implementations, this signal shall be pulled down to GND through a 10kOhm resistor on the baseboard. This ensures the OCP NIC 3.0 card power is disabled until instructed to turn on by the baseboard. When low, the OCP NIC 3.0 card supplies running on main power shall be disabled. When high, the OCP NIC 3.0 card supplies running on main power shall be enabled. This pin may be left as a no connect for OCP NIC 3.0 cards that do not use a separate "main power" domain SVR circuitry. NIC_PWR_GOOD OCP_B1 Input NIC Power Good. Active high. This signal is driven by the OCP NIC 3.0 card.	MAIN_PWR_EN	OCP_B2	Output	
This pin must be implemented on baseboard systems, but may optionally be used by the OCP NIC 3.0 card depending on the end point silicon implementation. Depending on the silicon vendor, end point devices may be able to operate in a single power domain, or may require separate power domains to function.For baseboard implementations, this signal shall be pulled down to GND through a 10kOhm resistor on the baseboard. This ensures the OCP NIC 3.0 card power is disabled until instructed to turn on by the baseboard. When low, the OCP NIC 3.0 card supplies running on main power shall be disabled. When high, the OCP NIC 3.0 card supplies running on main power shall be enabled.NIC_PWR_GOODOCP_B1InputNIC Power Good. Active high. This signal is driven by the OCP NIC 3.0 card. The NIC_PWR_GOOD signal is used to indicate when the aux power domain, and main power domain rails				Additionally, this signal notifies the OCP NIC 3.0 card to enable any power supplies that run only in the Main
pulled down to GND through a 10kOhm resistor on the baseboard. This ensures the OCP NIC 3.0 card power is disabled until instructed to turn on by the baseboard.When low, the OCP NIC 3.0 card supplies running on main power shall be disabled.When high, the OCP NIC 3.0 card supplies running on main power shall be enabled.This pin may be left as a no connect for OCP NIC 3.0 cards that do not use a separate "main power" domain SVR circuitry.NIC_PWR_GOODOCP_B1InputNIC_PWR_GOOD signal is used to indicate when the aux power domain, and main power domain rails				This pin must be implemented on baseboard systems, but may optionally be used by the OCP NIC 3.0 card depending on the end point silicon implementation. Depending on the silicon vendor, end point devices may be able to operate in a single power domain, or
main power shall be disabled.When high, the OCP NIC 3.0 card supplies running on main power shall be enabled.This pin may be left as a no connect for OCP NIC 3.0 cards that do not use a separate "main power" domain SVR circuitry.NIC_PWR_GOODOCP_B1InputNIC Power Good. Active high. This signal is driven by the OCP NIC 3.0 card.The NIC_PWR_GOOD signal is used to indicate when the aux power domain, and main power domain rails				pulled down to GND through a 10kOhm resistor on the baseboard. This ensures the OCP NIC 3.0 card power is
main power shall be enabled.This pin may be left as a no connect for OCP NIC 3.0 cards that do not use a separate "main power" domain SVR circuitry.NIC_PWR_GOODOCP_B1InputNIC Power Good. Active high. This signal is driven by the OCP NIC 3.0 card.The NIC_PWR_GOOD signal is used to indicate when the aux power domain, and main power domain rails				
NIC_PWR_GOOD OCP_B1 Input NIC Power Good. Active high. This signal is driven by the OCP NIC 3.0 card. The NIC_PWR_GOOD The NIC_PWR_GOOD signal is used to indicate when the aux power domain, and main power domain rails				
the OCP NIC 3.0 card. The NIC_PWR_GOOD signal is used to indicate when the aux power domain, and main power domain rails				cards that do not use a separate "main power" domain
the aux power domain, and main power domain rails	NIC_PWR_GOOD	OCP_B1	Input	NIC Power Good. Active high. This signal is driven by
				the aux power domain, and main power domain rails

state for pow	ver up sequencii	pected NIC_PWR_GOOD ng depending on the MAIN_PWR_EN.
AUX_PWR _EN	MAIN_PWR _EN	NIC_PWR_GOOD Nominal Steady State Value
0	0	0
1	0	1
0	1	Invalid
1	1	1
Power doma good indicati to isolate the example imp When low, th 3.0 card pow tolerances of ramp times (For baseboar platform I/O indication. Th with a 100kC a false powe present. For OCP NIC NIC 3.0 card	in should also co on to the NIC_P domains. Refer lementation. his signal shall in er supplies are in r are in a fault co TAPL and TMPL) ha rds, this pin may hub as a NIC po his signal shall b bhm resistor on r good indication 3.0 cards this sig	be connected to the wer health status e pulled down to ground the baseboard to prevent n if no OCP NIC 3.0 card is gnal shall indicate the OCP for the given power
discrete pow When high, t available for	er good monito his signal should NC-SI communid	ed power good tree or a r output. d be treated as V _{REF} is cations. Refer to timing SP0222 specification for

Figure 81: Example Power Supply Topology

3.4.7 USB 2.0 (A68/A69) – Primary Connector Only

This section provides the pin assignments for the USB 2.0 interface signals. USB 2.0 is only defined for operation on the Primary Connector. USB 2.0 may be used for applications with end point silicon that requires a USB connection to the baseboard. Implementations may also allow for a USB-Serial or USB-JTAG translator for serial or JTAG applications. If multiple USB devices are required, an optional USB hub may be implemented on the OCP NIC 3.0 card. Downstream device discovery is completed as part of the bus enumeration per the USB 2.0 specification. A basic example connection diagram is shown in Figure 82. An example depicting USB-Serial and USB-JTAG connectivity with an USB hub is shown in Figure 83.

Signal Name	Pin #	Baseboard Direction	Signal Description
USB_DATn	A68	Bi-	USB 2.0 Differential Pair – Primary Connector Only.
USB_DATp	A69	directional	
			A baseboard implementation shall provide a USB
			connection to the OCP NIC 3.0 primary connector.
			NIC implementations that require USB shall connect the bus to the end point silicon. This pin shall be left as a no connect if it is not used on the OCP NIC 3.0 card.
			The USB pins shall be directly connected between the end point silicon or USB device and the card gold fingers.

Table 28: Pin Descriptions – USB 2.0 – Primary Connector only

The USB interface shall be based on a $V_{BUS} = 3.3V$. Both the baseboard and NIC device shall be capable of driving signals using 3.3V logic. The OCP NIC 3.0 card may implement protection diodes and is up to the adapter vendor for placement.
To prevent leakage paths, a baseboard shall not use USB pull up resistors on the USB_DATp/n lines to indicate the bus data transmission rate. If used, pull up resistors shall only exist on the NIC side.

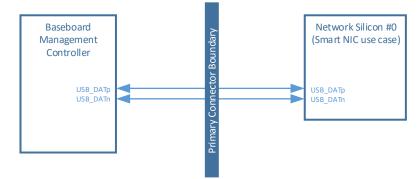
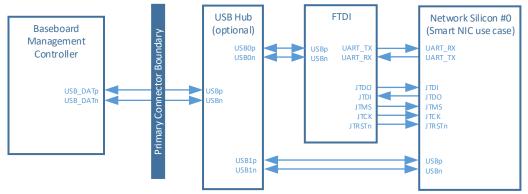
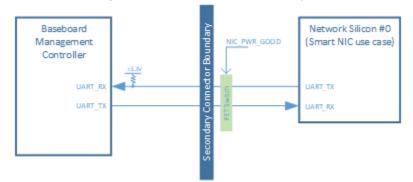



Figure 83: USB 2.0 Connection Example – USB-Serial / USB-JTAG Connectivity



3.4.8 UART (A68/A69) – Secondary Connector Only

This section provides the pin assignments for the UART interface signals. UART is only defined for operation on the Secondary Connector. The UART pins may be used with end point silicon that require console redirection over the baseboard – such as Large Form-Factor SmartNICs. An example connection diagram is shown in Figure 84.

Signal Name	Pin #	Baseboard Direction	Signal Description
UART_RX	A68	Input	UART Receive. +3.3V signaling levels. Secondary Connector Only.
			A baseboard implementations shall provide a UART receive connection from the OCP NIC 3.0 connector. The UART_RX pin shall be pulled up to $+3.3V_{AUX}$ on the baseboard to prevent erroneous data reception when the OCP NIC 3.0 card is powered off or not present.
			NIC implementations that require a UART shall connect the network silicon UART_RX pin to the UART_TX pin on the OCP NIC 3.0 connector. This pin shall be left as a no connect if it is not used on the OCP NIC 3.0 card.
			The UART_RX pin shall be buffered on the NIC to prevent a leakage path into unpowered silicon when the card is in ID Mode. The buffer may be controlled via a local "Power Good" indicator.
UART_TX	A69	Output	UART Transmit. +3.3V signaling levels. Secondary Connector Only.
			A baseboard implementation shall provide a UART transmit connection to the OCP NIC 3.0 connector.
			NIC implementations that require a UART shall connect the UART_TX pin from the OCP NIC 3.0 connector to the target silicon UART_RX pin. This pin shall be left as a no connect if it is not used on the OCP NIC 3.0 card.
			The UART_TX pin shall be buffered on the NIC to prevent a leakage path into unpowered silicon when the card is in ID Mode. The buffer may be controlled via a local "Power Good" indicator.

Table 29: Pin Descriptions – UART – Secondary Connector Only

Figure 84: UART Connection Example

3.4.9 RFU[1:2] Pins

This section provides the pin assignments for the RFU[1:2] interface signals.

Signal Name	Pin #	Baseboard Direction	Signal Description
RFU1, N/C	B68	Input /	Reserved future use pins. These pins shall be left as
RFU2, N/C	B69	Output	no connect. These pins may also be used as a
			differential pair for future implementations.
			The RFU[1:2] pins are defined on both the Primary and the Secondary Connector in this release of the OCP NIC 3.0 specification. A total of two reserved pins are available for the SFF; a total of four reserved pins are available the LFF.

Table 30: Pin Descriptions – RFU[1:2]

3.5 PCIe Bifurcation Mechanism

OCP NIC 3.0 baseboards and OCP NIC 3.0 cards support multiple bifurcation combinations. Single socket baseboards with a single or multiple root ports, as well as a multi-socket baseboards with a single or multiple root ports are supported. The bifurcation mechanism also supports OCP NIC 3.0 cards with a single or multiple end points. These features are accomplished via I/O pins on the Primary and Secondary Connector:

- PRSNTA#, PRSNTB[3:0]#. The PRSNTA# pin shall connect to the PRSNTB# pins as a hard coded value on the OCP NIC 3.0 card. The encoding of the PRSNTB[3:0]# pins allows the baseboard to determine the PCIe Links available on the OCP NIC 3.0 card.
- BIF[3:0]#. The BIF# pin states shall be controlled by the baseboard to allow the baseboard to
 override the default end point bifurcation for silicon that support bifurcation. Additional
 combinatorial logic is required and is specific to the card silicon. The combinatorial logic is not
 covered in this specification. The BIF[3:0]# pins may optionally be hardcoded for baseboards
 that do not require a dynamic bifurcation override.

A high level bifurcation connection diagram is shown in Figure 74.

3.5.1 PCIe OCP NIC 3.0 Card to Baseboard Bifurcation Configuration (PRSNTA#, PRSNTB[3:0]#)

The OCP NIC 3.0 card to baseboard configuration mechanism consists of four dual use pins (PRSNTB[3:0]#) on the OCP NIC 3.0 card and a grounded PRSNTA# pin on the baseboard. These pins provide card presence detection as well as mechanism to notify the baseboard of the pre-defined PCIe lane width capabilities. The PRSNTB[3:0]# pins are pulled up to +3.3V_EDGE on the baseboard and are active low signals. A state of 0b1111 indicates that no card is present in the system. Depending on the capabilities of the OCP NIC 3.0 card, a selection of PRSNTB[3:0]# signals may be strapped to the PRSNTA# signal and is pulled low by the baseboard. The encoding of the PRSTNB[3:0]# bits is shown in Table 31 for x16 and x8 PCIe cards.

3.5.2 PCIe Baseboard to OCP NIC 3.0 Card Bifurcation Configuration (BIF[2:0]#)

Three signals (BIF[2:0]#) are driven by the baseboard to notify requested bifurcation on the OCP NIC 3.0 card silicon. This allows the baseboard to set the lane configuration on the OCP NIC 3.0 card that supports multiple bifurcation options.

For example, a baseboard that has four separate hosts that support a 4 x4 connection, should appropriately drive the BIF[2:0]# pins per Table 31 and indicate to the OCP NIC 3.0 card silicon to setup a 4 x4 configuration.

As previously noted, the BIF[2:0]# signals require additional combinatorial logic to decode the BIF[2:0]# value and appropriately apply it to the end-point silicon. The combinatorial logic is not covered in the specification as its implementation is specific to the vendor silicon used.

3.5.3 PCIe Bifurcation Decoder

The combination of the PRSNTB[3:0]# and BIF[2:0]# pins deterministically sets the PCIe lane width for a given combination of baseboard and OCP NIC 3.0 cards. Table 31 shows the resulting number of PCIe links and its width for known combinations of baseboards and OCP NIC 3.0 cards.

***Note:** The baseboard must disable PCIe lanes during the initialization phase if the number of detected PCIe links are greater than what is supported on the baseboard to prevent a nondeterministic solution. For example, if the baseboard only supports a 1 x16 connection, and the OCP NIC 3.0 card only supports a 2 x8 connection, the baseboard must disable PCIe lanes 8-15 to prevent any potential LTSSM issues during the discovery phase.

						Single Host	Host			RSVD	Dual Host	Guad Host	Quad Host	
			Host	1 Host	1 Host	1 Host	1 Host	1 Host	1 Host	RSVD	2 Hosts	4 Hosts	4 Hosts	
			Host CPU Sockets	1 Upstream Socket	1 Upstream Socket	eam Socket 1 Upstream Socket 1 Upstream Socket 2 Upstream Sockets 4 Upstream Sockets	2 Upstream Sockets	4 Upstream Sockets	4 Sockets (1 Socket per Host) First 8 PCIe lanes	RSVD	RSVD 2 Upstream Sockets 4 Upstream Sockets (1 Socket per Host) (1 Socket per Host)		4 Sockets (1 Socket per Host) First 8 PCle lanes	
20	Network Card – Supported PCIe	Network Card - Supported PCle Configurations	Total PCIe Links	1Link (No Bifurcation)	1 or 2 Links	1, 2, or 4 Links	2 Links	4 Links	4 x2 links	RSVD	2 Links	4 Links	4 x2 links	
			System Support	5	1x16, 1x8, 1x4, 1x2, 1x1	1x16,1x8,1x4,1x2,1x1	1×8,1×4,1×2,1×1			RSVD				
					2H8, 2H4, 2H2, 2H1	2 x8, 2 x4, 2 x2, 2 x1	2 x8, 2 x4, 2 x2, 2x1				2 x8, 2 x4, 2 x2, 2 x1			
Minimum						4 × 4, 4 × 2, 4 × 1		4 ×4, 4 ×2, 4×1	4 x2, 4 x1			4 x4, 4 x2, 4 x1	4 82, 4 81	
ired			System Encoding BIF[2:0]#	00000	00000	00000	06001	0P010	0b011	0b100	0b101	0b110	0b111	
Card C Edge N	Card Short S Name M	Incation	n-Card Encoding B(3:0)#	,	1	1			ı					
n/a N	tent	Card Not Present	061111	RSVD - Card not present in the system	the system									
		1x8,1x4,1x2,1x1	0b1 110	1×8	1×8	1×8	1×8	1×4	1×2	•	1×8	1×4	1*2	-
20	1x8 Option A						(Socket 0 only)	(Socket 0 only)	(Socket 0 only)		(Host 0 only)	(Host 0 only)	(Host 0 only)	
20	1. 4.t	1x4,1x2,1x1	0b1110	1x4	184	1x4	1 ₁₄ 4 (Socket 0 only)	1x4 (Socket 0 only)	1x2 (Socket 0 only)		1 _x 4 (Host 0 only)	1 _% 4 (Host 0 only)	1x2 (Host 0 only)	
50	1 24	182, 181	0b1 110	182	1×2	1+2	1x2 (Socket 0 only)	1x2 (Socket 0 only)	1x2 (Socket 0 only)	1	1x2 (Host 0 only)	1x2 (Host 0 only)	1x2 (Host 0 only)	
20		1×1	0b1 110	14	181	1×1	1x1 (Socket 0 only)	1x1 (Socket 0 only)	1k1 (Socket 0 only)		1x1 (Host 0 only)	1x1 (Host 0 only)	1 _k 1 (Host 0 only)	
20	1x8, 1x4, 1x2, 1 1x8 Option B 2x4, 2x2, 2x1	1×8,1×4,1×2,1×1 2×4,2×2,2×1	0b1 101	3%	8×F	8×	1x8 (Socket 0 only)	2 84	2 x2 (Socket 0 & 2 only)	1	1x8 (Host 0 only)	2×4	2 x/2 (Host 0 & 2 only)	
	2 x8, 2 x4, 2 x2 2 x8 Option B 4 x4, 4 x2, 4 x1	2x8,2x4,2x2,2x1 4x4,4x2,4x1	0b11 01	1×8*	2.*8	2,8	2,8	4 .,4	2 x2 (Socket 0 & 2 only)		2.48	4 x4	2 x2 (Host 0 & 2 only)	
20	1 22 x8 Option D	1x8,1x4 2x4, 1x8 Option D 4 x2 (Firist 8 lanes), 4 x1	0b1 100	<u>8</u>	1.88		1x8 (Socket 0 only)	2 44	4 H2		1x8 (Host 0 only)	2x4	4.42	
14	x16 Option 0 4	1x16,1x8,1x4 2x8,2x4, 1x16 Dotion D 4x4 4x2 (Erst 8 Janes) 4x1	0b1 100	1×16	1×16	1×16	2,48	4 84	4x2		2**8	4.44	4#2	
9	RSVD	RSVD	0b1011 F	RSVD - The encoding of 0	b1011 is reserved due to in	he encoding of 0b1011 is reserved due to insufficient spacing between PRSNTA and PRSNTB2 pin to provide positive card identification.	n PRSNTA and PRSNTB2	pin to provide positive card	identification.					
22	2.84	2x4, 2x2, 2x1 1x4, 1x2, 1x1	051 010	1×4	4×F	2.44	1x4 (Socket 0 only)	2 44	2 x2 (Socket 0 & 2 only)		1x4 (Host 0 only)	2x4	2 x/2 (Host 0 & 1 only)	
Ŋ	4 0 4 0 1	4 x2 (First 8 lanes), 4 x1 2 x2, 2 x1 1 x2, 1 x1	061 001	142	142	242	1x2 (Socket 0 only)	2 + 2	4 82	1	1x2 (Host 0 only)	242	4 #2	
RSVD R	RSVD R	RSVD for future x8 encoding	0P1000											
40	1: 1×16 Option A	1×1	060111	1×16	1×16	1x16	1x8 (Socket 0 only)	1x4 (Socket 0 only)	1x2 (Socket 0 only)		1x8 (Host 0 only)	1x4 (Host 0 only)	1x2 (Host 0 only)	
40	2 x8 Option A		0b0 110	1×8*	2×8	2 x8	2.48	2 x4 (Socket 0 & 2 only)	2 x2 (Socket 0 & 2 only)		2×8	2 x4 (Host 0 & 2 only)	1x2 (Host 0 & 1only)	
4C 1	x16 Option B 2	1x16 Option B 2x8, 2x4, 2x2, 2x1 1x16 Option B 2x8, 2x4, 2x2, 2x1	060101	1×16	1x16	1x16	2 x8	2 x4 (Socket 0 & 2 only)	1x2 (Socket 0 only)		2×8	2 x4 (Host 0 & 2 only)	2 Host 0 & 1 only)	
1	1x16,1x8,1x8,1x4,1x4, 2x8,2x4,2x2, 1x16 Option C 4x4,4x2,4x1	1x16, 1x8, 1x4 2x8, 2x4, 2x2, 2x1 4x4, 4x2, 4x1	060100	1x16	1x16	1x16	2,48	4 x4	2 x2 (Socket 0 & 2 only)		2 x 8	4 144	2 x/2 (Host 0 & 1 only)	
	4	к2, 4 к1	060 011	184	2 H4*	4 x4	2 x4 (EP 0 and 2 only)	4 x4	4 x2 (Socket 0 & 2 only)		2 x4 (EP 0 and 2 only)	4 84	4 x2 (Host 0 & 1 only)	
			0b0 010						1		,			
BSVD BSUD			00001							•				
	RSVD R	RSVD	000000		1									

Table 31: PCIe Bifurcation Decoder for x16 and x8 Card Widths

3.5.4 Bifurcation Detection Flow

The following detection flow shall be used to determine the resulting link count and lane width based on the baseboard and OCP NIC 3.0 card configurations.

- 1. The baseboard shall read the state of the PRSNTB[3:0]# pins. An OCP NIC 3.0 card is present in the system if the resulting value is not 0b1111.
- 2. Firmware determines the OCP NIC 3.0 card PCIe lane width capabilities per Table 31 by reading the PRSNTB[3:0]# pins.
- 3. The baseboard reconfigures the PCIe bifurcation on its ports to match the highest common lane width and lowest common link count on the card.
- 4. For cases where the baseboard request a link count override (such as requesting a 4-host baseboard requesting 4 x4 operation on a supported card that would otherwise default to a 2 x8 case), the BIF[0:2]# pins shall be asserted as appropriate. Asserting the BIF[0:2]# pins assumes the OCP NIC 3.0 card supports the requested link override.
- 5. The BIF[0:2]# pins must be in their valid states upon the assertion of AUX_PWR_EN.
- 6. AUX_PWR_EN is asserted. An OCP NIC 3.0 card is allowed a max ramp time T_{APL} between AUX_PWR_EN assertion and NIC_PWR_GOOD assertion.
- MAIN_PWR_EN is asserted. An OP NIC 3.0 card is allowed a max ramp time T_{MPL} between MAIN_PWR_EN assertion and NIC_PWR_GOOD reassertion. For cards that do not have a separate AUX and MAIN power domain, this state is an unconditional transition to NIC_PWR_GOOD
- 8. The PCIe REFCLK shall become valid a minimum of 100µs before the deassertion of PERST#.
- 9. PERST# shall be deasserted >1s after NIC_PWR_GOOD assertion as defined in Figure 94. Refer to Section 3.12 for timing details.

3.5.5 PCIe Bifurcation Examples

For illustrative purposes, the following figures show several common bifurcation permutations.

3.5.5.1 Single Host (1 x16) Baseboard with a 1 x16 OCP NIC 3.0 Card (Single Controller)

Figure 85 illustrates a single host baseboard that supports x16 with a single controller OCP NIC 3.0 card that also supports x16. The PRSTNB[3:0]# state is 0b0111. The BIF[2:0]# state is 0b000 to set the card as a 1x16 for bifurcation capable controllers. For controllers without bifurcation support, the BIF[2:0] pin connections are not required on the card. The PRSNTB encoding notifies the baseboard that this card is only capable of 1 x16. The single host baseboard determines that it is also capable of supporting 1 x16. The resulting link width is 1 x16.

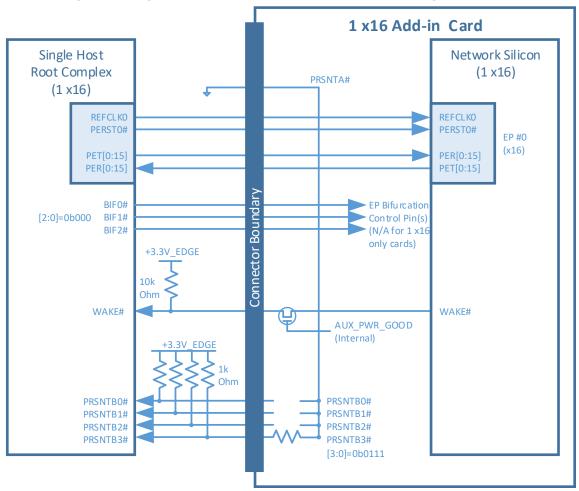
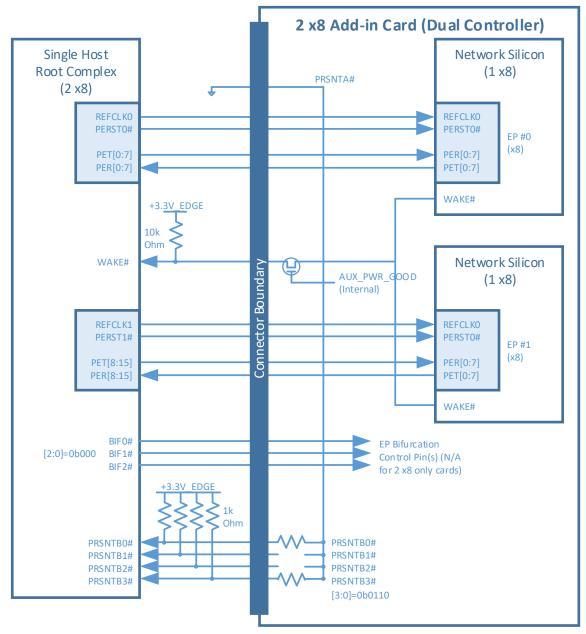
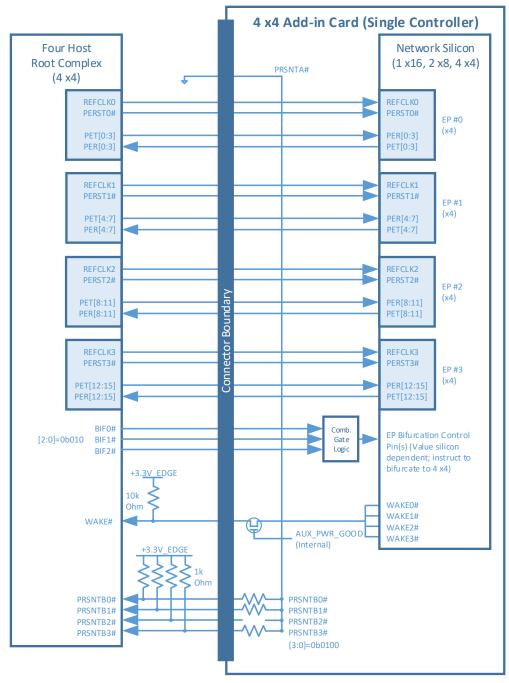
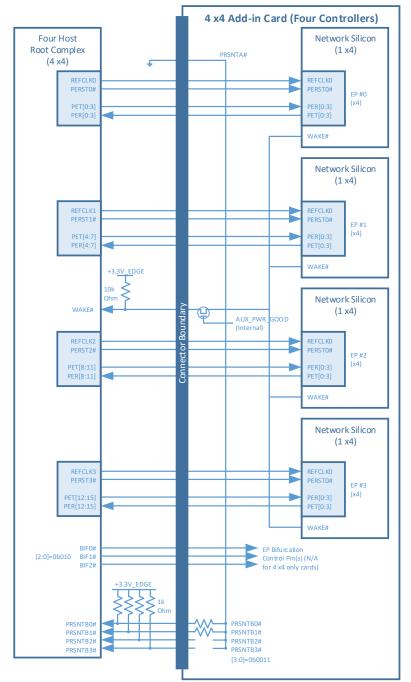



Figure 85: Single Host (1 x16) and 1 x16 OCP NIC 3.0 Card (Single Controller)

3.5.5.2 Single Host (2 x8) Baseboard with a 2 x8 OCP NIC 3.0 Card (Dual Controllers)


Figure 86 illustrates a single host baseboard that supports 2 x8 with a single controller OCP NIC 3.0 card that also supports 2 x8 with dual controllers. The PRSTNB[3:0]# state is 0b0110. The BIF[2:0]# state is 0b000 in this example because the network card only supports a 2x8. The PRSNTB encoding notifies the baseboard that this card is only capable of 2 x8. The single host baseboard determines that it is also capable of supporting 2 x8. The resulting link width is 2 x8.

