Commented [NT1]: Mechanical drawings will be updated 1/19/2018

All connector/SFF-TA-1002 related items will be updated 1/19/2018 as well. This coincides with the SFF-TA-1002 draft 1.1 release.

OCP NIC 3.0 Design Specification

Version 0.63

Author: OCP Server Workgroup, OCP NIC subgroup

Rev 0.63

Table of Contents

I

1	Overview		9
	1.1 License		
	1.2 Acknowledgements		
		ground	
	1.4 Over	~ rview	13
	1.4.1	Mechanical Form factor overview	13
	1.4.2	Electrical overview	
	1.5 Refe	rences	17
	1.5.1	Trademarks	17
2	Card Form	Factor	
	2.1 Forn	n Factor Options	
	2.2 I/O t	pracket	21
	2.2.1	Small Form Factor OCP NIC 3.0 Card I/O Bracket	21
	2.2.2	Small Form Factor OCP NIC 3.0 Card Critical-to-Function (CTF) Dimensions	22
	2.2.3	Small Form Factor OCP NIC 3.0 Baseboard Critical-to-Function (CTF) Dimensions	23
	2.2.4	Large Form Factor OCP NIC 3.0 Card I/O Bracket	25
	2.2.5	Large Form Factor OCP NIC 3.0 Card Critical-to-Function (CTF) Dimensions	26
	2.2.6	Large Form Factor OCP NIC 3.0 Baseboard Critical-to-Function (CTF) Dimensions	27
		Side I/O Implementations	
	2.4 Port	Numbering and LED Implementations	
	2.4.1	OCP NIC 3.0 Port Naming and Port Numbering	
	2.4.2	OCP NIC 3.0 Card LED Configuration	
	2.4.3	OCP NIC 3.0 Card LED Ordering	
2.4.4 Baseboard LEDs Configuration over the Scan Chain			
	2.5 Mechanical Keepout Zones		
	2.5.1	Baseboard Keep Out Zones – Small Card Form Factor	
	2.5.2	Baseboard Keep Out Zones – Large Card Form Factor	
	2.5.3	Small Card Form Factor Keep Out Zones	
	2.5.4	Large Card Form Factor Keep Out Zones	
		lation Requirements	
	2.6.1	Small Card Insulator	
	2.6.2 2.7 Labe	Large Card Insulator	
	2.7 Labe	ling Requirements NIC Vendor Factory Label	
	2.7.1		
	2.7.2	NIC Vendor Serial Number Label Baseboard MAC and Serial Number Label	
	2.7.5	Regulatory Label	
	2.7.4	System Vendor Part Number Label	
	2.7.6	NIC Vendor Part Number Label	
	2.7.0	Small Card Label Placement	
	2.7.8	Large Card Label Placement	
		Implementation Examples	
		-NIC Use Cases	
3		and Baseboard Connector Interface	
		l Finger Requirements	
	3.1.1	Gold Finger Mating Sequence	
	3.2 Base	board Connector Requirements	
	3.2.1	Right Angle Connector	
	3.2.2	Right Angle Offset	
	3.2.3	Straddle Mount Connector	
	3.2.4	Straddle Mount Offset and PCB Thickness Options	52

				Rev 0.63
	3.2	.5	Large Card Connector Locations	53
	3.3	Pin d	efinition	
	3.4	Signa	al Descriptions – Common	57
	3.4	.1	PCIe Interface Pins	57
	3.4	.2	PCIe Present and Bifurcation Control Pins	60
	3.4	.3	SMBus Interface Pins	<u>62</u> 63
	3.4	.4	Power Supply Pins	64
	3.4	.5	Miscellaneous Pins	65 66
	3.5	Signa	al Descriptions – OCP Bay (Primary Connector)	66
	3.5	.1	PCIe Interface Pins – OCP Bay (Primary Connector)	66
	3.5	.2	NC-SI Over RBT Interface Pins – OCP Bay (Primary Connector)	<u>6869</u>
	3.5	.3	Scan Chain Pins – OCP Bay (Primary Connector)	<u>73</u> 74
	3.5	.4	Primary Connector Miscellaneous Pins – OCP Bay (Primary Connector)	
	3.6	PCle	Bifurcation Mechanism	<u>79</u> 80
	3.6	.1	PCIe OCP NIC 3.0 Card to Baseboard Bifurcation Configuration (PRSNTA#, PRSNTB[3:0]#)	<u>79</u> 80
	3.6	.2	PCIe Baseboard to OCP NIC 3.0 Card Bifurcation Configuration (BIF[2:0]#)	<u>79</u> 80
	3.6	.3	PCIe Bifurcation Decoder	<u>8081</u>
	3.6	.4	Bifurcation Detection Flow	<u>82</u> 83
	3.6	.5	PCIe Bifurcation Examples	<u>83</u> 84
	3.7	PCle	Clocking Topology	88 89
	3.8	PCle	Bifurcation Results and REFCLK Mapping	<u>89</u> 90
	3.9		er Capacity and Power Delivery	
	3.9	.1	NIC Power Off	<u>99</u> 100
	3.9	.2	ID Mode	<u>99</u> 100
	3.9	.3	Aux Power Mode (S5)	<u>100101</u>
	3.9	.4	Main Power Mode (S0)	<u>100101</u>
	3.10	Powe	er Supply Rail Requirements and Slot Power Envelopes	<u>100101</u>
	3.11	Hot S	Swap Considerations for +12V_EDGE and +3.3V_EDGE Rails	<u>100101</u>
	3.12	Powe	er Sequence Timing Requirements	<u>101102</u>
4	Manag		nt and Pre-OS Requirements	
	4.1	Side	pand Management Interface and Transport	<u>103</u> 104
	4.2	NC-S	I Traffic	<u>103</u> 104
	4.3	Mana	agement Controller (MC) MAC Address Provisioning	<u>104105</u>
	4.4	Temp	perature Reporting	<u>105</u> 106
	4.5	Powe	er Consumption Reporting	<u>106</u> 107
	4.6	Plugg	gable Transceiver Module Status and Temperature Reporting	<u>107108</u>
	4.7	Mana	agement and Pre-OS Firmware Inventory and Update	<u>107108</u>
	4.7	.1	Secure Firmware	<u>107108</u>
	4.7	.2	Firmware Inventory	<u>108</u> 109
	4.7	.3	Firmware Inventory and Update in Multi-Host Environments	<u>108</u> 109
	4.8	NC-S	I Package Addressing and Hardware Arbitration Requirements	<u>108</u> 109
	4.8	.1	NC-SI over RBT Package Addressing	<u>108</u> 109
	4.8	.2	Arbitration Ring Connections	<u>109110</u>
	4.9	SMB	us 2.0 Addressing Requirements	<u>109110</u>
	4.9	.1	SMBus Address Map	<u>109110</u>
	4.10	FRU I	EEPROM	<u>110111</u>
	4.1	0.1	FRU EEPROM Address, Size and Availability	<u>110111</u>
	4.1	0.2	FRU EEPROM Content Requirements	<u>110111</u>
5	Routin	g Gui	delines and Signal Integrity Considerations	<u>113</u> 114
	5.1	NC-S	I Over RBT	<u>113114</u>
	5.2	PCIe.		<u>113</u> 114
6	Therm	al and	d Environmental	<u>114115</u>
	6.1	Airflo	ow Direction	<u>114</u> 115

http://opencompute.org

|

		R	lev 0.63
	6.1.1	Hot Aisle Cooling	<u>114</u> 115
	6.1.2	Cold Aisle Cooling	<u>115116</u>
	6.2 Desi	ign Guidelines	<u>116</u> 117
	6.2.1	ASIC Cooling – Hot Aisle	<u>116</u> 117
	6.2.2	ASIC Cooling – Cold Aisle	<u>120121</u>
	6.3 Ther	rmal Simulation (CFD) Modeling	<u>122123</u>
	6.3.1	CFD Geometry – Small Card	<u>122123</u>
	6.3.2	Optics Simulation Modeling	<u>122123</u>
	6.4 Ther	rmal Test Fixture – Small Card	
	6.5 Sens	sor Requirements	<u>123</u> 124
	6.6 Card	d Cooling Tiers	<u>124</u> 125
	6.6.1	Hot Aisle Cooling Tiers	124 125
	6.6.2	Cold Aisle Cooling Tiers	124 125
	6.7 Shoo	ock & Vibration	<u>125126</u>
7	Regulatory	/	<u>126127</u>
	7.1 Requ	uired Compliance	<u>126127</u>
	7.1.1	Required Environmental Compliance	<u>126127</u>
	7.1.2	Required EMC Compliance	<u>126</u> 127
	7.1.3	Required Product Safety Compliance	<u>127128</u>
	7.2 Reco	ommended Compliance	<u>127128</u>
	7.2.1	Recommended Environmental Compliance	<u>127128</u>
	7.2.2	Recommended EMC Compliance	<u>127128</u>
8	Revision Hi	listory	<u>128129</u>

Rev 0.63

List of Figures	
Figure 1: Representative Small OCP NIC 3.0 Card with Dual QSFP Ports	11
Figure 2: Representative Small OCF NIC 3.0 Card with Dual QSFP Ports and on-board DRAM	
Figure 3: Small and Large Card Form-Factors (not to scale)	
Figure 4: Primary Connector (4C+) and Secondary Connector (4C) (Large) OCP NIC 3.0 Cards	
Figure 5: Primary Connector (4C+) Only (Large) OCP NIC 3.0 Cards	
Figure 6: Primary Connector (4C+) with 4C and 2C (Small) OCP NIC 3.0 Cards	
Figure 7: Small Card Standard I/O Bracket	
Figure 8: Small Card Customized bracket for RJ-45 Connector	
Figure 9: Small Card 3D Bracket Assembly (Standalone)	
Figure 10: Small Card 3D Bracket Assembly (Installed on in the OCP NIC 3.0 Card)	
Figure 11: Small Form Factor OCP NIC 3.0 Card Critical-to-Function (CTF) Dimensions (Top View)	
Figure 12: Small Form Factor OCP NIC 3.0 Card Critical-to-Function (CTF) Dimensions (Front View)	
Figure 13: Small Form Factor OCP NIC 3.0 Card Critical-to-Function (CTF) Dimensions (Side View – Left)	
Figure 14: Small Form Factor OCP NIC 3.0 Card Critical-to-Function (CTF) Dimensions (Side View – Right)	
Figure 15: Small Form Factor Baseboard Chassis Critical-to-Function (CTF) Dimensions (Rear View)	
Figure 16: Small Form Factor Baseboard Chassis Critical-to-Function (CTF) Dimensions (Side View)	
Figure 17: Small Form Factor Baseboard Chassis Critical-to-Function (CTF) Dimensions (Rear Rail Guide View)	
Figure 18: Small Form Factor Baseboard Chassis Critical-to-Function (CTF) Dimensions (Rail Guide Detail)	
Figure 19: Baseboard and Rail Assembly Drawing for Small Cards	
Figure 20: Large Card Standard I/O Bracket	
Figure 21: Large Card Customized bracket for RJ-45 Connector	
Figure 22: Large Card 3D Bracket Assembly (Standalone)	
Figure 23: Large Card 3D Bracket Assembly (Installed on the OCP NIC 3.0 Card)	
Figure 24: Large Form Factor OCP NIC 3.0 Card Critical-to-Function (CTF) Dimensions (Top View)	
Figure 25: Large Form Factor OCP NIC 3.0 Card Critical-to-Function (CTF) Dimensions (Front View)	<u>2726</u>
Figure 26: Large Form Factor OCP NIC 3.0 Card Critical-to-Function (CTF) Dimensions (Side View – Left)	27
Figure 27: Large Form Factor OCP NIC 3.0 Card Critical-to-Function (CTF) Dimensions (Side View – Right)	
Figure 28: Large Form Factor Baseboard Chassis Critical-to-Function (CTF) Dimensions (Rear View)	27
Figure 29: Large Form Factor Baseboard Chassis Critical-to-Function (CTF) Dimensions (Side View)	27
Figure 30: Large Form Factor Baseboard Chassis Critical-to-Function (CTF) Dimensions (Rear Rail Guide View)	27
Figure 31: Large Form Factor Baseboard Chassis Critical-to-Function (CTF) Dimensions (Rail Guide Detail)	27
Figure 32: Baseboard and Rail Assembly Drawing for Large Card	27
Figure 33: Port and LED Ordering – Example Small Card Link/Activity and Speed LED Placement	
Figure 34: Small Form Factor Keep Out Zone – Top View	
Figure 35: Small Form Factor Keep Out Zone – Bottom View	
Figure 36: Small Form Factor Keep Out Zone – Side View	
Figure 37: Large Form Factor Keep Out Zone – Top View	
Figure 38: Large Form Factor Keep Out Zone – Bottom View	
Figure 39: Large Form Factor Keep Out Zone – Side View	
Figure 40: Small Card Bottom Side Insulator (Top and 3/4 View)	
Figure 41: Small Card Bottom Side Insulator (Side View)	35
Figure 42: Large Card Bottom Side Insulator (Top and 3/4 View)	
Figure 43: Large Card Bottom Side Insulator (Side View)	
Figure 44: NIC Vendor Factory Label	
Figure 45: NIC Vendor Serial Number Label	
Figure 46: NIC Vendor Serial Number Label Field Format	
Figure 47: Baseboard MAC and Serial Number Label	
Figure 48: OCP NIC 3.0 Card Regulatory Label	
Figure 49: System Vendor Part Number Label	
Figure 50: OCP NIC 3.0 Card Vendor Part Number Label	
Figure 51: Small Card Label Placement Example	
Figure 52: Large Card Label Placement Example	
Figure 53: Small Size Primary Connector Gold Finger Dimensions – x16 – Top Side ("B" Pins)	
Figure 54: Small Size Primary Connector Gold Finger Dimensions – x16 – Bottom Side ("A" Pins)	
Figure 55: Large Size Card Gold Finger Dimensions – x32 – Top Side ("B" Pins)	
Figure 56: Large Size Card Gold Finger Dimensions – x32 – Bottom Side ("A" Pins)	
Figure 57: 168-pin Base Board Primary Connector – Right Angle	

http://opencompute.org

|

	Rev 0.63
Figure 58: 140-pin Base Board Secondary Connector – Right Angle	
Figure 59: OCP NIC 3.0 Card and Host Offset for Right Angle Connectors	
Figure 60: 168-pin Base Board Primary Connector – Straddle Mount	51
Figure 61: 140-pin Base Board Secondary Connector – Straddle Mount	51
Figure 62: OCP NIC 3.0 Card and Baseboard PCB Thickness Options for Straddle Mount Connectors	52
Figure 63: 0mm Offset (Coplanar) for 0.062" Thick Baseboards	
Figure 64: 0.3mm Offset for 0.076" Thick Baseboards	53
Figure 65: Primary and Secondary Connector Locations for Large Card Support with Right Angle Connectors	53
Figure 66: Primary and Secondary Connector Locations for Large Card Support with Straddle Mount Connectors	53
Figure 67: PCIe Present and Bifurcation Control Pins	<u>6261</u>
Figure 68: Example SMBus Connections	<u>63</u> 64
Figure 69: Example Power Supply Topology	65
Figure 70: NC-SI Over RBT Connection Example – Single Primary Connector	<u>71</u> 72
Figure 71: NC-SI Over RBT Connection Example – Dual Primary Connector	<u>72</u> 73
Figure 72: Example Scan Chain Timing Diagram	<u>74</u> 75
Figure 73: Scan Bus Connection Example	<u>7778</u>
Figure 74: Single Host (1 x16) and 1 x16 OCP NIC 3.0 Card (Single Controller)	<u>83</u> 84
Figure 75: Single Host (2 x8) and 2 x8 OCP NIC 3.0 Card (Dual Controllers)	<u>84</u> 85
Figure 76: Quad Hosts (4 x4) and 4 x4 OCP NIC 3.0 Card (Single Controller)	<u>85</u> 86
Figure 77: Quad Hosts (4 x4) and 4 x4 OCP NIC 3.0 Card (Quad Controllers)	<u>86</u> 87
Figure 78: Single Host with no Bifurcation (1 x16) and 2 x8 OCP NIC 3.0 Card (Dual Controllers)	<u>87</u> 88
Figure 79: PCIe Interface Connections for 1 x16 and 2 x8 OCP NIC 3.0 Cards	
Figure 80: PCIe Interface Connections for a 4 x4 OCP NIC 3.0 Card	<u>89</u> 90
Figure 81: Baseboard Power States	
Figure 82: Power-Up Sequencing	
Figure 83: Power-Down Sequencing	<u>102</u> 103
Figure 84: Airflow Direction for Hot Aisle Cooling	
Figure 85: Airflow Direction for Cold Aisle Cooling	
Figure 86: ASIC Supportable Power for Hot Aisle Cooling – Small Card Form Factor	<u>117118</u>
Figure 87: OCP NIC 3.0 Reference Geometry CAD & CFD	
Figure 88: Server System Airflow Capability – Hot Aisle Cooling	
Figure 89: ASIC Supportable Power for Cold Aisle Cooling – Small Card Form Factor	
Figure 90: Server System Airflow Capability – Cold Aisle Cooling	
Figure 91: ASIC Supportable Power Comparison – Small Card Form Factor	
Figure 92: Small Card Thermal Test Fixture Preliminary Design	
Figure 93: Small Card Thermal Test Fixture Preliminary Design – Transparent View	<u>123124</u>

Rev 0.63

List of Tables	
Table 1: Acknowledgements – By Company	10
Table 2: OCP 3.0 Form Factor Dimensions	
Table 3: Baseboard to OCP NIC Form factor Compatibility Chart	
Table 4: OCP NIC 3.0 Card Definitions	
Table 5: Mechanical BOM for the Small Card Bracket	
Table 6: Mechanical BOM for the Large Card Bracket	
Table 7: OCP NIC 3.0 Line Side I/O Implementations	
Table 8: OCP NIC 3.0 Card LED Configuration with Two Physical LEDs per Port	
Table 9: NIC Implementation Examples and 3D CAD	
Table 10: Example Non-NIC Use Cases	
Table 11: Contact Mating Positions for the Primary and Secondary Connectors	
Table 12: Right Angle Connector Options	
Table 13: Straddle Mount Connector Options	
Table 14: Primary Connector Pin Definition (x16) (4C+)	
Table 15: Secondary Connector Pin Definition (x16) (4C)	
Table 16: Pin Descriptions – PCle 1	
Table 17: Pin Descriptions – PCIe Present and Bifurcation Control Pins	
Table 18: Pin Descriptions – SMBus	
Table 19: Pin Descriptions – Power	
Table 20: Pin Descriptions – Miscellaneous 1	
Table 21: Pin Descriptions – PCIe 2	
Table 22: Pin Descriptions – NC-SI Over RBT	
Table 23: Pin Descriptions – Scan Chain	
Table 24: Pin Descriptions – Scan Chain DATA OUT Bit Definition	
Table 25: Pin Descriptions – Scan Bus DATA IN Bit Definition	
Table 26: Pin Descriptions – Miscellaneous 2	
Table 27: PCIe Bifurcation Decoder for x16 and x8 Card Widths	
Table 28: PCIe Clock Associations	<u>88</u> 89
Table 29: Bifurcation for Single Host, Single Socket and Single Upstream Link (BIF[2:0]#=0b000)	<u>9091</u>
Table 30: Bifurcation for Single Host, Single Socket and Single/Dual Upstream Links (BIF[2:0]#=0b000)	<u>9192</u>
Table 31: Bifurcation for Single Host, Single Socket and Single/Dual/Quad Upstream Links (BIF[2:0]#=0b000)	<u>9293</u>
Table 32: Bifurcation for Single Host, Dual Sockets and Dual Upstream Links (BIF[2:0]#=0b001)	<u>93</u> 94
Table 33: Bifurcation for Single Host, Quad Sockets and Quad Upstream Links (BIF[2:0]#=0b010)	<u>94</u> 95
Table 34: Bifurcation for Single Host, Quad Sockets and Quad Upstream Links - First 8 PCIe Lanes (BIF[2:0]#=0b011)	<u>95</u> 96
Table 35: Bifurcation for Dual Host, Dual Sockets and Dual Upstream Links (BIF[2:0]#=0b101)	<u>9697</u>
Table 36: Bifurcation for Quad Host, Quad Sockets and Quad Upstream Links (BIF[2:0]#=0b110)	<u>9798</u>
Table 37: Bifurcation for Quad Host, Quad Sockets and Quad Upstream Links - First 8 lanes (BIF[2:0]#=0b111)	<u>98</u> 99
Table 38: Power States	<u>99</u> 100
Table 39: Baseboard Power Supply Rail Requirements – Slot Power Envelopes	<u>100101</u>
Table 40: Power Sequencing Parameters	<u>102103</u>
Table 41: Sideband Management Interface and Transport Requirements	<u>103</u> 104
Table 42: NC-SI Traffic Requirements	
Table 43: MC MAC Address Provisioning Requirements	<u>104105</u>
Table 44: Temperature Reporting Requirements	
Table 45: Power Consumption Reporting Requirements	
Table 46: Pluggable Module Status Reporting Requirements	
Table 47: Management and Pre-OS Firmware Inventory and Update Requirements	
Table 48: SMBus Address Map	
Table 49: FRU EEPROM Record – OEM Record 0xC0, Offset 0x00	
Table 50: Hot Aisle Air Temperature Boundary Conditions	
Table 51: Hot Aisle Airflow Boundary Conditions	
Table 52: Cold Aisle Air Temperature Boundary Conditions	
Table 53: Cold Aisle Airflow Boundary Conditions	
Table 54: Reference OCP NIC 3.0 Small Card Geometry	
Table 55: Hot Aisle Card Cooling Tier Definitions	
Table 56: Cold Aisle Card Cooling Tier Definitions	
Table 57: FCC Class A Radiated and Conducted Emissions Requirements Based on Geographical Location	<u>126127</u>

http://opencompute.org

1

Open Compute Project • NIC • 3	.0
Rev 0.6	53
Table 58: Safety Requirements	18

I

Rev 0.63

1 Overview

1.1 License

As of July 26, 2016, the following persons or entities have made this Specification available under the Open Compute Project Hardware License (Permissive) Version 1.0 (OCPHL-P)