3.5.5.3 Quad Host (4 x4) Baseboard with a 4 x4 OCP NIC 3.0 Card (Single Controller)


Figure 87 illustrates a quad host baseboard that supports 4 x4 with a single controller OCP NIC 3.0 card that supports 1 x16, 2 x8 and 4 x4. The PRSTNB[3:0]# state is 0b0100. The BIF[2:0]# state in this example is 0b010 as the end point network controller is forced to bifurcate to 4 x4. The PRSNTB encoding notifies the baseboard that this card is only capable of 1 x16, 2 x8 and 4 x4. The quad host baseboard determines that it is also capable of supporting 4 x4. The resulting link width is 4 x4.

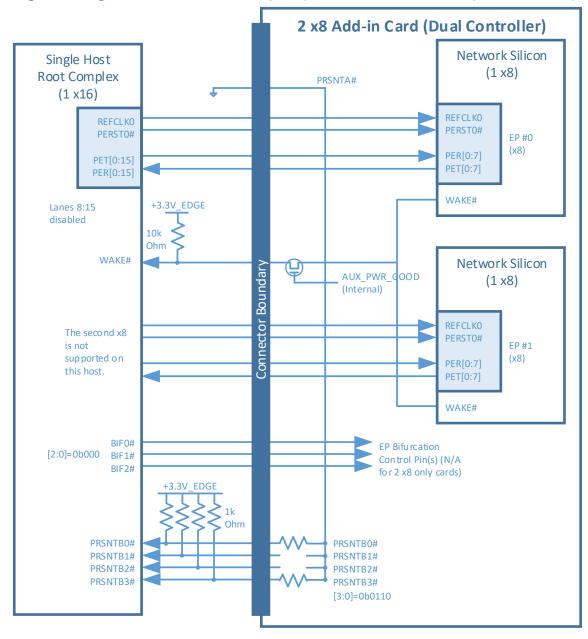

3.5.5.4 Quad Host (4 x4) Baseboard with a 4 x4 OCP NIC 3.0 Card (Quad Controllers)

Figure 88 illustrates a quad host baseboard that supports 4 x4 with a quad controller OCP NIC 3.0 card that supports 4 x4. The PRSTNB[3:0]# state is 0b0011. The BIF[2:0]# state is a don't care value as there is no need to instruct the end-point network controllers to a specific bifurcation (each controller only supports 1x4 in this example). The PRSNTB encoding notifies the baseboard that this card is only capable of 4 x4. The quad host baseboard determines that it is also capable of supporting 4 x4. The resulting link width is 4 x4.

3.5.5. Single Host (1 x16, no Bifurcation) Baseboard with a 2 x8 OCP NIC 3.0 Card (Dual Controller) Figure 89 illustrates a single host baseboard that supports 1 x16 with a dual controller OCP NIC 3.0 card that supports 2 x8. The PRSTNB[3:0]# state is 0b0110. The BIF[2:0]# state is 0b000 as each silicon instance only supports 1x8. The PRSNTB encoding notifies the baseboard that this card is only capable of 2 x8. The quad host baseboard determines that it is capable of 1x 16, but down shifts to 1 x8. The resulting link width is 1 x8 and only on endpoint 0.

3.6 PCIe Clocking Topology

The OCP NIC 3.0 specification allows for up to four PCIe REFCLKs on the Primary Connector and up to two PCIe REFCLKs on the Secondary Connector. In general, the association of each REFCLK is based on the PCIe Link number on a per connector basis and is shown in Table 32. Cards that implement both the Primary and Secondary Connectors have a total of up to 6 REFCLKs.

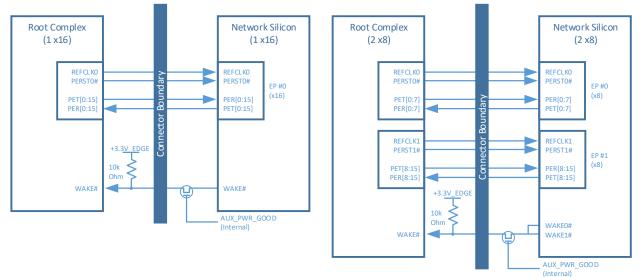

REFCLK #	Description	Availability (Connector)
REFCLKO	REFCLK associated with Link 0.	Primary and Secondary Connectors.
REFCLK1	REFCLK associated with Link 1.	Primary and Secondary Connectors.
REFCLK2	REFCLK associated with Link 2.	Primary Connector only.
REFCLK3	REFCLK associated with Link 3.	Primary Connector only.

Table 32: PCIe Clock Associations

For each OCP NIC 3.0 card, the following REFCLK connection rules must be followed:

- For a 1 x16 capable OCP NIC 3.0 card, REFCLK0 shall be used for lanes [0:15].
- For a 2 x8 capable OCP NIC 3.0 card, REFCLK0 shall be used for lanes [0:7] and REFCLK1 shall be used for lanes [8:15].
 - For a 4 x4 capable OCP NIC 3.0 card, REFCLK0 shall be used for lanes [0:3], REFCLK1 shall be used for lanes [4:7], REFCLK2 shall be used for lanes [8:11] and REFCLK3 shall be used for lanes [12:15]. Pins for REFCLK2 and REFCLK3 are located on the 28-pin OCP bay.

Figure 90: PCIe Interface Connections for 1 x16 and 2 x8 OCP NIC 3.0 Cards

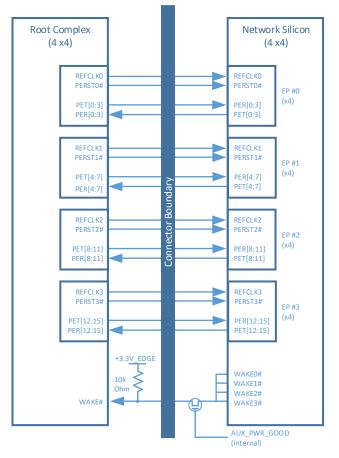


Figure 91: PCIe Interface Connections for a 4 x4 OCP NIC 3.0 Card

3.7 PCIe Bifurcation Results and REFCLK Mapping

For the cases where the baseboard and OCP NIC 3.0 card bifurcation are permissible, this section enumerates all of the supported PCIe link, lane and REFCLK mappings for each supported configuration. The bifurcation decoder is shown in Section 3.5.3.

	Bingle H	fost, Single Upst	Dingle Host, Dingle Upstream Docket, Une Upstream Link, no biturcation	(, no biturcation		1x16, 1x8, 1x4, 1x2, 1x1					ł	-	Key: C	Ils show.	Key: Cells shown as Link/Lane (e.g. Lk 0 / Ln 0); HD = Host Disabled Lane	(Lane le	ъ Ко	En () H	D= Host	Disable	dLane			
	Vidth Card	Card Short Name	Supported Bifurcation Modes	Add-in-Card Encoding PRSNTB(3:0)#	Host	Upstream Devices	Upstream Links	BIF [2:0]#	Resulting Link	<u>-</u> ۲	ר יי יי	n 2 L	,3 L	<u>۲</u>	<u>ک</u> د	۲ و	Ē ~	<u>ال</u>	۲ ۲	۲ ۲	Ln 12	Ln 13	۲ ۲	<u>ج</u>
	nla	Not Present	Card Not Present	0b1111	1Host	1 Upstream Socket	1Link	00000																
	2	1×8 Option A		0b1 110	1Host	1Upstream Socket	1 Link	00000	-1×8		<u> </u>	<u> </u>	<u> </u>				d P							
	5	1×4	ŀ	0b1 110	1Host	1Upstream Socket	1 Link	00000	1x4		<u> </u>		0° °			<u> </u>								
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	50	1,42	1x2,1x1	0b1 110	1Host		1Link	00000	142		о, г 1 г.													
	2	1×1	181	0b1 110	1Host	1Upstream Socket	1Link	00090		с с Ч														
	50	1x8 Option B	1x8,1x4,1x2,1x1 2x4,2x2,2x1	0b1 101	1Host	1Upstream Socket	1Link	00090	1%8		<u> </u>	<u> </u>	<u> </u>		<u> </u>	<u> </u>			모	모	모	모	모	모
	4	2 x8 Option B	2 x8, 2 x4, 2 x2, 2 x1 4 x4, 4 x2, 4 x1	0b1 101	1Host	1 Upstream Socket	1 Link	00090	1×8.											문	모	모	문	모
	S	1×8 Option D	1x8,1x4 2x4, 4x2(First8lanes),4x1	0P1 100	1Host	1 Upstream Socket	1 Link	00000	1×8								d P							
	9	1×16 Option D	1x16,1x8,1x4 2x8,2x4, 4x4,4x2(First 8lanes),4x1	0b1 100	1Host	1 Upstream Socket	1 Link	00000													СК () ГР 13	Lk 0, LH 13	Lk 0, Lh 3	ЦК () ГР ()
$ 2 \times 4 \times 2 \times 2 \times 2 \times 3 \times 2 \times 2 \times 3 \times 3$		RSVD	RSVD	0b1011	1Host	1Upstream Socket	1Link	00000																
	2	2 x4	2 H4, 2 H2, 2 H1 1 H4, 1 H2, 1 H1	0b 1010	1Host	1Upstream Socket	1Link	00090	1x4	<u> </u>	<u> </u>		ڻ د و											
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ېر ۲	C., K	4 x2 (First 8 lanes), 4 x1 2 x2, 2 x1 12 14	0b1 001	1Host	1 Upstream Socket	1Link	00090			رد ا 1 رو													
		RSVD	RSVD for future x8 encoding	0b1000	1Host		1Link	00000	,			+	+	-	+									
$ \frac{2 \cdot 62 \cdot 44 \cdot 2 \cdot 23 \cdot 1}{1 \cdot 60 \cdot 10 } \ \ \ \ \ \ \ \ \ \ \ \ \$	4	1×16 Option A		060111	1Host		1Link	00090			<u> </u>			-		<u> </u>		-			13 () 12 ()	ц т С Ц С С	4 ° 4 °	Ь, С, 5 ()
	4	2 x8 Option A		060110	1Host	1 Upstream Socket	1Link	00090												문	모	모	모	모
	4	1×16 Option B	1x16,1x8,1x4,1x2,1x1 1 2x8,2x4,2x2,2x1	060101	1Host	1 Upstream Socket	1 Link	00090													Ч () Р ()		4 ° 7 ⊂	L A C
4x4 4x4.4.2.4.1 0.001 1Host UpstreamSocket Unit 0.000 Uit Li0 Li0 Li0 Li0 Li Li2 Li3 HD H	4	1×16 Option C	1x16,1x8,1x4 2x8,2x4,2x2,2x1 4x4,4x2,4x1	060100	1Host	1 Upstream Socket	1 Link	00000													СК () СЧ 13 ()	5 5 6	4 ¢	Ъ, 5 С, 5
RSVD RSVD BSVD 0b0010 1Hst 1Upstream Socket 1Link 0b000 RSVD RSVD 0b0000 1Hst 1Upstream Socket 1Link 0b000 RSVD RSVD 1Hst 1Upstream Socket 1Link 0b000	4	4 x4	4 x4, 4 x2, 4 x1	060 011	1Host	1 Upstream Socket	1 Link	00090												문	모	모	문	모
RSVD RSVD 0b0001 1Host 1Upstream Socket 1Link RSVD RSVD 0b0000 1Host 1Upstream Socket 1Link		RSVD	RSVD	0b0 010	1Host	1Upstream Socket	1Link	00000																
RSVD RSVD 000000 1Host 1Upstream Socket 1Link		RSVD	RSVD	0b0 001	1Host	1Upstream Socket	1Link	00000																
		RSVD	RSVD	000000	1Host	1 Upstream Socket	1Link	0P000				-	-			-	_							

Table 33: Bifurcation for Single Host, Single Socket and Single Upstream Link (BIF[2:0]#=0b000)

The second sec
RSVD RSVD 0b0010 1Host 1UpstreamSocket 1or2Links 0b000
Deuro Deuro otonoit 111-2012 12121 121212 01000

Table 34: Bifurcation for Single Host, Single Socket and Single/Dual Upstream Links (BIF[2:0]#=0b000)

Table 35: Bifurcation for Single Host, Single Socket and Single/Dual/Quad Upstream Links

International state International state <thinternate< th=""> International state <th< th=""><th>06000 1x16 Lk0, Lk0, Lk0, Lk0, Lk0, Lk0, Lk0, Lk0,</th><th>Image: Construction Image: Constance Image: Constance</th><th>06000 -</th></th<><th>06000</th><th>06000 1x6 Lt0 Lt0 Lt0 Lt0 Lt0 Lt0 Lt0 Lt0 Lt0 Lt0</th><th>Ubdud Ln0 Ln1 Ln2 Ln3 Ln4 Ln5 Ln6 Ln6 Ln0 Ln0 Ln1 Ln2 Ln3 Ln4 Ln5 Ln6 Ln0 Ln1 Ln1 Ln1 Ln1 Ln2 Ln3 Ln4 Ln5 <thl15< th=""> <thl15< th="" th<=""><th>1.2.xo4 0b000 1x1 Lk0, Links 0b000 1x1 Lk0, Links 0b000 1x1 Lx0 1x2 1x2 1x2 1x2 1x2 1x2 1x2 1x2 1x2 1x2</th><th>06000 1x2 Lk0, Lk0, Lk1</th><th>1 06000 1x4 Lv0 Lv0 Lv0 Lv0 Lv0 Lv0 Lv0 Lv0 Lv0 Lv0</th><th></th><th></th><th>Upstream Bir Linss 12:01ª ResultingLink Ln0 Ln1 Ln2 Ln3 Ln4 Ln5 Ln6 Ln7 Ln8 Ln3 Ln14 Ln13 Ln14 Ln15</th><th>Key: Cells shown as Link/Lane (e.g. Lk 0/1Ln 0); HD = Host Disabled Lane</th><th></th></thl15<></thl15<></th></thinternate<>	06000 1x16 Lk0, Lk0, Lk0, Lk0, Lk0, Lk0, Lk0, Lk0,	Image: Construction Image: Constance Image: Constance	06000 -	06000	06000 1x6 Lt0	Ubdud Ln0 Ln1 Ln2 Ln3 Ln4 Ln5 Ln6 Ln6 Ln0 Ln0 Ln1 Ln2 Ln3 Ln4 Ln5 Ln6 Ln0 Ln1 Ln1 Ln1 Ln1 Ln2 Ln3 Ln4 Ln5 Ln5 <thl15< th=""> <thl15< th="" th<=""><th>1.2.xo4 0b000 1x1 Lk0, Links 0b000 1x1 Lk0, Links 0b000 1x1 Lx0 1x2 1x2 1x2 1x2 1x2 1x2 1x2 1x2 1x2 1x2</th><th>06000 1x2 Lk0, Lk0, Lk1</th><th>1 06000 1x4 Lv0 Lv0 Lv0 Lv0 Lv0 Lv0 Lv0 Lv0 Lv0 Lv0</th><th></th><th></th><th>Upstream Bir Linss 12:01ª ResultingLink Ln0 Ln1 Ln2 Ln3 Ln4 Ln5 Ln6 Ln7 Ln8 Ln3 Ln14 Ln13 Ln14 Ln15</th><th>Key: Cells shown as Link/Lane (e.g. Lk 0/1Ln 0); HD = Host Disabled Lane</th><th></th></thl15<></thl15<>	1.2.xo4 0b000 1x1 Lk0, Links 0b000 1x1 Lk0, Links 0b000 1x1 Lx0 1x2	06000 1x2 Lk0, Lk0, Lk1	1 06000 1x4 Lv0			Upstream Bir Linss 12:01ª ResultingLink Ln0 Ln1 Ln2 Ln3 Ln4 Ln5 Ln6 Ln7 Ln8 Ln3 Ln14 Ln13 Ln14 Ln15	Key: Cells shown as Link/Lane (e.g. Lk 0/1Ln 0); HD = Host Disabled Lane	
Image: light of the state of the s		-								-	-		2 × 0, 2 × 4, 2 × 2, 2 × 1 4 × 4, 4 × 2, 4 × 1	1x16,1x8,1x4,1x2,1x1 2u8 2u4 2u2 2u1
Act Strong Stronge Uper ream Links Colder, One, Two or Four Upstream Links Rand Short Supported Bifurcation, Random Add-in-Card Name Bogenered Bifurcation, Name Encoding Notesearc Card Short, Supported Bifurcation, Name Encoding Not Preserv Doi:10 Doi:10 14 14.14.2.14.1 Doi:10 148 14.4.4.4.4.4.4 Doi:10 248 244.2.4.2.2.4.1 Doi:10 148 244.2.4.2.4.1 Doi:10 244 144.14.2.14.1 Doi:10 244 144.14.2.14.1 Doi:00 244 144.14.2.14.1 Do:10	1Host	1Host	1Host 1Host 1Host 1Host 1Host	1Host 1Host	1Host	1Host	1Host	1Host	1Host	1Host	1Host	Host		
Docker, One, Tro on Four U Docker, One, Tro on Four U Card Short Supported Bifurcation Name Card Short Name Nach Nach Nach Sand Sand Sand Nach Sand Sand Sand Nach Sand Sand Sand Nach Nach Nach Nach Sand Sand Sand Sand Sand Sand	060 011	060100	0b-000 0b-0111 0b-0101 0b-0101 0b-0100	05-1011 06-1010	0b11 00	0b1 101	0b1 110	0b1 110	0b1110	0b1110	061111	Add-in-Card Encoding PRSNTB(3:0)#	pstream Links	
ost. Single Upst Card Short Not Present 1x8 Option A 1x8 Option B 1x8 Option B 2x8 Option B 1x16 Option D 1x16 Option A 1x16 Option A 1x16 Option A 1x16 Option A 1x16 Option A 1x16 Option A	1x15, 1x8, 1x4 2x8, 2x4, 2x2, 2x1 4x4, 4x2, 4x1 4x4, 4x2, 4x1	2 × × × × × × × × × × × × × × × × × × ×	BSVD for turne x8 encoding 1x16, 1x6, 1x4, 1x2, 1x1 2x8, 2x4, 2x2, 2x1 1x16, 1x8, 1x4, 1x2, 1x1 1x16, 1x8, 1x4, 2x2, 2x1 1x16, 1x8, 1x4, 1x2, 1x1	2 x8, 2 x4, 4 x4, 4 x2 (First 8 lanes), 4 x1 R5VD 2 x4, 2 x2, 2 x1 1 x1 1 x2 x1	1x8, 1x4 2x4, 4 x2 (First 8lanes), 4 x1	244,242,241 248,244,242,241 444,442,441	1x1	1x2,1x1		<u> </u>	Card Not Present	Supported Bifurcation Modes	ream Socket, One, Two or Four U	
	1x16 Option C 44	1×10 Option E 1×16 Option C	RSVD 1x16 Option A 2x8 Option A 1x16 Option B	1x16 Option D RSVD	1×8 Option D	1x8 Option B 2x8 Option B	1x1	1 1×2	1x0 uption #	1×8 Option A	Not Present	Card Short Name	ost, Single Upst	

	Host Two I hotto	Sirola Heet Tuol I hetease Sookate Tuol I heteasen I ide			1x8,1x4,1x2,1x1 2 u8 2 u4 2 u2 2 u1								alle chour	لامنت 1 مالغ فاصفت عما أغرابًا عمم (مـمـــــــــــــــــــــــــــــــ	0,000		Ц Ц Ц	Hot H		e e				furca
, H			Add-in-Card		E 00, E 01, E 05, E01					┢	╞					5							Τ	at
Card	Card Card Short Vidth Name	Supported Bifurcation Modes	Encoding PRSNTB(3:01#	Host	Uostream Devices	Upstream Links	BIF 12:01	Besulting Link	Ln 0 Ln 1 Ln 2	1	12	Ln 3 L	4	2 4 4 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4	P . 9	7 Ln 8	E 19	Ln 10	11	Ln 12	131	14		ion
e/u	Not Present	Card Not Present	061111	1Host	2 Upstream Sockets	2 Links	00001																_	to
с С	1×8 Option A		0b1 110	1Host	2 Upstream Sockets	2 Links	06001	1x8 (Socket 0 only)	– L O L L	с с Г С Г	ско, гь 2, гь 2,	Г Г Г () Г ()	۲ (۲ ۲ – ۲ ۲	LkO, LkO, Ln5 Ln6	0, Lk0, 6 Ln7									or S
с 2	1×4	1x4,1x2,1x1	0b1 110	1Host	2 Upstream Sockets	2 Links	06001	1x4 (Socket 0 only)			<u> </u>	гко гча												Sing
5C	1*2	1x2, 1x1	0b 1110	1Host	2 Upstream Sockets	2 Links	00001	1x2 (Socket 0 only)		ر لا م 1														gle
с 2	ž	1×1	0b 1110	1Host	2 Upstream Sockets	2 Links	06001	1x1 (Socket 0 only)	ско гчо															Hos
5C	1×8 Option B	1x8,1x4,1x2,1x1 1x8 Option B 2x4,2x2,2x1	0b1 101	1Host	2 Upstream Sockets	2 Links	06001	1x8 (Socket 0 only)	– L L O L L L	 	LLO, LL LLD 2	г с гч с гч з	۲ (پ ۲ م	LkO, LkO, Ln5	0, LkO, 6 Ln7	모	모	모	모	모	모	모	모	st, E
Ą	2 ×8 Option B	2 x8, 2 x4, 2 x2, 2 x1 2 x8 Dption B 4 x4, 4 x2, 4 x1	0b1 101	1Host	2 Upstream Sockets	2 Links	00001	2 x8	– רי רי	ско, г с г	L C L C L C	г г г ос г С	۲ (پ د ج ح	LkO, LkO, Ln5	0, Lk0, 6 Ln7	5 5 7 7 7 7	ĘĘ	Lk 1 Ln 2	5 F	ج 4 با	د بر د بر	LK 1 L 6	ح بر م بر	Dua
		1×8,1×4	0b1 100	1Host	2 Upstream Sockets	2 Links	000	1×8 1 - 5	-	-	-	-	-	-	<u> </u>					-				al S
50	1x8 Option D	nes), 4 x1					Innen	(Socket U only)	2	5		2	4 4 7	د م	Š									500
		1x16,1x8,1x4 2e 2d	0b11 00	1Host	2 Upstream Sockets	2 Links	010010	2×8	- '0' - TKO		17 07 11 17 07 11	11 0'11 17 0'11	r= 4 Lk 0, Lk	1 - E Lko, Lko,	с С	1 H 1	- FF 1	LK1	LK 1	LK 1	-K1	ЦК 1 СК 1	1 1 1 1	:ke
4	1x16 Option D	2 x0, 2 x4, 4 x2 (First 8 lanes), 4 x1					innan												ŝ					ets
RSVD	RSVD	RSVD	0b1 011	1Host	2 Upstream Sockets	2 Links	0b001	1																а
20	2.44	2 x4, 2 x2, 2 x1 1 x4, 1 x2, 1 x1	0b1 010	1Host	2 Upstream Sockets	2 Links	06001	1 ₈ 4 (Socket 0 only)	L Lh O, L	LL LL1 LL1	LL C LL C LL C	LkO, Ln3												nd
		4 k2 (First 8 lanes), 4 k1	0b1 001	1Host	2 Upstream Sockets	2 Links		182	– ĽÝ Ó	ĽK O,														D
22	4 ×2	2 x2, 2 x1 1 x2, 1 x1					0000	(Socket 0 only)		3														ua
RSVD	RSVI	r future x8 encoding	0b1 000	1Host	2 Upstream Sockets	2 Links	0b001	-																ΙL
Ą	1×16 Option A	1k16,1k8,1k4,1k2,1k1 4	060111	1Host	2 Upstream Sockets	2 Links	00001	1x8 (Socket 0 only)	– L L L L	L L L L L L	LLA LLA LLA LLA LLA LLA LLA LLA LLA LLA	с ц г хо г г	г қ г т	LhG, LhG, LhG	0, LkO, 6 Ln7	<u></u>								Jps
4	2 ×8 Option A	2×8,2×4,2×2,2×1	0b0 110	1Host	2 Upstream Sockets	2 Links	06001	2,48	- C C C C	L L L KO	ско г 1 г 2	с с Р Ч	۲ ۲ 4 ر	Lko, Lko, Ln5 Ln6	0, Lk0, 6 Ln7	2 E 2 E 2 C	ΞΞ	ск1 С 14	5 F	5 ج 4 ئ	5 5 1 1	۲ ۲ 1, 6	 2 Z	tre
Ą	1×16 Option B	1x16 Option B 2x8, 2x4, 2x2, 2x1 1x16 Option B 2x8, 2x4, 2x2, 2x1	060 101	1Host	2 Upstream Sockets	2 Links	00001	2 x8	<u> </u>	 	L 1 L 2 L 2	<u> </u>	۲ ۲ 4 رک	Lko, Lko, Ln5	0, Lk0, 6 L, 0,	2 E 2 E 2 C	ΞΞ	ск 1 г 2	5 F	5 ج 4 ئ	د بر د بر	۲ 1, 1	ے ب ے	am
Ą	1×16 Option C	1x16, 1x8, 1x4 2x8, 2x4, 2x2, 2x1 1x16 Option C 4x4, 4x2, 4x1	060 100	1Host	2 Upstream Sockets	2 Links	00001	2 x8	- 2 0 2 1		с ц г хо г хо	с с С С С С С С	۲ ۲ 4 رد ۲	Lko, Lko, Ln5 Ln6	0 1 2 1 2 0	2 C K 1	ĘĒ	Lk 1 Ln 2	۲ ۲ ۲	5 4	Lk1 LP3	LK 1 L 6	5 7 7	Link
4	- 4	4 x4, 4 x2, 4 x1	0b0 011	1Host	2 Upstream Sockets	2 Links	00001	2 ×4 (EP 0 and 2 only)	– – – – – – –	ر لا 1 (с ц г 20 г 2	ско ГКО				с к С К С	5 F F F F	Lk2, Ln2,	ЦК2, ГЫ3					(S (B
RSVD	RSVI		0b0 010	1Host	2 Upstream Sockets	2 Links	0b001	-		F	F													311
RSVD		RSVD	0b0 001	1Host	2 Upstream Sockets	2 Links	0b001																	FL
RSVD	RSVD	RSVD	0P0 000	1Host	2 Upstream Sockets	2 Links	06001					_												2:
																								01

Table 36: Bifurcation for Single Host, Dual Sockets and Dual Upstream Links (BIF[2:0]#=0b001)

	Single H	ost, Four Upstre	Single Host, Four Upstream Sockets, Four Upstream Links	- - 		4 x4, 4 x2, 4x1						ľ	ey: Cell	s shown	Key: Cells shown as Link/Lane (e.g. Lk 0 / Ln 0); HD = Host Disabled Lane	ane (e.g	. Lk 07L	Ĥ.	= Host D	isabled	ane			
	Vidth Vidth	Card Short Name	Supported Bifurcation Modes	Add-in-Card Encoding PRSNTB[3:0]#	Host	Upstream Devices	Upstream Links	BIF [2:0]#		- ۲		یر 12	۲ ء	<u>ت</u> ح	En 6	Ln 7	Ln 8	Ln 9	Ln 10	۲ H	Ln 12	Ln 13 I	4 1	Ln 15
	n/a	Not Present	Card Not Present	0b1111	1Host	4 Upstream Sockets	4 Links	01040																
	2C	1×8 Option A	<u> </u>	0b1 110	1Host	4 Upstream Sockets	4 Links	0b010			<u> </u>	<u> </u>	0 m											
	20	1×4	184,182,181	0b1 110	1Host	4 Upstream Sockets	4 Links	0b010			<u> </u>		പ്ന											
	5	1x2	1x2,1x1	0b1 110	1Host	4 Upstream Sockets	4 Links	0b010			o' F Y S													
	20	1×1	1x1	0b1 110	1Host	4 Upstream Sockets	4 Links	0b010	1×1 (Socket 0 only)	с, о Ч Т														
	20	1×8 Option B	1x8,1x4,1x2,1x1 2x4,2x2,2x1	0b1 101	1Host	4 Upstream Sockets	4 Links	0b010	2x4								모	모	모	모	모	모	모	모
	4	2 x8 Option B	2 x8, 2 x4, 2 x2, 2 x1 4 x4, 4 x2, 4 x1	0b1 101	1Host	4 Upstream Sockets	4 Links	0b010	4 x4									Lk2, Ln1	Lh2 Lh2	Lk2, Ln3	с, о Г Ц	с Ч	с гч 3	гка, гга,
	50	1×8 Option D	1x8,1x4 2x4, 4x2(First8lanes),4x1	0b1 100	1Host	4 Upstream Sockets	4 Links	06010	2 %4															
	4	1×16 Option D	1 k16, 1 x8, 1 x4 2 x8, 2 x4, 1 4 x4, 4 x2 (First 8 lanes), 4 x1	0b1 100	1Host	4 Upstream Sockets	4 Links	06010	4 ×4								Lk 2, Lh 0	Lk2, Ln1	Lk2, Ln2	Lk2, Ln3	с Р С Г С	L L L J	Lk3, Ln2,	с гч з
		RSVD	RSVD	0b1 011	1Host	4 Upstream Sockets	4 Links	06010																
	20	2 44	2 H4, 2 H2, 2 H1 1 H4, 1 H2, 1 H1	0b 1010	1Host	4 Upstream Sockets	4 Links	0b010	2 44															
			4 x2 (First 8 lanes), 4 x1 2 x2, 2 x1	0b 1001	1Host	4 Upstream Sockets	4 Links	01010	2x2		ко,		ĒĚ											
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2C	4 ×2	1x2,1x1					2000					5		_									
	RSVD	RSVD	RSVD for future x8 encoding	0b1 000	1Host	4 Upstream Sockets	4 Links	0b010																
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	40	1×16 Option A		060111	1Host	4 Upstream Sockets	4 Links	0b010	1x4 (Socket 0 only)				0° 00											
	4	2 x8 Option A		0b0 110	1Host	4 Upstream Sockets	4 Links	0b010	2 x4 (Socket 0 & 2 only)				റ്ന				Ц (ГЧ 57	Lk 2, Ln 1	Lk2, Ln2	Lh3 Ln3				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4	1x16 Option B	1416,148,144,142,141 248,244,242,241	0b0 101	1Host	4 Upstream Sockets	4 Links	0b010	2 x4 (Socket 0 & 2 only)				റ്ന				С () ГЧ ()	Lk2, Ln1	Lh2, Lh2,	Lh3 Ln3				
4x4.4.2.4x1 0b001 1Host 4 Upstream Sockets 4 LmS LmS <th< td=""><td>4</td><td>1×16 Option C</td><td>1x16,1x8,1x4 2x8,2x4,2x2,2x1 : 4x4,4x2,4x1</td><td>0b0100</td><td>1Host</td><td>4 Upstream Sockets</td><td>4 Links</td><td>06010</td><td>4 ×4</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Lk2 Lh0</td><td>Lk2, Ln1</td><td>Lk2, Ln2</td><td>Lk2, Ln3</td><td>с` О Г Г</td><td>L L L J</td><td>Lk3, Ln2,</td><td>гка, гга,</td></th<>	4	1×16 Option C	1x16,1x8,1x4 2x8,2x4,2x2,2x1 : 4x4,4x2,4x1	0b0 100	1Host	4 Upstream Sockets	4 Links	06010	4 ×4								Lk2 Lh0	Lk2, Ln1	Lk2, Ln2	Lk2, Ln3	с` О Г Г	L L L J	Lk3, Ln2,	гка, гга,
RSVD RSVD 0.0010 1Host 4 Upstream Sockets 4 Links 0.0010 RSVD RSVD 0.00001 1Host 4 Upstream Sockets 4 Links 0.0010 RSVD RSVD 1Host 4 Upstream Sockets 4 Links 0.0010 RSVD RSVD 1Host 4 Upstream Sockets 4 Links 0.010		4 x4	4 x4, 4 x2, 4 x1	060 011	1Host	4 Upstream Sockets	4 Links	0b010	4 x4		-	<u> </u>						Lk2, Ln1	Lk2, Ln2	Lk 2, Ln 3	с Ч Ц	۲ (۲ ۲	Lk3, Lh2,	Lh3, Lh3,
RSVD RSVD 0b0001 1Host 4 Upstream Sockets 4 Links 0b010 RSVD RSVD 0b0000 1Host 4 Upstream Sockets 4 Links 0b010		RSVD	RSVD	0b0 010	1Host	4 Upstream Sockets	4 Links	0b010																
IBSVD IBSVD 10b0000 11Host 14Ubstream Sockets 14Links 1	RSVD	RSVD	RSVD	0b0 001	1Host	4 Upstream Sockets	4 Links	0b010							_									
	RSVD	RSVD	RSVD	000000	1Host	4 Upstream Sockets	4 Links	0b010																

Table 37: Bifurcation for Single Host, Quad Sockets and Quad Upstream Links (BIF[2:0]#=0b010)

	Ln 15							-	-)#=C													J
	Ln 14																							I
	- 13 13																					Γ		İ
e	n 12 L														t							t		t
bledLa	L L																					t		İ
Key: Cells shown as Link(Lane (e.g. Lk 0 / Ln 0); HD = Host Disabled Lane	9 1 1														+							+		l
Ē	-1														+							╞	_	1
, Ln O)	<u>ت</u> ھ											\vdash			+							+		
- CKO	<u>ک</u>								crì T		mì F			mì F								╞		
Lane (e	Ľ.								μ - Ε -		, Lk3,			, Lk3,										
as Link/	Ē								́ска Н		Lk 3, Lh 0			ГК 3, ГР 0										
hown	Ln 5						ĘĘ	ĘĘ	LK 2, 1 - 1	5	Lk2, Ln1		с, ц	Lk 2, Ln 1			ĘĘ		Ę	5	ΞΞ			
Cells:	La La						5 5 1	5 F F	LK 2,	5	Lk 2, Ln 0		Lk1	Lk2, Lh0			5 5 7		Ľ,	2	Н Ц			
Key	Ln 3								ЕК 1 1	5	Б, Ц			5,1										
	Ln 2								LK 1	2	Lk 1, LH 0			Lk1, Lh0										Ī
	Ē		έĘ	с, Е С Қ	έĘ		ς Γ Έ	с, г С Қ	ί Έ	5	Lk0, Ln1		Lk 0, Ln 1	Lh J		с, Е Г Ę	۔ د د	с, г Г	í Ľ	5	с Ч			Ī
	0		о́о Р К	о́о Р Ч	о́о Р К	о́ О Ч Ч	о́о Р Ч	о́о Р Ч	-	2	Lk 0,		Lk 0, Lh 0,	Lh O,		о́о Р К	0 0 2 4	о́с Ч	i O'	۲ ۲	с Ч Ц	-		Ī
	Resulting Link Ln0 Ln1 Ln2 Ln3 Ln4 Ln5 Ln6 Ln7 Ln8 Ln9 Ln10 Ln11 Ln12 Ln13 Ln14 Ln15		1x2 (Socket () only)	1x2 (Socket 0 only)	1x2 (Socket 0 only)		2 x2 (Socket 0 & 2 only)	2 x2 (Socket 0 & 2 only)	4 x2		4 x2		2 x2 (Socket 0 & 2 only)	4 x2	,	1x2 (Socket () only)	2 x2 (Socket 0 & 2 only)	1x2 (Socket () onlu)	-	(Socket 0 & 2 only)	4 x2 Socket 0 & 2 onlin)	_		
	BIF [2:0]# R	06011	06011	06011	06011	06011	0b011 (Sc	0b0tt (Sc	0-04		06011	06011	0b011 (Sc	06011	0b011	06011	0b011 (Sc	06011	+	0P011 (Sc	0b011	-	0b011	
					<u> </u>					5									+	8			+	
	Upstream Links	4 Links	4 Links	4 Links	4 Links	4 Links	4 Links	4 Links	4 Links		4 Links	4 Links	4 Links	4 Links	4 Links	4 Links	4 Links	4 Links	4 Links		4 Links	4 Links	-	
4 x2, 4x1	Upstream Devices	4 Upstream Sockets	4 Upstream Sockets	4 Upstream Sockets	4 Upstream Sockets	4 Upstream Sockets	4 Upstream Sockets	4 Upstream Sockets	4 Upstream Sockets		4 Upstream Sockets	4 Upstream Sockets	4 Upstream Sockets	4 Upstream Sockets	4 Upstream Sockets	4 Upstream Sockets	4 Upstream Sockets	4 Upstream Sockets	4 Upstream Sockets		4 Upstream Sockets	4 Upstream Sockets	4 Upstream Sockets	
	Host	1Host	1Host	1Host	1Host	1Host	1Host	1Host	1Host		1Host	1Host	1Host	1Host	1Host	1Host	1Host	1Host	1Host		1Host	1Host	1Host	
s - First 8 lanes	Add-in-Card Encoding PRSNTB(3:0)#	0b1111	0b1 110	0b1 110	0b1 110	0b1 110	0b1 101	0b1 101	0b1 100		0b11 00	0b1011	0b1 010	061 001	0P1000	0b0111	0b0 110	0b0 101	00100		060 011	0b0 010	06001	
Single Host, Four Upstream Sockets, Four Upstream Links - First 8 lanes	Supported Bifurcation Modes	Card Not Present	1x8,1x4,1x2,1x1	1x4,1x2,1x1	182,181	181	1x8, 1x4, 1x2, 1x1 1x8 Option B 2 x4, 2 x2, 2 x1	2 x8, 2 x4, 2 x2, 2 x1 2 x8 Dption B 4 x4, 4 x2, 4 x1	1x8,1x4 2d	1x8 Option D 4 x2 (First 8 lanes), 4 x1	1x16,1x8,1x4 2x8,2x4, 1x16 Option D 4x4,4x2 (First 8 lanes),4x1	RSVD	2 #4, 2 #2, 2 #1 1 #4, 1 #2, 1 #1	4 x2 (First 8 lanes), 4 x1 2 x2, 2 x1 1 x2 1 x1	RSVD for future x8 encoding	1x16,1x8,1x4,1x2,1x1	2 x8, 2 x4, 2 x2, 2 x1	1416 Detion B 248, 184, 182, 181 1416 Detion B 248, 244, 242, 244	1x16,1x8,1x4	2 x8, 2 x4, 2 x2, 2 x1 1 x16 Dption C 4 x4, 4 x2, 4 x1	4 x4, 4 x2, 4 x1		RSVD	
our Upstre	Min Card Card Short Vidth Name	Not Present	1×8 Option A	1×4	1x2	1×1	1×8 Option B	2 x8 Option B		1×8 Option D	1×16 Option D	RSVD	2 x4	4 20	RSVD	1×16 Option A	2 x8 Option A	1 v16 Ontion B		1x16 Option C	4 v 4	RSVD	RSVD	
St. F	υz	-								-													<u> </u>	ź

Table 38: Bifurcation for Single Host, Quad Sockets and Quad Upstream Links – First 8 PCIe Lanes

(BIF[2:0]#=0b011)