OCP NIC Subgroup

An electronic copy of the OCPHL-P is available at:

http://www.opencompute.org/assets/download/01-Contribution-Licenses/OCPHL-Permissive-v1.0.pdf

Your use of this Specification may be subject to other third party rights. THIS SPECIFICATION IS PROVIDED "AS IS." The contributors expressly disclaim any warranties (express, implied, or otherwise), including implied warranties of merchantability, non-infringement, fitness for a particular purpose, or title, related to the Specification. The Specification implementer and user assume the entire risk as to implementing or otherwise using the Specification. IN NO EVENT WILL ANY PARTY BE LIABLE TO ANY OTHER PARTY FOR LOST PROFITS OR ANY FORM OF INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES OF ANY CHARACTER FROM ANY CAUSES OF ACTION OF ANY KIND WITH RESPECT TO THIS SPECIFICATION OR ITS GOVERNING AGREEMENT, WHETHER BASED ON BREACH OF CONTRACT, TORT (INCLUDING NEGLIGENCE), OR OTHERWISE, AND WHETHER OR NOT THE OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. **Commented [JN2]:** May need to change to Facebook for process

Or use Facebook (representing OCP NIC subgroup)

will confirm FB legal before modifying

Rev 0.63

1.2 Acknowledgements

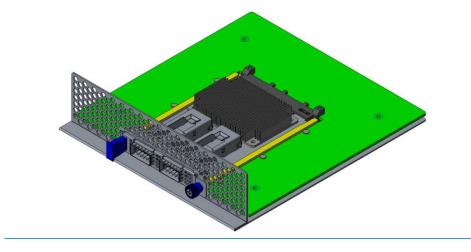
The OCP NIC 3.0 specification was created under a collaboration from many OCP member companies, and facilitated by the OCP NIC Subgroup under the OCP Server Workgroup.

The OCP NIC Subgroup would like to acknowledge the following member companies for their contributions to the OCP NIC 3.0 specification:

Table 1: Acknowledgements – By Company

Amphenol Broadcom Dell EMC Facebook Hewlett Packard Enterprise Intel Corporation Lenovo Mellanox Netronome Quanta Cloud Technology TE

Rev 0.63


1.3 Background

The OCP NIC 3.0 specification is a follow-on to the OCP Mezz 2.0 rev 1.00 design specification. The OCP NIC 3.0 specification supports two basic card sizes: Small Card, and Large Card. The Small Card allows for up to 16 PCIe lanes on the card edge while a Large Card supports up to 32 PCIe lanes. Compared to the OCP Mezz Card 2.0 Design Specification, the updated OCP NIC 3.0 specification provides a broader solution space for NIC and system vendors to support the following use case scenarios:

- NICs with a higher TDP
- Power delivery support up to 80W to a single connector (Small) card; and up to 150W to a dual connector (Large) card
 - Note: Baseboard vendors need to evaluate if there is sufficient airflow to thermally cool the OCP NIC 3.0 card. Refer to Section 6 for additional details.
- Support up to PCIe Gen5 on the baseboard and OCP NIC 3.0 card
- Support for up to 32 lanes of PCIe per OCP NIC 3.0 card
- Support for single host, multi-root complex and multi-host environments
- Support a greater board area for more complex OCP NIC 3.0 card designs
- Support for Smart NIC implementations with on-board DRAM and accelerators
- Simplification of FRU installation and removal while reducing overall down time

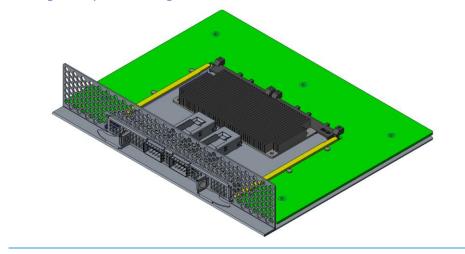

A representative Small Card OCP NIC 3.0 card is shown in Figure 1 and a representative Large Card is shown in Figure 2.

Figure 1: Representative Small OCP NIC 3.0 Card with Dual QSFP Ports

Rev 0.63

Figure 2: Representative Large OCP NIC 3.0 Card with Dual QSFP Ports and on-board DRAM

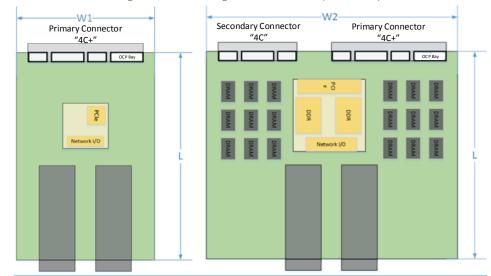
In order to achieve the features outlined in this specification, OCP NIC 3.0 compliant cards are not backwards compatible to OCP Mezz 2.0 cards.

This specification is created under OCP Server workgroup – OCP NIC subgroup. An electronic copy of this specification can be found on the Open Compute Project and the OCP Marketplace websites:

http://www.opencompute.org/wiki/Server/Mezz#Specifications and Designs

http://opencompute.org/products/specsanddesign?keyword=SPEC%2C+NIC

Rev 0.63


1.4 Overview

1.4.1 Mechanical Form factor overview

The OCP NIC 3.0 specification defines a third generation mechanical form factor that allows for interoperability between compliant baseboards and OCP NIC 3.0 cards.

OCP NIC 3.0 cards have two form factors – Small and Large. These cards are shown in Figure 3 below. The components shown in the figures are for illustrative purposes. The Small form factor card has one connector (Primary Connector) on baseboard. The Large form factor card has one or two connectors (Primary Connector only and both the Primary and Secondary Connectors) on the baseboard.

Both the Primary and Secondary Connectors and card edge gold fingers are defined in and compliant to SFF-TA-1002. The Primary Connector is the "4C+" variant, the Secondary Connector is the "4C" version. On the OCP NIC 3.0 card side, the card edge is implemented with gold fingers. The Small Card gold finger area only occupies the Primary Connector area for up to 16 PCIe lanes. The Large Card gold finger area may occupy both the Primary and Secondary Connectors for up to 32 PCIe lanes, or optionally just the Primary Connector for up to 16 PCIe lane implementations.

Figure 3: Small and Large Card Form-Factors (not to scale)

Rev 0.63

The two form factor dimensions are shown in Table 2.

Form Width		Depth	Primary	Secondary	Typical Use Case	
Factor			Connector	Connector		
Small	W1 = 76 mm	L = 115 mm	"4C+" 168 pins	N/A	Low profile and NIC with a similar profile as an OCP NIC 2.0 card; up to 16 PCIe lanes.	
Large	W2 = 139 mm	L = 115 mm	"4C+" 168 pins	"4C" 140 pins	Larger PCB width to support additional NICs; up to 32 PCIe lanes.	

Table 2: OCP 3 0 Form Factor Dimensions

The OCP NIC 3.0 design allows downward compatibility between the two card sizes. Table 3 shows the compatibility between the baseboard and NIC combinations. A Small size baseboard slot may only accept a small sized NIC. A Large size baseboard slot may accept a small or large sized NIC.

Table 3: Baseboard to OCP NIC Form factor Compatibility Chart

Baseboard	NIC Size / Supported PCIe Width			
Slot Size	Small	Large		
Small	Up to 16 PCIe lanes	Not Supported		
Large	Up to 16 PCIe lanes	Up to 32 PCIe lanes		

There are two baseboard connector mounting options available for system designers: straddle mount and right angle (RA). The straddle mount connector option allows the OCP NIC and baseboard to exist in a co-planer position. To achieve this, a cutout exists on the baseboard and is defined in this specification. Alternatively, the right angle option allows the OCP NIC to be installed on top of the baseboard. A baseboard cutout is not required for the right angle connector. The right angle option allows the baseboard to use this area for additional routing or backside component placement. The straddle mount and right angle connectors are shown in Section 3.2.

For both the baseboard and OCP NIC 3.0 card, this specification defines the component and routing keep out areas. Refer to Section 2.5 for details.

Both the straddle mount and right angle implementations shall accept the same OCP NIC 3.0 card and shall be supported in the baseboard chassis regardless of the baseboard connector selection (right angle or straddle mount) so long as the baseboard slot and OCP NIC 3.0 card sizes are a supported combination as shown in Table 3.

This specification defines the form factor at the OCP NIC 3.0 card level, including the front panel, latching mechanism and card guide features.

More details about the card form-factor is shown in Section 2.

Rev 0.63

1.4.2 Electrical overview

This specification defines the electrical interface between baseboard and the OCP NIC 3.0 card. The electrical interface is implemented with a right angle or straddle mount connector on baseboard and gold finger on the OCP NIC 3.0 card. As previously noted in the mechanical overview, each card may implement a Primary Connector or Primary + Secondary Connector. Cards using only the Primary Connector are suitable for both the Small and Large form-factors and may support up to 16 lanes of PCIe. The Secondary Connector, when used in conjunction with the Primary Connector, allows Large form-factor implementations and may support up to 32 lanes of PCIe.

1.4.2.1 Primary Connector

The Primary Connector provides all OCP specific management functions as well as up to 16 lanes of PCIe between the OCP NIC and the system motherboard.

Management Function Overview (OCP Bay):

- DMTF DSP0222 1.1 compliant Network Controller Sideband Interface (NC-SI) RMII Based Transport (RBT) Physical Interface
- Power management and status reporting
 - o Power break for emergency power reduction
 - State change control
- Control / status serial bus
 - NIC-to-Host status
 - Port LED Link/Activity
 - Environmental Indicators
 - Host-to-NIC configuration Information
- Multi-host PCIe support signals (2x PCIe resets, 2x reference clocks)
 - The OCP bay provides PERST2#, PERST3#, REFCLK2 and REFCLK3. This enables support for up to four hosts when used in conjunction with PERST0#, PERST1#, REFCLK0 and REFCLK1 in the Primary 4C region.
- PCIe Wake signal

See Section $Q_{3.5}$ for a complete list of pin and function descriptions for the OCP Bay portion of the Primary Connector.

PCIe Interface Overview (4C Connector):

- 16x differential transmit/receive pairs
 - Up to PCle Gen 5 support
- 2x 100 MHz differential reference clocks
- Control signals
 - 2x PCIe Resets
 - o Link Bifurcation Control
 - o Card power disable/enable
- SMBus 2.0
- Power
 - o +12V_EDGE

Rev 0.63

• +3.3V_EDGE

 \circ ~ Power distribution between the aux and main power domains is up to the baseboard vendor

See Section 3.4 for a complete list of pin and function descriptions for the 4C connector.

1.4.2.2 Secondary Connector

The Secondary Connector provides an additional 16 lanes of PCIe and their respective control signals.

PCIe Interface Overview (4C Connector):

- 16x differential transmit/receive pairs
 - Up to PCle Gen 5 support
- 2x 100 MHz differential reference clocks
- Control signals
 - o 2x PCIe Resets
 - Link Bifurcation Control
 - Card power disable/enable
- SMBus 2.0
- Power
 - +12V_EDGE
 - +3.3V_EDGE
 - \circ Power distribution between the aux and main power domains is up to the baseboard vendor

See Section 3.4 for a complete list of pin and function descriptions for the 4C connector.

Rev 0.63

1.5 References

- DMTF Standard. *DSP0222, Network Controller Sideband Interface (NC-SI) Specification.* Distributed Management Task Force, Rev 1.1.0, September 23rd, 2015.
- DMTF Standard. *DSP0222, Network Controller Sideband Interface (NC-SI) Specification*. Distributed Management Task Force, Rev 1.2.0, Work-in-progress.
- EDSFF. *Enterprise and Datacenter SSD Form Factor Connector Specification*. Enterprise and Datacenter SSD Form Factor Working Group, Rev 0.9 (draft), August 2nd 2017.
- IPMI Platform Management FRU Information Storage Definition, v1.2, February 28th, 2013.
- National Institute of Standards and Technology (NIST). *Special Publication 800-193, Platform Firmware Resiliency Guidelines,* draft, May 2017.
- NXP Semiconductors. *I²C-bus specification and user manual*. NXP Semiconductors, Rev 6, April 4th, 2014.
- Open Compute Project. OCP NIC Subgroup. Online. <u>http://www.opencompute.org/wiki/Server/Mezz</u>
- PCIe Base Specification. PCI Express Base Specification, Revision 4.0 (draft).
- PCIe CEM Specification. PCI Express Card Electromechanical Specification, Revision 4.0 (draft).
- SMBus Management Interface Forum. *System Management Bus (SMBus) Specification*. System Management Interface Forum, Inc, Version 2.0, August 3rd, 2000.
- SNIA. SFF-TA-1002, Specification for Protocol Agnostic Multi-Lane High Speed Connector. SNIA SFF TWG Technology Affiliate, Rev 1.1 draft, January 18th, 2018.

1.5.1 Trademarks

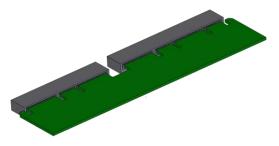
Names and brands may be claimed as trademarks by their respective companies.

Rev 0.63

2 Card Form Factor

2.1 Form Factor Options

OCP NIC 3.0 provides two fundamental form factor options: a Small Card (76mm x 115mm) and a Large Card (139mm x 115mm).


These form factors support a Primary Connector and optionally, a Secondary Connector. The Primary Connector is defined to be a SFF-TA-1002 compliant 4C± connector. The 4C+ connector is a 4C complaint implementation plus a 28-pin bay for OCP NIC 3.0 specific pins. The Secondary Connector is the 4C connector as defined in SFF-TA-1002. The 4C specification supports up to 32 differential pairs for a x16 PCIe connection per connector. For host platforms, the 28-pin OCP bay is required for the Primary Connector. This is also mandatory for OCP NIC 3.0 cards.

The Small Card uses the Primary $4C_{\pm}$ connector to provide up to a x16 PCIe interface to the host. The additional 28-pin OCP bay carries sideband management interfaces as well as OCP NIC 3.0 specific control signals for multi-host PCIe support. The small size card provides sufficient faceplate area to accommodate up to 2x QSFP modules, 4x SFP modules, or 4x RJ-45 for BASE-T operation. The Small Card form factor supports up to 80W of delivered power to the card edge. An example Small Card form factor is shown in Figure 1.

The Large Card uses the Primary $4C_{\pm} + OCP - bay$ connector to provide the same functionality as the Small Card along with an additional Secondary 4C connector to provide up to a x32 PCIe interface. The Large Card may utilize both the Primary and Secondary Connectors, or just the Primary Connector for lower PCIe lane count applications. Table 4 summarizes the Large Card permutations. The Large Card supports higher power envelopes and provides additional board area for more complex designs. The Large Card form factor supports up to 150W of delivered power to the card edge across the two connectors. An example Large Card form factor is shown in Figure 2.

For Large Cards, implementations may use both the Primary and Secondary Connector (as shown in Figure 4), or may use the Primary Connector only (as shown in Figure 5) for the card edge gold fingers.

Figure 4: Primary Connector (4C-+-OCP-Bay) and Secondary Connector (4C) (Large) OCP NIC 3.0 Cards

Open Compute Project • NIC • 3.0 Rev 0.63 Figure 5: Primary Connector (4C-+-OCP-Bay) Only (Large) OCP NIC 3.0 Cards

For both form-factors, an OCP NIC 3.0 card may optionally implement a subset of pins to support up to a x8 PCIe connection. This is implemented using a 2C card edge per SFF-TA-1002. The Primary Connector may support a 2C sized OCP NIC 3.0 card along with the 28 pin OCP bay shown in the 4C+ drawings. The following diagram from the SFF-TA-1002 specification illustrates the supported host Primary and Secondary Connectors and OCP NIC 3.0 card configurations.

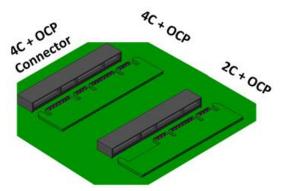


Table 4 summarizes the supported card form factors. Small form factors cards support the Primary Connector and up to 16 PCIe lanes. Large form factor cards support implementations with both the Primary and Secondary Connectors and up to 32 PCIe lanes, or a Primary Connector only implementation with up to 16 PCIe lanes.

Table 4: OCP NIC 3.0 Card Definitions

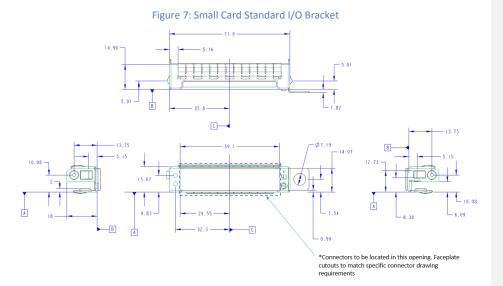
Add in Card Size and	Secondary Connector		Primary Connector		
max PCIe Lane Count	4C Connector, x16 P	Cle	4C± Connect	tor, x16 PCle	OCP Bay
Small (x8)				2C <u>+</u>	OCP Bay
Small (x16)			40	2 <u>+</u>	OCP Bay
Large (x8)				2C <u>+</u>	OCP Bay

http://opencompute.org

1

Rev 0.63

Large (x16)			4C <u>+</u>	OCP Bay
Large (x24)		2C	4C <u>+</u>	OCP Bay
Large (x32)	4	С	4C <u>+</u>	OCP Bay


Rev 0.63

2.2 I/O bracket

The following section defines the standard I/O bracket and standard chassis opening required for both the Small and Large form-factor cards.

2.2.1 Small Form Factor OCP NIC 3.0 Card I/O Bracket

Figure 7 defines the standard Small Card form factor I/O bracket.

Note: The OCP NIC 3.0 card supplier shall add port identification on bracket that meet their manufacturing and customer requirements.

For RJ-45 implementations, a customized bracket must be created. Figure 8 shows an implementation example.

Figure 8: Small Card Customized bracket for RJ-45 Connector Drawing to be inserted

Figure 9 shows the standalone bracket assembly and Figure 10 shows the bracket assembly on the OCP NIC 3.0 card.