	Cand Host 3:0)# Host 3:0)# 2Host 2:Host 2Host 2:Host 2Host 2:Host 2Host 2:Host 2Host	Lupstream Devices Lupstream Devices Lupstream Societs Zupstream Societs Zupstream Societs 2 Lupstream Societs	Upstream BIF Links I2:019 2.Links 0b101 2.Links 0b101 2.Links 0b101 2.Links 0b101	Resulting Link						_																																																																																																																																																																																																																																																																																																																																																																																	
Name Modes Not Present Card Not Present 1x8 144, 1x2, 1x1 1x8 144, 1x2, 1x1 1x9 1x2, 1x1 1x1 1x2, 1x1 1x2 1x1 1x2 1x1 1x2 1x1 1x1 1x2, 1x1 1x2 1x1 1x3 1x2, 1x1 1x4 1x2, 1x1 1x8 1x4, 1x2, 1x1 1x8 1x4, 1x2, 1x1 1x8 1x4, 1x2, 1x1 1x8 1x8, 1x8, 1x1 1x8 1x4, 4x2, 1x1 1x8 1x4, 1x2, 1x1 1x9 1x8, 1x1 1x9 1x4, 1x2, 1x1 1x9 1x6, 1x1 1x8 1x4, 1x2, 1x1 1x8 1x4, 1x2, 1x1 1x8 1x8, 1x1	*			Besulting Link																																																																																																																																																																																																																																																																																																																																																																																							
Not Present Cad Not Present 1x8 Dption A 1x8, 1x2, 1x1 1x4 1x2, 1x1 1x8 1x4, 1x2, 1x1 1x8 1x4, 1x2, 1x1 1x8 1x4, 1x2, 1x1 1x8 1x4, 1x2, 1x1 1x8 1x4, 1x2, 1x1 1x8 1x4, 1x2, 1x1 1x8 1x4, 1x2, 1x1 1x8 1x4, 1x2, 1x1 1x8 1x4, 1x2, 1x1 1x8 1x8, 1x2, 1x1 1x8 1x8, 1x8, 1x8 1x8 1x2, 1x1 1x8 1x2, 1x1 1x8 1x2, 1x1 1x8 1x2, 1x1 1x8 1x8, 1x2, 1x1	2 Host 2 Host 2 Host 2 Host 2 Host 2 Host 2 Host 2 Host	2 Upstream Sockets 2 Upstream Sockets 2 Upstream Sockets 2 Upstream Sockets 2 Upstream Sockets 2 Upstream Sockets		1	Ln 0 Ln 1		2 Ln 3	Ln 2 Ln 3 Ln 4 Ln 5	Ln 5	Ln 6	Ln 7	Ln 8 Ln 9 Ln 10 Ln 11 Ln 12 Ln 13 Ln 14 Ln 15	Ln 9 L	n 10 Lr	n 11 Ln	12 Ln	13 Ln	14 Ln 1																																																																																																																																																																																																																																																																																																																																																																									
1x8 1x8 <th>2 Host 2 Host 2 Host 2 Host 2 Host 2 Host 2 Host</th> <th>2 Upstream Sockers 2 Upstream Sockers 2 Upstream Sockers 2 Upstream Sockers 2 Upstream Sockers</th> <th></th>	2 Host 2 Host 2 Host 2 Host 2 Host 2 Host 2 Host	2 Upstream Sockers 2 Upstream Sockers 2 Upstream Sockers 2 Upstream Sockers 2 Upstream Sockers																																																																																																																																																																																																																																																																																																																																																																																									
1x4 1x4, 1x2, 1x1 1x4 1x2, 1x1 1x8 1x2, 1x1 1x8 1x1, 1x2, 1x1 1x8 1x4, 1x2, 1x1 1x8 1x8, 1x2, 1x1 1x8 1x8, 1x2, 1x1 1x8 1x8, 1x3, 1x1 1x8 1x8, 1x4 1x8 2x4, 2x2, 2x1 1x8 2x4, 2x2, 2x1 1x8 2x4, 2x2, 2x1 1x8 2x4, 1x4, 1x2, 1x1 1x8 2x4, 2x2, 2x1 1x8 1x6, 1x6, 1x4, 1x2, 1x1 1x8 1x6, 1x6, 1x4, 1x2, 1x1	2 Host 2 Host 2 Host 2 Host 2 Host 2 Host	2 Upstream Sockets 2 Upstream Sockets 2 Upstream Sockets 2 Upstream Sockets		1x8 (Host 0 only)	LKO, LNO, LNO,	LkO, LkO, Ln1 Ln2	0) LKO 20	с к с к	LK O,	с, 6 Г С	۲, ۲,																																																																																																																																																																																																																																																																																																																																																																																
1x2 1x1 1x1 1x1 1x1 1x1 1x8 1x8 1x8	2 Host 2 Host 2 Host 2 Host 2 Host	2 Upstream Sockets 2 Upstream Sockets 2 Upstream Sockets		1x4 (Host 0 only)	۲ (۲ (۲ (LkO, LkO, Ln1 Ln2	<u> </u>									-																																																																																																																																																																																																																																																																																																																																																																											
1x1 1x1 1x8 1x8 1x8.1x4 1x8 1x8 2x4 2x4 2x4 1x8 2x6.2x4 2x4 2x4 2x8 2x4.2x4 2x4 2x4 1x8 1x8.1x4 1x8 1x4 1x8 1x8 1x4 1x1 1x8 1x4 4x2 1x1 1x8 1x4 4x2 1x1 1x8 1x4 4x2 1x1 1x8 1x4 4x2 1x1 1x8 1x6 1x4 1x1 1x8 1x4 1x2 1x1 <tr td="" td<=""><td>2 Host 2 Host 2 Host 2 Host</td><td>2 Upstream Sockets 2 Upstream Sockets</td><td>Z Links 0b101</td><td>1x2 (Host 0 only)</td><td>۲ (۲ ۲ (۲</td><td>Lko, L</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr> <tr><td>146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146<td>2 Host 2 Host 2 Host</td><td>2 Upstream Sockets</td><td>^{2 Links} 0b101</td><td>1x1 (Host 0 only)</td><td>Lk 0, L 0,</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td></tr> <tr><td>2.x8 Date 2 8.2 5.4 2.4.2 1 1.88 1.4.4 4.2.4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</td><td>2 Host 2 Host</td><td></td><td>2 Links 0b101</td><td>1x8 (Host 0 only)</td><td>لد د د ر</td><td>LkO, LkO, Ln1 Ln2</td><td>0, Lk0, 2 Lh3</td><td>L L L C A</td><td>Lk O,</td><td>с, ю Г Ц</td><td>Lk 0, L 7,</td><td>모</td><td>모</td><td>모</td><td>모</td><td>도 모</td><td>무</td><td>모</td></tr> <tr><td>146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146<td>2 Hnst</td><td>2 Upstream Sockets</td><td>2 Links 0b101</td><td>2×8</td><td></td><td>LkO, LkO, Ln1 Ln2</td><td>0, Lk0, 2 Ln3</td><td></td><td></td><td>с, ю Г Ц</td><td>Lk 0, г 7</td><td>- 5 5</td><td>5 7 7 7</td><td>Lk1 Ln2 L</td><td>د بر ۲.۳</td><td>Lk1, Lk1, Ln4 Ln5</td><td>1, Lk1, 5 Ln6</td><td>1 5 5 7</td></td></tr> <tr><td>1x8Cuption 4x2/First Blanes), 4x1 1x16 1x16, 1x1, 1x1 1x16 2x8, 2x4 2x8, 2x4 2x8, 2x4 PSVD 2x4, 4x2/First 8lanes), 4x1 PSVD 2x4, 2x6, 2x1 2x4 1x4, 1x6, 1x1 PSVD 2x4, 2x7, 2x1 Ax2 1x1, 1x2, 1x1 Ax2 1x2, 1x1 Ax2 1x2, 1x1 Ax2 1x3, 1x1, 1x2, 1x1 Ax2 1x8, 1x8 Ax2 1x1, 1x2, 1x1 1x16 1x6, 1x8, 1x2, 1x1 1x16 1x6, 1x8, 1x2, 1x1</td><td></td><td>2 Upstream Sockets</td><td>2 Links 0b101</td><td>1x8 (Host 0 only)</td><td>۲٤0 ۲۹0</td><td>LkO, LkO, Ln1 Ln2</td><td>0, Lk0, 2 Lh3</td><td>LF ()</td><td>Lk O,</td><td>Lk 0,</td><td>ЦК 0, ГЧ 7</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr> <tr><td>1x/BC Option D 2x8, 2x4, 4x1 RSV/D RSV/D RSV/D RSV/D 2x4 1x4, 1x2, 1x1 2x4 1x4, 1x2, 1x1 2x4 1x4, 1x2, 1x1 4x2 1x5, 81 8x0, 0 1x6, 1x2, 1x1 1x1, 1x2, 1x1 1x2, 2x1 4x2 1x2, 1x1 8x0, 0 1x1, 1x3, 1x1 1x16, 1x6, 1x4, 1x2, 1x1 1x16, 1x6, 1x4, 1x2, 1x1 1x16, Deton A 1x6, 2x4, 2x4, 2x4</td><td>2 Host</td><td>2 Upstream Sockets</td><td>2 Links</td><td>2,48</td><td>-</td><td>Lk0. Lk0.</td><td>_</td><td>ĽKO</td><td>Lk 0.</td><td>LK 0.</td><td>Lk0.</td><td>T H</td><td>Lk1</td><td></td><td>LK 1</td><td>Lk 1.</td><td>1. Lk1.</td><td></td></tr> <tr><td>RSVD RSVD 2x4 1x4, 1x2, 1x1 1x4, 1x2, 1x1 1x4, 1x2, 1x1 1x4, 1x2, 1x1 1x4, 1x2, 1x1 4x2 1x6, 1x4 4x2 1x6, 1x4 RSVD RSVD for future x8 encoding 1x16 1x6, 1x4, 1x2, 1x1 1x16 0, 2x4, 2x4, 2x4</td><td></td><td></td><td>06101</td><td></td><td>Ln O</td><td></td><td>2 Ln3</td><td></td><td>Ln 5</td><td>Pu Bu</td><td>Ln 7</td><td></td><td></td><td>Ln 2</td><td></td><td></td><td>Ln5 Ln6</td><td>6 Ln 7</td></tr> <tr><td>2x4 2x2 2x1 2x4 2x2 1x1 4x2 1x2 1x1 4x2 1x1 1x1 2x2 2x1 1x2 2x1 1x2 1x1 1x16 1x1 1x16 1x1 1x16 1x1 2x8, 2x4, 2x2, 2x1</td><td>2 Host</td><td>2 Upstream Sockets</td><td>2 Links 0b101</td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr> <tr><td>4x2 (First 8 lanes), 4x1 2x2.2 x1 1x2.1 x1 1x2.1 x1 1x2.1 x1 PSVD for house x8 encoding 1x16.1 x6.1 x8.1 x8.1 x6.1 x6.1 x1 1x16.0 x10 2x82.2 x4.2 x2.2 x1</td><td>2 Host</td><td>2 Upstream Sockets</td><td>^{2 Links} 0b101</td><td>1x4 (Host 0 only)</td><td>۲ (۲ ۲ ۲</td><td>LkO, LkO, Ln1 Ln2</td><td>0) LKO 2 LP 3</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr> <tr><td>4 x2 12,21,41 4 x2 13,2,114 RSVD RSVD/for faure x8 encoding 13/85 1485,144,142,141 11/85 148,144,142,141 248,2,84,2x4,2x41 248,2x4,2x41</td><td>2Host</td><td>2 Upstream Sockets</td><td>2 Links</td><td>1x2</td><td>-</td><td>Lk 0,</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr> <tr><td>RSVD RSVD for future x8 encoding 1x16.1x8,1x4,1x2,1x1 1x16.Dption A 2x8,2x4,2x2,2x1</td><td></td><td></td><td>06101</td><td>1 (Host 0 only)</td><td>۲ ۲</td><td>5</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr> <tr><td>1x16 Option A 2x8, 2x8, 2x8, 2x1, 2x1 2x8, 2x8, 2x8, 2x1</td><td>2 Host</td><td>2 Upstream Sockets</td><td>2 Links 0b101</td><td>•</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr> <tr><td>2 x8, 2 x4, 2 x2, 2 x1</td><td>2 Host</td><td>2 Upstream Sockets</td><td>2 Links 0b101</td><td>1x8 (Host 0 only)</td><td>Lko, Lk Lho</td><td>LkO, LkO, Ln1 Ln2</td><td>0, Lk0, 2 Ln3</td><td>Lko, Lro,</td><td>Lh 5 Lh 5</td><td>ско гчо</td><td>Lh 7 Lh 7</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr> <tr><td>4C 2x8 Dption A</td><td>2 Host</td><td>2 Upstream Sockets</td><td>2 Links 0b101</td><td>1 2×8</td><td>LKO, LhO, LhO,</td><td>LkO, LkO, Ln1 Ln2</td><td>0, LkO, 2 Lh3</td><td>ск Ч Ч</td><td>Lh 5 Lh 5</td><td>с ко г</td><td>Lk 0, гл 7</td><td>- 5 7</td><td>22</td><td>LK1 LN2 L</td><td>د بر 531</td><td>Lk1, Lk1, Ln4 Ln5</td><td>1 Lk1 5 Ln6</td><td>1 LK1 6 Lh7</td></tr> <tr><td>4C 11x16 Option B 2x8, 2x4, 2x2, 2x1 4C 1x16 Option B 2x8, 2x4, 2x2, 2x1</td><td>2 Host</td><td>2 Upstream Sockets</td><td>^{2 Links} 0b101</td><td>2,*8</td><td>۲ ۲ د (</td><td>Lko, Lko, Ln1 Ln2</td><td>0 LKO 2 C</td><td>с к с к т</td><td>ско, Г</td><td>с) ю Г С</td><td>۲k 0, ۲</td><td>ے ج ک</td><td> </td><td>LK1 LN2 L</td><td>ر بر ۲ ۳</td><td>۲,4 ۲,4 ۲</td><td>Lk1, Lk1, Ln5, Ln6</td><td>1 5 7 7 9</td></tr> <tr><td>1x16, 1x8, 1x4 060100 2x8, 2x2, 2x1 2x8, 4x2, 2x1 4C 1v16 Device C 4x4, 4x2, 4x1</td><td>2 Host</td><td>2 Upstream Sockets</td><td>2 Links 0b101</td><td>2%8</td><td></td><td></td><td></td><td></td><td></td><td>Lk 0, Lh 6,</td><td>Lk 0, Lh 7</td><td></td><td>5 1 1 1 1</td><td></td><td>۲ ۲ ۲ ۲ ۲</td><td>۲,4 ۲,4 ۲,4</td><td>Lk1, Lk1, Ln5 Ln6</td><td>1 Lk1 6 Lh7</td></tr> <tr><td></td><td>2 Host</td><td>2 Upstream Sockets</td><td>2 Links 0b101</td><td>2 x4 (EP 0 and 2 only)</td><td>۲ (۲ ۲ (۲</td><td>LkO, LkO, Ln1 Ln2</td><td>0) Lk0</td><td></td><td></td><td></td><td></td><td>Lk1, Lane</td><td>Lk1, L</td><td>Lk1, L Lane La</td><td>Lk 1, Lane</td><td></td><td></td><td></td></tr> <tr><td>RSVD RSVD</td><td>2 Host</td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr> <tr><td>RSVD</td><td>2 Host</td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr> <tr><td>RSVD RSVD</td><td>2 Host</td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td>-</td><td>-</td><td>-</td><td></td></tr>	2 Host 2 Host 2 Host 2 Host	2 Upstream Sockets 2 Upstream Sockets	Z Links 0b101	1x2 (Host 0 only)	۲ (۲ ۲ (۲	Lko, L													146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 <td>2 Host 2 Host 2 Host</td> <td>2 Upstream Sockets</td> <td>^{2 Links} 0b101</td> <td>1x1 (Host 0 only)</td> <td>Lk 0, L 0,</td> <td></td>	2 Host 2 Host 2 Host	2 Upstream Sockets	^{2 Links} 0b101	1x1 (Host 0 only)	Lk 0, L 0,														2.x8 Date 2 8.2 5.4 2.4.2 1 1.88 1.4.4 4.2.4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 Host 2 Host		2 Links 0b101	1x8 (Host 0 only)	لد د د ر	LkO, LkO, Ln1 Ln2	0, Lk0, 2 Lh3	L L L C A	Lk O,	с, ю Г Ц	Lk 0, L 7,	모	모	모	모	도 모	무	모	146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 <td>2 Hnst</td> <td>2 Upstream Sockets</td> <td>2 Links 0b101</td> <td>2×8</td> <td></td> <td>LkO, LkO, Ln1 Ln2</td> <td>0, Lk0, 2 Ln3</td> <td></td> <td></td> <td>с, ю Г Ц</td> <td>Lk 0, г 7</td> <td>- 5 5</td> <td>5 7 7 7</td> <td>Lk1 Ln2 L</td> <td>د بر ۲.۳</td> <td>Lk1, Lk1, Ln4 Ln5</td> <td>1, Lk1, 5 Ln6</td> <td>1 5 5 7</td>	2 Hnst	2 Upstream Sockets	2 Links 0b101	2×8		LkO, LkO, Ln1 Ln2	0, Lk0, 2 Ln3			с, ю Г Ц	Lk 0, г 7	- 5 5	5 7 7 7	Lk1 Ln2 L	د بر ۲.۳	Lk1, Lk1, Ln4 Ln5	1, Lk1, 5 Ln6	1 5 5 7	1x8Cuption 4x2/First Blanes), 4x1 1x16 1x16, 1x1, 1x1 1x16 2x8, 2x4 2x8, 2x4 2x8, 2x4 PSVD 2x4, 4x2/First 8lanes), 4x1 PSVD 2x4, 2x6, 2x1 2x4 1x4, 1x6, 1x1 PSVD 2x4, 2x7, 2x1 Ax2 1x1, 1x2, 1x1 Ax2 1x2, 1x1 Ax2 1x2, 1x1 Ax2 1x3, 1x1, 1x2, 1x1 Ax2 1x8, 1x8 Ax2 1x1, 1x2, 1x1 1x16 1x6, 1x8, 1x2, 1x1 1x16 1x6, 1x8, 1x2, 1x1		2 Upstream Sockets	2 Links 0b101	1x8 (Host 0 only)	۲٤0 ۲۹0	LkO, LkO, Ln1 Ln2	0, Lk0, 2 Lh3	LF ()	Lk O,	Lk 0,	ЦК 0, ГЧ 7								1x/BC Option D 2x8, 2x4, 4x1 RSV/D RSV/D RSV/D RSV/D 2x4 1x4, 1x2, 1x1 2x4 1x4, 1x2, 1x1 2x4 1x4, 1x2, 1x1 4x2 1x5, 81 8x0, 0 1x6, 1x2, 1x1 1x1, 1x2, 1x1 1x2, 2x1 4x2 1x2, 1x1 8x0, 0 1x1, 1x3, 1x1 1x16, 1x6, 1x4, 1x2, 1x1 1x16, 1x6, 1x4, 1x2, 1x1 1x16, Deton A 1x6, 2x4, 2x4, 2x4	2 Host	2 Upstream Sockets	2 Links	2,48	-	Lk0. Lk0.	_	ĽKO	Lk 0.	LK 0.	Lk0.	T H	Lk1		LK 1	Lk 1.	1. Lk1.		RSVD RSVD 2x4 1x4, 1x2, 1x1 1x4, 1x2, 1x1 1x4, 1x2, 1x1 1x4, 1x2, 1x1 1x4, 1x2, 1x1 4x2 1x6, 1x4 4x2 1x6, 1x4 RSVD RSVD for future x8 encoding 1x16 1x6, 1x4, 1x2, 1x1 1x16 0, 2x4, 2x4, 2x4			06101		Ln O		2 Ln3		Ln 5	Pu Bu	Ln 7			Ln 2			Ln5 Ln6	6 Ln 7	2x4 2x2 2x1 2x4 2x2 1x1 4x2 1x2 1x1 4x2 1x1 1x1 2x2 2x1 1x2 2x1 1x2 1x1 1x16 1x1 1x16 1x1 1x16 1x1 2x8, 2x4, 2x2, 2x1	2 Host	2 Upstream Sockets	2 Links 0b101	-															4x2 (First 8 lanes), 4x1 2x2.2 x1 1x2.1 x1 1x2.1 x1 1x2.1 x1 PSVD for house x8 encoding 1x16.1 x6.1 x8.1 x8.1 x6.1 x6.1 x1 1x16.0 x10 2x82.2 x4.2 x2.2 x1	2 Host	2 Upstream Sockets	^{2 Links} 0b101	1x4 (Host 0 only)	۲ (۲ ۲ ۲	LkO, LkO, Ln1 Ln2	0) LKO 2 LP 3												4 x2 12,21,41 4 x2 13,2,114 RSVD RSVD/for faure x8 encoding 13/85 1485,144,142,141 11/85 148,144,142,141 248,2,84,2x4,2x41 248,2x4,2x41	2Host	2 Upstream Sockets	2 Links	1x2	-	Lk 0,													RSVD RSVD for future x8 encoding 1x16.1x8,1x4,1x2,1x1 1x16.Dption A 2x8,2x4,2x2,2x1			06101	1 (Host 0 only)	۲ ۲	5													1x16 Option A 2x8, 2x8, 2x8, 2x1, 2x1 2x8, 2x8, 2x8, 2x1	2 Host	2 Upstream Sockets	2 Links 0b101	•															2 x8, 2 x4, 2 x2, 2 x1	2 Host	2 Upstream Sockets	2 Links 0b101	1x8 (Host 0 only)	Lko, Lk Lho	LkO, LkO, Ln1 Ln2	0, Lk0, 2 Ln3	Lko, Lro,	Lh 5 Lh 5	ско гчо	Lh 7 Lh 7								4C 2x8 Dption A	2 Host	2 Upstream Sockets	2 Links 0b101	1 2×8	LKO, LhO, LhO,	LkO, LkO, Ln1 Ln2	0, LkO, 2 Lh3	ск Ч Ч	Lh 5 Lh 5	с ко г	Lk 0, гл 7	- 5 7	22	LK1 LN2 L	د بر 531	Lk1, Lk1, Ln4 Ln5	1 Lk1 5 Ln6	1 LK1 6 Lh7	4C 11x16 Option B 2x8, 2x4, 2x2, 2x1 4C 1x16 Option B 2x8, 2x4, 2x2, 2x1	2 Host	2 Upstream Sockets	^{2 Links} 0b101	2,*8	۲ ۲ د (Lko, Lko, Ln1 Ln2	0 LKO 2 C	с к с к т	ско, Г	с) ю Г С	۲k 0, ۲	ے ج ک	 	LK1 LN2 L	ر بر ۲ ۳	۲,4 ۲,4 ۲	Lk1, Lk1, Ln5, Ln6	1 5 7 7 9	1x16, 1x8, 1x4 060100 2x8, 2x2, 2x1 2x8, 4x2, 2x1 4C 1v16 Device C 4x4, 4x2, 4x1	2 Host	2 Upstream Sockets	2 Links 0b101	2%8						Lk 0, Lh 6,	Lk 0, Lh 7		5 1 1 1 1		۲ ۲ ۲ ۲ ۲	۲,4 ۲,4 ۲,4	Lk1, Lk1, Ln5 Ln6	1 Lk1 6 Lh7		2 Host	2 Upstream Sockets	2 Links 0b101	2 x4 (EP 0 and 2 only)	۲ (۲ ۲ (۲	LkO, LkO, Ln1 Ln2	0) Lk0					Lk1, Lane	Lk1, L	Lk1, L Lane La	Lk 1, Lane				RSVD RSVD	2 Host			-															RSVD	2 Host			-															RSVD RSVD	2 Host			-										-	-	-	-	
2 Host 2 Host 2 Host 2 Host	2 Upstream Sockets 2 Upstream Sockets	Z Links 0b101	1x2 (Host 0 only)	۲ (۲ ۲ (۲	Lko, L																																																																																																																																																																																																																																																																																																																																																																																						
146 146 <td>2 Host 2 Host 2 Host</td> <td>2 Upstream Sockets</td> <td>^{2 Links} 0b101</td> <td>1x1 (Host 0 only)</td> <td>Lk 0, L 0,</td> <td></td>	2 Host 2 Host 2 Host	2 Upstream Sockets	^{2 Links} 0b101	1x1 (Host 0 only)	Lk 0, L 0,																																																																																																																																																																																																																																																																																																																																																																																						
2.x8 Date 2 8.2 5.4 2.4.2 1 1.88 1.4.4 4.2.4 1	2 Host 2 Host		2 Links 0b101	1x8 (Host 0 only)	لد د د ر	LkO, LkO, Ln1 Ln2	0, Lk0, 2 Lh3	L L L C A	Lk O,	с, ю Г Ц	Lk 0, L 7,	모	모	모	모	도 모	무	모																																																																																																																																																																																																																																																																																																																																																																									
146 146 <td>2 Hnst</td> <td>2 Upstream Sockets</td> <td>2 Links 0b101</td> <td>2×8</td> <td></td> <td>LkO, LkO, Ln1 Ln2</td> <td>0, Lk0, 2 Ln3</td> <td></td> <td></td> <td>с, ю Г Ц</td> <td>Lk 0, г 7</td> <td>- 5 5</td> <td>5 7 7 7</td> <td>Lk1 Ln2 L</td> <td>د بر ۲.۳</td> <td>Lk1, Lk1, Ln4 Ln5</td> <td>1, Lk1, 5 Ln6</td> <td>1 5 5 7</td>	2 Hnst	2 Upstream Sockets	2 Links 0b101	2×8		LkO, LkO, Ln1 Ln2	0, Lk0, 2 Ln3			с, ю Г Ц	Lk 0, г 7	- 5 5	5 7 7 7	Lk1 Ln2 L	د بر ۲.۳	Lk1, Lk1, Ln4 Ln5	1, Lk1, 5 Ln6	1 5 5 7																																																																																																																																																																																																																																																																																																																																																																									
1x8Cuption 4x2/First Blanes), 4x1 1x16 1x16, 1x1, 1x1 1x16 2x8, 2x4 2x8, 2x4 2x8, 2x4 PSVD 2x4, 4x2/First 8lanes), 4x1 PSVD 2x4, 2x6, 2x1 2x4 1x4, 1x6, 1x1 PSVD 2x4, 2x7, 2x1 Ax2 1x1, 1x2, 1x1 Ax2 1x2, 1x1 Ax2 1x2, 1x1 Ax2 1x3, 1x1, 1x2, 1x1 Ax2 1x8, 1x8 Ax2 1x1, 1x2, 1x1 1x16 1x6, 1x8, 1x2, 1x1 1x16 1x6, 1x8, 1x2, 1x1		2 Upstream Sockets	2 Links 0b101	1x8 (Host 0 only)	۲٤0 ۲۹0	LkO, LkO, Ln1 Ln2	0, Lk0, 2 Lh3	LF ()	Lk O,	Lk 0,	ЦК 0, ГЧ 7																																																																																																																																																																																																																																																																																																																																																																																
1x/BC Option D 2x8, 2x4, 4x1 RSV/D RSV/D RSV/D RSV/D 2x4 1x4, 1x2, 1x1 2x4 1x4, 1x2, 1x1 2x4 1x4, 1x2, 1x1 4x2 1x5, 81 8x0, 0 1x6, 1x2, 1x1 1x1, 1x2, 1x1 1x2, 2x1 4x2 1x2, 1x1 8x0, 0 1x1, 1x3, 1x1 1x16, 1x6, 1x4, 1x2, 1x1 1x16, 1x6, 1x4, 1x2, 1x1 1x16, Deton A 1x6, 2x4, 2x4, 2x4	2 Host	2 Upstream Sockets	2 Links	2,48	-	Lk0. Lk0.	_	ĽKO	Lk 0.	LK 0.	Lk0.	T H	Lk1		LK 1	Lk 1.	1. Lk1.																																																																																																																																																																																																																																																																																																																																																																										
RSVD RSVD 2x4 1x4, 1x2, 1x1 1x4, 1x2, 1x1 1x4, 1x2, 1x1 1x4, 1x2, 1x1 1x4, 1x2, 1x1 4x2 1x6, 1x4 4x2 1x6, 1x4 RSVD RSVD for future x8 encoding 1x16 1x6, 1x4, 1x2, 1x1 1x16 0, 2x4, 2x4, 2x4			06101		Ln O		2 Ln3		Ln 5	Pu Bu	Ln 7			Ln 2			Ln5 Ln6	6 Ln 7																																																																																																																																																																																																																																																																																																																																																																									
2x4 2x2 2x1 2x4 2x2 1x1 4x2 1x2 1x1 4x2 1x1 1x1 2x2 2x1 1x2 2x1 1x2 1x1 1x16 1x1 1x16 1x1 1x16 1x1 2x8, 2x4, 2x2, 2x1	2 Host	2 Upstream Sockets	2 Links 0b101	-																																																																																																																																																																																																																																																																																																																																																																																							
4x2 (First 8 lanes), 4x1 2x2.2 x1 1x2.1 x1 1x2.1 x1 1x2.1 x1 PSVD for house x8 encoding 1x16.1 x6.1 x8.1 x8.1 x6.1 x6.1 x1 1x16.0 x10 2x82.2 x4.2 x2.2 x1	2 Host	2 Upstream Sockets	^{2 Links} 0b101	1x4 (Host 0 only)	۲ (۲ ۲ ۲	LkO, LkO, Ln1 Ln2	0) LKO 2 LP 3																																																																																																																																																																																																																																																																																																																																																																																				
4 x2 12,21,41 4 x2 13,2,114 RSVD RSVD/for faure x8 encoding 13/85 1485,144,142,141 11/85 148,144,142,141 248,2,84,2x4,2x41 248,2x4,2x41	2Host	2 Upstream Sockets	2 Links	1x2	-	Lk 0,																																																																																																																																																																																																																																																																																																																																																																																					
RSVD RSVD for future x8 encoding 1x16.1x8,1x4,1x2,1x1 1x16.Dption A 2x8,2x4,2x2,2x1			06101	1 (Host 0 only)	۲ ۲	5																																																																																																																																																																																																																																																																																																																																																																																					
1x16 Option A 2x8, 2x8, 2x8, 2x1, 2x1 2x8, 2x8, 2x8, 2x1	2 Host	2 Upstream Sockets	2 Links 0b101	•																																																																																																																																																																																																																																																																																																																																																																																							
2 x8, 2 x4, 2 x2, 2 x1	2 Host	2 Upstream Sockets	2 Links 0b101	1x8 (Host 0 only)	Lko, Lk Lho	LkO, LkO, Ln1 Ln2	0, Lk0, 2 Ln3	Lko, Lro,	Lh 5 Lh 5	ско гчо	Lh 7 Lh 7																																																																																																																																																																																																																																																																																																																																																																																
4C 2x8 Dption A	2 Host	2 Upstream Sockets	2 Links 0b101	1 2×8	LKO, LhO, LhO,	LkO, LkO, Ln1 Ln2	0, LkO, 2 Lh3	ск Ч Ч	Lh 5 Lh 5	с ко г	Lk 0, гл 7	- 5 7	22	LK1 LN2 L	د بر 531	Lk1, Lk1, Ln4 Ln5	1 Lk1 5 Ln6	1 LK1 6 Lh7																																																																																																																																																																																																																																																																																																																																																																									
4C 11x16 Option B 2x8, 2x4, 2x2, 2x1 4C 1x16 Option B 2x8, 2x4, 2x2, 2x1	2 Host	2 Upstream Sockets	^{2 Links} 0b101	2,*8	۲ ۲ د (Lko, Lko, Ln1 Ln2	0 LKO 2 C	с к с к т	ско, Г	с) ю Г С	۲k 0, ۲	ے ج ک	 	LK1 LN2 L	ر بر ۲ ۳	۲,4 ۲,4 ۲	Lk1, Lk1, Ln5, Ln6	1 5 7 7 9																																																																																																																																																																																																																																																																																																																																																																									
1x16, 1x8, 1x4 060100 2x8, 2x2, 2x1 2x8, 4x2, 2x1 4C 1v16 Device C 4x4, 4x2, 4x1	2 Host	2 Upstream Sockets	2 Links 0b101	2%8						Lk 0, Lh 6,	Lk 0, Lh 7		5 1 1 1 1		۲ ۲ ۲ ۲ ۲	۲,4 ۲,4 ۲,4	Lk1, Lk1, Ln5 Ln6	1 Lk1 6 Lh7																																																																																																																																																																																																																																																																																																																																																																									
	2 Host	2 Upstream Sockets	2 Links 0b101	2 x4 (EP 0 and 2 only)	۲ (۲ ۲ (۲	LkO, LkO, Ln1 Ln2	0) Lk0					Lk1, Lane	Lk1, L	Lk1, L Lane La	Lk 1, Lane																																																																																																																																																																																																																																																																																																																																																																												
RSVD RSVD	2 Host			-																																																																																																																																																																																																																																																																																																																																																																																							
RSVD	2 Host			-																																																																																																																																																																																																																																																																																																																																																																																							
RSVD RSVD	2 Host			-										-	-	-	-																																																																																																																																																																																																																																																																																																																																																																										

Table 39: Bifurcation for Dual Host, Dual Sockets and Dual Upstream Links (BIF[2:0]#=0b101)

Uuad Host, Four Upstream Dockets, Four Upstream Links			4 x4, 4 x2, 4 x1							(ey: Ce	Inode sli	Key: Cells shown as Link/Lane (e.g. Lk 0 / Ln 0); HD = Host Disabled Lane	Lane (e.	9. Lk 0/	Ln O; H) = Host [Disabled	Lane		
Supported Bifurcation Modes	Add-in-Card Encoding PBSNTB(3:01#	Host	Upstream Devices	Upstream Links	BIF [2:0]#	Resulting Link	L 0	۲ 1	Ln 2 Lr	Ln 3 Ln 3	Ln4 Ln5	2	Ln6 Ln7 Ln8	Ln 8	L 9	Ln 10	Ln 11	Ln 3 Ln 10 Ln 11 Ln 12 Ln 13 Ln 14	n 13 L	n 14 Ln 15
Card Not Present	0b1111	4 Host		4 Links	0b110	,														
1x8,1x4,1x2,1x1	0b1110	4 Host	4 Upstream Sockets	4 Links	0b110	1x4 (Host 0 only)	- - - - - - - - - - - - - - - - - - -	L L L L L L L	ЦК0, ЦК0, ЦК	Lk O, Lh 3										
184, 182, 181	0b1110	4 Host	4 Upstream Sockets	4 Links	0b110	1x4 (Host 0 only)	- 0`0 4 L	L L L K L K	ско г ц г	Lk 0, Ln 3										
	0b1110	4 Host	4 Upstream Sockets	4 Links	0b110	1x2 (Host 0 only)	- 0`0 2'1	ر ج لا												
	0b1 110	4 Host	4 Upstream Sockets	4 Links	0b110	1x1 (Host 0 only)	ر بر ح بر													
1x8,1x4,1x2,1x1 2 x4,2 x2,2x1	0b1101	4 Host	4 Upstream Sockets	4 Links	0b110	2.84	- - - - - - - - - - - - - - - - - - -	г г Г Ч Г Ч	۲ ۲ ۲-۲-۵ ۲-۲-۵	ско, г 13 г 13	Lk1 Lk1 Lh0 Lh1	1 Lk1	1 Lk1 2 Lh3	모	모	모	모	모	모	모모
2 x8, 2 x4, 2 x2, 2 x1 2 x8 Dption B 4 x4, 4 x2, 4 x1	0b1101	4 Host	4 Upstream Sockets	4 Links	0b110	4 x4	- 0`0 4 L	с г Г Г Г Г	ско, гч ск гч ск	с н г г с	Lk1 Lk1 Lh0 Lh1	1 Lk1 1 Lh2	н СК1 23	Lk2	LH 2	LK 2, LN 2,	Lk2, Ln3	Lk3,	ے ا د لا	Lk3, Lk3, Ln2 Ln3
1x8, 1x4 2x4, 1x8 Option D 4x2 (First 8 lanes), 4x1	0b1 100	4 Host	4 Upstream Sockets	4 Links	0b110	2x4	- - C - C - C - C - C	LLA LLAO LLAO	ר 14 רי 20 רי 2	د 1 ۲۷۵ ۲۹۵	Lk1, Lk1, Lh0 Lh1	1 Lk1 1 Ln2	1 5 2 3							
1x16,1x8,1x4 2x8,2x4,	0b1 100	4 Host	4 Upstream Sockets	4 Links	0b110	4 ×4	- רי רי רי	L L L L L L	Ч Г Г Ч Г Ч	ر ب ۲. ۲.	LK1, LK1, Lh0 Lh1	1 Lk1	ск, 5 2	Lk2,	Lh 1	Lh2 Lh2	Lk2, Ln3	Lk3, Lh0	L Ln L	Lk3, Lk3, Ln2 Ln3
1x16 Option D 4 x4, 4 x2 (First 8 lanes), 4 x1 RSVD RSVD	051011	4 Host	4 Unstream Sockets	4 Links	05110	,				-										
2x4,2x2,2x1 1x4.1x2.1x1	0b1 010	4 Host	4 Upstream Sockets	4 Links	0b110	2.84	- 0 0 2 4	L L L C L L	L L L C L C	n n n n n n n	LK1 LK1 LK1	1 5 1 1 1 1 1 1	1 5 2 2 1 1 2 2							
4 x2 (First 8 lanes), 4 x1	061001	4 Host	4 Upstream Sockets	4 Links		2 x2	+	-	-	-	-		-							
					0b110			5		5		-								
RSVD for future x8 encoding	0b1 000	4 Host	4 Upstream Sockets	4 Links	0b110															
1x16,1x8,1x4,1x2,1x1	060111	4 Host	4 Upstream Sockets	4 Links	0b110	1 ₈ 4 (Host 0 only)	ו רי רי	Lh1 L Lh1 L	Lr Cr Ln 2 Lr	LkO, Ln3										
2 н8, 2 н4, 2 н2, 2 н1	0b0 110	4 Host	4 Upstream Sockets	4 Links	0b110	2 x4 (Host 0 & 2 only)				LkO, Ln3				Lk2, Ln0	ск2, г	ЦК 2, ГЧ 2,	Lk2, Ln3			
1x16 Option B 2x8, 2x4, 2x2, 2x1 1x16 Option B 2x8, 2x4, 2x2, 2x1	0b0 101	4 Host	4 Upstream Sockets	4 Links	0b110	2 x4 (Host 0 & 2 only)	- 0`0 2'1	L L Ln 1 Ln 1	L L L C L C	Lh Q Lh 3				Lk2, Lh0	Ln1	Lk2, Ln2	Lk2, Ln3			
1x16,1x8,1x4 2x8,2x4,2x2,2x1 1x16 Dotion C 4x4,4x2,4x1	00100	4 Host	4 Upstream Sockets	4 Links	0b110	4 84			۲ ۲ ۲ ۲ ۲ ۲	د د د ۲۹۵	Lk1, Lk1, Ln0 Ln1	1 Lk1 1 Ln2	2 5 5 5	Lh 0	Lh1	Lk2, Ln2	Lk2, Ln3	Lk 3, Lh 0	– اب ا	Lk3, Lk3, Ln2 Ln3
4 x4, 4 x2, 4 x1	0b0 011	4 Host	4 Upstream Sockets	4 Links	0b110	4 84	- 0 0 2 2	- ر ب ب د ب	د بر ۲ در ۲ د	ر د د د	Lk1, Lk1, Lh0	1 Lk1 1 Lk1	2 CK 2 CK 2 CK	Lk2	Lk 2,	Lh2 Lh2	Lk2, Ln3	ĽК3, ГРО	لد لاغ ا	Lk3, Lk3, Ln2 Ln3
	0b0 010	4 Host		4 Links	0b110					\mid										
	0b0 001	4 Host		4 Links	0b110					Η										
	OPUDU	d Hoet	4 I Instream Sockate	d linke	05110															

Table 40: Bifurcation for Quad Host, Quad Sockets and Quad Upstream Links (BIF[2:0]#=0b110)

Έl	Quad Host, Four Upstream Sockets, Four Upstream links, First 8 PCIe lanes	, First 8 PCIe lanes		4 x2, 4 x1							Key: C	ells shov	Key: Cells shown as Link/Lane (e.g. Lk 0 / Ln 0); HD = Host Disabled Lane	ilLane (e	.g. Lk 0/	Ln 0); HI] = Host [Disabled	Lane			Π
Ú	Gunnanted Bilinearitan	Add-in-Card			a strained	DIC																
ίĔ	Modes	PRSNTB(3:0)#	Host	Upstream Devices	Links	[2:0]	Resulting Link	Ln O	Ln 1	Ln 2 L	Ln 3 Ln 4	n 4 L	Ln 5 Ln 6	6 Ln 7	7 Ln 8	<u>ال</u>	Ln 9 Ln 10 Ln 11 Ln 12 Ln 13 Ln 14 Ln 15	Ln 11	Ln 12	Ln 13	.n 14 L	n 15
U.	Card Not Present	0b1111	4 Host	4 Upstream Sockets	4 x2 Links	0b111	1															
-	1x8,1x4,1x2,1x1	0b1 110	4 Host	4 Upstream Sockets	4 x2 Links	0b111	1x2 (Host 0 only)	о́о Ч	ۍ د د د													
÷	1x4,1x2,1x1	0b1 110	4 Host	4 Upstream Sockets	4 x2 Links	0b111	1x2 (Host 0 only)	о́о Ч	ر ج ج													
÷	1x2,1x1	0b1110	4 Host	4 Upstream Sockets	4 x2 Links	0b111	1x2 (Host 0 only)	о́о Р Ч	έč													
÷	181	0b1110	4 Host	4 Upstream Sockets	4 x2 Links	0b111	1x1 (Host 0 only)	с с Ч Ц														
18 1×8 Option B 2	1x8,1x4,1x2,1x1 2x4,2x2,2x1	0b1 101	4 Host	4 Upstream Sockets	4 x2 Links	0b111	2 x2 (Host 0 & 2 only)	с с Ч	۲ (د ۲	- 모	모	LLA LLA LLA LLA	면 Le 1 Le 1	모	모	모	모	모	모	모	모	모
04	2x8,2x4,2x2,2x1 2x8 Option B 4x4,4x2,4x1	0b1 101	4 Host	4 Upstream Sockets	4 x2 Links	0b111	2 x2 (Host 0 & 2 only)	о́о Р Ч	ر د د	- 모	모	LLAZ, LI LLAZ, LI	다. 1 1 1 1 1	모	모	모	모	모	모	모	모	모
-04	1x8, 1x4 2 x4, 1x8 Option D 4 x2 (First 8 lanes), 4 x1	0b1100	4 Host	4 Upstream Sockets	4 x2 Links	0b111	4 x2	о́о Р Г	с, Е Б	5 5 7 7 7 7	5 1 1 1 1	- г гч 3 гч 3	Lk2, Lk3, Ln1 Ln0	-1 ís -1 ís - 1 ís								F[2:0
1	1к16,1к8,1к4 2к8,2к4,	0b1 100	4 Host	4 Upstream Sockets	4 x2 Links	0b111	4 x2	с с Ч	L KO	с с С Ц С Ц	г г Г 41 Г 41	LNO L	Lk2, Lk3, Ln1 Ln0	скі скі о ГР								
	1x16 Option D 4x4, 4x2 (First 8 lanes), 4x1									_												
<u> </u>	RSVD	0b1 011	4 Host	4 Upstream Sockets	4 x2 Links	0b111		_	-	-				_	_	_						
	2 x4, 2 x2, 2 x1 1 x4, 1 x2, 1 x1	0b1 010	4 Host	4 Upstream Sockets	4 x2 Links	0b111	2 x/2 (Host 0 & 1 only)	с с С К	ц Ч Ч	 	Ч Ч											
-	4 x2 (First 8 lanes), 4 x1	0b1 001	4 Host	4 Upstream Sockets	4 x2 Links		4x2	_	_	_			Lk2, Lk3,									_,
(V	2x2,2x1 1x2,1x1					0b111		٩ د	5	- - -	5	<u>۔</u> ۲0	1	2								
14	RSVD for future x8 encoding	0b1 000	4 Host	4 Upstream Sockets	4 x2 Links	0b111																
	1x16,1x8,1x4,1x2,1x1	060111	4 Host	4 Upstream Sockets	4 x2 Links	0b111	1x2 (Host 0 only)	о́о Ч	ر لا د													
	2 н8, 2 н4, 2 н2, 2 н1	060110	4 Host	4 Upstream Sockets	4 x2 Links	0b111	1x2 (Host 0 only)	о́о Ч Ч	۲ (۲													
	1x16,1x8,1x4,1x2,1x1 1x16 Dption B 2x8,2x4,2x2,2x1	0b0101	4 Host	4 Upstream Sockets	4 x2 Links	0b111	1x2 (Host 0 only)	о́о Р Ч	۲ (۲													
	1x16,1x8,1x4 2x8,2x4,2x2,2x1 1x16 Option C 4x4,4x2,4x1	0b0 100	4 Host	4 Upstream Sockets	4 x2 Links	0b111	2 x2 (Host 0 & 2 only)	о́о Р Г	с, Е Г			гк2, гч0, г	Lk2, Ln1									
	4 x4, 4 x2, 4 x1	0b0 011	4 Host	4 Upstream Sockets	4 x2 Links	0b111	2 x2 (Host 0 & 2 only)	с, о Г Ц	ц Ч			LN U LN U LN U	Lk2, Ln1									
	RSVD	0b0 010	4 Host	4 Upstream Sockets	4 x2 Links	0b111	-					Η									Η	
	RSVD	0b0 001	4 Host	4 Upstream Sockets		0b111	1				Η	Η									H	
	DS//D	0P0000	A Lines	Allestere Conference	A uP Links	01444					-										-	

Table 41: Bifurcation for Quad Host, Quad Sockets and Quad Upstream Links – First 8 lanes (BIE[2:0]#=0b111)

3.8 Port Numbering and LED Implementations

The OCP NIC 3.0 I/O bracket shall provide port labeling for user identification.