Figure 9: Small Card 3D Bracket Assembly (Standalone)
TBD

Figure 10: Small Card 3D Bracket Assembly (Installed on in the OCP NIC 3.0 Card)
TBD

http://opencompute.org

Commented [NT3]: Mechanical drawings to be updated.

Rev 0.63

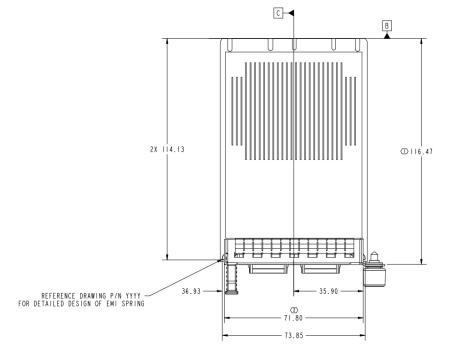
In addition to the sheet metal, Table 5 lists the additional hardware components used for the Small Card bracket assembly.

Item description	Supplier Part Number	
Top and bottom EMI fingers	TF187VE32F11	
Screw / Rivet (part of bracket assy)?	TBD	
Side EMI Finger	TBD	
Thumb screw	TBD	
Pull Tab	TBD	

TBD

TBD

TBD


Table 5: Mechanical BOM for the Small Card Bracket

Note: The "Pull Tab" shown in the 3D drawings and in Table 5 are tentative. Alternate designs are under evaluation and therefore the BOM may change in the next revision of the specification.

2.2.2 Small Form Factor OCP NIC 3.0 Card Critical-to-Function (CTF) Dimensions

The following dimensions are considered critical-to-function (CTF) for each small form factor OCP NIC 3.0 card.

Figure 11: Small Form Factor OCP NIC 3.0 Card Critical-to-Function (CTF) Dimensions (Top View)

http://opencompute.org

Latch

Screw (attaching Bracket & NIC)

SMT Nut (on NIC)

Rev 0.63

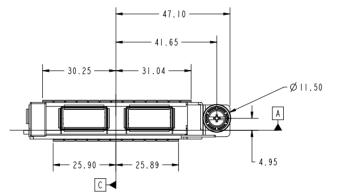
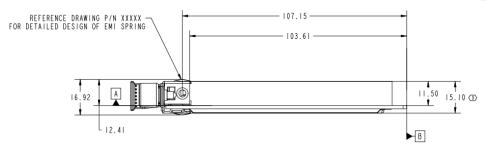



Figure 12: Small Form Factor OCP NIC 3.0 Card Critical-to-Function (CTF) Dimensions (Front View)

Figure 13: Small Form Factor OCP NIC 3.0 Card Critical-to-Function (CTF) Dimensions (Side View – Left)

Figure 14: Small Form Factor OCP NIC 3.0 Card Critical-to-Function (CTF) Dimensions (Side View - Right)

2.2.3 Small Form Factor OCP NIC 3.0 Baseboard Critical-to-Function (CTF) Dimensions The following dimensions are considered critical-to-function (CTF) for each small form factor baseboard chassis.

Rev 0.63

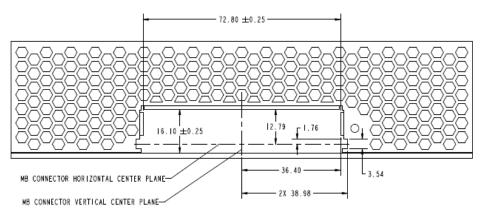
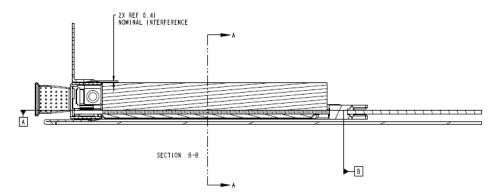



Figure 15: Small Form Factor Baseboard Chassis Critical-to-Function (CTF) Dimensions (Rear View)

Figure 16: Small Form Factor Baseboard Chassis Critical-to-Function (CTF) Dimensions (Side View)

Open Compute Project • NIC • 3.0 Rev 0.63

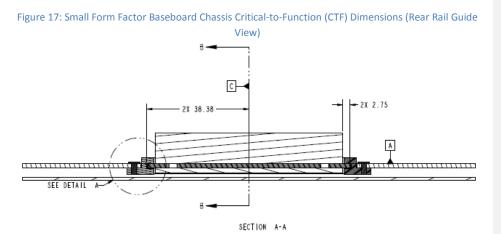
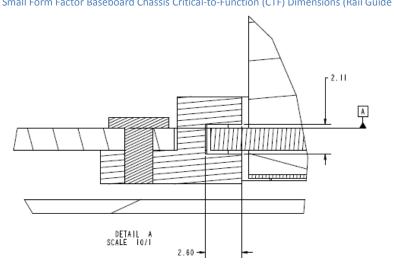



Figure 18: Small Form Factor Baseboard Chassis Critical-to-Function (CTF) Dimensions (Rail Guide Detail)

On the baseboard side, the following mechanical dimensions shall be met to support a small form factor OCP NIC 3.0 card:

Figure 19: Baseboard and Rail Assembly Drawing for Small Cards TBD; need 3D baseboard and rail assembly drawing.

2.2.4 Large Form Factor OCP NIC 3.0 Card I/O Bracket

Rev 0.63

TBD. Definition is in progress. All drawings from the Small Form-Factor implementation need to be replicated for the Large form-factor.

Figure 20 defines the standard Large Card form factor I/O bracket.

Figure 20: Large Card Standard I/O Bracket TBD

Note: The OCP NIC 3.0 card supplier shall add port identification on bracket that meet their manufacturing and customer requirements.

For RJ-45 implementations, a customized bracket must be created. Figure 21 shows an implementation example.

Figure 21: Large Card Customized bracket for RJ-45 Connector Drawing to be inserted

Figure 22 shows the standalone bracket assembly and Figure 23 shows the bracket assembly on the OCP NIC 3.0 card.

Figure 22: Large Card 3D Bracket Assembly (Standalone)

TBD

Figure 23: Large Card 3D Bracket Assembly (Installed on the OCP NIC 3.0 Card) TBD

In addition to the sheet metal, Table 6 lists the additional hardware components used for the Small Card bracket assembly.

Table 6: Mechanical BOM for the Large Card Bracket

Item description	Supplier Part Number
Top and bottom EMI fingers	TBD
Screw / Rivet (part of bracket assy)?	TBD
Side EMI Finger	TBD
Thumb screw	TBD
Pull Tab	TBD
Latch	TBD
Screw (attaching Bracket & NIC)	TBD
SMT Nut (on NIC)	TBD

Note: The "Pull Tab" shown in the 3D drawings and in Table 6 are tentative. Alternate designs are under evaluation and therefore the BOM may change in the next revision of the specification.

2.2.5 Large Form Factor OCP NIC 3.0 Card Critical-to-Function (CTF) Dimensions

The following dimensions are considered critical-to-function (CTF) for each large form factor OCP NIC 3.0 card.

Open Compute Project • NIC • 3.0
Rev 0.63
Figure 24: Large Form Factor OCP NIC 3.0 Card Critical-to-Function (CTF) Dimensions (Top View) TBD
Figure 25: Large Form Factor OCP NIC 3.0 Card Critical-to-Function (CTF) Dimensions (Front View) TBD
Figure 26: Large Form Factor OCP NIC 3.0 Card Critical-to-Function (CTF) Dimensions (Side View – Left) TBD
Figure 27: Large Form Factor OCP NIC 3.0 Card Critical-to-Function (CTF) Dimensions (Side View – Right) TBD
2.2.6 Large Form Factor OCP NIC 3.0 Baseboard Critical-to-Function (CTF) Dimensions The following dimensions are considered critical-to-function (CTF) for each large form factor baseboard chassis.
Figure 28: Large Form Factor Baseboard Chassis Critical-to-Function (CTF) Dimensions (Rear View) TBD
Figure 29: Large Form Factor Baseboard Chassis Critical-to-Function (CTF) Dimensions (Side View) TBD
Figure 30: Large Form Factor Baseboard Chassis Critical-to-Function (CTF) Dimensions (Rear Rail Guide View) TBD
Figure 31: Large Form Factor Baseboard Chassis Critical-to-Function (CTF) Dimensions (Rail Guide Detail) TBD
On the baseboard side, the following mechanical dimensions shall be met to support a large form factor OCP NIC 3.0 card:
Figure 32: Baseboard and Rail Assembly Drawing for Large Card
TBD; need 3D baseboard and rail assembly drawing for Large Card.

Rev 0.63

2.3 Line Side I/O Implementations

At the time of this writing, the Small and Large form-factor implementations have been optimized to support the following standard line side I/O implementations:

Table 7. OCP NIC 3.0 Life Side I/O Implementations		
Form Factor	Max Topology Connector Count	
Small	2x QSFP+/QSFP28/QSFP56	
Small	4x SFP28+/SFP28/SFP56	
Small	4x RJ-45	
Large	2x QSFP+/QSFP28/QSFP56	
Large	4x SFP+/SFP28/SFP56	
Large	4x RJ-45	

Table 7: OCP NIC 3.0 Line Side I/O Implementations

Note: For brevity, references to QSFP+, QSFP28 and QSFP56 shall be referred to as QSFP for the remainder of this document. Similarly, references to SFP+, SFP28 and SFP56 shall be referred to as SFP.

Additional combinations and connector types are permissible as I/O form-factor technologies and thermal capabilities evolve.

2.4 Port Numbering and LED Implementations

The OCP NIC 3.0 I/O bracket shall provide port labeling for user identification.

Additionally, LEDs shall be implemented on the OCP NIC 3.0 I/O bracket when there is sufficient space for local indication. LEDs may also be implemented on the card Scan Chain (as defined in Section 3.5.3) for remote link/activity indication on the baseboard. These two cases are described in the sections below. In both cases, the actual link rate may be directly queried through the management interface.

2.4.1 OCP NIC 3.0 Port Naming and Port Numbering

The naming of all OCP NIC 3.0 external ports shall start from Port 0. When viewing the OCP NIC 3.0 card from the I/O side and with the primary side components facing up, Port 0 shall be located on the left hand side. The port numbers shall sequentially increase to the right. Refer to Figure 33 as an example implementation.

2.4.2 OCP NIC 3.0 Card LED Configuration

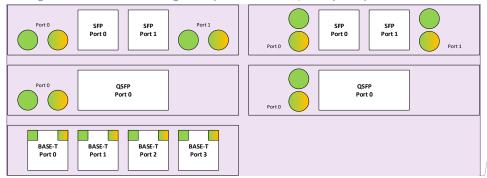
For low I/O count small form-factor cards without built in light pipes (such as 1x QSFP, 2x SFP, or 2x RJ-45), or a large form-factor cards, where additional I/O bracket area is available, the card shall implement on-board link/activity indications in place of the Scan Chain LED stream. The recommended local (oncard) LED implementation uses two physical LEDs (a discrete Link/Activity LED and a bi-colored Speed A/Speed B LED). Table 8 describes the OCP NIC 3.0 card LED implementations.

LED Pin	LED Color	Description
	Green	Active low. Multifunction LED.

Rev 0.63

	This LED shall be used to indicate link and link activity.
	When the link is up and no link activity is present, then this LED shall be lit and solid. This indicates that the link is established, there are no local or remote faults, and the link is ready for data packet transmission/reception.
	When the link is up and there is link activity, then this LED should blink at the interval of 50-500ms during link activity.
	The Link/Activity LED shall be located on the left hand side or located on the top for each port when the OCP NIC 3.0 card is viewed in the horizontal plane.
Green	Active low. Bicolor multifunction LED.
Amber Off	The LED is Green when the port is linked at its maximum speed. The LED is Amber when the port is linked at it second highest speed. The LED is off when the device is linked at a speed lower than the second highest capable speed, or no link is present. The Amber Speed LED indicator may be used for port identification through vendor specific link diagnostic software. The bicolor speed LED shall be located on the right hand side or located on the bottom for each port when the OCP NIC 3.0 card is
	Amber

2.4.3 OCP NIC 3.0 Card LED Ordering


For all OCP NIC 3.0 card use cases, each port shall implement the green Link/Activity LED and a bicolor green/amber speed A/B LED.

When the OCP NIC 3.0 card is viewed from the horizontal position, and with the primary component side facing up, the Link/Activity LED shall be located on the left side for each port and the speed LED shall be located on the right side for each port. The port ordering shall increase from left to right.

The placement of the Link/Activity and Speed LEDs on the faceplate may be left up to the discretion of the OCP NIC 3.0 card designer. The LED port association shall be clearly labeled on the OCP NIC 3.0 card.

Rev 0.63

Figure 33: Port and LED Ordering – Example Small Card Link/Activity and Speed LED Placement

Commented [JN4]: Suggest to add illustration of PCB in order to show this is "up side up"

2.4.4 Baseboard LEDs Configuration over the Scan Chain

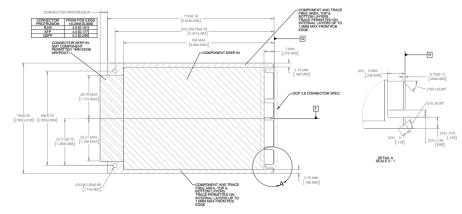
A small form-factor OCP NIC 3.0 with a fully populated I/O bracket (2x QSFP, 4x SFP or 4x RJ-45) does not have sufficient space for discrete on-board (faceplate) LED indicators. In this case, the line side link and activity LED indicators are implemented on the baseboard system via the Scan Chain. The Scan Chain bit stream is defined in Section 3.5.3.

The baseboard LED implementation uses two discrete LEDs (Link/Activity and Speed indication). The physical baseboard LED implementation is left up to the baseboard vendor and is not defined in this specification. The LED implementation is optional for baseboards.

At the time of this writing, the Scan Chain definition allows for up to one link/activity and one speed LED per port. A total of up to 8 ports are supported in the Scan Chain. The bit stream defines the LEDs to be active low (on). The Scan Chain LED implementation allows the NIC LED indicators to be remotely located on the OCP NIC 3.0 compliant chassis (e.g. front LED indicators with rear I/O cards).

Rev 0.63

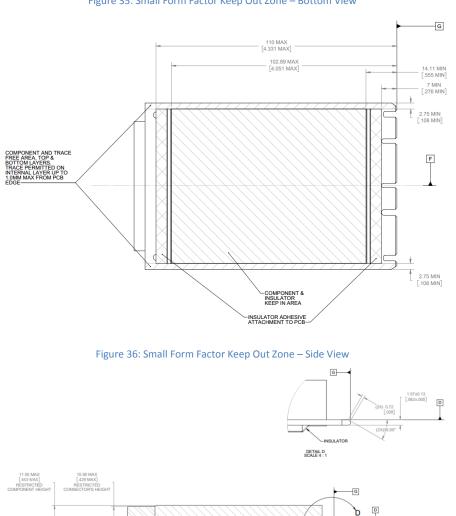
2.5 Mechanical Keepout Zones


2.5.1 Baseboard Keep Out Zones – Small Card Form Factor TBD – Need keepout drawings and envelopes for small / large size baseboard including primary/secondary/rail keepouts/cutout for straddle mount/keepout for right angle.

2.5.2 Baseboard Keep Out Zones – Large Card Form Factor

TBD. – need input from mechanical engineering

2.5.3 Small Card Form Factor Keep Out Zones



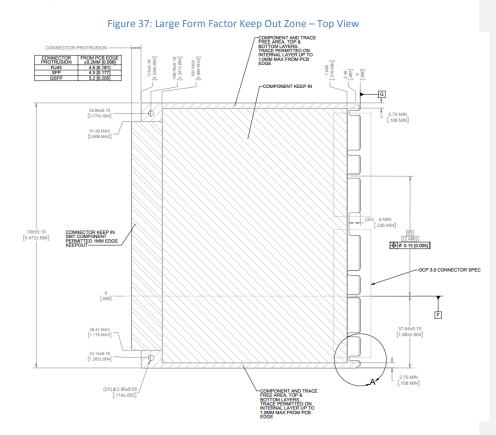
http://opencompute.org

Commented [NT5]: Mechanical drawings to be updated.

Open Compute Project • NIC • 3.0

Rev 0.63

COMPONENT & INSULATOR KEEP IN AREA-



http://opencompute.org

0.5

Rev 0.63

2.5.4 Large Card Form Factor Keep Out Zones

Open Compute Project • NIC • 3.0

Rev 0.63

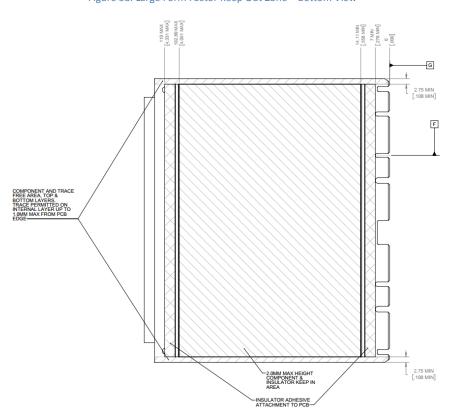
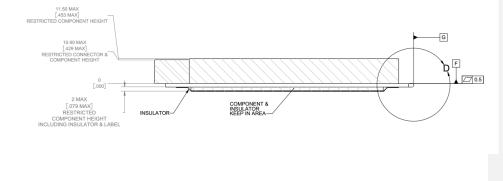
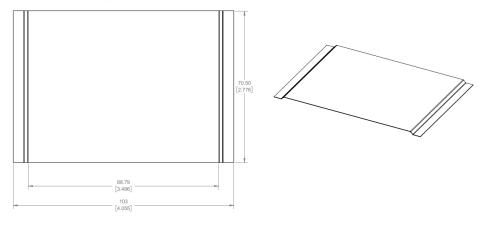
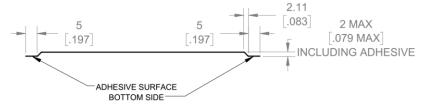



Figure 38: Large Form Factor Keep Out Zone – Bottom View

Figure 39: Large Form Factor Keep Out Zone – Side View

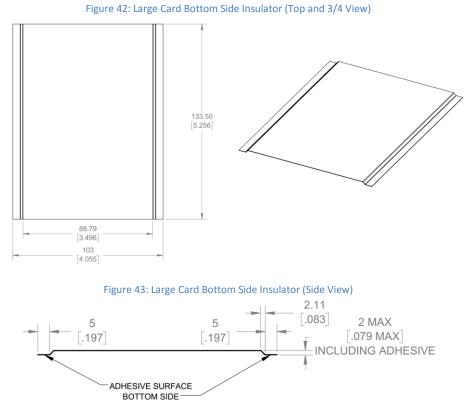

Rev 0.63

2.6 Insulation Requirements


All OCP NIC 3.0 cards shall implement an insulator to prevent the bottom side card components from shorting out to the baseboard chassis. The recommended insulator thickness is 0.25mm and shall reside within the following mechanical envelope for the Small and Large size cards.

2.6.1 Small Card Insulator

Figure 40: Small Card Bottom Side Insulator (Top and 3/4 View)



http://opencompute.org

Commented [NT6]: Mechanical drawings to be updated.

Rev 0.63

Rev 0.63

Labeling Requirements 2.7

OCP NIC 3.0 cards shall implement all (or a subset of) label items listed below as deemed necessary by each end customer.

2.7.1 NIC Vendor Factory Label

The label is human readable using a Verdana (or equivalent san serif typeface) at 4pt size. The label contains the following information:

- Item 1: Part number with revision ٠
- Item 2: Part number with revision (no spaces, underscores or dashes in the barcode). The barcode encoding format is Code 128. The barcode is variable in length.
- Item 3: CM Part Number -
- Item 4: CM Work Order Number .
- Item 5: CM Manufacturing Data Code (MM-DD-YY)
- Item 6: Deviation Number if no deviation is used, print DEV00000 .

Figure 44: NIC Vendor Factory Label

- 1. Verdana 4 pt. font or equivalent
- Barcode code 128
 300 DPI printer minimum. Must meet the contrast and print
- growth requirements per ISO/IES 16022 and have a print quality level of "C" or higher per ISO/IEC 15415 4. 1.000" x 0.400" label size, corner radius 0.025" 0.100"
- (0.635mm 2.54mm) 5. Material: Polyester with acrylic adhesive
- 6 Color: White
- 7. Thickness: 0.05mm

Commented [NT7]: The labeling requirements is a work in progress.