LEDs shall be implemented on the OCP NIC 3.0 I/O bracket when there is sufficient space for local indication. LEDs are typically placed on the primary side. LEDs may be optionally implemented on the secondary side of the card for space constrained implementations. LEDs may be remotely implemented on the card Scan Chain (as defined in Section 3.4.5) for link/activity indication on the baseboard. LED configurations for the local and remote cases are described in the sections below. In all cases, the actual link rate may be directly queried through the management interface.

3.8.1 OCP NIC 3.0 Port Naming and Port Numbering

The numbering of all OCP NIC 3.0 external ports shall start from Port 1. When oriented with the primary side components facing up and viewing directly into the port, Port 1 shall be located on the left hand side. The port numbers shall sequentially increase to the right. Refer to Figure 92 as an example implementation.

3.8.2 OCP NIC 3.0 Card LED Configuration

For low I/O count small form-factor cards without built in light pipes (such as 1x QSFP, 2x SFP, or 2x RJ-45), or a large form-factor cards, where additional I/O bracket area is available, the card shall locally implement on-board link/activity indications. The card may additionally implement LEDs on the optional Scan Chain data stream .

For 4x SFP and 2x QSFP designs, a permissible LED implementation may include right angle SMT mount LEDs placed on the secondary side of the OCP NIC 3.0 card. The LEDs shall be located below the line side I/O cages.

Note: Depending on the end faceplate implementation (e.g. with an ejector latch), the secondary side LED implementation may be obstructed.

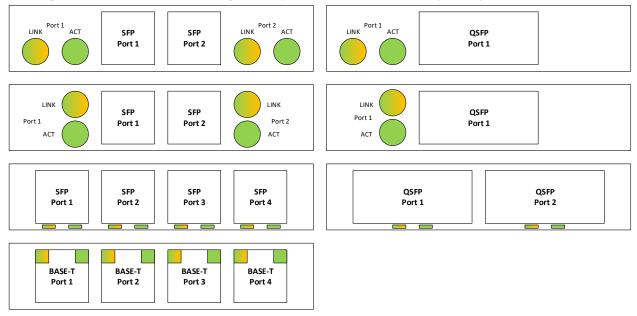
The recommended local (on-card) LED implementation uses two physical LEDs (a bicolored Speed A/Speed B Link LED and a discrete Activity LED). Table 42 describes the OCP NIC 3.0 card LED implementations.

The LEDs shall be uniformly illuminated across the indicator surface. LED surfaces with a diffusion treatment are preferred. For ease of indication within the operating environment, all OCP NIC 3.0 cards shall implement measures to prevent bleed-through between LED indicators and its surrounding chassis components.

LED Pin	LED Color	Description
Link	Green	Active low. Bicolor multifunction LED.
	Amber	
	Off	This LED shall be used to indicate link.
		When the link is up, then this LED shall be lit and solid. This indicates
		that the link is established, there are no local or remote faults, and the
		link is ready for data packet transmission/reception.
		The LED is Green when the port is linked at its maximum speed.
		The LED is Amber when the port is not linked at the highest speed.
		The LED is off when no link is present.
		For silicon with limited I/O, the Amber LED may be omitted. In this
		case, the Green LED shall simply indicate link is up at any configured
		speed.
		The illuminated Link LED indicator may blinked and used for port
		identification through vendor specific link diagnostic software.
		dentification through vehicle specific link diagnostic software.
		The Link LED shall be located on the left hand side or located on the
		top for each port when the OCP NIC 3.0 card is viewed in the
		horizontal plane.
		For serviceability, green LEDs shall emit light at a wavelength between
		513nm and 537nm while amber LEDs shall emit light at a wavelength
		between 580nm and 589nm.
		For uniformity across OCP NIC 3.0 products, all link LEDs shall have its
		luminance across the total surface area measured in nits (cd/m ²) to an
		average value between 150 nits to 450 nits.
Activity	Green	Active low.
	Off	
		When the link is up and there is no activity, this LED shall be lit and
		solid.
		When the link is up and there is link activity, then this LED should blick
		When the link is up and there is link activity, then this LED should blink
		at the interval of 50-500ms during link activity.
		The activity LED shall be located on the right hand side or located on
		the bottom for each port when the OCP NIC 3.0 card is viewed in the
		horizontal plane.
L	I	1

Table 42: OCP NIC 3.0 Card LED Configuration with Two Physical LEDs per Port

For serviceability, green LEDs shall emit light at a wavelength between 513nm and 537nm.
For uniformity across OCP NIC 3.0 products, all activity LEDs shall have its luminance across the total surface area measured in nits (cd/m ²) to an average value between 150 nits to 450 nits.


3.8.3 OCP NIC 3.0 Card LED Ordering

For all OCP NIC 3.0 card use cases, each port shall implement the green/amber Link LED and a green activity LED. For I/O limited silicon, the amber LED may be omitted.

When the OCP NIC 3.0 card is viewed from the horizontal position, and with the primary component side facing up, the Link LED shall be located on the left side and the activity LED shall be located on the right. The LED placement may also make use of a stacked LED assembly, or light pipe in the vertical axis. In this case, the Link Activity LED shall be on the top of the stack, and the Activity LED shall be on the bottom of the stack when viewed from the horizontal position. In all cases, the port ordering shall increase from left to right when viewed from the same horizontal position.

The actual placement of the Link and Activity LEDs on the faceplate may be left up to the discretion of the OCP NIC 3.0 card designer. The LED port association shall be clearly labeled on the OCP NIC 3.0 card. Similarly, the LED for link and the LED for Activity indication shall also be marked on the faceplate.

For 4xSFP and 2xQSFP configurations, the LEDs may be placed on the secondary side of the card using right-angle SMT components. OCP NIC 3.0 designers may opt to use the scan chain LEDs instead or in addition to the on-card indicators.

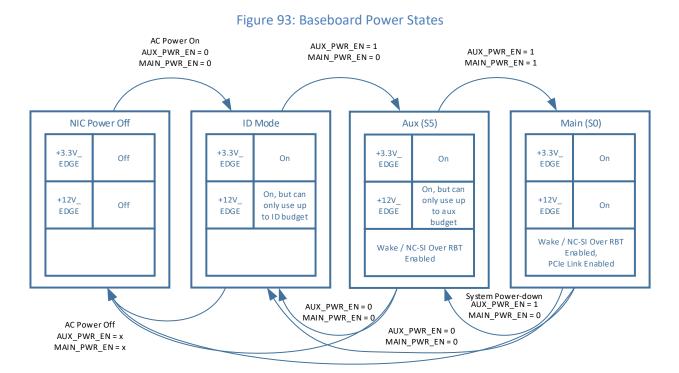
Figure 92: Port and LED Ordering – Example Small Card Link/Activity and Speed LED Placement

Note: The example port and LED ordering diagrams shown in Figure 92 are viewed with the card in the horizontal position and the primary side is facing up.

3.8.4 Baseboard LEDs Configuration over the Scan Chain

A small form-factor OCP NIC 3.0 with a fully populated I/O bracket (2x QSFP, 4x SFP or 4x RJ-45) does not have sufficient space for primary-side discrete on-board (faceplate) LED indicators. Section 3.8.2 presents an implementation for placing LEDs on the secondary side..

In this scenario, the line side link and activity LED indicators are implemented on the baseboard system via the Scan Chain for remote indication. The Scan Chain bit stream is defined in Section 3.4.5.


The baseboard LED implementation uses two discrete LEDs – a green/amber Link LED and a discrete green Activity. The physical baseboard LED implementation is left up to the baseboard vendor and is not defined in this specification. The LED implementation is optional for baseboards.

For serviceability, green LEDs shall emit light at a wavelength between 513nm and 537nm while amber LEDs shall emit light at a wavelength between 580nm and 589nm.

At the time of this writing, the Scan Chain definition allows for up to two link and one activity LED per port. A total of up to 8 ports are supported in the Scan Chain. The bit stream defines the LEDs to be active low (on). The Scan Chain LED implementation allows the NIC LED indicators to be remotely located on the OCP NIC 3.0 compliant chassis (e.g. front LED indicators with rear I/O cards).

3.9 **Power Capacity and Power Delivery**

There are four permissible power states: NIC Power Off, ID Mode, Aux Power Mode (S5), and Main Power Mode (S0). The transition of these states is shown in Figure 93. The max available power envelopes for each of these states are defined in Table 43.

Power State	AUX_PWR _EN	MAIN_PW R_EN	PERSTn	FRU	Scan Chain	WAKEn	RBT Link	PCle Link	+3.3V _EDGE	+12V _EDGE
NIC Power Off	Low	Low	Low							
ID Mode	Low	Low	Low	Х	X1				Х	Х
Aux Power Mode (S5)	High	Low	Low	х	х	Х	Х		Х	Х
Main Power Mode (S0)	High	High	High	Х	х	Х	Х	Х	Х	Х

Table 43: Power States

Note 1: Only the PRSNTB[0:3]# scan chain signals are valid in ID mode as the OCP NIC 3.0 card power rails have not yet been enabled via the AUX_PWR_EN/MAIN_PWR_EN signals.

3.9.1 NIC Power Off

In NIC power off mode, all power delivery has been turned off or disconnected from the baseboard. Transition to this state can be from any other state.

3.9.2 ID Mode

In the ID Mode, only +3.3V_EDGE is available for powering up management only functions. Only FRU and scan chain accesses are allowed in this mode. Only the card PRSNTB[0:3]# bits are valid on the chain in this mode as the OCP NIC 3.0 card power rails have not yet been enabled via the AUX_PWR_EN and MAIN_PWR_EN signals. The WAKE#, TEMP_WARN#, TEMP_CRIT#, Link and Activity bits are invalid and should be masked by the baseboard in ID Mode.

The +12V_EDGE rail is not intended to be used in ID Mode, however leakage current may be present. The max leakage is defined in Section 3.10. An OCP NIC 3.0 card shall transition to this mode when AUX_PWR_EN=0 and MAIN_PWR_EN=0.

3.9.3 Aux Power Mode (S5)

In Aux Power Mode provides both +3.3V_EDGE as well as +12V_EDGE is available. +12V_EDGE in Aux mode may be used to deliver power to the OCP NIC 3.0 card, but only up to the Aux mode budget as defined in Table 44. An OCP NIC 3.0 card shall transition to this mode when

AUX_PWR_EN=1,MAIN_PWR_EN=0, NIC_PWR_GOOD=1 and the duration (T_{APL}) has passed for the ID-Aux Power Mode ramp. This guarantees the ID mode to Aux Power Mode transition (as shown in Figure 94) has completed and all Aux Power Mode rails are within operating tolerances. The WAKE#, TEMP_WARN#, and TEMP_CRIT# bits shall not sampled until these conditions are met.

3.9.4 Main Power Mode (S0)

In Main Power Mode provides both +3.3V_EDGE and +12V_EDGE across the OCP connector. The OCP NIC 3.0 card operates in full capacity. Up to 80W may be delivered on +12V_EDGE for a Small Card and up to 150W for a Large Card. Additionally, up to 3.63W is delivered on each +3.3V_EDGE pin. An OCP NIC 3.0 card shall transition to this mode when AUX_PWR_EN=1, MAIN_PWR_EN=1, NIC_PWR_GOOD=1 and the duration (T_{MPL}) has passed for the Aux-Main Power Mode ramp. This guarantees the Aux Power Mode to Main Power Mode transition (as shown in Figure 94) has completed and all Main Power Mode rails are within operating tolerances. The WAKE#, TEMP_WARN#, and TEMP_CRIT# bits shall not sampled until these conditions are met.

3.10 Power Supply Rail Requirements and Slot Power Envelopes

The baseboard provides +3.3V_EDGE and +12V_EDGE to both the Primary and Secondary Connectors. The rail requirements are leveraged from the PCIe CEM 4.0 specification. For OCP NIC 3.0 cards, the requirements are as follows:

Power Rail	15W Slot Small Card	25W Slot Small Card	35W Slot Small Card	80W Slot Small Card	150W Large Card
	Hot Aisle	Hot Aisle	Hot Aisle	Cold Aisle	Cold Aisle
+3.3V_EDGE					
Voltage Tolerance	±9% (max)	±9% (max)	±9% (max)	±9% (max)	±9% (max)
Supply Current					
ID Mode	100mA (max)	100mA (max)	100mA (max)	100mA (max)	100mA (max)
Aux Mode	1.1A (max)	1.1A (max)	1.1A (max)	1.1A (max)	2.2A (max)
Main Mode	1.1A (max)	1.1A (max)	1.1A (max)	1.1A (max)	2.2A (max)
Capacitive Load	150µF (max)	150µF (max)	150µF (max)	150µF (max)	300µF (max)
+12V_EDGE					
Voltage Tolerance	+8%/-12% (max)	+8/-12% (max)	+8/12% (max)	+8/-12% (max)	+8/-12% (max)
Supply Current					
ID Mode	50mA (max)	50mA (max)	50mA (max)	50mA (max)	50mA (max)
Aux Mode	0.7A (max)	1.1A (max)	1.5A (max)	3.3A (max)	6.3A (max)
Main Mode	1.25A (max)	2.1A (max)	2.9A (max)	6.6A (max)	12.5A (max)
Capacitive Load	500µF (max)	500µF (max)	500µF (max)	500µF (max)	1000µF (max)

	Table 44: Baseboard	Power Supply Rail	Requirements –	Slot Power Envelopes
--	---------------------	-------------------	----------------	----------------------

Note 1: While cards may draw up to the published power ratings, the baseboard vendor shall evaluate its cooling capacity for each slot power envelope to determine if a transition to Aux Power Mode is allowed.

Note 2: The maximum slew rate for each OCP NIC 3.0 card shall be no more than $0.1A/\mu s$ per the PCIe CEM specification.

Note 3: Each OCP NIC 3.0 card shall limit the bulk capacitance to the max values published (500μ F for a Small Form-Factor card, 1000μ F for a Large Form-Factor card).

Note 4: For systems that implement hot plug, the baseboard shall limit the voltage slew rate such that the instantaneous inrush current shall not exceed the specified max current. The equation is defined in the PCIe CEM specification and is dV/dt = I/C; where:

I = max allowed current (A) C = max allowed bulk capacitance (F) dV/dt = maximum allowed voltage slew rate (V/s)

The OCP NIC 3.0 FRU definition provides a record for the max power consumption of the card. This value shall be used to aid in determining if the card may be enabled in a given OCP slot. Refer to Section 4.10.2 for the available FRU records.

Additionally, the baseboard shall advertise its slot power limits to aid in the overall board power budget allocation to prevent a high power card from being enabled in a lower power class slot. This is

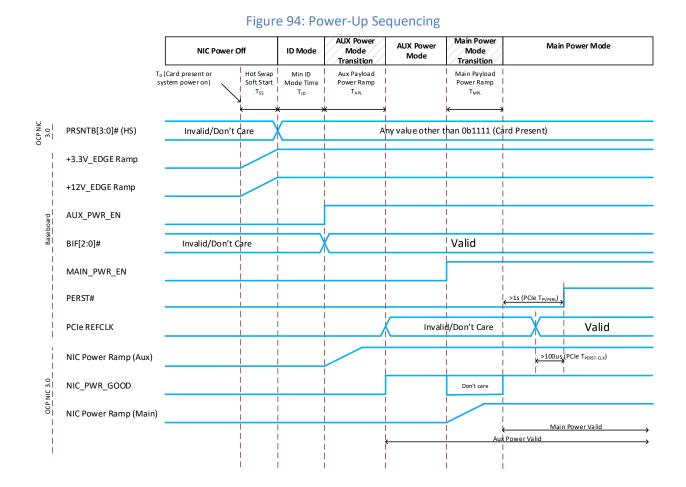
implemented via the Slot Power Limit Control mechanism as defined in the PCIe Base Specification. The end point silicon will power up in a low power state until power is negotiated.

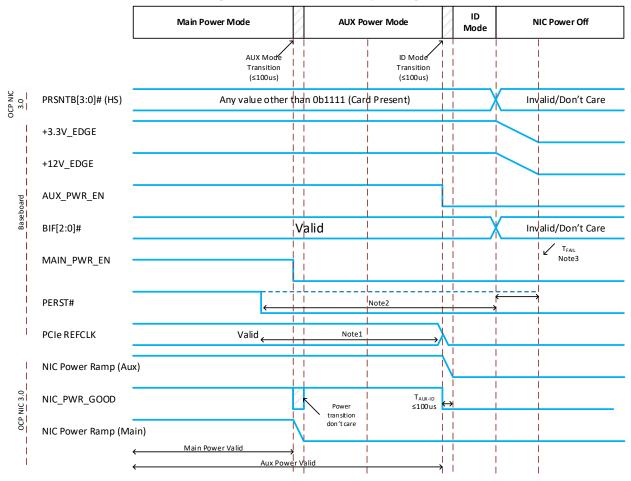
3.11 Hot Swap Considerations for +12V_EDGE and +3.3V_EDGE Rails

Hot plug and hot swap support is optional for baseboard implementers. However, the OCP NIC 3.0 form factor lends itself to potential hot plug and removal events while the baseboard is powered on. These events need to be carefully orchestrated with the system operating system and management entity to prevent a system hang. A surprise extraction may occur in some instances when resources have not been quiesced and the card is removed. Many aspects of the system are involved in processing such an event in both cases. The current scope of this specification does not define an overall hardware or software system architecture to support hot plug. Instead, this specification only highlights the hardware elements that can be utilized to support hot plug for implementations.

The system implementer shall consider the use of hotswap controllers on both the +12V_EDGE and +3.3V_EDGE pins to prevent damage to the baseboard or the OCP NIC 3.0 card. Hotswap controllers help with in-rush current limiting while also providing overcurrent protection, undervoltage and overvoltage protection capabilities.

The hot swap controller may gate the +12V_EDGE and +3.3V_EDGE based on the PRSNTB[3:0]# value. Per Section 3.5.3, a card is present in the system when the encoded value is not 0b1111. The PRSNTB[3:0]# may be AND'ed together and connected to the hotswap controller to accomplish this result. Per the OCP NIC 3.0 mechanical definition (Section 3.1.1), the present pins are short pins and engage only when the card is positively seated.


The PRSNTB[3:0]# pins are used to detect an OCP 3.0 NIC card insertion and removal event. The card type detection is described in Section 3.5. Through the use of in-band signaling, the PCIe link may be enabled to periodically train when a card is plugged in. Similarly, the signals may be used to detect a card removal. The card type is determined by querying the FRU data over the SMBus.


At the time of this writing, the DSP0222 Network Controller Sideband Interface (NC-SI) Specification does not define a mechanism to discover hot-plug support. Future work is needed for supporting this feature on NCSI over RBT interfaces.

Baseboards that do not support hot insertion, or hot extractions may opt to not implement these features.

3.12 Power Sequence Timing Requirements

The following figure shows the power sequence of PRSNTB[3:0]#, +3.3V_EDGE, +12V_EDGE relative to AUX_PWR_EN, BIF[2:0]#, MAIN_PWR_EN, PERSTn*, and PCIe REFCLK stable on the baseboard. Additionally the OCP NIC 3.0 card power ramp, and NIC_PWR_GOOD are shown. Please refer to Section 3.4.6 for the NIC_PWR_GOOD definition. Refer to DMTF DSP0222 for details on the NC-SI clock startup requirements.

Figure 95: Power-Down Sequencing

Note1: REFCLK go inactive after PERST# goes active. (PCIe CEM Section 2.2.3) Note2: PERST# goes active before the power on the connector is removed. (PCIe CEM Section 2.2.3) Note3: In the case of a surprise power down, PERST# goes active T_{FAIL} after power is no longer stable.

Table 45: Power Sequencing Parameters

Parameter	Value	Units	Description
T _{ss}	20	ms	Maximum time between system +3.3V_EDGE and +12V_EDGE ramp
			to power stable.
T _{ID}	20	ms	Minimum guaranteed time per spec to spend in ID mode.
T _{APL}	25	ms	Maximum time between AUX_PWR_EN assertion to
			NIC_PWR_GOOD assertion.
T _{MPL}	25	ms	Maximum time between MAIN_PWR_EN assertion to
			NIC_PWR_GOOD assertion.
T _{PVPERL}	1	S	Minimum time between NIC_PWR_GOOD assertion in Main Power
			Mode and PERST# deassertion. For OCP NIC 3.0 applications, this
			value is >1 second. This is longer than the minimum value specified
			in the PCIe CEM Specification, Rev 4.0.
T _{PERST-CLK}	100	μs	Minimum Time PCIe REFCLK is stable before PERST# inactive

T _{FAIL}	500	ns	In the case of a surprise power down, PERST# goes active at minimum T _{FAIL} after power is no longer stable.
T _{AUX-ID}	10	ms	Maximum time from AUX_PWR_EN deassertion to NIC_PWR_GOOD
			deassertion.

3.13 Digital I/O Specifications

All digital I/O pins on the connector boundary are +3.3V signaling levels. Table 46 following tables provide the absolute max levels. Refer to the appropriate specifications for the RBT, PCIe and SMBus DC/AC specifications.

Symbol	Parameter	Min	Max	Units	Note
V _{OH}	Output voltage		3.6	V	
Vol	Output low voltage		0.8	V	
I _{OH}	Output high current			mA	
I _{ОН}	Output low current			mA	
VIH	Input voltage		3.6	V	
VIL	Input low voltage		0.8	V	
I _{OH}	Input current			mA	

Table 46: Digital I/O DC specifications

Table 47: Digital I/O AC specifications

Symbol	Parameter	Min	Max	Units	Note
T _{OR}	Output rise time			ns	
T _{OF}	Output fall time			ns	

4 Management and Pre-OS Requirements

OCP NIC 3.0 card management is an important aspect to overall system management. This section specifies a common set of management requirements for OCP NIC 3.0 implementations. There are three types of implementations (RBT+MCTP Type, RBT Type, and MCTP Type) depending on the physical sideband management interfaces, transports, and traffic supported over different transports. An OCP NIC 3.0 implementation shall support at least one type of implementation for card management. For a given type of implementation, an OCP NIC 3.0 card shall support type specific requirements described in Sections 4.1 through 4.7.

Management Type	Definition
RBT Type	The RBT Type management interface is exclusive to the Reduced Media
	Independent Interface (RMII) Based Transport (RBT). The NIC card is required
	to support the DSP0222 Network Controller Sideband Interface (NC-SI)
	Specification for this management
RBT+MCTP Type	The RBT+MCTP management interface supports both the RBT and MCTP
	standards, specifically the DSP0222 Network Controller Sideband Interface
	(NC-SI) Specification, DSP0236 Management Component Transport Protocol
	(MCTP) Base Specification, and the associated binding specifications. This is
	the preferred management implementation for baseboard NIC cards. See
	MCTP Type below for more details
МСТР Туре	The MCTP management interface supports MCTP standards specifically the
	DSP0236 Management Component Transport Protocol (MCTP) Base
	Specification and the associated binding specifications.

Table 48: OCP NIC 3.0 Management Implementation Definitions

4.1 Sideband Management Interface and Transport

OCP NIC 3.0 sideband management interfaces are used by a Management Controller (MC) or Baseboard Management Controller (BMC) to communicate with the NIC. Table 49 summarizes the sideband management interface and transport requirements.

Requirement	RBT+MCTP	RBT Type	МСТР
	Туре		Туре
NC-SI 1.1 compliant RMII Based Transport (RBT) including	Required	Required	N/A
physical interface defined in Section 10 of DMTF DSP0222			
I ² C compliant physical interface for FRU EEPROM	Required	Required	Required
SMBus 2.0 compliant physical interface	Required	N/A	Required
Management Component Transport Protocol (MCTP) Base	Required	N/A	Required
1.3 (DSP0236 1.3 compliant) over MCTP/SMBus Binding			
(DSP0237 1.1 compliant)			
PCIe VDM compliant physical interface	Optional	Optional	Optional
Management Component Transport Protocol (MCTP) Base	Optional	Optional	Optional
1.3 (DSP0236 1.3 compliant) over MCTP/PCIe VDM Binding			
(DSP0238 1.0 compliant)			

4.2 NC-SI Traffic

DMTF DSP0222 defines two types of NC-SI traffic: Pass-Through and Control. Table 50 summarizes the NC-SI traffic requirements.

Requirement	RBT+MCTP	RBT Type	МСТР
	Туре		Туре
NC-SI Control over RBT (DMTF DSP0222 1.1 or later	Required	Required	N/A
compliant)			
NC-SI Control over MCTP (DMTF DSP0261 1.2 compliant)	Required	N/A	Required
NC-SI Pass-Through over RBT (DMTF DSP0222 1.1 compliant)	Required	Required	N/A
NC-SI Pass-Through over MCTP (DMTF DSP0261 1.2	Optional	N/A	Optional
compliant)			

Table 50: NC-SI Traffic Requirements

Note: A Management Controller (MC) is allowed to use NC-SI Control traffic only without enabling NC-SI pass-through.

4.3 Management Controller (MC) MAC Address Provisioning

An OCP NIC 3.0 compliant card that supports NC-SI pass-through shall provision one or more MAC addresses per Package (refer to the Package definition as detailed in the DMTF DSP0222 specification) for Out-Of-Band (OOB) management traffic. The number of MC MAC addresses provisioned is implementation dependent. These MAC addresses are not exposed to the host(s) as available MAC addresses. The MC is not required to use these provisioned MAC addresses. Table 51 summarizes the MC MAC address provisioning requirements.

Table 51: MC MAC Address Provisioning Requirements

Requirement	RBT+MCTP Type	RBT Type	МСТР Туре
One or more MAC Addresses per package shall be provisioned for the MC.	Required	Required	Optional
The OCP NIC 3.0 platform may choose to use the NIC vendor allocated MAC addresses for the BMC.			
The usage of provisioned MAC addresses are BMC implementation specific and is outside the scope of this specification.			
The recommended MAC address allocation scheme is stated below.			
Assumptions:			
1. The number of BMCs or virtual BMCs is the same as			
the number of hosts (1:1 relationship between each host and the BMC).			

2.	The maximum number of partitions on each port is the same.			
Variabl	ec.			
•	<pre>num_ports - Number of Ports on the OCP NIC 3.0 card</pre>			
•	<pre>max_parts - Maximum number of partitions on a port</pre>			
•	<pre>num_hosts - Number of hosts supported by the NIC</pre>			
•	<pre>first_addr - The MAC address of the first port on the first host for the first partition on that port host_addr[i] - base MAC address of ith host (0</pre>			
•	≤ i ≤ num_hosts-1) bmc_addr[i] - base MAC address of ith BMC (0 ≤ i ≤ num_hosts-1)			
Formul	ae:			
•	host_addr[i] = first_addr +			
	i*num_ports*(max_parts+1)			
•	The assignment of MAC address used by i th host on			
	port j for the partition k is out of the scope of this specification.			
•	bmc_addr[i] = host_addr[i] + num_ports*max_parts			
•	The MAC address used by i th BMC on port j, where 0			
	\leq i \leq num_hosts-1 and 0 \leq j \leq num_ports -1 is			
	bmc_addr[i] + j			
	t at least one of the following mechanism for	Required	Required	Optional
	oned MC MAC Address retrieval:			
	-SI Control/RBT (DMTF DSP0222 1.1 or later			
	npliant)			
● NC	-SI Control/MCTP (DMTF DSP0261 1.2 compliant)			
	This capability is planned to be included in revision 1.2 DSP0222 NC-SI specification.			
For DM	ITF DSP0222 1.1 compliant OCP NIC 3.0			
	nentations, MC MAC address retrieval shall be			
	ted using NC-SI OEM commands. An OCP NIC 3.0			
-	nentation, that is compliant with DMTF DSP0222 that			
	s standard NC-SI commands for MC MAC address			
retrieva	al, shall support those NC-SI commands.			

4.4 Temperature Reporting

An OCP NIC 3.0 implementation can have several silicon components including one or more ASICs implementing NIC functions and one or more transceiver modules providing physical network media connectivity. For the system management, it is important that temperatures of these components can be retrieved over sideband interfaces.

The temperature reporting interface shall be accessible in Aux Power Mode (S5), and Main Power Mode (S0). Table 52 summarizes temperature reporting requirements. These requirements improve the system thermal management and allow the baseboard management device to access key component temperatures on an OCP NIC 3.0 card. When the temperature reporting function is implemented, it is required that the temperature reporting accuracy is within ±3°C.

Requirement	RBT+MCTP	RBT Type	МСТР
	Туре		Туре
Component Temperature Reporting for a component with TDP ≥8W	Required	Required	Required
Component Temperature Reporting for a component with TDP <8W	Recommended	Recommended	Recommended
When the temperature sensor reporting function is implemented, the OCP NIC 3.0 card shall support PLDM for Platform Monitoring and Control (DSP0248 1.1 compliant) for temperature reporting.	Required	Required	Required
When the temperature sensor reporting function is implemented, the OCP NIC 3.0 card shall report upper- warning, upper-critical, and upper-fatal thresholds for PLDM numeric sensors.	Required	Required	Required
Note: For definitions of the warning, critical, and fatal thresholds, refer to DSP0248 1.1.			
When the temperature reporting function is implemented using PLDM numeric sensors, the temperature tolerance shall be reported.	Required	Required	Required
Support for NIC self-shutdown.	Optional	Optional	Optional
The purpose of this feature is to "self-protect" the NIC from permanent damage due to high operating temperature experienced by the NIC. The NIC can accomplish this by reducing the power consumed by the device.			
The NIC shall monitor its temperature and shut-down itself as soon as the threshold value is reached. The value of the self-shutdown threshold is implementation specific. It is recommended that the self-shutdown threshold value is higher than the maximum junction temperature of the ASIC implementing the NIC function and this value is between the critical and fatal temperature thresholds. The self-shutdown			

Table 52: Temperature Reporting Requirements

feature is a final effort in preventing permanent card damage at the expense of potential data loss.		
If this feature is implemented, care shall be taken to ensure that the board power down state is latched and that the board does not autonomously resume normal operation.		
Note: It is assumed that a system management function will prevent a component from reaching its fatal threshold temperature.		
The OCP NIC 3.0 card does not need to know the reason for the self-shutdown threshold crossing (e.g. fan failure). After entering the self-shutdown state, the OCP NIC 3.0 card is not required to be operational. This might cause the system with the OCP NIC 3.0 card to become unreachable via the NIC.		
In order to recover the NIC from the self-shutdown state, the OCP NIC 3.0 card shall go through the NIC ID Mode state as described in Section 3.9.1.		

4.5 Power Consumption Reporting

An OCP NIC 3.0 implementation may be able to report the power consumed at the board level. It is important for the system management that the information about the power consumption can be retrieved over sideband interfaces. Table 53 summarizes power consumption reporting requirements.

Table 53: Power	Consumption	Reporting	Requirements
	consumption	inc por ting	negunements

Requirement	RBT+MCTP	RBT Type	МСТР
	Туре		Туре
Board Only Estimated Power Consumption Reporting. The	Required	Required	Required
value of this field is encoded into the FRU EEPROM contents.			
This field reports the board max power consumption value			
without transceivers plugged into the line side receptacles.			
Pluggable Transceiver Module Power Reporting. The	Required	Required	Required
pluggable transceivers plugged into the line side receptacles			
shall be inventoried (via an EEPROM query) and the total			
module power consumption is reported.			
Board Runtime Power Consumption Reporting. This value	Optional	Optional	Optional
shall be optionally reported over the management binding			
interface. The runtime power value shall report the card			
edge power.			
PLDM for Platform Monitoring and Control (DSP0248 1.1	Required	Required	Required
compliant) for component power consumption reporting			

4.6 Pluggable Transceiver Module Status and Temperature Reporting

A pluggable transceiver module is a compact, hot-pluggable transceiver used to connect the OCP 3.0 NIC to an external physical medium. It is important for proper system operation to know the presence and temperature of pluggable transceiver modules. Table 54 summarizes pluggable module status reporting requirements.

Requirement	RBT+MCTP Type	RBT Type	МСТР Туре
Pluggable Transceiver modules Presence Status and Temperature Reporting	Required	Required	Required
PLDM for Platform Monitoring and Control (DSP0248 1.1 compliant) for reporting the pluggable transceiver module presence status and pluggable transceiver module temperature	Required	Required	Required

Table 54: Pluggable Module Status Reporting Requirements

4.7 Management and Pre-OS Firmware Inventory and Update

An OCP NIC 3.0 implementation can have different types of firmware components for data path, control path, and management path operations. It is desirable that OCP NIC 3.0 implementations support an OS-independent mechanism for the management firmware update. It is desirable that the management firmware update does not require a system reboot for the new firmware image to become active. Table 55 summarizes the firmware inventory and update requirements.

Table 55: Management and Pre-OS Firmware Inventory and Update Requirements

Requirement	RBT+MCTP	RBT Type	МСТР
	Туре		Туре
Network boot in UEFI driver (supporting both IPv4 and	Required	Required	Required
IPv6 addressing for network boot)			
UEFI secure boot for UEFI drivers	Required	Required	Required
UEFI Firmware Management Protocol (FMP)	Required	Required	Required
PLDM for Firmware Update (DSP0267 1.0 compliant)	Required	Recommended	Required

4.7.1 Secure Firmware

It is highly recommended that an OCP NIC 3.0 card supports a secure firmware feature. In the future versions of the OCP NIC 3.0 specification, the secure firmware feature is intended to be required. When the secure firmware feature is enabled and where export compliance permits, the OCP NIC 3.0 card shall verify firmware components prior to the execution, execute only signed and verified firmware components, and only allow authenticated firmware updates. Where applicable, an OCP NIC 3.0 implementation shall use the guidelines provided in NIST SP 800-193 (draft) Platform Resiliency Guidelines for the following secure firmware functions:

- Signed Firmware Updates
- Ensure only valid/authenticated firmware updates can be applied. Refer to: NIST 800-193 Section 3.5 Firmware Update Mechanisms, and 4.1.2 Root of Trust for Update (RTU) and Chain of Trust for Update (CTU)

- Ensure authentication mechanisms cannot be bypassed. Refer to NIST 800-193 Section 4.2 Protection.
- Secure Boot
- Only boot trusted/authenticated firmware: NIST 800-193 4.1.3 Root of Trust for Detection (RTD) and Chain of Trust for Detection (CTD), and Section 4.3 Detection
- Recovery mechanism in case of boot failure: NIST 800-193 Section 4.4 Recovery

4.7.2 Firmware Inventory

The OCP NIC 3.0 card shall allow queries to obtain the firmware component versions, device model, and device ID via in-band and out-of-band interfaces without impacting NIC function and performance of said paths.

4.7.3 Firmware Inventory and Update in Multi-Host Environments

A multi-host capable OCP NIC 3.0 card shall gracefully handle concurrent in-band queries from multiple hosts and out-of-band access from the BMC for firmware component versions, device model, and device ID information.

A multi-host capable OCP NIC 3.0 card shall only permit one entity to perform write accesses to NIC firmware at a time, without creating contention.

A multi-host capable OCP NIC 3.0 card shall gracefully handle exceptions when more than one entity attempts to perform concurrent NIC firmware writes.

4.8 NC-SI Package Addressing and Hardware Arbitration Requirements

NC-SI over RBT is implemented via RMII pins between the MC and the OCP NIC 3.0 card. Protocol and implementation details of NC-SI over RBT can be found in the DMTF DSP0222 standard.

4.8.1 NC-SI over RBT Package Addressing

NC-SI over RBT capable OCP NIC 3.0 cards shall use a unique Package ID per ASIC when multiple ASICs share the single NC-SI physical interconnect to ensure there are no addressing conflicts.

Baseboards use the Slot_ID[1:0] values on the Primary Connector for this identification. The value of Slot_ID[1:0] is determined by the encoding shown in Table 56. SLOT_ID[1:0] is statically set high or low on the baseboard and is available on the OCP Bay portion of the Primary Connector.

Dhusical	SLOT_	SLOT_ID[1:0]		Package ID[2:0]			
Physical Slot (Dec.)	Pin OCP_A6	Pin OCP_B7	Package ID[2]	Package ID[1]	Package ID[0]		
SIOT (Dec.)	SLOT_ID1	SLOT_ID0	PhysDev#	SLOT_ID1	SLOT_ID0		
Slot 0	0	0	0/1	0	0		
Slot 1	0	1	0/1	0	1		
Slot 2	1	0	0/1	1	0		
Slot 3	1	1	0/1	1	1		

Table 56: Slot_ID[1:0] to Package ID[2:0] Mapping

Package ID[2:0] is a 3-bit field and is encoded in the NC-SI Channel ID as bits [7:5]. SLOT_ID1 is associated with Package ID[1]. SLOT_ID0 is associated with Package ID[0]. The Package ID[2] value is based on the silicon instance on the same physical OCP NIC 3.0 card. Package ID[2]==0b0 is assigned for

physical controller #0. Package ID[2]==0b1 is assigned for physical controller #1. In this case, physical controller #1 on the same card is at an address offset of +0x4. Refer to the specific endpoint device datasheet for details on the Package ID configuration options.

Note: The Package ID[2] field is optionally configurable in the NC-SI specification. If the target silicon hard codes this bit to 0b0, then a card must only implement a single silicon instance to prevent addressing conflicts.

Refer to the DMTF DSP0222 standard for more information on package addressing and Package ID.

4.8.2 Arbitration Ring Connections

For baseboards that implement two or more Primary Connectors, the NC-SI over RBT arbitration ring shall be connected to each other. The arbitration ring shall support operation with one card, or multiple cards installed. Figure 78 shows an example connection with dual Primary Connectors.

4.9 SMBus 2.0 Addressing Requirements

The SMBus provides a low speed management bus for the OCP NIC 3.0 card. The FRU EEPROM is directly connected to the OCP NIC 3.0 card edge on this bus and can be read by the baseboard in the ID Mode, Aux Power Mode and Main Power Mode. Network controllers may utilize the SMBus 2.0 interface for MCTP communications. OCP NIC 3.0 does not support MCTP over I²C due to the use of specific SMBus 2.0 addressing. Proper power domain isolation shall be implemented on the NIC.

4.9.1 SMBus Address Map

OCP NIC 3.0 cards shall support SMBus Address Resolution Protocol (ARP) to allow each device to be dynamically assigned an addresses for MCTP communication. This method automatically resolves address conflicts and eliminate the need for manual configuration of addresses. The address type of dynamic addresses can be either a dynamic and persistent address device or a dynamic and volatile address device. Refer to SMBus 2.0 specification and Section 6.11 of DSP0237 1.1 for details on SMBus address assignment.

A system implementation may choose to only use fixed addresses for an OCP NIC 3.0 card on the system. The assignment of these fixed addresses is system dependent and outside the scope of this specification. When fixed addresses are assigned to OCP NIC 3.0 card, then the OCP NIC 3.0 card shall be a fixed and discoverable SMBus device. Refer to SMBus 2.0 specification for more details.

All predefined SMBus addresses for OCP NIC 3.0 are shown in Table 57. Baseboard and OCP NIC 3.0 card designers must ensure additional devices do not conflict. The addresses shown are in 8-bit format and represent the read/write address pair.

Dhusiaal	SLOT_	ID[1:0]	FRU EEPROM Address					
Physical Slot (Dec.)	Pin OCP_A6	Pin OCP_B7	A2	A1	A0	Binary Address	Hex Address	
(Dec.)	SLOT_ID1	SLOT_ID0	SLOT_ID1	SLOT_ID0	Fixed			
Slot 0	0	0	0	0	0	0b1010_000X	0xA0/0xA1	
Slot 1	0	1	0	1	0	0b1010_010X	0xA4/0xA5	
Slot 2	1	0	1	0	0	0b1010_100X	0xA8/0xA9	
Slot 3	1	1	1	1	0	0b1010_110X	0xAC/0xAD	

Table 57: FRU EEPROM Address Map

4.10 FRU EEPROM

4.10.1 FRU EEPROM Address, Size and Availability

The FRU EEPROM provided for the baseboard to determine the card type and is directly connected to the SMBus on the card edge. Only one EEPROM is required for a single physical OCP NIC 3.0 card regardless of the PCIe width or number of physical card edge connectors it occupies. The FRU EEPROM is mandatory and shall be connected to the Primary Connector SMBus.

The EEPROM is addressable at the addresses indicated in Table 57. The write/read pair is presented in 8bit format. The size of EEPROM shall be at least 4Kbits for the base EEPROM map. OCP NIC 3.0 card suppliers may use a larger size EEPROM if needed to store vendor specific information. The FRU EEPROM shall use double byte addressing. The FRU EEPROM shall be write protected for production cards by pulling the EEPROM WP pin high to +3.3V_EDGE. The FRU shall be writable for manufacturing test and during card development by pulling the EEPROM WP pin low to ground.

The FRU EEPROM is readable in all three power states (ID mode, AUX(S5) mode, and MAIN(S0) mode).

4.10.2 FRU EEPROM Content Requirements

The FRU EEPROM shall follow the data format specified in the IPMI Platform Management FRU Information Storage Definition v1.0 Document Revision 1.3. Both the Product Info and Board Info records shall be populated in the FRU EEPROM. Where applicable, fields common to the Product Info and Board Info records shall be populated with the same values so they are consistent.

The OEM record 0xC0 is used to store specific records for the OCP NIC 3.0. For an OCP NIC 3.0 card, the FRU EEPROM OEM record content based on the format defined in Table 58 shall be populated.

Note: Table 58 only shows a portion of the OEM record. The complete record includes a Common Header and valid record checksum as defined in the IPMI Platform Management FRU Information Storage Definition specification.

Offset	Length	Description
0	3	Manufacturer ID.
		For OCP NIC 3.0 compliant cards, the value of this field shall be set to the OCP IANA assigned number. This value is 0x7FA600, LS byte first. (42623 in decimal)
3	1	OCP NIC 3.0 FRU OEM Record Version.

Table 58: FRU EEPROM Record – OEM Record 0xC0, Offset 0x00

		For OCP NIC 3.0 cards compliant to this specification, the value of this field shall be set to 0x01.
4	1	Card Max power (in Watts) in MAIN (S0) mode.
		The encoded value is the calculated max power of the OCP NIC 3.0 card in the Main Power (S0) mode only and does not include the consumed power by transceivers plugged into the line side receptacle(s).
		0x00 – 0xFE – Card power rounded up to the nearest Watt for fractional values. 0xFF – Unknown
5	1	Card Max power (in Watts) in AUX (S5) mode.
		The encoded value is the calculated max power of the OCP NIC 3.0 card in the Aux Power (S5) mode only and does not include the consumed power by transceivers plugged into the line side receptacle(s).
		0x00 – 0xFE – Card power rounded up to the nearest Watt for fractional values.
		0xFF – Unknown
6	1	Hot Aisle Card Cooling Tier.
		The encoded value reports the OCP NIC 3.0 Card Hot Card Cooling Tier as defined in Section 6.6.1.
		0x00 – RSVD
		0x01 – Hot Aisle Cooling Tier 1
		0x02 – Hot Aisle Cooling Tier 2 0x03 – Hot Aisle Cooling Tier 3
		0x04 – Hot Aisle Cooling Tier 4
		0x05 – Hot Aisle Cooling Tier 5
		0x06 – Hot Aisle Cooling Tier 6
		0x07 – Hot Aisle Cooling Tier 7
		0x08 – Hot Aisle Cooling Tier 8
		0x09 – Hot Aisle Cooling Tier 9
		0x0A – Hot Aisle Cooling Tier 10 0x0B – Hot Aisle Cooling Tier 11
		0x0C – Hot Aisle Cooling Tier 12
		0x0D – 0xFE – Reserved
		0xFF – Unknown
7	1	Cold Aisle Card Cooling Tier.
		The encoded value reports the OCP NIC 3.0 Card Cold Aisle Cooling Tier as defined in Section 6.6.2.
		0x00 – RSVD
		0x01 – Cold Aisle Cooling Tier 1
		0x02 – Cold Aisle Cooling Tier 2
		0x03 – Cold Aisle Cooling Tier 3
		0x04 – Cold Aisle Cooling Tier 4 0x05 – Cold Aisle Cooling Tier 5
		0x06 – Cold Aisle Cooling Tier 6
		0x07 – Cold Aisle Cooling Tier 7
		0x08 – Cold Aisle Cooling Tier 8
		0x09 – Cold Aisle Cooling Tier 9
		0x0A – Cold Aisle Cooling Tier 10
		0x0B – Cold Aisle Cooling Tier 11

		0x0C – Cold Aisle Cooling Tier 12 0x0D – 0xFE – Reserved 0xFF – Unknown
8	1	Card active/passive cooling.
		This byte defines if the card has passive cooling (there is no fan on the card) or active cooling (a fan is located on the card).
		0x00 – Passive Cooling 0x01 – Active Cooling 0x02 – 0xFE – Reserved 0xFF – Unknown
9	2	Hot aisle standby airflow requirement.
3	2	The encoded value represents the amount of airflow, in LFM, required to cool the card in AUX (S5) mode while operating in a hot aisle environment. Refer to Section 6 for more information about the thermal and environmental requirements.
		Byte 9 is the LS byte, byte 10 is the MS byte.
		0x0000-0xFFFE – LFM required for cooling card in Hot Aisle Operation. 0xFFFF – Unknown.
11	2	Cold aisle standby airflow requirement.
		The encoded value represents the amount of airflow, in LFM, required to cool the card in AUX (S5) mode while operating in a cold aisle environment. Refer to Section 6 for more information about the thermal and environmental requirements.
		Byte 11 is the LS byte, byte 12 is the MS byte.
		0x0000-0xFFFE – LFM required for cooling card in Cold Aisle Operation. 0xFFFF – Unknown.
13	1	UART Configuration 1 – Secondary Connector.
		This byte denotes the UART configuration 1. A value 0x00 means no serial connection is implemented on the Secondary Connector card edge.
		Bits [2:0] denotes the UART baud rate per the encoding table below. If implemented, the encoded field value defines the default baud rate of the OCP NIC 3.0 card serial port. 0b000 – No serial connection
		0b001 – 115200 baud
		0b010 – 57600 baud 0b011 – 38400 baud
		0b100 – 19200 baud
		0b101 – 9600 baud
		0b110 – 4800 baud 0b111 – 2400 baud
		Bits [4:3] denotes the number of data bits.
		0b00 – No serial connection
		0b01 – 7 data bits
		0b10 – 8 data bits 0b11 – Reserved
		Bits [7:5] denotes the parity bit character.
		0b000 – No serial connection 0b001 – None (N)

		0b010 – Odd (O) 0b011 – Even (E) 0b100 – Mark (M) 0b101 – Space (S)
		0b110 – Reserved 0b111 – Reserved
14	1	UART Configuration 2 – Secondary Connector.
		This byte denotes the UART configuration 2. A value 0x00 means no serial connection is implemented on the Secondary Connector card edge.
		Bits [1:0] denotes the number of stop bits. 0b00 – No serial connection 0b01 – 1 stop bit 0b10 – 1.5 stop bits 0b11 – 2 stop bits
		Bits [3:2] denotes the flow control method. 0b00 – No serial connection 0b01 – Software handshaking 0b10 – No handshaking 0b11 – Reserved
		Bits [7:4] are reserved and shall be encoded to a value of 0b0000.
15	1	USB Present – Primary Connector.
		This byte denotes a USB 2.0 connection is implemented on the Primary Connector card edge.
		0x00 – No USB 2.0 is present or is not implemented on the card edge 0x01 – A USB 2.0 connection is implemented on the card edge.
16:30	15	Reserved for future use.
		Set each byte to 0xFF for this version of the specification.
31	1	Number of physical controllers (N).
		This byte denotes the number of physical controllers on the OCP NIC 3.0 card. If N=0, no controllers exist on this OCP NIC 3.0 card and this is the last byte in the FRU OEM Record.
		If N≥1, then the controller UDID records below shall be included for each controller N. OCP NIC 3.0 cards may implement up to six physical controllers (N=6) for a Large Form Factor card.
32:47	16	Controller 1 UDID (if applicable).
		This field reports the Controller 1 Universal Device Identifier (UDID) and is used to aid in the dynamic slave address assignment over the SMBus Address Resolution Protocol.
		This field shall list the MS Byte First (to align the FRU order to the reported UDID order on the SMBus). This field is populated with the UDID for Controller 1.
48:63	16	Controller 2 UDID (if applicable).
64:79	16	Controller 3 UDID (if applicable).
80:95	16	Controller 4 UDID (if applicable).
96:111	16	Controller 5 UDID (if applicable).
112:127	16	Controller 6 UDID (if applicable).

4.10.3 FRU Template

A FRU template is provided as a baseline implementation example. This FRU template contains the IPMI Platform Management FRU Information Storage Definition v1.2 Product Info, Board Info records as well as the OEM record for OCP NIC 3.0.

The FRU template file may be downloaded from the OCP NIC 3.0 Wiki site: <u>http://www.opencompute.org/wiki/Server/Mezz</u>.

5 Routing Guidelines and Signal Integrity Considerations

5.1 NC-SI Over RBT

For the purposes of this specification, the OCP NIC 3.0 card NC-SI signals min and max electrical trace length shall be between 2 inches and 4 inches on standard FR4 material. Additional trace length may be achieved with the use of lower loss material. This selection is left up to the card vendor when considering board materials. The traces shall be implemented as 50 Ohm ± 10% impedance controlled nets. This requirement applies to both the small and large form factor OCP NIC 3.0 cards.

NC-SI Over RBT isolation buffers are required on the system board. The requirements for additional addin card loading are reduced. OCP NIC 3.0 card and baseboard designers are encouraged to follow the guidelines defined in the RMII and NC-SI specifications for physical routing. Refer to Section 3.4.4 and the DSP0222 specification for example interconnect topologies.

5.1.1.1 Timing Budget

TBD – need to align on topologies.

5.2 SMBus 2.0

This section is a placeholder for SMBus 2.0 related routing guidelines and SI considerations. The OCP NIC 3.0 subgroup intends to define the bus operational speed range, capacitive loading, range of pull up resistance values. Doing so allows the baseboard suppliers to design a SMBus interface that is compatible with OCP NIC 3.0 products.

5.3 PCIe

This section is a placeholder for the PCIe routing guidelines and SI considerations.

OCP NIC 3.0 card suppliers shall follow the PCIe routing specifications. At this time, the OCP NIC 3.0 subgroup is working to identify and agree to the channel budget for an OCP NIC 3.0 card and leave sufficient margin for the baseboard. Refer to the PCIe CEM and PCIe Base specifications for end-to-end channel signal integrity considerations.