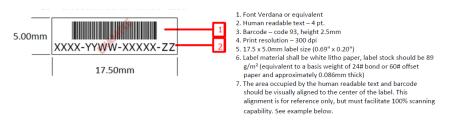
Rev 0.63

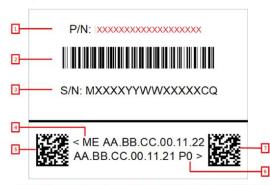
2.7.2 NIC Vendor Serial Number Label

The NIC serial number label shall contain the following information:

- Item 1: 1D barcode. Encoded as Code 93. No dashes should be encoded in the barcode element.
- Item 2: Human readable serial number uses a Verdana (or equivalent san serif typeface) at 4pt size.

Figure 45: NIC Vendor Serial Number Label




Figure 46: NIC Vendor Serial Number Label Field Format

Serial Number Elements		Manufacturing Date Code	*** Serial Number	Manufacturing Site Code			
Senai Number Elements	Product Part Number	(YY, last 2 digits of the year - WW, calendar week)	(sequintial alpha-numeric identifier)	(2 alpha digit CM site code)			
Human Readable	XXXXX	YYWW	X0000X	ZZ			
5N: X000(YYWW/X0000)ZZ							
***Suppliers will be allowed the use of characters 0-9, A-O in the first position of the sequence number, with no restrictions on the 2nd through 4th positions provided that							
each requests sumb	each requirers number is indeed unique						

Rev 0.63

2.7.3 Baseboard MAC and Serial Number Label

Figure 47: Baseboard MAC and Serial Number Label

*Image of label is for reference only - actual label will have different data. Refer to PSD for details.

Printer requirements:

600 dpi printer that is carefully aligned and well maintained using premium label stock. Must meet the contrast and print growth requirements per ISO/IES 16022 and have a print quality level of "C" or higher per ISO/IEC 15415

Label requirements:

Recommended label size .787" x 1.02" (20mm x 26mm)

Unless otherwise specified: Label material shall be white litho paper or polyester with acrylic adhesive. Label stock should 89 g/m² (equivalent to a basis weight of 24# bond or 60# offset paper and approximately 0.086mm thick).

ciffick).

1D Barcodes:		
Item 2	serial number	Barcode code 39, 2.54mm (H), must match SN label on PCBA
2D Barcodes:		
Item 5	ME MAC address	Data matrix, 0.009" density, ECC 200
Item 7	P0 MAC address	Data matrix, 0.009" density, ECC 200
Human readable:		Comment: Arial font 4pt.
Item 1	part number	P/N: XXXXXXXXXXXXXXXXXXXXXXX
Item 3	serial number	S/N: MXXXXYYWWXXXXXCQ
Item 4	ME MAC address	< ME: AA.BB.CC.00.11.22
Item 6	P0 MAC address	AA.BB.CC.00.11.21 P0 >

Commented [TN8]: I suggest converting this table over to text. OR make the other label requirements the same format.

Rev 0.63

2.7.4 Regulatory Label

Figure 48: OCP NIC 3.0 Card Regulatory Label

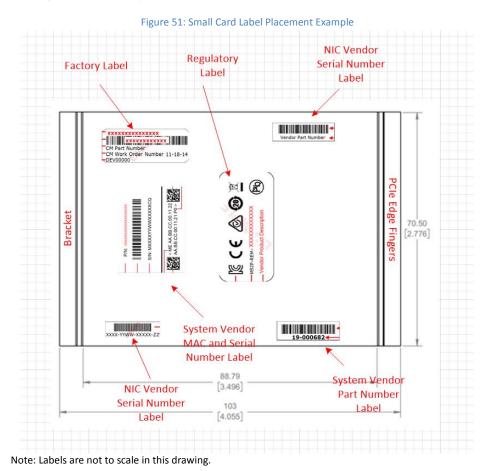

- 1. Verdana 4.5 pt. font or equivalent
- 2. All logo heights are 5mm
- 3. 300 DPI printer minimum. Must meet the contrast and print growth requirements per ISO/IES 16022 and have a print quality level of "C" or higher per ISO/IEC 15415 4. 1.500" x 0.750" (35mm – 19mm) label size, corner radius 0.025" –
- 0.100" (0.635mm 2.54mm)
- 5. Material: Polyester with acrylic adhesive 6. Color: White 7. Thickness: 0.05mm

Image of label is for reference only; actual label will have different data.

Label data requirer	nents:				
Human readable:	Item Name: Verdana 4.5pt				
ltem 1	Logos	Height 5mm each -evenly spaced			
	КСС	Korean KC mark			
	CE	European Conformance mark			
	C-tick	Regulatory Compliance mark			
	China RoHS	20 year China RoHS mark			
	WEEE	Waste Electrical and Electronic Equipment Directive mark			
	Pb free	Lead Free mark			
Item 2	Regulatory number	MSIP-REM-Part Number			
Item 3	Vendor Description	Vendor Product Description			

Commented [TN9]: I suggest converting this table over to text. OR make the other label requirements the same format.

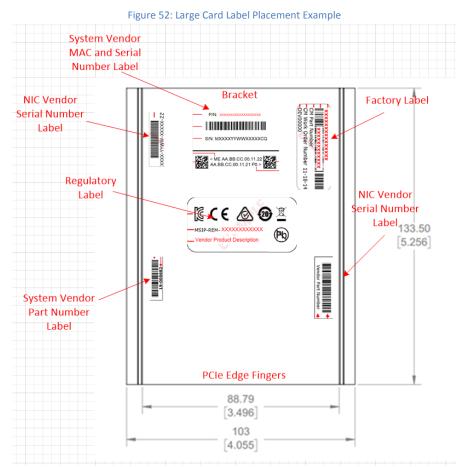
Rev 0.63



Commented [TN10]: Do we need a baseboard label? I propose we remove this. Just like the baseboard MAC and serial number label.

Rev 0.63

2.7.7 Small Card Label Placement


The image below is an example of the label locations for the Small Card form factor.

Rev 0.63

2.7.8 Large Card Label Placement

The image below is an example of the label locations for the Large Card form factor.

Note: Labels are not to scale in this drawing.

Rev 0.63

2.8 NIC Implementation Examples

Typical OCP NIC 3.0 implementation examples are included in the 3D CAD package. The purpose of these examples is to demonstrate the implementation feasibility. Additional use cases beyond the implementation examples are possible as long they adhere to the OCP NIC 3.0 specification.

Note: For brevity, references to QSFP+, QSFP28 and QSFP56 shall be referred to as QSFP in this document. Similarly, references to SFP+, SFP28 and SFP56 shall be referred to as SFP.

The 3D CAD files may be obtained from: {TBD}

Table 9: NIC Implementation	Examples and 3D CAD
------------------------------------	---------------------

Implementation Example	3D CAD File name
Small form factor Single/Dual QSFP ports	TBD
Small form factor Single/Dual SFP ports	TBD
Small form factor Quad SFP ports	TBD
Small form factor Quad 10GBASE-T ports	TBD
Large form factor Single/Dual QSFP ports	TBD
Large form factor Single/Dual SFP ports	TBD
Large form factor Quad SFP ports	TBD
Large form factor Quad 10GBASE-T ports	TBD

2.9 Non-NIC Use Cases

The OCP NIC 3.0 specification is mainly targeted for Network Interface Card applications. It is possible to use the same OCP NIC 3.0 card form-factor, baseboard interface and mechanical design to enable non-NIC use cases. These non-NIC use cases use the same baseboard/OCP NIC 3.0 card interface as defined in Section 3. The non-NIC use cases are not covered in the current revision of the OCP NIC 3.0 specification. Example non-NIC use cases implement various external I/O interfaces and are shown in Table 10.

Table 10: Example Non-NIC Use Cases

Example Use Case	Card External I/O Interface(s)
PCIe Retimer Card	PCIe
Accelerator Card	N/A
NVMe Card	N/A
Storage HBA / RAID Card	N/A <mark>/ TBD</mark>

Rev 0.63

3 Card Edge and Baseboard Connector Interface

3.1 Gold Finger Requirements

The OCP NIC 3.0 cards are compliant to the SFF-TA-1002 specification with respect to the gold fingers and connectors.

Small Size cards fit in the Primary Connector. Primary Connector compliant cards are 76mm x 115mm and may implement the full 168-pins. The Primary Connector cards may optionally implement a subset of gold finger pins if there is a reduced PCIe width requirement (such as 1 x8 and below). In this case, the card edge gold finger may implement a 2C design. The overall board thickness is 1.57mm. The gold finger dimensions for the Primary Connector compliant cards are shown below.

Large Size Cards support up to a x32 PCIe implementation and may use both the Primary and Secondary (4C) Connectors. Large Size Cards may implement a reduced PCIe lane count and optionally implement only the Primary Connector $4C_{\pm}$, or 2C plus-OCP bay.

Note: The "B" pins on the connector are associated with the top side of the OCP NIC 3.0 card. The "A" pins on the connector are associated with the bottom side of the OCP NIC 3.0 card.

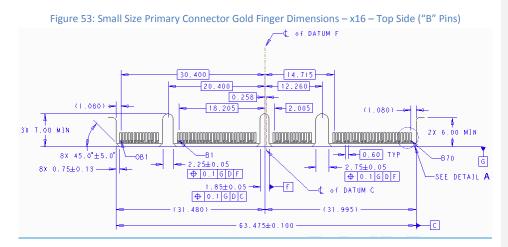
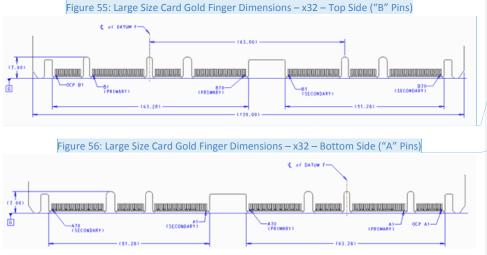


Figure 54: Small Size Primary Connector Gold Finger Dimensions – x16 – Bottom Side ("A" Pins)

Commented [NT11]: All gold finger dimensions will be updated from the SFF-TA-1002 v1.1 draft specification.

Open Compute Project • NIC • 3.0



Commented [TN12]: SFF-TA-1002 draft 1.1 doesn't have a diagram that shows the "A-side" pins facing up. Delete?

Open Compute Project • NIC • 3.0

Rev 0.63

Commented [TN13]: Need new mechanical drawing for the Large Card – B side.

Commented [TN14]: Need new mechanical drawing for the

Perhaps we can delete the A side. The pins are stacked at the

same spots on the A and B sides anyway.

Large Card – A side

3.1.1 Gold Finger Mating Sequence

Per the SFF-TA-1002 specification, the Primary and Secondary Connectors are protocol agnostic and are optimized for high speed differential pairs. For use in the OCP NIC 3.0 application, some pin locations are used for single ended control nets or power and would benefit from a shorter pin length for staggering. As such, the recommended OCP NIC 3.0 card gold finger staging is shown in Table 11 for a two stage, first-mate, last-break functionality. The host connectors have a single stage mating and do not implement different pin lengths.

The AIC Plug (Free) side refers to the OCP NIC 3.0 card gold fingers; the receptacle (Fixed) side refers to the physical connector on the host platform. This table is based on the SFF-TA-1002 Table A-1 with modifications for OCP NIC 3.0. Refer to the mechanical drawings for pin the first-mate and second-mate lengths.

Note: Pin names in Table 11 are used for first mate/second mate reference only. Full pin definitions are described in Sections 3.3 and 3.4.

Side B				S	ide A		
	Gold Finger S	ide (Free)	Receptacle	Gold Finger Side (Free)		Receptacle	
	2 nd Mate	1 st Mate	(Fixed)		2 nd Mate	1 st Mate	(Fixed)
OCP B1	NIC_PWR_GOOD			OCP A1	PERST2#		
OCP B2	PWRBRK#			OCP A2	PERST3#		
OCP B3	LD#			OCP A3	WAKE#		
OCP B4	DATA_IN			OCP A4	RBT_ARB_IN		
OCP B5	DATA_OUT			OCP A5	RBT_ARB_OUT		
OCP B6	CLK			OCP A6	GND		
OCP B7	SLOT_ID			OCP A7	RBT_TX_EN		
OCP B8	RBT_RXD1			OCP A8	RBT_TXD1		
OCP B9	RBT_RXD0			OCP A9	RBT_TXD0		
OCP B10	GND			OCP A10	GND		
OCP B11	REFCLKn2			OCP A11	REFCLKn3		

Commented [CP15]: Not sure why only the GND pins do the 1st mate while all other pins do 2nd? Do not see PRSNT pins act as the last mate pins. Is this still work-in-progress?

Commented [NT16R15]: Waiting on HPe recommendation for electrical or mechanical protection methods to prevent damage to the card.

The OCP Subgroup decided to keep the same $1^{\rm st}$ and $2^{\rm nd}$ mate gold finger lengths per the SFF-TA-1002 recommendations.

Open Compute Project • NIC • 3.0

					Rev 0.63
OCP B12	REFCLKp2		OCP A12	REFCLKp3	
OCP B13	GND		OCP A13	GND	
OCP B14	RBT_CRS_DV	Mach	OCP A14 nanical Key	RBT_CLK_IN	
B1	+12V_EDGE	Mech	A1	GND	
B2	+12V_EDGE		A2	GND	
B3	+12V_EDGE		A3	GND	
B4	+12V_EDGE		A4	GND	
B5 B6	+12V_EDGE +12V_EDGE		A5 A6	GND GND	
B7	BIFO#		A7	SMCLK	
B8	BIF1#		A8	SMDAT	
B9	BIF2#		A9	SMRST#	
B10 B11	PERSTO# +3.3V_EDGE		A10 A11	PRSNTA# PERST1#	
B12	PWR_EN		A12	PRSNTB2#	
B13	GND		A13	GND	
B14	REFCLKnO		A14	REFCLKn1	
B15 B16	REFCLKp0 GND		A15 A16	REFCLKp1 GND	
B16 B17	PETn0		A16 A17	PERnO	
B18	PETp0		A18	PERpO	
B19	GND		A19	GND	
B20	PETn1		A20	PERn1	
B21	PETp1 GND		A21	PERp1 GND	
B22 B23	GND PETn2		A22 A23	GND PERn2	
B24	PETp2		A24	PERp2	
B25	GND		A25	GND	
B26	PETn3		A26	PERn3	
B27 B28	PETp3 GND		A27 A28	PERp3 GND	
B28	GND	Mech	A28 nanical Key	GND	
B29	GND		A29	GND	
B30	PETn4		A30	PERn4	
B31 B32	PETp4		A31	PERp4	
B33	GND PETn5		A32 A33	GND PERn5	
B34	PETp5		A34	PERp5	
B35	GND		A35	GND	
B36	PETn6		A36	PERn6	
B37 B38	PETp6 GND		A37 A38	PERp6 GND	
B39	PETn7		A38 A39	PERn7	
B40	PETp7		A40	PERp7	
B41	GND		A41	GND	
B42	PRSNTB0#	N 4-sk	A42	PRSNTB1#	
B43	010	Mech	A43		
	GND			GND	
B44	GND PETn8		A44	GND PERn8	
B45	PETn8 PETp8		A44 A45	PERn8 PERp8	
B45 B46	PETn8 PETp8 GND		A44 A45 A46	PERn8 PERp8 GND	
B45 B46 B47	PETn8 PETp8 GND PETn9		A44 A45 A46 A47	PERn8 PERp8 GND PERn9	
B45 B46 B47 B48	PETn8 PETp8 GND PETn9 PETp9 PETp9		A44 A45 A46 A47 A48	PERn8 PERp8 GND PERn9 PERn9 PERp9	
B45 B46 B47 B48 B49	PETn8 PETp8 GND PETn9		A44 A45 A46 A47	PERn8 PERp8 GND PERn9	
B45 B46 B47 B48 B49 B50 B51	PETn8 PFTp8 GND PETn9 PETp9 GND PETn10 PETp10		A44 A45 A46 A47 A48 A49 A50 A51	PERn8 PERp8 GND PERp9 GND PERp10 PERp10	
B45 B46 B47 B48 B49 B50 B51 B52	PETN8 PETp8 GND PETn9 GND PETn9 GND PETn10 PETp10 GND		A44 A45 A46 A47 A48 A49 A50 A51 A52	PERn8 PERp8 GND PERn9 GND PERn9 GND PERn10 PERp10 GND	
845 846 847 848 849 850 851 851 852 853	PETn8 PFTp8 GND PETn9 GND PETn10 PETn10 GND PETn11		A44 A45 A46 A47 A48 A49 A50 A51 A52 A53	PERn8 PERp8 GND PERp9 GND PERn10 PERp10 GND PERn11	
B45 B46 B47 B48 B49 B50 B51 B52 B53 B54	PETn8 PPTp8 GND PETn9 GND PETn10 PETp10 GND PETn11 PETp11		A44 A45 A46 A47 A48 A49 A50 A51 A52 A53 A54	PERn8 PERp8 GND PERp9 GND PERn10 PERp10 GND PERp11	
845 846 847 848 849 850 851 851 852 853	PETn8 PFTp8 GND PETn9 GND PETn10 PETn10 GND PETn11		A44 A45 A46 A47 A48 A49 A50 A51 A52 A53	PERn8 PERp8 GND PERp9 GND PERn10 PERp10 GND PERn11	
845 846 847 848 849 850 851 852 853 854 855 855 855 856 857	PETn8 PPTp8 GND PETn9 GND PETp10 GND PETp10 GND PETp11 PETp12		A44 A45 A46 A47 A48 A49 A50 A51 A52 A53 A54 A55 A56 A57	PERN8 PERp8 GND PERn9 GND PERn10 PERp10 GND PERp11 PERp11 GND PERp11 PERp12	
845 846 847 848 850 850 851 852 853 854 855 856 857 858	PETN8 PETp8 GND PETn9 GND PETn10 PETp10 GND PETn11 PETp11 GND PETn12 PETp12 GND		A44 A45 A46 A47 A48 A49 A50 A51 A52 A53 A54 A53 A54 A55 A56 A57 A58	PERn8 PERp8 GND PERn9 GND PERn9 GND PERn10 GND PERp10 GND PERp11 GND PERp11 GND PERp12 GND	
845 846 847 848 849 850 851 852 853 854 855 856 857 858 859	PETn8 PFTp8 GND PETn9 GND PETn10 PFTp10 GND PETn11 PFTp11 GND PETn12 PFTp12 GND PFTn13		A44 A45 A46 A47 A48 A50 A51 A52 A53 A53 A54 A55 A56 A55 A56 A57 A58 A59	PERn8 PERp8 GND PERp9 GND PERp10 GND PERp11 GND PERp12 GND PERn12 PERn12 PERn12 PERn12 GND PERn13	
B45 B46 B47 B48 B49 B50 B51 B53 B54 B55 B56 B57 B58 B59 B60	PETn8 PFTp8 GND PETn9 GND PFTp10 GND PETp11 PETp12 PETp12 PETp13		A44 A45 A46 A47 A48 A49 A50 A51 A52 A53 A54 A55 A56 A57 A58 A59 A60	PERN8 PERN8 GND PERn9 GND PERn10 PERn10 PERn11 PERn11 PERn12 PERn12 PERn13 PERn13	
845 846 847 848 849 850 851 852 853 854 855 856 857 858 859	PETn8 PFTp8 GND PETn9 GND PETn10 PFTp10 GND PETn11 PFTp11 GND PETn12 PFTp12 GND PFTn13		A44 A45 A46 A47 A48 A50 A51 A52 A53 A53 A54 A55 A56 A55 A56 A57 A58 A59	PERn8 PERp8 GND PERp9 GND PERp10 GND PERp11 GND PERp12 GND PERn12 PERn12 PERn12 PERn12 GND PERn13	
B45 B46 B47 B48 B49 B50 B51 B52 B53 B54 B55 B56 B57 B58 B59 B60 B61 B62 B63	PETn8 PFTp8 GND PETn9 GND PETn10 PETp110 GND PETp11 GND PETp12 GND PETp12 GND PETp13 GND PETp14		A44 A45 A46 A47 A48 A49 A50 A51 A52 A53 A54 A55 A56 A57 A58 A59 A60 A61 A62 A63	PERN8 PERN8 GND PERn9 GND PERn10 PERn10 PERn11 PERn11 PERn12 PERn12 PERn13 PERn13 PERn14 PERn14	
845 846 847 848 849 850 851 852 853 854 855 855 856 857 858 859 860 861 862	PETn8 PFTn8 GND PETn9 GND PETn10 PETn10 GND PETn11 PFTn12 PFTn12 GND PETn13 PFTn13 GND PFTn14		A44 A45 A46 A47 A48 A50 A51 A52 A53 A53 A54 A55 A55 A56 A57 A58 A59 A60 A61 A62	PERn8 PERp8 GND PERp9 GND PERp10 GND PERp11 GND PERp12 GND PERp12 GND PERp13 GND PERp13 GND	

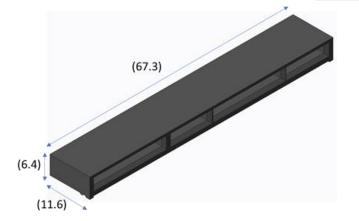
Rev 0.63

B66	PETp15	A66	PERp15	
B67	GND	A67	GND	
B68	RFU, N/C	A68	RFU, N/C	
B69	RFU, N/C	A69	RFU, N/C	
B70	PRSNTB3#	A70	RFU, N/C	

3.2 Baseboard Connector Requirements

The OCP NIC 3.0 connectors are compliant to the "4C<u>+" and "4C"</u> connector<u>s</u>" as defined in the SFF-TA-1002 specification for a right angle or straddle mount form-factor. <u>The Primary Connector is a 4C+</u> <u>implementation with 168-pins</u>. The <u>Secondary Connector is a</u> 4C connector is<u>implementation with</u> 140pins<u>Both the Primary and Secondary Connectors in width and</u>-includes support for up to 32 differential pairs to support a x16 PCle connection. <u>The Each</u> connector also provides 6 pins of +12V_EDGE, and 1 pin of +3.3V_EDGE for power. This implementation is common between both the Primary and Secondary Connectors. In addition, the <u>4C+ implementation of the</u> Primary Connector has a 28-pin OCP Bay-to the right of pin 1. These pins are used for management and support for up to a 4 x2 and 4 x4 multi-host configuration on the Primary Connector. The Primary and Secondary Connector drawings are shown below.