5.3.1 Background

5.3.2 Channel Requirements

The OCP NIC 3.0 PCIe channel requirements align with the electrical budget and constraints as detailed in the PCI Express CEM 4.0 Rev 1.0 and PCI Express Base Specification Rev 4.0. Exceptions or clarifications to the referenced specifications are noted in the sections below.

5.3.2.1 REFCLK requirements

REFCLK requirements are detailed in the PCI Express CEM 4.0 Rev 1.0 Section 2.1.

5.3.2.2 Add-in Card Electrical Budgets

This section defines the OCP NIC 3.0 card channel budget from the gold finger edge to the end point silicon. The values listed below are shown for reference and mirrors that of the PCIe CEM 4.0 specification.

Parameter	PCIe CEM 4.0 Rev 1.0 Specification Section
AC coupling capacitors	Section 4.7.1
Insertion Loss Values (Voltage Transfer	Section 4.7.2 and Appendix A.
Function)	Section 4.7.10 for 16GT/s
Jitter Values	Section 4.7.3 for 8GT/s and 16GT/s.
	Also refer to the PCIe Base Specification
	Section 8.3.5
Crosstalk	Section 4.7.4
Lane-to-lane skew (S _A) for Add-in cards	Section 4.7.5
Transmitter Equalization	Section 4.7.6 and PCIe Base Spec Chapter 9
Skew within a differential pair	Section 4.7.7
Differential data trace impedance	Section 4.7.8
Differential data trace propagation delay	Section 4.7.9

Table	59:	PCle	Electrical	Budgets
-------	-----	------	------------	----------------

5.3.2.3 Baseboard Channel Budget

The baseboard channel budget directly follows the PCI Express CEM 4.0 Rev 1.0 specification. Details of the budget are outside of the scope of this specification.

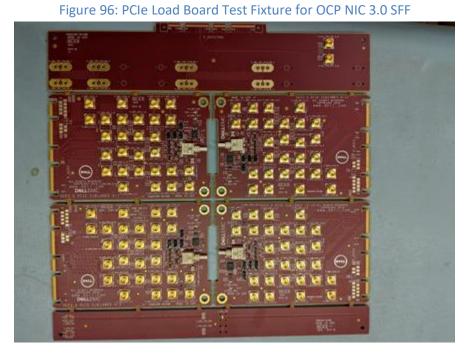
5.3.2.4 SFF-TA-1002 Connector Channel Budget

Reference the SFF-TA-1002 Revision 1.1 or later.

5.3.2.5 Differential Impedance

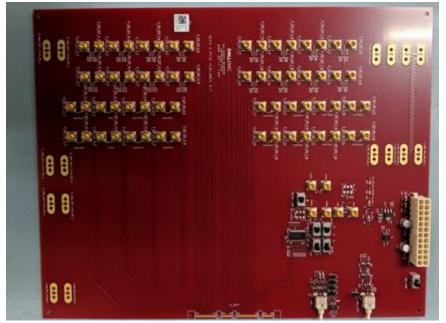
For PCIe transmit and receive differential pairs, the target impedance is 85 Ohms ± 10%.

For the PCIe REFCLKs, the target impedance is 100 Ohms ± 10%.


5.3.3 Test Fixtures

Test Fixtures are designed using the PCIe CEM 4.0 CLB and CBB. The fixtures host interface has been modified to the OCP connector standard and there are two version of the fixtures, one for Gen 3 PCIe and one for Gen 4 PCIe. Careful attention has been placed on these fixtures to help insure that standard test equipment automation should work without significant modification.

Test Fixture	PCIe Generation	PCB Material	
Load Board	Gen 3	TU863	
	Gen 4	TU883	
Base Board	Gen 3	TU863	
	Gen 4	TBD (+vISI board)	


Table 60: PCIe Test Fixtures for OCP NIC 3.0

5.3.3.1 Load Board

5.3.3.2 Baseboard

5.3.4 Test Methodology

Basic points:

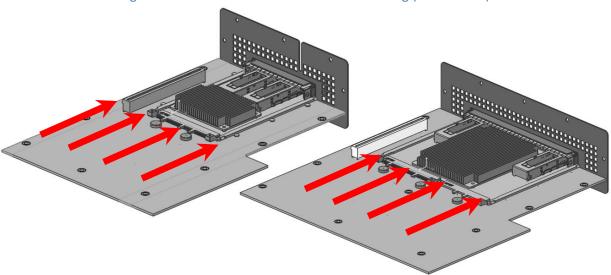
- Stay close to the PCIe Gen4 test methodology
- Refer to the PCIe Gen4 0.3 Test specification for PHY.

5.3.4.1 DUT Control and Test Automation Recommendations Details TBD.

- 5.3.4.2 Transmitter Testing
- 5.3.4.2.1 Add-in Card
- 5.3.4.2.1.1 Transmitter Signal Quality
- 5.3.4.2.1.2 Transmitter Pulse Width Jitter Test at 16GT/s
- 5.3.4.2.1.3 Transmitter Preset Test
- 5.3.4.2.1.4 Transmitter Initial TX EQ Test
- 5.3.4.2.1.5 Transmitter Link Equalization Response Test
- 5.3.4.2.1.6 Lane margining Timing and Voltage
- 5.3.4.2.2 Baseboard
- 5.3.4.2.2.1 Transmitter Signal Quality
- 5.3.4.2.2.2 Transmitter Pulse Width Jitter Test at 16GT/s
- 5.3.4.2.2.3 Transmitter Preset Test
- 5.3.4.2.2.4 Transmitter Initial TX EQ Test
- 5.3.4.2.2.5 Transmitter Link Equalization Response Test
- 5.3.4.2.2.6 Lane margining Timing and Voltage
- 5.3.4.3 Receiver Testing
- 5.3.4.3.1 Add-in Card
- 5.3.4.3.1.1 Receiver Link Equalization Test
- 5.3.4.3.2 Baseboard
- 5.3.4.3.2.1 Receiver Link Equalization Test
- 5.3.4.4 PLL Test
- 5.3.4.4.1 Add-in Card
- 5.3.4.4.1.1 PLL Bandwidth
- 5.3.5 Impedance (Informative)

- 5.3.5.1 Add-in Card PCB
- 5.3.5.2 Baseboard PCB

6 Thermal and Environmental


6.1 Airflow Direction

The OCP NIC 3.0 card is designed to operate in either of two different airflow directions which are referred to as Hot Aisle and Cold Aisle. In both Hot Aisle and Cold Aisle configurations all airflow is directed over the topside of the card. Component placement must assume that there will be no airflow on the bottom side of the card. The local approach air temperature and velocity to the card is dependent on the capability of the system adopting OCP NIC 3.0 card. These parameters may be impacted by the operational altitude and relative humidity in Hot Aisle or Cold Aisle configurations. Design boundary conditions for Hot Aisle and Cold Aisle cooling are included below in Sections 6.1.1 and 6.1.2 respectively.

The two airflow directions of the Hot and Cold Aisle cases should not result in multiple thermal solutions to separately satisfy the varying thermal boundary conditions. Ideally, any specific OCP NIC 3.0 card design should function in systems with either Hot Aisle or Cold Aisle cooling. Thermal analysis in support of this specification have shown the Hot Aisle configuration to be more challenging than Cold Aisle but card vendors should make that determination for each card that is developed.

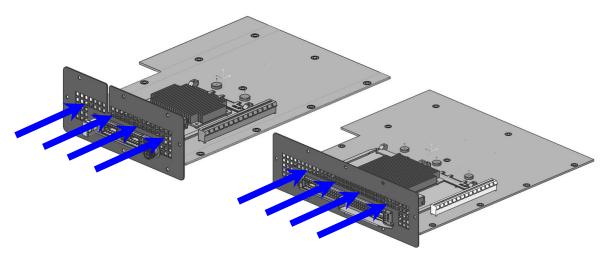
6.1.1 Hot Aisle Cooling

The airflow in typical server systems will approach from the card edge or heatsink side of the card. This airflow direction is referred to as Hot Aisle cooling and is illustrated below in Figure 98. The term Hot Aisle refers to the card being located at the rear of the system where the local inlet airflow is preheated by the upstream system components (e.g. HDD, CPU, DIMM, etc.).

The boundary conditions for Hot Aisle cooling are shown below in Table 61 and Table 62. The low temperature is listed at 5°C and assumes fresh air could be ducted to the back of the system from the front. More typically the inlet temperature to the OCP NIC 3.0 card will be in the same range as PCIe cards located at the back of the system (55°C local inlet temperature). Depending on the system design, power density, and airflow the inlet temperature to the OCP NIC 3.0 card may be as high as 60°C or 65°C. The airflow velocities listed in Table 62 represent the airflow velocities typical in mainstream

servers. Higher airflow velocities are available within the Hot Aisle cooling tiers listed in Table 67 but card designers must be sure to understand the system level implications of such high card LFM requirements.

	Low	Typical	High	Max
Local Inlet air	5°C	55°C	60°C	65°C
temperature	(system inlet)	55 0		05 C


Table 62: Hot Aisle Airflow Boundary Conditions

	Low	Typical	High	Max
Local inlet air	50 LFM	100-200 LFM	300 LFM	System
velocity	JU LEIVI	100-200 LFIVI	SUO LEIVI	Dependent

6.1.2 Cold Aisle Cooling

When installed in the front of a server the airflow will approach from the I/O connector (e.g. SFP, QSFP or RJ-45) side of the card. This airflow direction is referred to as Cold Aisle cooling and is illustrated below in Figure 99. The term Cold Aisle refers to the card being located at the front of the system where the local inlet airflow is assumed to be the same temperature as the system inlet airflow.

The boundary conditions for Cold Aisle cooling are shown below in Table 63 and Table 64. The temperature values listed in Table 63 assume the inlet temperature to the OCP NIC 3.0 card to be the same as the system inlet. The low, typical, high, and max temperatures listed align with the ASHRAE A1, A2, A3, and A4 environmental classes. Depending on the system, the supported ASHRAE class may limit the maximum temperature to the OCP 3.0 NIC card. However, for more broad industry support, cards should be designed to the upper end of the ASHRAE classes (i.e. A4).

Table 63: Cold Aisle Air Temperature Boundary Conditions

	Low	Typical	High	Max
Local Inlet Air	۶°C	25-35°C	40°C	45°C
Temperature	50	ASHRAE A1/A2	ASHRAE A3	ASHRAE A4

		1		
	Low	Typical	High	Max
Local Inlet Air	50 LFM	100 LFM	200 LFM	System
Velocity	JU LEIVI	TOO FLIM	200 LFIVI	Dependent

Table 64: Cold Aisle Airflow Boundary Conditions

6.2 Thermal Design Guidelines

The information in this section is intended to serve as a quick reference guide for OCP NIC 3.0 designers early in the design process. The information should be used as a reference for upfront thermal design and feasibility and should not replace detailed card thermal design analysis. The actual cooling capability of the card shall be defined based on the testing with the OCP NIC 3.0 thermal test fixture as defined in Section 6.4.

6.2.1 SFF Card ASIC Cooling – Hot Aisle

The ASIC or controller chip is typically the highest power component on the card. Thus, as OCP NIC 3.0 cards are developed it is important to understand the ASIC cooling capability. Figure 100 below provides an estimate of the maximum ASIC power that can be supported as a function of the local inlet velocity for the SFF card in a hot aisle cooling configuration. Each curve in Figure 100 represents a different local inlet air temperature from 45°C to 65°C.

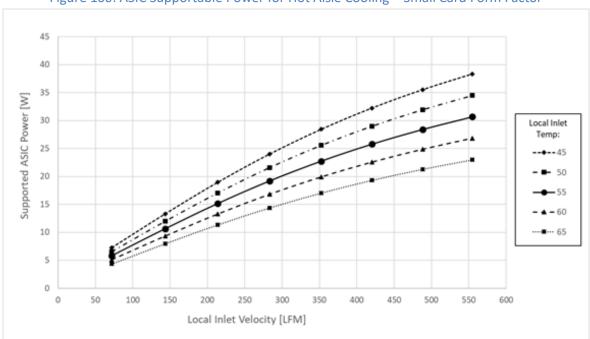
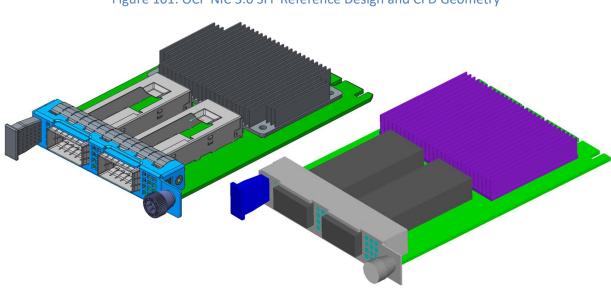
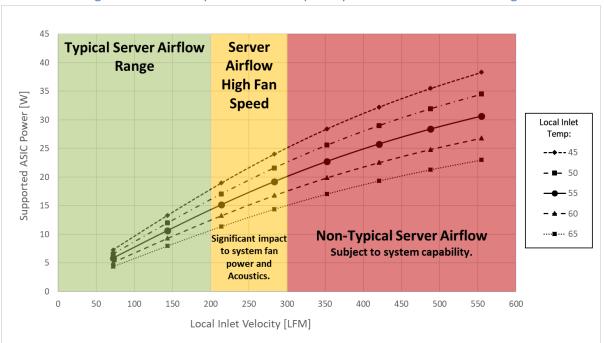



Figure 100: ASIC Supportable Power for Hot Aisle Cooling – Small Card Form Factor

The curves shown in Figure 100 were obtained using CFD analysis of a reference OCP NIC 3.0 SFF card. The reference card has a 20mm x 20mm ASIC with two QSFP connectors. Figure 101 shows a comparison of the 3D CAD and CFD model geometry for the reference OCP NIC 3.0 card. Additional card geometry parameters and boundary conditions used in the reference CFD analysis are summarized in Table 65. The OCP NIC 3.0 simulation was conducted within a virtual version of the test fixture defined in Section 6.4.

Figure 101: OCP NIC 3.0 SFF Reference Design and CFD Geometry

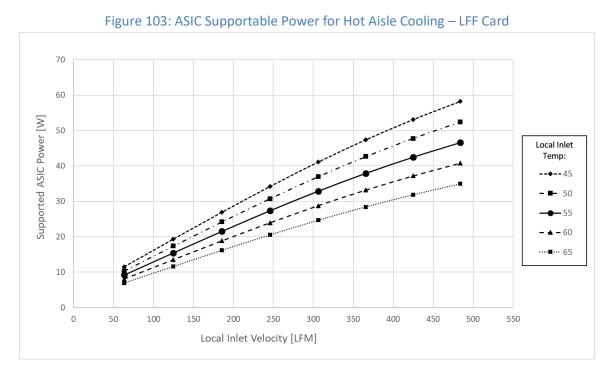
Table 65: Reference OCP NIC 3.0 SFF Card Geometry

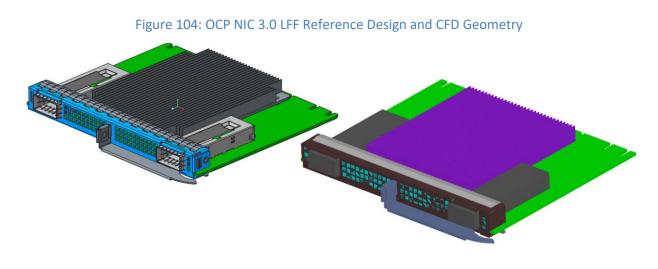

OCP NIC 3.0 Form Factor	SFF Card
Heatsink Width	65mm
Heatsink Length	45mm
Heatsink Height	9.24mm
Heatsink Base Thickness	1.5mm
Fin Count/Thickness	28/0.5mm
Heatsink Material	Extruded Aluminum
ASIC Width	20
ASIC Length	20
ASIC Height	2.26
ASIC Theta-JC	0.17 C/W
ASIC Theta-JB	10 C/W
OCP PCB In-Plane Conductivity	34 W/mK
OCP PCB Normal Conductivity	0.33 W/mK
ASIC Max T-case	95°C
OCP NIC 3.0 I/O Connectors	Two QSFP @ 3.5W each

An increase in the supported ASIC power or a decrease in the required airflow velocity may be achieved through heatsink size and material changes. For example, a larger heatsink or a heatsink made out of copper could improve ASIC cooling and effectively shift up the supportable power curves shown in Figure 100.

It is important to point out that the curves shown in Figure 100 represent only the maximum ASIC power that can be supported vs. the supplied inlet velocity. Other heat loads on the card may require airflow velocities above and beyond that required to cool the ASIC. SFP or QSFP optical transceivers located downstream of the AISC will in many cases pose a greater cooling challenge than the ASIC cooling.

Cooling the optical transceivers becomes even more difficult as the ASIC power is increased due to additional preheating of the air as it moves through the ASIC heatsink. OCP NIC 3.0 designers must consider all heat sources early in the design process to ensure the card thermal solution is sufficient for the feature set.

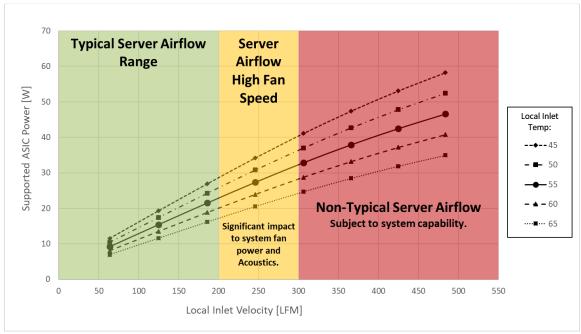

Card designers must also consider the airflow capability of the server systems that the cards are targeted for use within. Figure 102 below shows the SFF ASIC supportable power curves with an overlay of three server airflow capability ranges. Designers must ensure that their thermal solutions and resulting card airflow requirements fall within the range of supportable system airflow velocity. Cards that are under-designed (e.g. require airflow greater than the system capability) will have thermal issues when deployed into the server system. Card designers are advised to work closely with system vendors to ensure they target the appropriate airflow and temperature boundary conditions.


Figure 102: Server System Airflow Capability – SFF Card Hot Aisle Cooling

6.2.2 LFF Card ASIC Cooling – Hot Aisle

Figure 103 below provides an estimate of the maximum ASIC power that can be supported as a function of the local inlet velocity for the LFF card in a hot aisle cooling configuration. Each curve in Figure 103 represents a different local inlet air temperature from 45°C to 65°C.

The curves shown in Figure 103 were obtained using CFD analysis of the reference OCP NIC 3.0 LFF card. The reference card has a 45mm x 45mm ASIC with two QSFP connectors. Additional card geometry parameters and boundary conditions used in the reference CFD analysis are summarized in Table 66. Figure 104 shows a comparison of the 3D CAD and CFD model geometry for the reference OCP NIC 3.0 card.



OCP NIC 3.0 Form Factor	LFF Card
Heatsink Width	75mm
Heatsink Length	85mm
Heatsink Height	9.3mm
Heatsink Base Thickness	1.5mm
Fin Count/Thickness	33/0.5mm
Heatsink Material	Extruded Aluminum
ASIC Width	45
ASIC Length	45
ASIC Height	2.13
ASIC Theta-JC	0.17 C/W
ASIC Theta-JB	10 C/W
OCP PCB In-Plane Conductivity	34 W/mK
OCP PCB Normal Conductivity	0.33 W/mK
ASIC T-case Max	95°C
OCP NIC 3.0 I/O Connectors	Two QSFP @ 3.5W each

Table 66: Reference OCP NIC 3.0 LFF Card Geometry

It is important to note that the supportable power for the LFF card is considerably higher than for the SFF card due to the increased size of the ASIC heatsink. In addition, optics module cooling on the LFF card will also be considerably improved due to the arrangement of the optics in parallel to the ASIC heatsink rather than in series. These thermal advantages are key drivers for the LFF card geometry. The OCP NIC 3.0 simulation was conducted within a virtual version of the LFF card test fixture defined in Section 6.4.

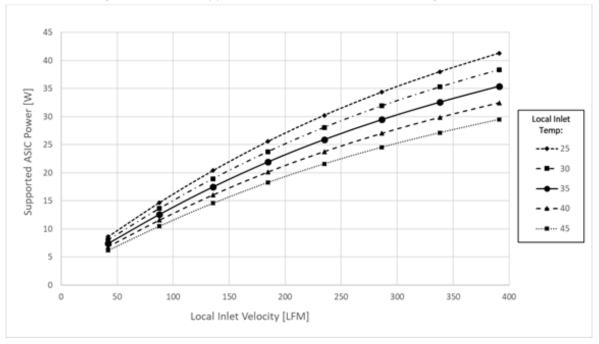
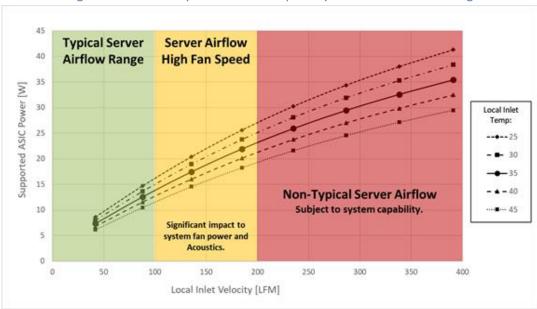
Figure 105 below shows the LFF ASIC supportable power curves with an overlay of three server airflow capability ranges. Designers must ensure that their thermal solutions and resulting card airflow requirements fall within the range of supportable system airflow velocity. Cards that are under-designed (e.g. require airflow greater than the system capability) will have thermal issues when deployed into the server system. Card designers are advised to work closely with system vendors to ensure they target the appropriate airflow and temperature boundary conditions.

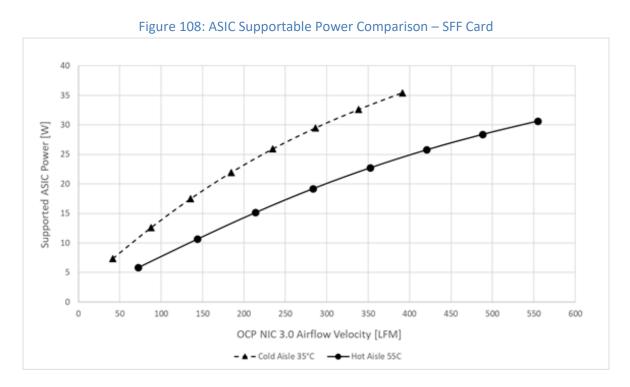
Figure 105: Server System Airflow Capability – LFF Card Hot Aisle Cooling

6.2.3 SFF Card ASIC Cooling – Cold Aisle

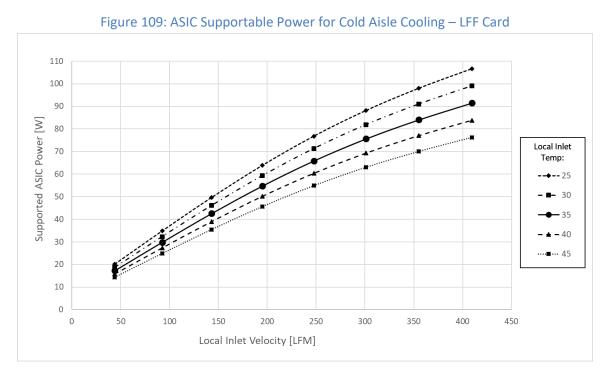
Compared to the Hot Aisle cooling configuration, there are several key differences for Cold Aisle ASIC cooling. With Cold Aisle cooling the airflow is pulled from the I/O connector side of the card. The I/O connectors and faceplate venting may affect the airflow through the ASIC heatsink. The I/O connectors may also preheat the airflow by some amount. In a Cold Aisle cooling configuration, other parallel airflow paths may result in less airflow passing over and through the OCP NIC 3.0 card compared to the Hot Aisle.

The ASIC cooling analysis for the SFF Card in the Cold Aisle configuration was conducted utilizing the same geometry and boundary conditions described in Figure 101 and Table 65 with airflow moving from I/O connector to ASIC (opposite to the Hot Aisle analysis). Figure 106 below shows the results of this analysis for the Cold Aisle cooling configuration. Each curve in Figure 106 represents a different system inlet air temperature from 25°C to 45°C.

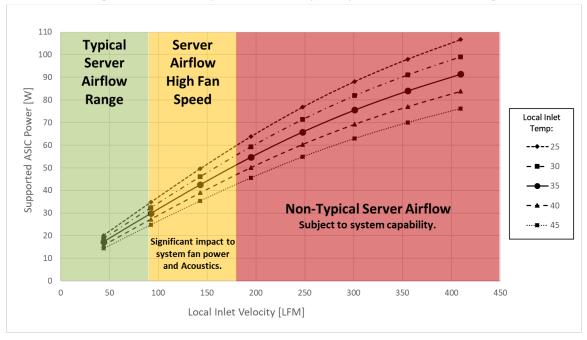




Figure 106: ASIC Supportable Power for Cold Aisle Cooling – SFF Card

Similar to Figure 102 for Hot Aisle cooling, Figure 107 below shows the ASIC supportable power curves with an overlay of three Cold Aisle server airflow capability ranges. Designers must ensure that their thermal solutions and resulting card airflow requirements fall within the range of supportable Cold Aisle system airflow velocity. Cards that are under-designed (e.g. require airflow greater than the system capability) will have thermal issues when deployed into the server system. Card designers are advised to work closely with system vendors to ensure they target the appropriate airflow and temperature boundary conditions for both Hot and Cold Aisle cooling.

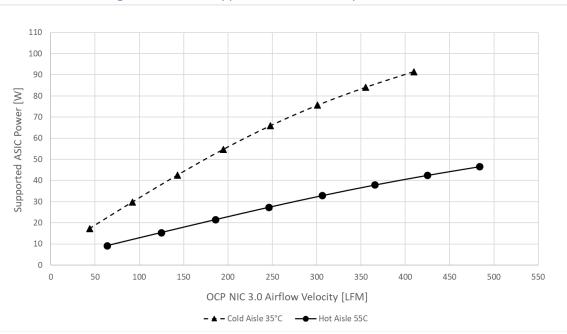

Figure 107: Server System Airflow Capability – SFF Cold Aisle Cooling

A comparison of Hot Aisle (55°C) and Cold Aisle (35°C) SFF ASIC cooling capability curves is shown below in Figure 108. The comparison shows the Hot Aisle ASIC cooling capability at 12W at 150LFM while the cold Aisle cooling capability shows support for 19W at 150LFM. In general, based on the reference geometry, the Cold Aisle cooling configuration allows for higher supported ASIC power at lower velocities due primarily to the lower inlet temperatures local to the OCP NIC 3.0 card when in the Cold Aisle cooling configuration.



6.2.4 LFF Card ASIC Cooling – Cold Aisle

The ASIC cooling analysis for the LFF card in Cold Aisle configuration was conducted utilizing the same geometry and boundary conditions described in Figure 104 and Table 66 with airflow moving from I/O connector to ASIC (opposite to the Hot Aisle analysis). Figure 109 below shows the results of this analysis for the Cold Aisle cooling configuration. Each curve in Figure 109 represents a different system inlet air temperature from 25°C to 45°C.



Similar to Figure 107 for LFF Hot Aisle cooling, Figure 110 below shows the LFF ASIC supportable power curves with an overlay of three Cold Aisle server airflow capability ranges. Designers must ensure that their thermal solutions and resulting card airflow requirements fall within the range of supportable Cold Aisle system airflow velocity. Cards that are under-designed (e.g. require airflow greater than the system capability) will have thermal issues when deployed into the server system. Card designers are advised to work closely with system vendors to ensure they target the appropriate airflow and temperature boundary conditions for both Hot and Cold Aisle cooling.