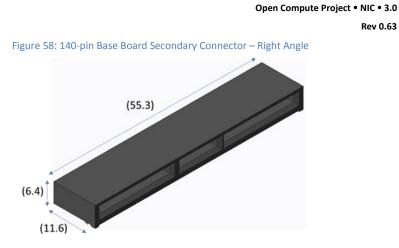
All diagram units are in mm unless otherwise noted.


3.2.1 Right Angle Connector

The following offset and height options are available for the right angle Primary and Secondary Connectors.

Table 12: Right Angle Connector Options

Name	Pins	Style and Baseboard Thickness	Offset (mm)
Primary Connector – 4C-+-OCP	168 pins	Right Angle	4mm
Secondary Connector – 4C	140 pins	Right Angle	4mm



Commented [NT17]: All connector drawings + dimensions

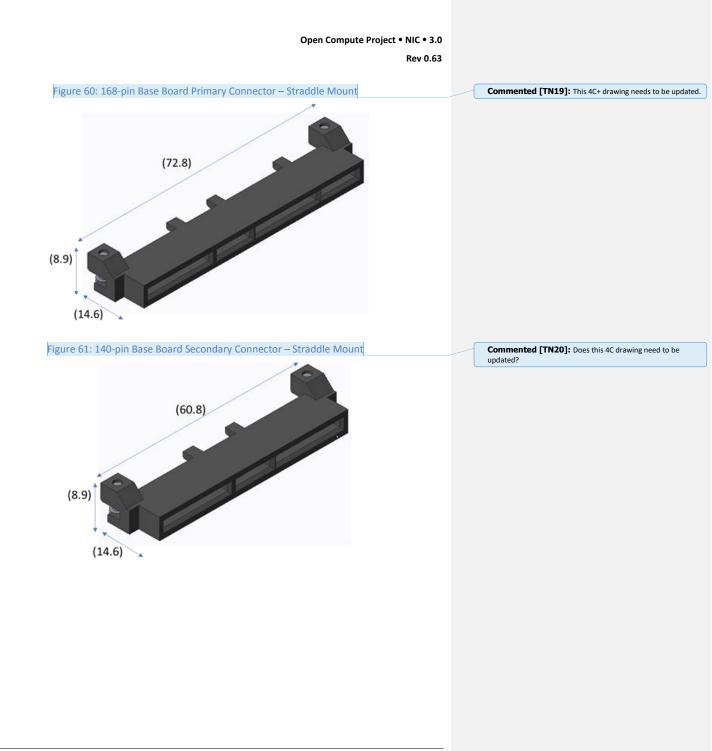
need to be updated.

Commented [TN18]: Need new ¾ view drawing.

3.2.2 Right Angle Offset

The OCP NIC 3.0 right angle connectors have a 4.0mm offset from the baseboard (pending SI simulation results). This is shown in Figure 59.

> Figure 59: OCP NIC 3.0 Card and Host Offset for Right Angle Connectors TBD

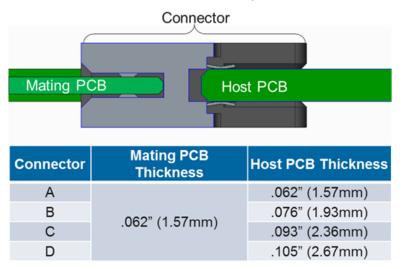

3.2.3 Straddle Mount Connector

The following offset and height options are available for the straddle mount Primary and Secondary Connectors.

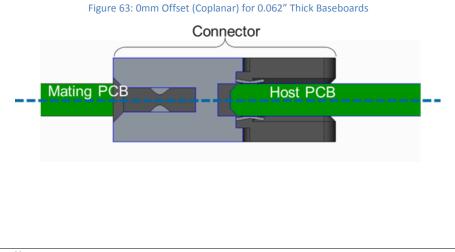
Table 13: Stra	ddle Mount	Connector	Options
----------------	------------	-----------	---------

Name	Pins	Style and Baseboard Thickness	Offset (mm)
Primary Connector – 4C-+-OCP	168 pins	Straddle Mount for 0.062"	Coplanar (0mm)
Primary Connector – 4C-+-OCP	168 pins	Straddle Mount for 0.076"	-0.3mm
Primary Connector – 4C-+-OCP	168 pins	Straddle Mount for 0.093"	Coplanar (0mm)
Secondary Connector – 4C	140 pins	Straddle Mount for 0.062"	Coplanar (0mm)
Secondary Connector – 4C	140 pins	Straddle Mount for 0.076"	-0.3mm
Secondary Connector – 4C	140 pins	Straddle Mount for 0.093"	Coplanar (0mm)

Rev 0.63



Rev 0.63


3.2.4 Straddle Mount Offset and PCB Thickness Options

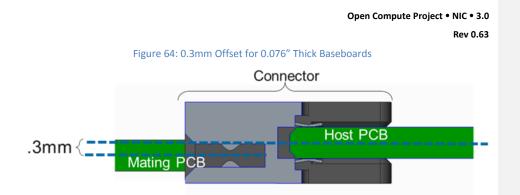
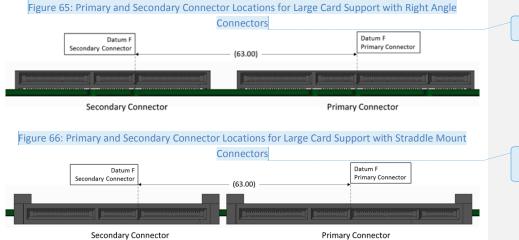

The OCP NIC 3.0 straddle mount connectors have four baseboard PCB thicknesses they can accept. The available options are shown in Figure 62. The thicknesses are 0.062'', 0.076'', 0.093'', and 0.105''. These PCBs must be controlled to a thickness of $\pm 10\%$. These are available for both the Primary and Secondary Connector locations. At the time of this writing, the most commonly used part is expected to be the 0.076'' baseboard thickness.

Figure 62: OCP NIC 3.0 Card and Baseboard PCB Thickness Options for Straddle Mount Connectors


The connectors are capable of being used coplanar as shown in Figure 63. Additionally, the connectors are also capable of having a 0.3mm offset from the centerline of the host board as shown in Figure 64.

3.2.5 Large Card Connector Locations

In order to the support the large form factor, systems must locate the Primary and Secondary Connectors per the mechanical drawing shown in Figure 65 and Figure 66.

Secondary Connector

Commented [TN22]: Double check this drawing with the MEs.

Commented [TN21]: Double check this drawing with the

MEs.

3.3 Pin definition

The pin definitions of an OCP NIC 3.0 card with up to a x32 PCIe interface are shown in Table 14 and Table 15. All signal directions are shown from the perspective of the baseboard.

A baseboard system may provide a combination of Primary Connectors only, or Primary and Secondary Connectors to support multiple sizes of OCP NIC 3.0 cards. Both connectors share common functionality with power, SMBus 2.0, x16 PCIe and bifurcation control. The Primary Connector <u>4C+ definition</u> has an additional OCP Bay (pins OCP_A[1:14], OCP_B[1:14]) with additional REFCLKs for supporting up to four PCIe hosts, NC-SI over RBT connectivity and a Scan Chain for information exchange between the host and card. The NIC is required to implement the Scan Chain, while the baseboard may choose to

Rev 0.63

optionally implement it. Depending on the baseboard form-factor, multiple OCP NIC 3.0 compliant cards may be designed into the system.

The pins common to the Primary and Secondary Connectors are shown in Section 3.4. The OCP Bay pins on the Primary Connector only are shown in Section <u>03.5</u>.

Cards or systems that do not require the use of a PCIe x16 connection may optionally implement a subset electrical connections as applicable to the design. For example, a x8 (or smaller) card using the first 8 PCIe lanes that is compliant with the Primary Connector pinout. Refer to Sections 3.1 and 3.2 for mechanical details. For these cases, the Primary Connector matches the 2C dimensions as defined in SFF-TA-1002.

In all cases, the physical baseboard connectors shall support x16 PCIe widths and must be implemented with the Primary (4C + OCP Bay) and Secondary (4C) connectors.

		011			
	Side B	Side A			
OCP_B1	NIC_PWR_GOOD	PERST2#	OCP_A1	Pr.	P.
OCP_B2	PWRBRK#	PERST3#	OCP_A2	Primary Connector (4C+	m
OCP_B3	LD#	WAKE#	OCP_A3	7	- T
OCP_B4	DATA_IN	RBT_ARB_IN	OCP_A4	<u> </u>	<u>S</u>
OCP_B5	DATA_OUT	RBT_ARB_OUT	OCP_A5	ne	nne
OCP_B6	CLK	GND	OCP_A6	Cto	čt
OCP_B7	SLOT_ID	RBT_TX_EN	OCP_A7	or (, ř
OCP_B8	RBT_RXD1	RBT_TXD1	OCP_A8	4 <u>0</u>	20
OCP_B9	RBT_RXD0	RBT_TXD0	OCP_A9		F X
OCP_B10	GND	GND	OCP_A10	16,	, 8, 1
OCP_B11	REFCLKn2	REFCLKn3	OCP_A11	16	112
OCP_B12	REFCLKp2	REFCLKp3	OCP_A12	8-b	헐
OCP_B13	GND	GND	OCP_A13	5	0
OCP B14	RBT CRS DV	RBT CLK IN	OCP A14	Ö	ę
	Mechar	ical Key		z	Z
B1	+12V EDGE	GND	A1	x16, 168-pin OCP NIC 3.0 card with OCP Bay)	Primary Connector (2C++_x8, 112-pin OCP NIC 3.0 card with OCP bay)
B2	+12V EDGE	GND	A2		00
B3	+12V EDGE	GND	A3	Car	ard
B4	+12V EDGE	GND	A4	d v	<u>₹</u> .
B5	+12V EDGE	GND	A5	ÌÈ	5
B6	+12V EDGE	GND	A6	ò	C C
B7	BIFO#	SMCLK	A7	P	5
B8	BIF1#	SMDAT	A8	Зау	<u>ک</u>
B9	BIF2#	SMRST#	A9		
B10	PERSTO#	PRSNTA#	A10		
B11	+3.3V EDGE	PERST1#	A11	1	
B12	PWR EN	PRSNTB2#	A12	1	
B13	GND	GND	A13	1	
B14	REFCLKn0	REFCLKn1	A14		
B15	REFCLKp0	REFCLKp1	A14 A15		
B15 B16	GND	GND	A15		
B10 B17	PETnO	PERnO	A10 A17		
B18	PETp0	PERpO	A17 A18		
B19	GND	GND	A10 A19		
B19 B20	PETn1	PERn1	A19 A20		
B20 B21	PETRI PETp1	PERp1	A20 A21	-	
021	PEIPI	PENPI	~21		

Table 14: Primary Connector Pin Definition (x16) (4C+- OCP Bay)

Rev 0.63

A22 A23 A24 A25 A26 A27 A28 A29 A30 A31 A32 A33 A34 A35 A36 A37 A38 A39 A40		
A24 A25 A26 A27 A28 A29 A30 A31 A32 A33 A34 A35 A36 A37 A38 A39		
A25 A26 A27 A28 A29 A30 A31 A32 A33 A34 A35 A36 A37 A38 A39		
A26 A27 A28 A29 A30 A31 A32 A33 A34 A35 A36 A37 A38 A39		
A27 A28 A29 A30 A31 A32 A33 A34 A35 A36 A37 A38 A39		
A28 A29 A30 A31 A32 A33 A34 A35 A36 A37 A38 A39		
A29 A30 A31 A32 A33 A33 A34 A35 A36 A37 A38 A39	- - - - - - - - - - -	
 A30 A31 A32 A33 A34 A35 A36 A37 A38 A39 	- - - - - - - -	
 A30 A31 A32 A33 A34 A35 A36 A37 A38 A39 	- - - - - - - -	
 A31 A32 A33 A34 A35 A36 A37 A38 A39 		
A32 A33 A34 A35 A36 A37 A38 A39		
A33 A34 A35 A36 A37 A38 A39	- - - - -	
A34 A35 A36 A37 A38 A39	-	
A35 A36 A37 A38 A39	-	
A36 A37 A38 A39	-	
A37 A38 A39		
A38 A39	-	
A39		
	-	
A40	-	
A40	-	
A41		
A42		
A43		
A44		
A45		
A46	-	
A47	-	
A48	_	
A49	-	
A50	-	
A51		
A52	-	
A53	-	
A54	-	
A55	-	
A56		
A57		
A58		
A59		
A60		
A61		
A62		
A63		
A64		
A65		
A66		
A68		
A69		
	A48 A49 A50 A51 A52 A53 A54 A55 A56 A57 A58 A59 A60 A61 A62 A63 A65 A66 A67 A68	A48 A49 A50 A51 A52 A53 A54 A55 A56 A57 A58 A60 A61 A62 A63 A65 A66 A66 A67

Rev 0.63

	Side B	Side A		
B1	+12V_EDGE	GND	A1	S
32	+12V_EDGE	GND	A2	eco
33	+12V_EDGE	GND	A3	nd
34	+12V_EDGE	GND	A4	Υ ^μ ε
35	+12V_EDGE	GND	A5	S.
B6	+12V_EDGE	GND	A6	nne
B7	BIF0#	SMCLK	A7	ecto
B8	BIF1#	SMDAT	A8	or (
B9	BIF2#	SMRST#	A9	4C,
B10	PERSTO#	PRSNTA#	A10	Ľ
B11	+3.3V EDGE	PERST1#	A11	6, 1
B12	PWR EN	PRSNTB2#	A12	40
B13	GND	GND	A13	<u>–</u>
B14	REFCLKn0	REFCLKn1	A14	
B15	REFCLKp0	REFCLKp1	A15	Ą
B16	GND	GND	A15 A16	Z
B10 B17	PETnO	PERnO	A10 A17	Secondary Connector (4C_x16, 140-pin OCP NIC 3.0 card
B17 B18	PETID	PERIO	A17 A18	.0
B10 B19	GND	GND	A18 A19	arc
B19 B20	PETn1	PERn1	A19 A20	
			A20 A21	_
B21	PETp1	PERp1		_
B22	GND	GND	A22	_
B23	PETn2	PERn2	A23	
B24	PETp2	PERp2	A24	
B25	GND	GND	A25	_
B26	PETn3	PERn3	A26	_
B27	РЕТр3	PERp3	A27	
B28	GND	GND	A28	
B29	GND	anical Key GND	A29	
B30	PETn4	PERn4	A30	-
B31	PETp4	PERp4	A31	
B32	GND	GND	A32	-
B32	PETn5	PERn5	A32 A33	
B34	PETp5	PERp5	A33	
B35	GND	GND	A34 A35	
B35 B36	PETn6	PERn6	A35 A36	-
B30 B37		PERp6	A36 A37	_
B37 B38	PETp6 GND	GND	A37 A38	-
				_
B39 B40	PETn7	PERn7	A39	_
B40 B41	PETp7	PERp7	A40	_
B41 B42	GND DRSNTRO#	GND	A41 A42	_
D4Z	PRSNTB0#	PRSNTB1# anical Key	A4Z	
B43	GND	GND	A43	
B44	PETn8	PERn8	A44	-
B45	PETp8	PERp8	A44 A45	-
B46	GND	GND	A45	_
B40 B47	PETn9	PERn9	A40 A47	_
B47 B48	PETn9 PETp9		A47 A48	_
	PEIDA	PERp9		
	GND	CND	A 40	
B49 B50	GND PETn10	GND PERn10	A49 A50	_

http://opencompute.org

I

Rev 0.63

B52	GND	GND	A52	
B53	PETn11	PERn11	A53	
B54	PETp11	PERp11	A54	
B55	GND	GND	A55	
B56	PETn12	PERn12	A56	
B57	PETp12	PERp12	A57	
B58	GND	GND	A58	
B59	PETn13	PERn13	A59	
B60	PETp13	PERp13	A60	
B61	GND	GND	A61	
B62	PETn14	PERn14	A62	
B63	PETp14	PERp14	A63	
B64	GND	GND	A64	
B65	PETn15	PERn15	A65	
B66	PETp15	PERp15	A66	
B67	GND	GND	A67	
B68	RFU, N/C	RFU, N/C	A68	
B69	RFU, N/C	RFU, N/C	A69	
B70	PRSNTB3#	RFU, N/C	A70	

3.4 Signal Descriptions – Common

The pins shown in this section are common to both the Primary and Secondary Connectors. All pin directions are from the perspective of the baseboard.

The OCP NIC 3.0 card shall implement protection methods to prevent leakage paths between the Vaux and Vmain power domains in the event that a NIC is powered down in a powered up baseboard.

Note: Pins that are only used on Primary Connector 28-pin OCP bay are defined in Section 03.5.

3.4.1 PCIe Interface Pins

1

This section provides the pin assignments for the PCIe interface signals. The AC/DC specifications are defined in the PCIe CEM Specification, Rev 4.0. Example connection diagrams for are shown in Figure 80.

Signal Name	Pin #	Baseboard	Signal Description
		Direction	
REFCLKn0	B14	Output	PCIe compliant differential reference clock #0, and
REFCLKp0	B15		#1. 100MHz reference clocks are used for the OCP
REFCLKn1	A14	Output	NIC 3.0 card PCIe core logic.
REFCLKp1	A15		
			For baseboards, the REFCLKO and REFCLK1 signals
			shall be available at the connector. Baseboards
			should disable REFCLK1 if it is not used by the OCP
			NIC 3.0 card.
			For OCP NIC 3.0 cards, the required REFCLKs shall be
			connected per the endpoint datasheet. Unused
			REFCLKs on the OCP NIC 3.0 card shall be left as a no
			connect.

Table 16: Pin Descriptions – PCle 1

Rev 0.63

			Note: For cards that only support 1 x16, REFCLK0 is used. For cards that support 2 x8, REFCLK0 is used for the first eight PCIe lanes, and REFCLK1 is used for the second eight PCIe lanes.
			REFCLKO is always available to all OCP NIC 3.0 cards. The card should not assume REFCLK1 is available until the bifurcation negotiation process is completed.
			Refer to Section 2.1 in the PCIe CEM Specification, Rev 4.0 for electrical details.
PETn0	B17	Output	Transmitter differential pairs [0:15]. These pins are
PETp0	B18		connected from the baseboard transmitter
PETn1	B20	Output	differential pairs to the receiver differential pairs on
PETp1	B21		the OCP NIC 3.0 card.
PETn2	B23	Output	
PETp2	B24		The PCIe transmit pins shall be AC coupled on the
PETn3	B26	Output	baseboard with capacitors. The AC coupling capacitor
PETp3	B27	Output	value shall use the C_{TX} parameter value specified in
PETn4	B30	Output	the PCIe Base Specification.
PETp4	B31	Output	
PETn5	B33	Output	For baseboards, the PET[0:15] signals are required at
PETp5	B34	Output	the connector.
PETn6	B36	Output	-
PETp6	B30 B37	Output	For OCP NIC 3.0 cards, the required PET[0:15] signals
PETp0	B39	Output	shall be connected to the endpoint silicon. For silicon
PETID PETp7	B39 B40	Output	that uses less than a x16 connection, the appropriate
PETp7 PETn8	B40	Output	PET[0:15] signals shall be connected per the endpoint
-	В44 В45	Output	datasheet.
PETp8	-	Quitaut	-
PETn9	B47	Output	Refer to Section 6.1 in the PCIe CEM Specification,
PETp9	B48	Out i	Rev 4.0 for details.
PETn10	B50	Output	
PETp10	B51	<u> </u>	
PETn11	B53	Output	
PETp11	B54		_
PETn12	B56	Output	
PETp12	B57		
PETn13	B59	Output	
PETp13	B60		
PETn14	B62	Output	
PETp14	B63		
PETn15	B65	Output	
PETp15	B66		
PERn0	A17	Input	Receiver differential pairs [0:15]. These pins are
PERp0	A18		connected from the OCP NIC 3.0 card transmitter
PERn1	A20	Input	

Rev 0.63

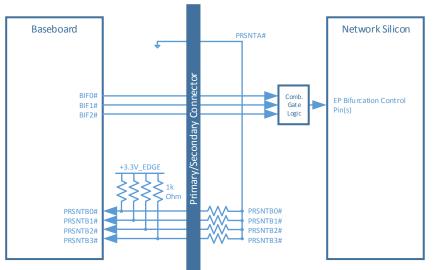
			Rev 0.63
PERp1	A21		differential pairs to the receiver differential pairs on
PERn2	A23	Input	the baseboard.
PERp2	A24		
PERn3	A26	Input	The PCIe receive pins shall be AC coupled on the OCP
PERp3	A27		NIC 3.0 card with capacitors. The AC coupling
PERn4	A30	Input	capacitor value shall use the C_{TX} parameter value
PERp4	A31		specified in the PCIe Base Specification.
PERn5	A33	Input	
PERp5	A34		For baseboards, the PER[0:15] signals are required at
PERn6	A36	Input	the connector.
PERp6	A37	mpac	
PERn7	A39	Input	For OCP NIC 3.0 cards, the required PER[0:15] signals
PERp7	A40	mpat	shall be connected to the endpoint silicon. For silicon
PERn8	A44	Input	that uses less than a x16 connection, the appropriate
PERp8	A44 A45	mput	PER[0:15] signals shall be connected per the endpoint
PERn9	A43	Input	datasheet.
PERp9	A47 A48	input	
PERp9 PERn10	A40 A50	Input	Refer to Section 6.1 in the PCIe CEM Specification,
		input	Rev 4.0 for details.
PERp10	A51	lanut	
PERn11	A53	Input	
PERp11	A54	·	
PERn12	A56	Input	
PERp12	A57		
PERn13	A59	Input	
PERp13	A60		
PERn14	A62	Input	
PERp14	A63		
PERn15	A65	Input	
PERp15	A66		
PERSTO#	B10	Output	PCIe Reset #0, #1. Active low.
PERST1#	A11		When PERSTn# is deasserted, the signal shall indicate the applied power is within tolerance and stable for the OCP NIC 3.0 card.
			PERST# shall be deasserted at least 100ms after the power rails are within the operating limits per the PCIe CEM Specification. The PCIe REFCLKs shall also become stable within this period of time.
			PERST shall be pulled high to +3.3V_EDGE on the baseboard.
			For OCP NIC 3.0, PERST deassertion shall also indicate the full card power envelope is available to the OCP NIC 3.0 card.

Rev 0.63

For baseboards, the PERST[0:1]# signals are required at the connector.
For OCP NIC 3.0 cards, the required PERST[0:1]# signals shall be connected to the endpoint silicon. Unused PERST[0:1]# signals shall be left as a no connect.
Note: For cards that only support 1 x16, PERSTO# is used. For cards that support 2 x8, PERSTO# is used for the first eight PCIe lanes, and PERST1# is used for the second eight PCIe lanes.
PERSTO# is always available to all OCP NIC 3.0 cards. The card should not assume PERST1# is available until the bifurcation negotiation process is completed.
Refer to Section 2.2 in the PCIe CEM Specification, Rev 4.0 for details.

3.4.2 PCIe Present and Bifurcation Control Pins

This section provides the pin assignments for the PCIe present and bifurcation control signals. The AC/DC specifications are defined in Section 3.12. An example connection diagram is shown in Figure 67.


The PRSNTA#/PRSNTB[0:3]# state shall be used to determine if a card has been physically plugged in. The BIF[0:2]# pins shall be latched before PWR_EN assertion to ensure the correct values are detected by the system. Changing the pin states after this timing window is not allowed. Refer to the AC timing diagram in Section 3.12 for details.

Signal Name	Pin #	Baseboard Direction	Signal Description
PRSNTA#	A10	Output	Present A is used for OCP NIC 3.0 card presence and PCIe capabilities detection.
			For baseboards, this pin shall be directly connected to GND.
			For OCP NIC 3.0 cards, this pin shall be directly connected to the PRSNTB[3:0]# pins.
PRSNTB0#	B42	Input	Present B [0:3]# are used for OCP NIC 3.0 card
PRSNTB1#	A42		presence and PCIe capabilities detection.
PRSNTB2#	A12		
PRSNTB3#	B70		For baseboards, these pins shall be connected to the
			I/O hub and pulled up to +3.3V_EDGE using 1kOhm
			resistors.

Rev 0.63

		For OCP NIC 3.0 cards, these pins shall be strapped to PRSNTA# per the encoding definitions described in Section 3.6. Note: PRSNTB3# is located at the bottom of the 4C connector and is only applicable for OCP NIC 3.0 cards with a PCIe width of x16 (or greater). OCP NIC 3.0 cards that implement a 2C card edge do not use the PRSNTB3# pin for capabilities or present detection.
07	Quetaut	
	Output	Bifurcation [0:2]# pins allow the baseboard to force
		configure the OCP NIC 3.0 card bifurcation.
69		For baseboards, these pins shall be outputs driven from the baseboard I/O hub and allow the system to force configure the OCP NIC 3.0 card bifurcation. The baseboard may optionally tie the BIF[0:2]# signals to +3.3V_EDGE or to ground per the definitions are described in Section 3.6 if no dynamic bifurcation configuration is required. For OCP NIC 3.0 cards, these signals shall connect to
		the endpoint bifurcation pins if it is supported. Note: the required combinatorial logic output for
		endpoint bifurcation is dependent on the specific silicon and is not defined in this specification.
	B7 B8 B9	B8

Rev 0.63

Figure 67: PCIe Present and Bifurcation Control Pins

3.4.3 SMBus Interface Pins

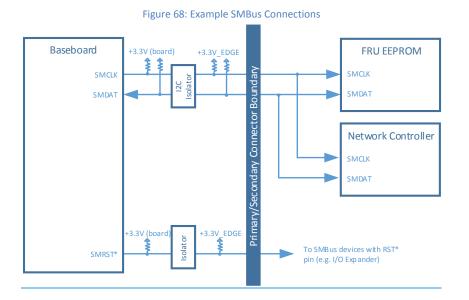

This section provides the pin assignments for the SMBus interface signals. The AC/DC specifications are defined in the SMBus 2.0 and I^2C bus specifications. An example connection diagram is shown in Figure 68.

Table 18: Pin De	escriptions – SMBus
------------------	---------------------

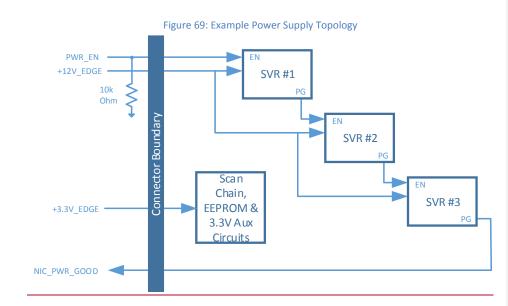
Signal Name	Pin #	Baseboard Direction	Signal Description
SMCLK	A7	Output, OD	SMBus clock. Open drain, pulled up to +3.3V_EDGE on the baseboard.
			For baseboards, the SMCLK from the platform SMBus master shall be connected to the connector.
			For OCP NIC 3.0 cards, the SMCLK from the endpoint silicon shall be connected to the card edge gold fingers.
SMDAT	A8	Input / Output, OD	SMBus Data. Open drain, pulled up to +3.3V_EDGE on the baseboard.
			For baseboards, the SMDAT from the platform SMBus master shall be connected to the connector.

Rev 0.63

			For OCP NIC 3.0 cards, the SMDAT from the endpoint silicon shall be connected to the card edge gold fingers.
SMRST#	A9	Output, OD	SMBus reset. Open drain. For baseboards, this pin shall be pulled up to +3.3V_EDGE. The SMRST pin may be used to reset optional downstream SMBus devices (such as temperature sensors). The SMRST# implementation shall be mandatory for baseboard implementations. For OCP NIC 3.0 cards, SMRST# is optional and is dependent on the OCP NIC 3.0 card implementation. The SMRST# signal shall be left as a no connect if it is
			not used on the OCP NIC 3.0 card.

Rev 0.63

3.4.4 Power Supply Pins


1

This section provides the pin assignments for the power supply interface signals. The AC/DC specifications are defined in the PCIe CEM Specification, Rev 4.0 and amended in Section 3.10. An example connection diagram is shown in Figure 69.

Table 19: Pin Descriptions – Power			
Signal Name	Pin #	Baseboard Direction	Signal Description
GND	Various	GND	Ground return; a total of 46 ground pins are on the main 140-pin connector area. Refer to Section 3.3 for details.
+12V_EDGE	B1, B2, B3, B4, B5, B6	Power	+12V main or +12V aux power; total of 6 pins per connector. The +12V_EDGE pins shall be rated to 1.1A per pin with a maximum derated power delivery of 80W.
			The +12V_EDGE power pins shall be within the rail tolerances as defined in Section 3.10 when the <u>PWRDIS PWR_EN</u> pin is driven <u>low-high</u> by the baseboard.
+3.3V_EDGE	B11	Power	+3.3V main or +3.3V aux power; total of 1 pin per connector. The +3.3V_EDGE pin shall be rated to 1.1A for a maximum derated power delivery of 3.63W. The +3.3V_EDGE power pin shall be within the rail tolerances as defined in Section 3.10 when the <u>PWRDIS-PWR_EN</u> pin is driven <u>low-high</u> by the baseboard.
<u>PWR EN</u>	B12	Output , O/D	Power <u>enable</u> . Active high <u>Open-drain</u> . This signal shall be pulled <u>up-down</u> to <u>+3.3V_EDGE</u> <u>GND</u> through a 10kOhm resistor on the baseboard. <u>This ensures the OCP NIC 3.0 card power is disabled</u> <u>until instructed to turn on by the baseboard</u> . When <u>highlow</u> , all- <u>the</u> OCP NIC 3.0 card supplies shall be disabled. When <u>lowhigh, the</u> OCP NIC 3.0 card supplies shall be enabled.

Table 19: Pin Descriptions – Power

Rev 0.63

3.4.5 Miscellaneous Pins

This section provides the pin assignments for the miscellaneous interface signals.

Table 20: Pin Descriptions – Miscellaneous 1

Signal Name	Pin #	Baseboard Direction	Signal Description
RFU, N/C	B68,	Input /	Reserved future use pins. These pins shall be left as
	B69,	Output	no connect.
	A68,		
	A69,		
	A70		

Rev 0.63

3.5 Signal Descriptions – OCP Bay (Primary Connector)

The following section describes the functions in the Primary Connector 28-pin OCP bay. This 28-pin bay is shown in Section 3.3 and have pin numbers designated as OCP_B[1:14], and OCP_A[1:14]. All pin directions on this OCP bay are from the perspective of the baseboard.

The OCP NIC 3.0 card shall implement protection methods to prevent leakage paths between the V_{aux} and V_{main} power domains in the event that a NIC is powered down in a powered up baseboard.

Note: The pins that are common to both the Primary and Secondary Connectors are defined in Section 3.4.

3.5.1 PCIe Interface Pins – OCP Bay (Primary Connector)

This section provides the pin assignments for the PCIe interface signals on the Primary Connector OCP bay. The AC/DC specifications are defined in the PCIe CEM Specification. An example connection diagram that shows REFCLK2, REFCLK3, PERST2# and PERST3# is shown in Section 3.7.

Signal Name	Pin #	Baseboard	Signal Description
		Direction	
REFCLKn2	OCP_B11	Output	PCIe compliant differential reference clock #2, and
REFCLKp2	OCP_B12		#3. 100MHz reference clocks are used for the OCP
REFCLKn3	OCP_A11	Output	NIC 3.0 card PCIe core logic.
REFCLKp3	OCP_A12		
			For baseboards, the REFCLK2 and REFCLK3 signals
			are required at the Primary Connector. Baseboards
			may disable REFCLK2 and REFCLK3 if they are not
			used by the OCP NIC 3.0 card.
			For OCP NIC 3.0 cards, the required REFCLKs shall be
			connected per the endpoint datasheet. Unused
			REFCLKs on the OCP NIC 3.0 card shall be left as a no
			connect.
			Note: REFCLK2 and REFCLK3 are only used for cards
			that only support a four link PCIe bifurcation mode.
			The card should not assume REFCLK2 and REFCLK3
			are available until the bifurcation negotiation
			process is completed.
			Refer to Section 2.1 in the PCIe CEM Specification,
			Rev 4.0 for details.
PERST2#	OCP_A1	Output	PCIe Reset #2, #3. Active low.
PERST3#	OCP_A2		
			When PERSTn# is deasserted, the signal shall
			indicate the applied power is within tolerance and
			stable for the OCP NIC 3.0 card.

Table 21: Pin Descriptions – PCIe 2

Rev 0.63

			PERST# shall be deasserted at least 100ms after the power rails are within the operating limits per the PCIe CEM Specification. The PCIe REFCLKs shall also become stable within this period of time.
			PERST shall be pulled high to +3.3V_EDGE on the baseboard.
			For OCP NIC 3.0, PERST deassertion shall also indicate the full card power envelope is available to the OCP NIC 3.0 card.
			For baseboards, the PERST[2:3]# signals are required at the connector.
			For OCP NIC 3.0 cards, the required PERST[2:3]# signals shall be connected to the endpoint silicon. Unused PERST[2:3]# signals shall be left as a no connect.
			Note: PERST2# and PERST3# are only used for cards that support a four link PCIe bifurcation mode.
			The card should not assume PERST2# and PERST3# are available until the bifurcation negotiation process is completed.
			Refer to Section 2.2 in the PCIe CEM Specification, Rev 4.0 for details.
WAKE#	OCP_A3	Input, OD	WAKE#. Open drain. Active low.
			This signal shall be driven by the OCP NIC 3.0 card to notify the baseboard to restore PCIe link. For OCP NIC 3.0 cards that support multiple WAKE# signals, their respective WAKE# pins may be tied together as the signal is open-drain to form a wired-OR.
			For baseboards, this signal shall be pulled up to +3.3V_EDGE on the baseboard with a 10kOhm resistor. This signals shall be connected to the system WAKE# signal.
			For OCP NIC 3.0 cards, this signal shall be directly connected to the endpoint silicon WAKE# pin(s). This pin shall be left as a no connect if WAKE# is not supported by the silicon.

Rev 0.63

Refer to Section 2.3 in the PCIe CEM Specificatio	n,
Rev 4.0 for details.	

3.5.2 NC-SI Over RBT Interface Pins – OCP Bay (Primary Connector)

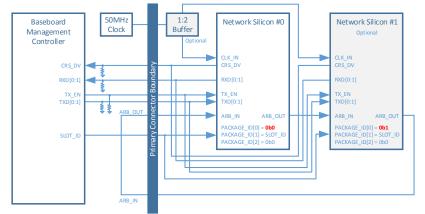
This section provides the pin assignments for the NC-SI over RBT interface signals on the Primary Connector OCP bay. The AC/DC specifications for NC-SI over RBT are defined in the DMTF DSP0222 NC-SI specification. An example connection diagram is shown in Figure 70.

Signal Name	Pin #	Baseboard	Signal Description
		Direction	
RBT_REF_CLK	OCP_A14	Output	Reference clock input. Synchronous clock reference
			for receive, transmit and control interface. The clock
			shall have a typical frequency of 50MHz.
			For baseboards, this pin shall be connected between
			the baseboard NC-SI over RBT PHY and the Primary
			Connector OCP bay. This signal requires a 100kOhm
			pull down resistor on the baseboard. If the
			baseboard does not support NC-SI over RBT, then
			this signal shall be terminated to ground through a
			100kOhm pull down resistor.
			For OCP NIC 3.0 cards, this pin shall be connected
			between the gold finger to the endpoint silicon. This
			pin shall be left as a no connect if NC-SI over RBT is
			not supported.
RBT_CRS_DV	OCP_B14	Input	Carrier sense/receive data valid. This signal is used to
			indicate to the baseboard that the carrier
			sense/receive data is valid.
			For baseboards, this pin shall be connected between
			the baseboard NC-SI over RBT PHY and the
			connector. This signal requires a 100kOhm pull down
			resistor on the baseboard. If the baseboard does not
			support NC-SI over RBT, then this signal shall be
			terminated to ground through a 100kOhm pull down
			resistor.
			For OCP NIC 3.0 cards, this pin shall be connected
			between the gold finger to the endpoint silicon. This
			pin shall be left as a no connect if NC-SI over RBT is
			not supported.
RBT_RXD0	OCP_B9	Input	Receive data. Data signals from the network
RBT_RXD1	OCP_B8		controller to the BMC.
-			

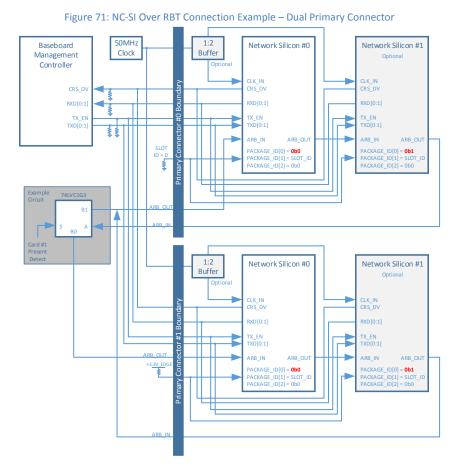
Table 22: Pin Descriptions – NC-SI Over RBT

Rev 0.63

			Rev 0.63
			For baseboards, this pin shall be connected between the baseboard NC-SI over RBT PHY and the connector. This signal requires a 100kOhm pull-up resistor to +3.3V_EDGE on the baseboard. If the baseboard does not support NC-SI over RBT, then this signal shall be terminated to +3.3V_EDGE through a 100kOhm pull-up.
			For OCP NIC 3.0 cards, this pin shall be connected between the gold finger and the RBT_RXD[0:1] pins on endpoint silicon. This pin shall be left as a no connect if NC-SI over RBT is not supported.
RBT_TX_EN	OCP_A7	Output	Transmit enable.
			For baseboards, this pin shall be connected between the baseboard NC-SI over RBT PHY and the connector. This signal requires a 100kOhm pull down resistor to ground on the baseboard. If the baseboard does not support NC-SI over RBT, then this signal shall be terminated to ground through a 100kOhm pull down.
			For OCP NIC 3.0 cards, this pin shall be connected between the gold finger to the endpoint silicon. This pin shall be left as a no connect if NC-SI over RBT is not supported.
RBT_TXD0 RBT_TXD1	OCP_A9 OCP_A8	Output	Transmit data. Data signals from the BMC to the network controller.
			For baseboards, this pin shall be connected between the baseboard NC-SI over RBT PHY and the connector. This signal requires a 100kOhm pull-up resistor to +3.3V_EDGE on the baseboard. If the baseboard does not support NC-SI over RBT, then this signal shall be terminated to +3.3V_EDGE through a 100kOhm pull-up.
			For OCP NIC 3.0 cards, this pin shall be connected between the gold finger to the RBT_TXD[0:1] pins on the endpoint silicon. This pin shall be left as a no connect if NC-SI over RBT is not supported.
RBT_ARB_OUT	OCP_A5	Output	NC-SI hardware arbitration output. This pin shall only be used if the endpoint silicon supports hardware arbitration. This pin shall be connected to the RBT_ARB_IN signal of an adjacent device in the hardware arbitration ring.