Figure 110: Server System Airflow Capability – LFF Cold Aisle Cooling

A comparison of Hot Aisle (55°C) and Cold Aisle (35°C) LFF ASIC cooling capability curves is shown below in Figure 111. The comparison shows the Hot Aisle ASIC cooling capability at 19W at 150LFM while the cold Aisle cooling capability shows support for 42W at 150LFM. In general, based on the reference geometry, the Cold Aisle cooling configuration allows for higher supported ASIC power at lower velocities due primarily to the lower inlet temperatures local to the OCP NIC 3.0 card when in the Cold Aisle cooling configuration.

Figure 111: ASIC Supportable Power Comparison – LFF Card

6.3 Thermal Simulation (CFD) Modeling

CFD models of the SFF and LFF cards developed for the analysis detailed in Section 6.2 are available for download on the OCP NIC 3.0 Wiki: <u>http://www.opencompute.org/wiki/Server/Mezz</u>

The thermal models available on the wiki site are in Icepak format. CAD step file exports from those models are also available to aid in re-creation of the models in other CFD software tools. Note that the geometry utilized in the CFD models is based on the OCP NIC 3.0 thermal test fixture detailed in Section 6.4.

Thermal simulation of OCP NIC 3.0 cards using the provided CFD models is recommended. Ideally, vendors developing OCP NIC 3.0 cards would perform CFD analysis to validate card thermal solutions using the provided CFD models prior to building card prototypes. One prototypes are available, vendors would then perform thermal testing on the functional cards using the thermal test fixtures detailed in Section 6.4.

6.4 Thermal Test Fixture

Thermal test fixtures have been developed for SFF and LFF OCP NIC 3.0 cards. The test fixtures are intended to provide a common thermal test platform for card vendors, server vendors, and other industry groups planning to develop or utilize the OCP NIC 3.0 card form factors. Details of the thermal test fixtures are as follows:

- Sheet metal side walls, base, faceplate, and top cover
- Thumbscrew top cover access
- PCB sandwiched between base and side walls
- Intended for attachment to wind tunnel or flow bench such as those available at: <u>http://www.fantester.com/</u>
- Allows for thermal testing of functional OCP NIC 3.0 cards in a metered airflow environment
- Input power from external power supplies allows for OCP NIC 3.0 card power measurement
 - Power connections for 3.3V, GND, GND, 12V (SFF)
 - Power connections for 3.3V, GND, GND, GND, 12V, 12V (LFF)
- RJ45 connector for NC-SI pass-through
- USB Type-X connector for microprocessor connectivity
- Functions as a remote PCIe extension with intent to position host server under the fixture for connection to system PCIe slot
 - Single x16 connection to server host on bottom side of the fixture PCB (SFF)
 - Dual x16 connection to server host on bottom side of the fixture PCB (LFF)
 - Predefined locations for fixture airflow/temperature sensors on fixture PCB silkscreen. Quantity 3x per board.
 - Quantity 4x for LFF see Figure 117
 - Candlestick style sensors available at: <u>https://www.qats.com/Products/Instruments/Temperature-and-Velocity-Measurement/Sensors/Candlestick-Sensor</u>

- Candlestick sensors must be procured separately, not integrated with fixture PCB
- Blockage above OCP3 card to mimic system geometry and prevent airflow bypass
 - Low profile PCIe card for SFF fixture
- Block sheet metal obstruction built into the top cover for the LFF fixture

CAD Files for the current revision of the test fixture are available for download on the OCP NIC 3.0 Wiki: http://www.opencompute.org/wiki/Server/Mezz.

6.4.1 Test Fixture for SFF Card

Images of the SFF thermal test fixture are shown in Figure 112 and Figure 113. The SFF fixture PCB is shown in Figure 114. Note the three candlestick sensor locations directly next to the OCP NIC 3.0 connectors.

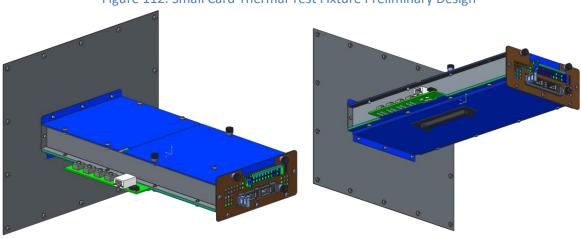
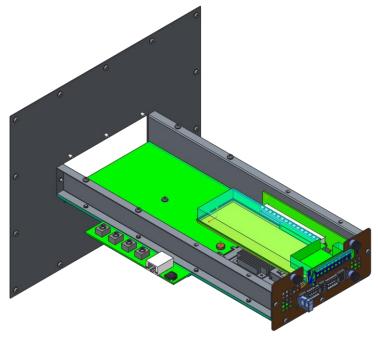
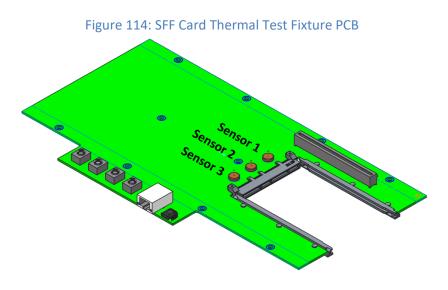
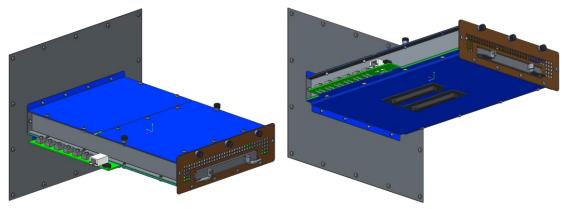




Figure 112: Small Card Thermal Test Fixture Preliminary Design

Figure 113: SFF Card Thermal Test Fixture Preliminary Design – Cover Removed



6.4.2 Test Fixture for LFF Card

Images of the LFF thermal test fixture are shown in Figure 115 and Figure 116. The LFF fixture PCB is shown in Figure 117. Note the three candlestick sensor locations directly next to the OCP NIC 3.0 connectors.

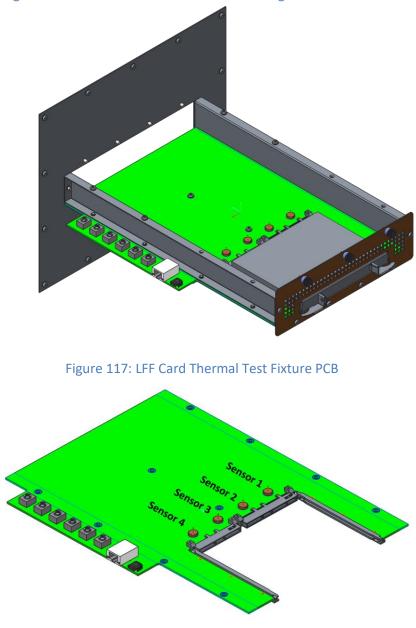
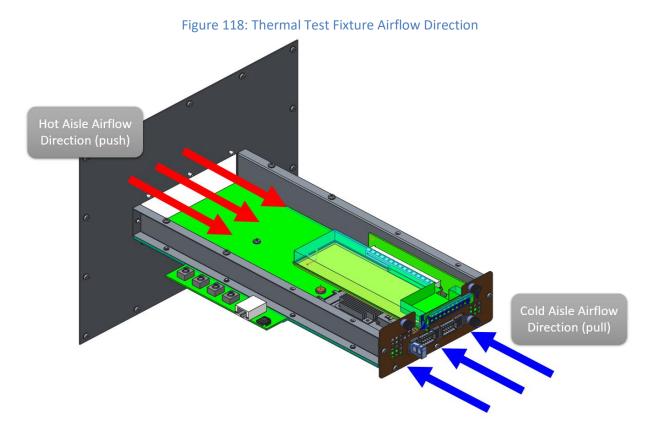



Figure 116: LFF Card Thermal Test Fixture Design – Cover Removed

6.4.3 Test Fixture Airflow Direction

When utilizing the OCP NIC 3.0 thermal test fixture, the wind tunnel or flow bench must be configured to push airflow for hot aisle cooling or to pull airflow for cold aisle cooling a shown in Figure 118.

6.4.4 Thermal Test Fixture Candlestick Sensors

As noted in previously, candlestick sensor locations are included on the fixture PCB silkscreen. These candlestick sensors provide point measurements for both airflow velocity (LFM) and air temperature. The airflow at the inlet to the OCP NIC 3.0 will differ from the fixture mean velocity due to the obstructions above the OCP NIC 3.0 cards within the fixture. Thus, the fixture flow rate and cross-sectional area should not be used to determine the local velocity at the OCP NIC 3.0 card. Instead, the candlestick velocity/temperature sensors should be utilized to directly measure the local inlet velocity to the cards for hot aisle cooling.

Figure 119 and Figure 120 below show the air velocity at each sensor location vs. the total fixture flow rate in CFM. The curves shown in these figures are based on the data collected from the CFD models discussed in Section 6.3. Note the error between the velocity obtained from the sensor locations vs. the velocity based on the duct cross-sectional area.

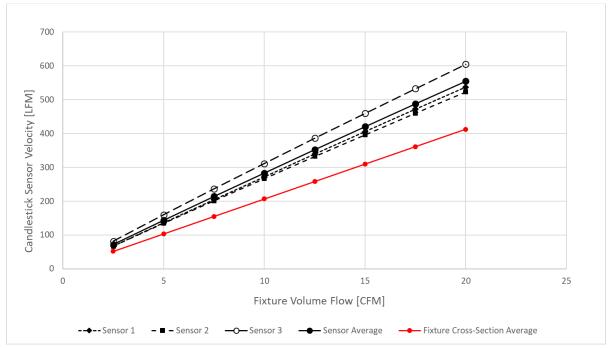
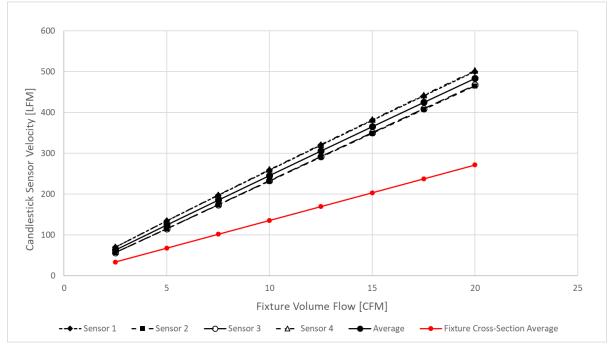



Figure 119: SFF Fixture, Hot Aisle Flow - Candlestick Air Velocity vs. Volume Flow

6.5 Card Sensor Requirements

See Sections 4.4 to 4.6 for information relating to temperature sensor and reporting requirements.

6.6 Card Cooling Tiers

Section 4.10.2 defines a number of registers that may be read by the associated baseboard system. Two of these registers provide the Hot Aisle and Cold Aisle Card Cooling Tiers that may be used for fan speed control. The Card Cooling Tiers relate the card local inlet temperature to the required local inlet velocity which allows the system to set fan speeds according to the cooling requirements of the card.

The Card Cooling Tier registers are particularly useful for systems that do not implement temperature sensor monitoring. The register may also be used as a backup for cards that do implement temperature sensor monitoring.

6.6.1 Hot Aisle Cooling Tiers

Card Cooling Tiers for Hot Aisle Cooling are defined in Table 67. The values in the table are listed with units shown in LFM. Future releases of this specification will provide more detail to the Card Cooling Tier curve definition.

	Target Operating Region			Server Airflow High Fan Speed		Non-Typical Server Airflow - Subject to System Capability						
OCP NIC 3.0 Local Inlet Temperature [°C]	Tier 1	Tier 2	Tier 3	Tier 4	Tier 5	Tier 6	Tier 7	Tier 8	Tier 9	Tier 10	Tier 11	Tier 12
5												
10												
15								ogre	5 <u>5</u>			
20						1	Dre	OBIA				
25					Mak	K III	, n n 1					
30				V	NA	5						
35												
40												
45												
50												
55	50	100	150	200	250	300	350	400	450	500	750	1000
60												
65												

Table 67: Hot Aisle Card Cooling Tier Definitions (LFM)

6.6.2 Cold Aisle Cooling Tiers

Card Cooling Tiers for Cold Aisle Cooling are defined in Table 68. The values in the table are listed with units shown in LFM. Future releases of this specification will provide more detail to the Card Cooling Tier curve definition.

	Target Operating Region					Airflow n Speed	Non-Typical Server Airflow - Subject to System Capability					
OCP NIC 3.0 Local Inlet Temperat ure [°C]	Tier 1	Tier 2	Tier 3	Tier 4	Tier 5	Tier 6	Tier 7	Tier 8	Tier 9	Tier 10	Tier 11	Tier 12
5						<u>k in</u>			eC			
10							Dre	ngre	300			
15				N	lor	K IN	- FIS	0				
20				V	ישע	10 00						
25												
30												
35	50	100	150	200	250	300	350	400	450	500	750	1000
40												
45												
50												
55												
60												
65												

Table 68: Cold Aisle Card Cooling Tier Definitions (LFM)

6.7 Non-Operational Shock & Vibration Testing

OCP NIC 3.0 components are deployed in various environments. As such, all OCP NIC 3.0 cards shall be subjected to shock and vibration testing to ensure products do not sustain damage during normal operational or transportation conditions. While end customer deployments may require an additional final system level test, this section sets the minimum shock and vibration requirements for an OCP NIC 3.0 card that must also be considered.

Shock and vibration testing shall be done in accordance with the procedures listed below. The tests shall be conducted using a vertical shock table. The OCP NIC 3.0 card shall be fixtured in the standard test fixture as described in Section 6.7.1.

6.7.1 Shock & Vibe Test Fixture

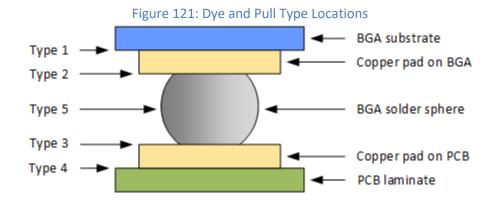
TBD. Working group to provide description and mechanical details and figures.

6.7.2 Test Procedure

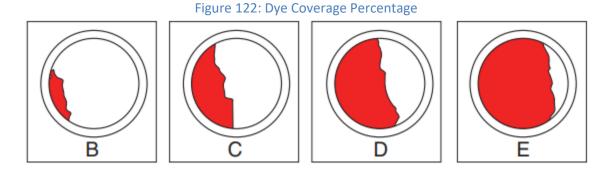
The following procedures shall be followed for the shock and vibration testing:

- A minimum sample size of three OCP NIC 3.0 cards shall be subjected to shock and vibration.
- All samples shall be verified for functionality prior to test.
- The OCP NIC 3.0 card shall be fixtured to simulate how the card will be mounted within a system. For example, the OCP NIC 3.0 card may be fixtured in the horizontal plane with the primary component side facing up for certain chassis configurations.
- The fixture shall be tested on all 6 sides. Each side shall be clearly labeled as 1-6 for test identification purposes. Testing shall be performed in the vertical axis only. The fixture shall be rotated until all six sides have been tested as the product may be dropped from any orientation during handling. Testing shall not be conducted on a three axis slip table.
- Non-operational vibration testing is performed at 1.88G_{RMS} for a duration of 15 minutes per side for all six surfaces per Table 69.

Frequency (Hz)	G²/Hz
10	0.13
20	0.13
70	0.004
130	0.004
165	0.0018
500	0.0018


Table 69: Random Virbation Testing 1.88G_{RMS} Profile

- Non-operational half-sine shock test at 71G ±5% with a 2ms duration. All six sides shall be tested.
- Non-operational square wave shock test at 32G ±5% at a rate of 270 inches/sec. All six sides shall be tested.
- All cards shall be checked for proper operation after the shock and vibration tests have been conducted. All three samples must be in full operating order to consider the product as a pass.


6.8 Dye and Pull Test Method

All Dye and Pull test methods shall be implemented per the IPC-TM-650 method 2.4.53 (Dye and Pull Test Method – formerly known as Dye and Pry). The Dye and Pull test uses a colored dye penetrant to visually indicate cracked solder joints on BGA devices. The test shall only be conducted after the Shock and Vibration testing has been conducted on the test samples. The Dye and Pull Test Method is a destructive test.

- A minimum sample size of three OCP NIC 3.0 cards shall be subjected to the Dye and Pull Test Method.
- All samples shall be first subjected to the Shock and Vibration testing outlined in Section 6.7.
- All samples shall be subjected to the preparation and test procedures of IPC-TM-650 method 2.4.53.
- Following the pull-test operation, the board sample shall be examined for dye indication at the target BGA area. Separation locations are categorized in to the following five areas:
 - Type 1 Separation between the BGA copper pad and the BGA substrate.
 - Type 2 Separation between the BGA copper pad and the BGA solder sphere.
 - Type 3 Separation between the BGA solder sphere and the copper pad on the PCB.
 - Type 4 Separation between the copper pad on the PCB and the PCB laminate.
 - Type 5 Separation of the BGA solder sphere.

- Samples shall be subjected to the following failure criteria:
 - Dye coverage of >50% ("D" and "E" in Figure 122) of any Type 2 or Type 3 BGA cracks are present in the test sample.
 - One or more Type 1 or Type 4 BGA cracks are present in the test sample.

The following exceptions are allowed:

- For "via-in-pad" designs, dye is allowed on the laminate surface (under the pad), as long as the dye has not entered the inner-via laminate area, or is found on the separated via-barrel wall.
- Allowances for dye indications exceeding the 50% limit on mechanical (non-electrical) BGA corner locations or multiple use locations (grounds, powers) may be determined by the appropriate Engineering Team.

6.9 Gold Finger Plating Requirements

This section defines the minimum plating/quality requirements for the OCP NIC 3.0 gold fingers.

6.9.1 Host Side Gold Finger Plating Requirements

Per Section 6.4 (Environmental Requirements) of the PCIe CEM specification, the minimum host side gold finger plating is 30 microinches of gold over 50 microinches of nickel. OCP NIC 3.0 card vendors shall individually evaluate the minimum plating required.

The recommendation for OCP NIC 3.0 is to 30 microinches of gold over 150 microinches of nickel.

6.9.2 Line Side Gold Finger Durability Requirements

The line side connectors must be designed to support a minimum of 250 error free insertion cycles. In order to accomplish this, it is required that the minimum contact plating be as follows:

- SFP and QSFP connectors: 30 microinches of gold over 50 microinches of nickel
- RJ45 connectors have a minimum of 50 microinches of gold over 50 microinches of nickel

7 Regulatory

7.1 Required Compliance

An OCP NIC 3.0 card shall meet the following Environmental, EMC and safety requirements.

Note: Emissions and immunity tests in Section 7.1.4 are to be completed at the system level. The OCP NIC 3.0 vendors should work with the system vendors to achieve the applicable requirements listed in this section.

7.1.1 Required Environmental Compliance

- China RoHS Directive
- **EU RoHS 2 Directive (2011/65/EU)** aims to reduce the environmental impact of electronic and electrical equipment (EEE) by restricting the use of certain hazardous materials. The substances banned under RoHS are lead, mercury, cadmium, hexavalent chromium, polybrominated biphenyls, polybrominated diphenyl ether, and four phthalates.
- **EU REACH Regulation (EC) No 1907/2006** addresses the production and use of chemical substances and their potential impact on human health and the environment.
- **EU Waste Electrical and Electronic Equipment ("WEEE")** Directive (2012/19/EU) mandates the treatment, recovery and recycling of EEE.
- **The Persistent Organic Pollutants Regulation (EC) No. 850/2004** bans production, placing on the market and use of certain persistent organic pollutants.
- The California Safe Drinking Water and Toxic Enforcement Act of 1986 ("Prop 65") sets forth a list of regulated chemicals that require warnings in the State of California.
- The Packaging and Packaging Waste Directive 94/62/EC limits certain hazardous substances in the packaging materials
- **Batteries Directive 2006/66/EC** regulates the manufacture and disposal of all batteries and accumulators, including those included in appliances.

7.1.2 Required EMC Compliance

• Radiated and Conducted Emissions requirements are based on deployed geographical locations. Refer to Table 70 for details.

Targeted Geography	Applicable Specifications
USA	FCC, 47 CFR Part 15, Class A digital device (USA)
Canada	ICES-003, class A (CAN)
EU	EN 55032: 2015+AC:2016 Class A Radiated and Conducted Emissions requirements for European Union
	EN 55024: 2010+A1:2015 Immunity requirements for European Union (EU)
Australia/New Zealand	AS/NZS CISPR 32:2015 Class A
	CISPR 32:2015 for Radiated and Conducted Emissions requirements
Japan	VCCI 32-1 Class A Radiated and Conducted Emissions requirements

Table 70: FCC Class A Radiated and Conducted Emissions Requirements Based on Geographical Location

Korea	KN32 – Radiated and Conducted Emissions
	KN35- Immunity
Taiwan	BSMI CNS13438: 2006 (complete) Class A Radiated and Conducted Emissions requirements

- **CE** Equipment must pass the CE specification
- All technical requirements covered under EMC Directive (2014/30/EU)

7.1.3 Required Product Safety Compliance

• Safety - requirements are listed in Table 71.

Table 71: Safety Requirements

Targeted Category	Applicable Specifications
Safety	UL 60950-1/CSA C22.2 No. 60950-1-07, 2nd Edition + Amendment 1 + Amendment 2, dated 2011/12/19.
	The Bi-National Standard for Safety of Information Technology Equipment, EN60950-1: 2006+A11:2009+A1:2010+A12:2010+A2:2013
	IEC 60950-1 (Ed 2) + A1 + A2.
	62368-1 may also be co-reported depending on region

7.1.4 Required Immunity (ESD) Compliance

The OCP NIC 3.0 card shall meet or exceed the following ESD immunity requirements listed in Table 72.

Table 72: Immunity (ESD) Requirements

Targeted Category	Applicable Specifications
Immunity (ESD)	EN 55024 2010, and IEC 61000-4-2 2008 for ESD. Required ±4kV contact charge and ±8kV air discharge
NEBS Level III	Optionally test devices to NEBS level 3 –
(optional)	Required ±8kV contact charge and ±16kV air discharge with interruptions not greater than 2 seconds. The device shall self-recover without operator intervention.
	Note: NEBS compliance is part of the system level testing. The OCP NIC 3.0 specification is providing a baseline minimum recommendation for ESD immunity.

7.2 Recommended Compliance

An OCP NIC 3.0 card is recommended to meet below compliance requirements.

7.2.1 Recommended Environmental Compliance

- Halogen Free: IEC 61249-2-21 Definition of halogen free: 900ppm for Bromine or Chlorine, or 1500ppm combined total halogens.
- Arsenic: 1000 ppm (or 0.1% by weight)

• Emerging: US Conflict Minerals law: section 1502 of the Dodd-Frank Act requires companies using tin, tantalum, tungsten, and gold ("3TG") in their products to verify and disclose the mineral source. While this does not apply to products that are used to provide services, such as Infrastructure hardware products, the OCP NIC Subgroup is considering voluntarily reporting of this information.

7.2.2 Recommended EMC Compliance

• 10dB margin to FCC sub-part 15 b class A emission requirements as specified in Section 7.1.2.

8 Revision History

Author	Description	Revision	Date
OCP NIC 3.0 Subgroup	Initial public review.	0.70	01/25/2018
OCP NIC 3.0 Subgroup	 Implemented comments from 0.70 review. LED implementation updated. Gold finger lengths updated. All pins are full length except for PCIe TX/RX, REFCLKS and PRSNT pins. 	0.71	02/06/2018
OCP NIC 3.0 Subgroup	- Updates to Section 4.x per the working group session.	0.72	02/21/2018
OCP NIC 3.0 Subgroup	 Change NC-SI Over RBT RXD/TXD pins to a pull-up instead of a pull down. Update power sequencing diagram. REFCLK is disabled before silicon transitions to AUX Power Mode. Merge pinout sections 3.4 and 3.5 together for structural clarity. Add text to gate WAKE# signal on AUX_PWR_GOOD (internal) assertion; updated diagrams with WAKE# signals to reflect implementation. Add initial signal integrity outline to document (WIP) Add Initial draft of the Shock and Vibration, and Dye and Pull test requirements. Rearrange Section 2 for structure; changed section name to Mechanical Card Form Factor Move non-NIC use cases to Section 1.5. Moved Port numbering and LED definitions to Section 3.8. Add secondary side LED placement for 4x SFP and 2x QSFP implementations in Section 3.8. Revised labeling section (Section 2.9). Optimize the scan chain LED bit stream for dual port applications. Add SLOT_ID[1]. Updated text and diagrams for mapping SLOT_ID[1:0] to Package ID[2:0] and FRU EEPROM A[2:0] fields. Reduce ID Mode power consumption on +12V_EDGE 	0.73	05/01/2018
OCP NIC 3.0 Subgroup	 Text clean up. All minor / generally agreed upon items within the OCP NIC 3.0 Workgroup have been accepted. Clarify PCle bifurcation is on a per-slot basis. Add 1x32 and 2x16 implementation examples for a Large Form Factor card. Removed reference to a x24 PCle width LFF card from Table 5 – OCP NIC 3.0 Card Definitions. Move SLOT_ID[1] to OCP_A6 for immediate power on indication of the card physical location for RBT and FRU EEPROM addressing. Updated RBT addressing and Scan Chain definition to match. Updated diagrams and text in Section 6.x based on feedback from the OCP NIC 3.0 Thermal Workgroup. Updated diagrams and text in Section 2.0 based on feedback received from the OCP NIC 3.0 Mechanical Workgroup. 	0.74	06/04/2018
OCP NIC 3.0 Subgroup	0v80 public release	0.80	06/04/2018
OCP NIC 3.0 Subgroup	 Ov81 public release. Changes are as follows: Section 1.3 - Update Figure 1 with latest thumbscrew design. Section 2.4.2 - Mechanical corrections to BOM items 5, 6A/B, 8 & 11. Section 3.4.3 - Add statement to isolate SMRST# if target device voltage is not powered from +3.3V_EDGE. Section 3.4.4 - Clarified the RBT_ARB_IN and RBT_ARB_OUT pin descriptions. 	0.81	07/06/2018

- Section 3.4.4 - Clarified SLOT_ID[1:0] description and example
diagrams; move SLOT_ID[1:0] isolation to NIC and use direct
connection to FRU EEPROM.
- Section 3.4.5 - DATA_IN bit PRSNTB[3:0] definition to optionally use
pull up/down to match PRSNTB[3:0]# card edge connections.
- Section 3.4.7 – Add USB 2.0 definition to the Primary Connector.
- Section 3.4.8 – Add UART definition to the Secondary Connector.
- Section 3.4.9 - Changed Miscellaneous pins to RFU[1:2] pins.
- Section 3.8 - Clarified LED placement.
- Section 3.9.x - Clarified ID-Aux and Aux-Main Power Mode transition
requirements to prevent sampling health status pins until cards have
fully entered into Aux and Main modes to prevent false indication.
- Section 3.11 - Updated hot swap consideration text to highlight
available hot swap mechanisms. Actual hot swap design is outside the
scope of this specification.
- Section 4 - Update MCTP Type management description.
- Section 4.9 - Clarified the FRU EEPROM is directly connected to the
card edge. No isolation is used for the FRU EEPROM.