Rev 0.63

			Rev 0.63
			The baseboard shall implement a multiplexing implementation that directs the RBT_ARB_OUT to the RBT_ARB_IN pin of the next NC-SI over RBT capable device in the ring, or back to the RBT_ARB_IN pin of the source device if there is a single device on the ring.
			For baseboards, this pin shall be connected between the baseboard OCP connector(s) to complete the hardware arbitration ring. If the baseboard does not support NC-SI over RBT, this signal shall be directly connected to the RBT_ARB_IN pin to allow a complete hardware arbitration ring on the OCP NIC 3.0 card.
			For OCP NIC 3.0 cards, this pin shall be connected from the gold finger to the RBT_ARB_IN pin on the endpoint silicon. This pin shall be directly connected to the card edge RBT_ARB_IN pin if NC-SI is not supported. This allows the hardware arbitration signals to pass through in a multi-Primary Connector baseboard.
RBT_ARB_IN	OCP_A4	Input	NC-SI hardware arbitration input. This pin shall only be used if the endpoint silicon supports hardware arbitration. This pin shall be connected to the RBT_ARB_OUT signal of an adjacent device in the hardware arbitration ring.
			The baseboard shall implement a multiplexing implementation that directs the RBT_ARB_IN to the RBT_ARB_OUT pin of the next NC-SI over RBT capable device in the ring, or back to the RBT_ARB_OUT pin of the source device if there is a single device on the ring.
			For baseboards, this pin shall be connected between the baseboard OCP connector(s) to complete the hardware arbitration ring. If the baseboard does not support NC-SI over RBT, this signal shall be directly connected to the RBT_ARB_OUT pin to allow a complete hardware arbitration ring on the OCP NIC 3.0 card.
			For OCP NIC 3.0 cards, this pin shall be connected between the gold finger to the RBT_ARB_OUT pin on the endpoint silicon. This pin shall be directly connected to the card edge RBT_ARB_OUT pin if NC- SI is not supported. This allows the hardware


Rev 0.63

			arbitration signals to pass through in a multi-Primary
			Connector baseboard.
SLOT_ID	OCP_B7	Output	NC-SI Address pin. This pin shall only be used if the end point silicon supports package identification.
			For baseboards, this pin shall be used to set the slot ID value. This pin shall be directly to GND for SlotID = 0. This pin shall be pulled up to +3.3V_EDGE for SlotID = 1.
			For OCP NIC 3.0 cards, this pin shall be connected to the endpoint device GPIO associated with the Package ID[1] field. Refer to Section 4.8.1 and the device datasheet for details.
			For OCP NIC 3.0 cards with multiple endpoint devices, the SLOT_ID pin may be used to configure a different Package ID value so long as the resulting combination does not cause addressing interferences.
			For endpoint devices without NC-SI over RBT support, this pin shall be left as a no connect on the OCP NIC 3.0 card.

Figure 70: NC-SI Over RBT Connection Example – Single Primary Connector

Rev 0.63

Note 1: For baseboard designs with a single Primary Connector, connect ARB_IN to ARB_OUT to complete the NC-SI hardware arbitration ring. For designs with multiple Primary Connectors, connect ARB_IN and ARB_OUT to an analog mux to complete the NC-SI arbitration ring based on the number of cards installed in the system. An example dual Primary Connector implementation is shown in Figure 71.

Note 2: For OCP NIC 3.0 cards with two discrete endpoint silicon, the Package ID[0] bit shall be statically set based on its silicon instance. For example, the figure above shows Network Silicon #0 and Network Silicon #1. Network Silicon #0 has Package ID[0] = 0b0, Network Silicon #1 has Package ID[0] = 0b1.

Rev 0.63

3.5.3 Scan Chain Pins – OCP Bay (Primary Connector)

This section provides the pin assignments for the Scan Bus interface signals on the Primary Connector OCP Bay. An example timing diagram is shown in Figure 72. An example connection diagram is shown in Figure 73.

Signal Name	Pin #	Baseboard Direction	Signal Description
CLK	OCP_B6	Output	Scan clock. The CLK is an output pin from the baseboard to the OCP NIC 3.0 card. The CLK may run up to 12.5MHz.
			For baseboard implementations, the CLK pin shall be connected to the Primary Connector. The CLK pin shall be tied directly to GND if the scan chain is not used.
			For NIC implementations, the CLK pin shall be connected to Shift Registers 0 & 1, and optionally connected to Shift Registers 2 & 3 (if implemented) as defined in the text and Figure 73, below. The CLK pin shall be pulled up to +3.3V_EDGE through a 1kOhm resistor.
DATA_OUT	OCP_B5	Output	Scan clock data output from the baseboard to the OCP NIC 3.0 card. This bit stream is used to shift in NIC configuration data.
			For baseboard implementations, the DATA_OUT pin shall be connected to the Primary Connector. The DATA_OUT pin shall be tied directly to GND if the scan chain is not used.
			For NIC implementations, the DATA_OUT pin may be left floating if it is not used for OCP NIC 3.0 card configuration. The DATA_OUT pin shall be pulled up to +3.3V_EDGE through a 1kOhm resistor.
DATA_IN	OCP_B4	Input	Scan clock data input to the baseboard. This bit stream is used to shift out NIC status bits.
			For baseboard implementations, the DATA_IN pin shall be pulled up to +3.3V_EDGE through a 10kOhm resistor to prevent the input signal from floating if a card is not installed. This pin may be left as a no connect if the scan chain is not used.

Table 23: Pin Descriptions – Scan Chain

Rev 0.63

			For NIC implementations, the DATA_IN scan chain is required. The DATA_IN pin shall be connected to Shift Registers 0 & 1, as defined in the text and Figure 73.
LD#	OCP_B3	Output	Scan clock shift register load. Used to latch configuration data on the OCP NIC 3.0 card.
			For baseboard implementations, the LD# pin shall be pulled up to +3.3V_EDGE through a 1kOhm resistor if the scan chain is not used to prevent the OCP NIC 3.0 card from erroneous data latching.
			For NIC implementations, the LD# pin implementation is required. The LD# pin shall be connected to Shift Registers 0 & 1 as defined in the text and Figure 73. The LD# pin shall be pulled up to +3.3V_EDGE through a 1kOhm resistor.

Figure 72: Example Scan Chain Timing Diagram

🗳 /scan_chain_example/OLK	-No Data-		M	www	າດດາດ	າດດາດດາ	nnn	MM.	mm	ທາກາກ	ກາກກາ	mm			າດດາດ	
∲ /scan_chain_example/LD_N	-No Data-		,					-1								
🛯 👆 /scan_chain_example/byte_data_in	-No Data-	x	(byte)[7:0] (I	vyte1[7:0]	(byte2[7:0]	(byte3[7	0](byte0[7:0]	(byte1[7:0]	<u>(byte2[7</u>	0] (byte	a3[7:0]	(byte0[7:0]	<u>(byte1[7:</u>	0] (
🛃 /scan_chain_example/byte_data_out	-No Data-	X	byte	8[7:0] <u>(</u> i	vyte2[7:0]	[byte1[7:0]	byte0[7	0])	byte3[7:0]	(byte2[7:0]	(byte1[7	0] (byte	0[7:0]	[byte3[7:0]	<u>(byte2[7:</u>	0](

The scan chain provides side band status indication between the OCP NIC 3.0 card and the baseboard. The scan chain bit definition is defined in the two tables below. The scan chain data stream is 32-bits in length for both the DATA_OUT and the DATA_IN streams. The scan chain implementation is optional on the host, but is mandatory on all OCP NIC 3.0 cards. The scan chain components operates on the +3.3V_EDGE power domain.

The DATA_OUT bus is an output from the host. The DATA_OUT bus provides initial configuration options to the OCP NIC 3.0 card. At the time of this writing, the default implementation does not use the DATA_OUT stream and is not implemented on the NIC. However, all baseboard systems that implement the Scan Chain shall connect DATA_OUT between the platform and the Primary Connector for future-proofing NIC implementations and subsequent revisions of this specification.

Byte.bit	DATA_OUT Field Name	Default Value	Description
0.[07]	RSVD	0b00000	Reserved. Byte 0 value is 0h00.
1.[07]	RSVD	0h00	Reserved. Byte 1 value is 0h00.
2.[07]	RSVD	0h00	Reserved. Byte 2 value is 0h00.
3.[07]	RSVD	0h00	Reserved. Byte 3 value is 0h00.

Table 24: Pi	n Descriptions –	Scan Chain DATA	OUT Bit Definition

Rev 0.63

The DATA_IN bus is an input to the host and provides NIC status indication. The default implementation is completed with two 8-bit 74LV165 parallel in to serial out shift registers in a cascaded implementation. Up to four shift registers may be implemented to provide additional NIC status indication to the host platform.

DATA_IN shift registers 0 & 1 shall be mandatory for scan chain implementations. DATA_IN shift registers 2 & 3 are optional depending on the card type and fields being reported to the host. DATA_IN shift register 2 may be used to indicate future definitions of the scan chain bit stream. DATA_IN shift registers 3 (in conjunction with shift register 2) are required for reporting link/activity indication on card implementations with 5-8 ports.

The host should read the DATA_IN bus multiple times to qualify the incoming data stream. The number of data qualification reads is dependent on the baseboard implementation.

A 1kOhm pull up resistor shall be implemented on the NIC to the SER input of the last shift register on the DATA_IN scan chain to maintain a default bit value of 0b1 for unused bits for implementations using less than four shift registers.

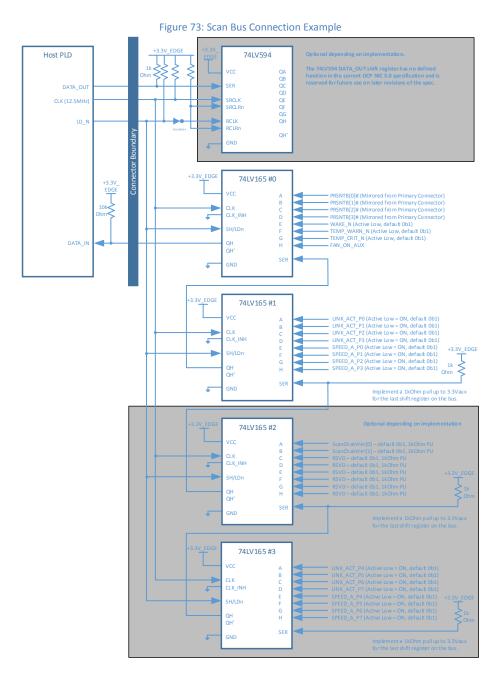

Byte.bit	DATA_OUT Field	Default	Description
	Name	Value	
0.0	PRSNTB[0]#	0bX	PRSNTB[3:0]# bits shall reflect the same state as
0.1	PRSNTB[1]#	0bX	the signals on the Primary Connector.
0.2	PRSNTB[2]#	0bX	
0.3	PRSNTB[3]#	0bX	
0.4	WAKE_N	0bX	PCIe WAKE_N signal shall reflect the same state as the signal on the Primary Connector.
0.5	TEMP_WARN_N	0b1	Temperature monitoring pin from the on-card thermal solution. This pin shall be asserted low when temperature sensor exceeds the temperature warning threshold.
0.6	TEMP_CRIT_N	0b1	Temperature monitoring pin from the on-card thermal solution. This pin shall be asserted low when temperature sensor exceeds the temperature critical threshold.
0.7	FAN_ON_AUX	0b0	When high, FAN_ON_AUX shall request the system fan to be enabled for extra cooling in the S5 state.
1.0	LINK_ACT_P0	0b1	Port 03 link/activity indication. Active low.
1.1	LINK_ACT_P1	0b1	
1.2	LINK_ACT_P2	0b1	0b0 – Link LED is illuminated on the host platform.
1.3	LINK_ACT_P3	0b1	0b1 – Link LED is not illuminated on the host platform.
			Steady = link is detected on the port. Blinking = activity is detected on the port. The blink rate should blink low for 50-500ms during activity periods.

Table 25: Pin Descriptions – Scan Bus DATA IN Bit Definition

Rev 0.63

			Rev 0.63
			Off = the physical link is down or disabled
1.4	SPEED_A_P0	0b1	Port 03 speed A (max rate) indication. Active low.
1.5	SPEED_A_P1	0b1	
1.6	SPEED_A_P2	0b1	0b0 – Port is linked at maximum speed.
1.7	SPEED_A_P3	0b1	0b1 – Port is not linked at the maximum speed or no link is present.
2.0	ScanChainVer[0]	0b1	ScanChainVer[1:0] shall be used to indicate the
2.1	ScanChainVer[1]	0b1	scan chain bit definition version. The encoding shall be as follows:
			0b11 – Scan chain bit definition version 1
			corresponding to OCP NIC 3.0 version 1.0.
			All other encoding values shall be reserved.
2.2	RSVD	0b1	Byte 2 bits [2:7] are reserved. These bits shall
2.3	RSVD	0b1	default to the value of 0b1. These bits may be used
2.4	RSVD	0b1	in future versions of the scan chain.
2.5	RSVD	0b1	
2.6	RSVD	0b1	
2.7	RSVD	0b1	
3.0	LINK_ACT_P4	0b1	Port 47 link/activity indication. Active low.
3.1	LINK_ACT_P5	0b1	
3.2	LINK_ACT_P6	0b1	0b0 – Link LED is illuminated on the host platform.
3.3	LINK_ACT_P7	0b1	0b1 – Link LED is not illuminated on the host platform.
			Steady = link is detected on the port.
			Blinking = activity is detected on the port. The blink rate should blink low for 50-500ms during activity
			periods.
			Off = the physical link is down or disabled
3.4	SPEED_A_P4	0b1	Port 47 speed A (max rate) indication. Active low.
3.5	SPEED_A_P5	0b1	
3.6	SPEED_A_P6	0b1	0b0 – Port is linked at maximum speed.
3.7	SPEED_A_P7	0b1	0b1 – Port is not linked at the maximum speed or no link is present.

Rev 0.63

Rev 0.63

3.5.4 Primary Connector Miscellaneous Pins – OCP Bay (Primary Connector)

This section provides the miscellaneous pin assignments for the pins on the Primary Connector OCP Bay. The AC/DC specifications are defined in the PCIe CEM Specification, Rev 4.0 and Section 3.12. An example PWRBRK# connection is shown in the PCIe CEM Specification. An example NIC_PWR_GOOD connection diagram is shown in Figure 69.

Signal Name	Pin #	Baseboard	Signal Description
		Direction	
PWRBRK#	OCP_B2	Output, OD	Power break. Active low, open drain.
			This signal shall be pulled up to +3.3V_EDGE on the OCP NIC 3.0 card with a minimum of 95kOhm. The pull up on the baseboard shall be a stiffer resistance in-order to meet the timing specs as chown in the DC CCM Sensitivation
			shown in the PCIe CEM Specification.
			When this signal is driven low by the baseboard, the Emergency Power Reduction State is requested. The OCP NIC 3.0 card shall move to a lower power consumption state.
NIC_PWR_GOOD	OCP_B1	Input	NIC Power Good. Active high. This signal is driven by the OCP NIC 3.0 card.
			When high, this signal shall indicate that all of the OCP NIC 3.0 card power rails are operating within nominal tolerances.
			When low, this signal shall indicate that, <u>PWR EN is</u> <u>deasserted</u> , the OCP NIC 3.0 card power supplies are not yet within nominal tolerances or are in a fault condition.
			For baseboards, this pin may be connected to the platform I/O hub as a NIC power health status indication. This signal shall be pulled down to ground with a 100kOhm resistor on the baseboard to prevent a false power good indication if no OCP NIC 3.0 card is present.
			For OCP NIC 3.0 cards this signal shall indicate the OCP NIC 3.0 card power is "good." This signal may be implemented by a cascaded power good or a discrete power good monitor output.
			When high, this signal should be treated as V_{REF} is available for NC-SI communications. Refer to timing

Table 26: Pin Descriptions – Miscellaneous 2

http://opencompute.org

Rev 0.63

			parameter T4 in the DMTF DSP0222 specification for details. It is expected that a baseboard will not drive signals other than SMBus and the Scan Chain when to the OCP NIC 3.0 card when this signal is low.
GND	OCP_A6 OCP_A10 OCP_A13 OCP B10 OCP_B13	GND	Ground return; a total of 5 ground pins are on the OCP bay area.

3.6 PCIe Bifurcation Mechanism

OCP NIC 3.0 baseboards and OCP NIC 3.0 cards support multiple bifurcation combinations. Single socket baseboards with a single or multiple root ports, as well as a multi-socket baseboards with a single or multiple root ports are supported. The bifurcation mechanism also supports OCP NIC 3.0 cards with a single or multiple end points. These features are accomplished via I/O pins on the Primary and Secondary Connector:

- PRSNTA#, PRSNTB[3:0]#. The PRSNTA# pin shall connect to the PRSNTB# pins as a hard coded value on the OCP NIC 3.0 card. The encoding of the PRSNTB[3:0]# pins allows the baseboard to determine the PCIe Links available on the OCP NIC 3.0 card.
- BIF[3:0]#. The BIF# pin states shall be controlled by the baseboard to allow the baseboard to
 override the default end point bifurcation for silicon that support bifurcation. Additional
 combinatorial logic is required and is specific to the card silicon. The combinatorial logic is not
 covered in this specification. The BIF[3:0]# pins may optionally be hardcoded for baseboards that do
 not require a dynamic bifurcation override.

A high level bifurcation connection diagram is shown in Figure 67.

3.6.1 PCIe OCP NIC 3.0 Card to Baseboard Bifurcation Configuration (PRSNTA#, PRSNTB[3:0]#)

The OCP NIC 3.0 card to baseboard configuration mechanism consists of four dual use pins (PRSNTB[3:0]#) on the OCP NIC 3.0 card and a grounded PRSNTA# pin on the baseboard. These pins provide card presence detection as well as mechanism to notify the baseboard of the pre-defined PCIe lane width capabilities. The PRSNTB[3:0]# pins are pulled up to +3.3V_EDGE on the baseboard and are active low signals. A state of 0b1111 indicates that no card is present in the system. Depending on the capabilities of the OCP NIC 3.0 card, a selection of PRSNTB[3:0]# signals may be strapped to the PRSNTA# signal and is pulled low by the baseboard. The encoding of the PRSTNB[3:0]# bits is shown in Table 27 for x16 and x8 PCIe cards.

3.6.2 PCIe Baseboard to OCP NIC 3.0 Card Bifurcation Configuration (BIF[2:0]#)

Three signals (BIF[2:0]#) are driven by the baseboard to notify requested bifurcation on the OCP NIC 3.0 card silicon. This allows the baseboard to set the lane configuration on the OCP NIC 3.0 card that supports multiple bifurcation options.

Rev 0.63

For example, a baseboard that has four separate hosts that support a 4 x4 connection, should appropriately drive the BIF[2:0]# pins per Table 27 and indicate to the OCP NIC 3.0 card silicon to setup a 4 x4 configuration.

As previously noted, the BIF[2:0]# signals require additional combinatorial logic to decode the BIF[2:0]# value and appropriately apply it to the end-point silicon. The combinatorial logic is not covered in the specification as its implementation is specific to the vendor silicon used.

3.6.3 PCIe Bifurcation Decoder

The combination of the PRSNTB[3:0]# and BIF[2:0]# pins deterministically sets the PCIe lane width for a given combination of baseboard and OCP NIC 3.0 cards. Table 27 shows the resulting number of PCIe links and its width for known combinations of baseboards and OCP NIC 3.0 cards.

*Note: The baseboard must disable PCIe lanes during the initialization phase if the number of detected PCIe links are greater than what is supported on the baseboard to prevent a nondeterministic solution. For example, if the baseboard only supports a 1 x16 connection, and the OCP NIC 3.0 card only supports a 2 x8 connection, the baseboard must disable PCIe lanes 8-15 to prevent any potential LTSSM issues during the discovery phase.

Open Compute Project • NIC • 3.0

Rev 0.63

		Host	1 Host	1Host	1Host	1Host	1Host		RSVD	2 Hosts	4 Hosts	4 Hosts
		Host CPU Sockets	1 Upstream Socket	1 Upstream Socket 1 Upstream Socket	1 Upstream Socket	2 Upstream Sockets	1 Upstream Socket 2 Upstream Sockets 4 Upstream Sockets	4 Sockets (1 Socket per Host) First 8 PCle lanes	BSVD	RSVD 2 Upstream Sockets 4 Upstream Sockets (1 Socket per Host) (1 Socket per Host)	4 Upstream Sockets (1 Socket per Host)	4 Sockets (1 Socket per Host) First 8 PCle lanes
Network Card - Supported PCle	Network Card - Supported PCle Configurations	Total PCIe Links	1 Link (No Bifurcation)	1 or 2 Links	1, 2, or 4 Links	2 Links	4 Links	4 x2 links	RSVD	2 Links	4 Links	4 x2 links
	,	System Support	1x16, 1x8, 1x4, 1x2, 1x1		1x16,1x8,1x4,1x2,1x1 1x16,1x8,1x4,1x2,1x1	1×8,1×4,1×2,1×1			RSVD			
					2x8,2x4,2x2,2x1	2 x8, 2 x4, 2 x2, 2x1				2x8,2x4,2x2,2x1		
finimum					4 ×4, 4 ×2, 4 ×1		4 x4, 4 x2, 4x1	4x2,4x1			4×4,4×2,4×1	4x2,4x1
_		System Encoding BIF[2:0]#	00090	00090	00000	09001	01010	06011	06100	06101	0b110	06111
Card Card Short Edue Name	ort Supported Bifurcation Modes	Add-in-Card Encoding										
			BSVD - Card not present in the system	In the sustem								
			1×8	1x8	9%	1×8	1x4	1x2		1×8	1x4	142
2C 1x8 Option A	-				-	(Socket 0 only)	(Socket 0 only)	(Socket 0 only)		(Host 0 only)	(Host 0 only)	(Host 0 only)
2C 1x4	-	001110	184	184	1x4	1x4 (Socket 0 only)	1x4 (Socket 0 only)	1×2 (Sacket 0 anly)		1x4 (Host 0 only)	1x4 (Host 0 only)	1x2 (Host 0 only)
20 1×2	1x2,1x1	061110	1%2	1×2	24	1x2 (Socket 0 only)	1x2 (Socket 0 only)	1x2 (Socket 0 only)		1x2 (Host 0 only)	1x2 (Host 0 only)	1x2 (Host 0 only)
12	-	061110	14	1x1	141	1x1 [Socket 0 only]	1x1 (Socket 0 only)	1x1 [Socket () only)		1x1 [Host 0 only]	1x1 (Host 0 only)	1x1 [Host 0 onlu]
2C 1x8 Optio	1x8.Detion B 2x4.2x2.2x1	051101	1×8	1×8	8%	1x8 [Socket 0 only]	2x4	2x2 (Socket 0&2 only)		1×8 [Host 0 only]	2x4	2 x/2 [Host 0 & 2 only]
2 ×8 Optic	2 x8,2 x4,2 x2,2 x1 2 x8 Dption B 4 x4,4 x2,4 x1	061101	1×8*	2×8	2%8	2×8	4 ×4	2x2 (Socket 0 & 2 only)		2×8	4 ×4	2 x/2 (Host 0 8: 2 only)
1×8 Optio	1x8,1x4 2 x4, 1x8 Option D 4 x2 (First 8 lanes), 4 x1	061100	1×8	1x8	9%1	1x8 (Socket 0 only)	2 14	4×2	i.	1x8 (Host 0 only)	2 14	4 x2
4C 1×16 Optic	1x15, 1x8, 1x4 2x8, 2x4, 1x16 Option D 4 x4, 4x2 (First 8lanes), 4 x1	061100	1×15	1×16	1x16	2%8	4 ×4	4%2		2×8	4 x4	4 x2
RSVD RSVD			RSVD - The encoding of t	Ob1011 is reserved due to	PSVD - The encoding of 0b 1011 is reserved due to insufficient spacing between PRSNTA and PRSNTB2 pin to provide positive card identification.	n PRSNTA and PRSNTB2	C pin to provide positive card	d identification.				
2C 2x4	2 H4, 2 H2, 2 H1 1 H4, 1 H2, 1 H1	06-10-10	1.44	1.44	2 44	1x4 (Socket 0 only)	2 x4	2 x2 (Socket 0 & 2 only)		1x4 (Host 0 only)	2 x4	2 x/2 (Host 0 & 1 only)
	4 x2 (First 8 lanes), 4 x1	001001	1x2	1x2	2%2	1×2	2×2	4x2		1x2	2×2	4 x2
2C 4×2						(Socket U only)				(Pfost U only)		
RSVD RSVD	grib	061000	,						,			
4C 1x16 Option A	1x16,1x8,1x4,1x2,1x1	060111	1×16	1×16	1x16	1x8 (Socket 0 only)	1x4 (Socket 0 only)	1x2 (Socket 0 only)		1x8 (Host 0 only)	1x4 (Host 0 only)	1x2 (Host 0 only)
4C 2 x8 Option A		000110	1×8*	2×8	2%8	2×8	2 x4 (Socket 0 & 2 only)	2 × 2 (Socket 0 & 2 only)		2×8	2 x4 (Host 0 & 2 only)	1x2 (Host 0 & Tonly)
4C 1×16 Optic	1x16,1x8,1x4,1x2,1x1 1x16 Option B 2x8,2x4,2x2,2x1	060101	1×15	1×16	1×16	2×8	2 x4 (Socket 0 & 2 only)	1x2 (Socket 0 only)		2×8	2 x4 (Host 0 & 2 only)	2 x2 (Host 0 & Tonly)
4C 1×16 Oper	1x16,1x8,1x4 2x8,2x4,2x2,2x1 1x16 Option C 4x4,4x2,4x1	060100	1×15	1×15	1x16	2%8	4 x4	2x2 (Socket 0&2 only)		2×8	4 14	2 x2 (Host 0 & Tonly)
	4 x4,4x2,4x1	060 011	1×4*	2 Md*	4 144	2 x4 (EP 0 and 2 only)	4 H4	4 x2 (Socket 0 & 2 only)		2 x4 (EP 0 and 2 only)	4 x4	4 x2 (Host 0 & 1 only)
	RSVD	060010	1									
HSVU HSVU	HSVD	00 000	'						•			
	HSVD	00000										

Table 27: PCIe Bifurcation Decoder for x16 and x8 Card Widths

http://opencompute.org

A CONTRACTOR OF A CONTRACTOR OF

Rev 0.63

3.6.4 Bifurcation Detection Flow

The following detection flow shall be used to determine the resulting link count and lane width based on the baseboard and OCP NIC 3.0 card configurations.

- 1. The baseboard shall read the state of the PRSNTB[3:0]# pins. An OCP NIC 3.0 card is present in the system if the resulting value is not 0b1111.
- 2. Firmware determines the OCP NIC 3.0 card PCIe lane width capabilities per Table 27 by reading the PRSNTB[3:0]# pins.
- 3. The baseboard reconfigures the PCIe bifurcation on its ports to match the highest common lane width and lowest common link count on the card.
- 4. For cases where the baseboard request a link count override (such as requesting a 4-host baseboard requesting 4 x4 operation on a supported card that would otherwise default to a 2 x8 case), the BIF[0:2]# pins shall be asserted as appropriate. Asserting the BIF[0:2]# pins assumes the OCP NIC 3.0 card supports the requested link override.
- 5. The BIF[0:2]# pins must be in their valid states upon the assertion of PWR_EN.
- 6. PWR_EN is asserted.
- 7. A OCP NIC 3.0 card is allowed 25ms between PWR_EN assertion and NIC_PWR_GOOD assertion.
- PERST# shall be deasserted >1s after NIC_PWR_GOOD assertion as defined in Figure 82. Refer to Section 3.12 for timing details.

Rev 0.63

3.6.5 PCIe Bifurcation Examples

For illustrative purposes, the following figures show several common bifurcation permutations.

3.6.5.1 Single Host (1 x16) Baseboard with a 1 x16 OCP NIC 3.0 Card (Single Controller)

Figure 74 illustrates a single host baseboard that supports x16 with a single controller OCP NIC 3.0 card that also supports x16. The PRSTNB[3:0]# state is 0b0111. The BIF[2:0]# state is 0b000 as there is no need to instruct the end-point network controller to a specific bifurcation. The PRSNTB encoding notifies the baseboard that this card is only capable of 1 x16. The single host baseboard determines that it is also capable of supporting 1 x16. The resulting link width is 1 x16.

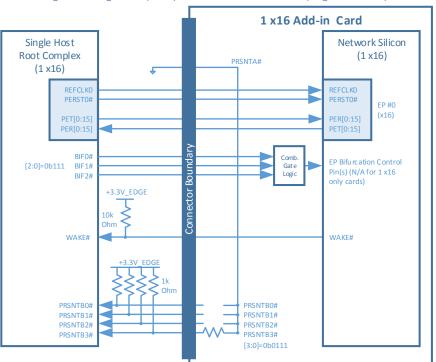


Figure 74: Single Host (1 x16) and 1 x16 OCP NIC 3.0 Card (Single Controller)

Rev 0.63

3.6.5.2 Single Host (2 x8) Baseboard with a 2 x8 OCP NIC 3.0 Card (Dual Controllers)

Figure 75 illustrates a single host baseboard that supports 2 x8 with a single controller OCP NIC 3.0 card that also supports 2 x8 with dual controllers. The PRSTNB[3:0]# state is 0b0110. The BIF[2:0]# state is 0b111 as there is no need to instruct the end-point network controllers to a specific bifurcation. The PRSNTB encoding notifies the baseboard that this card is only capable of 2 x8. The single host baseboard determines that it is also capable of supporting 2 x8. The resulting link width is 2 x8.

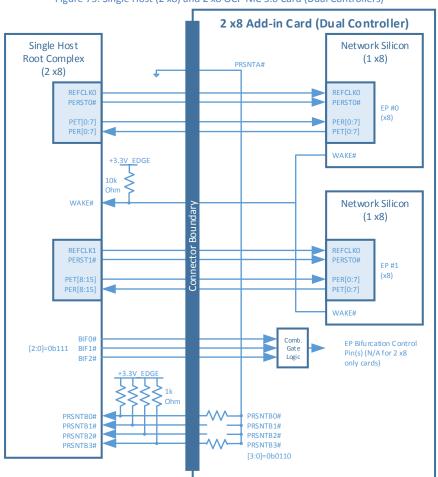
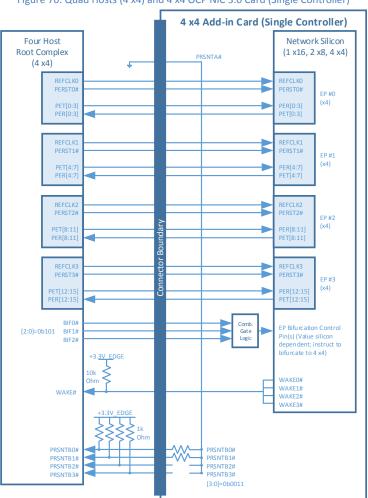
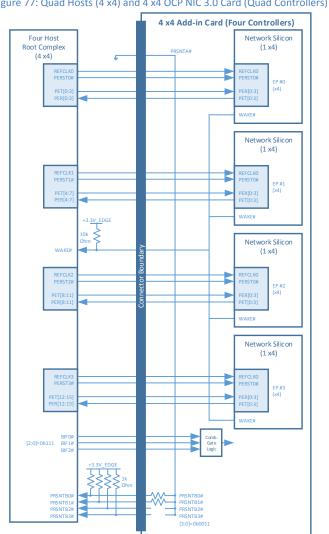



Figure 75: Single Host (2 x8) and 2 x8 OCP NIC 3.0 Card (Dual Controllers)

Rev 0.63

3.6.5.3 Quad Host (4 x4) Baseboard with a 4 x4 OCP NIC 3.0 Card (Single Controller)

Figure 76 illustrates a quad host baseboard that supports 4 x4 with a single controller OCP NIC 3.0 card that supports 1 x16, 2 x8 and 4 x4. The PRSTNB[3:0]# state is 0b0011. The BIF[2:0]# state is 0b101 as the end point network controller is forced to bifurcate to 4 x4. The PRSNTB encoding notifies the baseboard that this card is only capable of 1 x16, 2 x8 and 4 x4. The quad host baseboard determines that it is also capable of supporting 4 x4. The resulting link width is 4 x4.



Rev 0.63

3.6.5.4 Quad Host (4 x4) Baseboard with a 4 x4 OCP NIC 3.0 Card (Quad Controllers)

Figure 77 illustrates a quad host baseboard that supports 4 x4 with a quad controller OCP NIC 3.0 card that supports 4 x4. The PRSTNB[3:0]# state is 0b0011. The BIF[2:0]# state is 0b111 as there is no need to instruct the end-point network controllers to a specific bifurcation. The PRSNTB encoding notifies the baseboard that this card is only capable of 4 x4. The quad host baseboard determines that it is also capable of supporting 4 x4. The resulting link width is 4 x4.

Rev 0.63

3.6.5.5 Single Host (1 x16, no Bifurcation) Baseboard with a 2 x8 OCP NIC 3.0 Card (Dual Controller) Figure 78 illustrates a single host baseboard that supports 1 x16 with a dual controller OCP NIC 3.0 card that supports 2 x8. The PRSTNB[3:0]# state is 0b0110. The BIF[2:0]# state is 0b111 as there is no need to instruct the end-point network controllers to a specific bifurcation. The PRSNTB encoding notifies the baseboard that this card is only capable of 2 x8. The quad host baseboard determines that it is capable of 1x 16, but down shifts to 1 x8. The resulting link width is 1 x8 and only on endpoint 0.

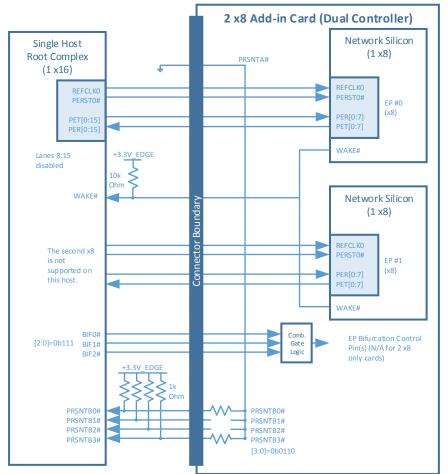
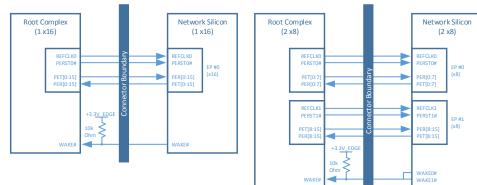


Figure 78: Single Host with no Bifurcation (1 x16) and 2 x8 OCP NIC 3.0 Card (Dual Controllers)

Rev 0.63

3.7 PCIe Clocking Topology

The OCP NIC 3.0 specification allows for up to four PCIe REFCLKs on the Primary Connector and up to two PCIe REFCLKs on the Secondary Connector. In general, the association of each REFCLK is based on the PCIe Link number on a per connector basis and is shown in Table 28. Cards that implement both the Primary and Secondary Connectors have a total of up to 6 REFCLKs.


Table 28: PCIe Clock Associations

REFCLK #	Description	Availability (Connector)
REFCLKO	REFCLK associated with Link 0.	Primary and Secondary Connectors.
REFCLK1	REFCLK associated with Link 1.	Primary and Secondary Connectors.
REFCLK2	REFCLK associated with Link 2.	Primary Connector only.
REFCLK3	REFCLK associated with Link 3.	Primary Connector only.

For each OCP NIC 3.0 card, the following REFCLK connection rules must be followed:

- For a 1 x16 capable OCP NIC 3.0 card, REFCLK0 shall be used for lanes [0:15].
- For a 2 x8 capable OCP NIC 3.0 card, REFCLK0 shall be used for lanes [0:7] and REFCLK1 shall be used for lanes [8:15].
- For a 4 x4 capable OCP NIC 3.0 card, REFCLK0 shall be used for lanes [0:3], REFCLK1 shall be used for lanes [4:7], REFCLK2 shall be used for lanes [8:11] and REFCLK3 shall be used for lanes [12:15]. Pins for REFCLK2 and REFCLK3 are described in Section 3.5.1 and are located on the 28-pin OCP bay.

Figure 79: PCIe Interface Connections for 1 x16 and 2 x8 OCP NIC 3.0 Cards

Open Compute Project • NIC • 3.0

Rev 0.63



Figure 80: PCIe Interface Connections for a 4 x4 OCP NIC 3.0 Card

3.8 PCIe Bifurcation Results and REFCLK Mapping

For the cases where the baseboard and OCP NIC 3.0 card bifurcation are permissible, this section enumerates all of the supported PCIe link, lane and REFCLK mappings for each supported configuration. The bifurcation decoder is shown in Section 3.6.3.

Rev 0.63

	Lane 5 Lane 6 Lane 7 Lane 8 Lane 9 Lane 10 Lane 11 Lane 12 Lane 13 Lane 14		Linko, Linko, LaneS Lane7				Link 0, Link 0, Link 0, Host Host Host Host Host Host Host Host	Link 0, Lane 5	LinkO, LinkO, LinkO, Lane 5 Lane 6 Lane 7	Unk0, Unk1, Iane5 Iane1 Iane11 Iane12 Iane14					Unk 0, Lane 0, Lane 3, Lane 44	LINK 0, LINK 0, LINK 0, HOST HOST HOST HOST HOST HOST HOST HOST	Linko, Linko, Lanes Lanes Lanes Lanes Lanes Lane Lo Lane 11 Lane 12 Lane 13 Lane 14 Lane 15	Link 0, Lane 13 Lane 14 Lane 14 Lane 14 Lane 14 Lane 14	Host Host Host Host Host Host Host Host			
_	Lane 2 Lane 3 Lane 4		Link 0, Link 0, Link 0, Lane 2 Lane 3 Lane 4	Link 0, Link 0, Lane 2 Lane 3			Link 0, Link 0, Link 0, Lane 2 Lane 3 Lane 4	Link 0, Link 0, Link 0, Lane 2 Lane 3 Lane 4	Link 0, Link 0, Link 0, Lane 2 Lane 3 Lane 4	Link 0, Link 0, Link 0, Lane 2 Lane 3 Lane 4		Link 0, Link 0, Lane 2 Lane 3			Link 0, Link 0, Link 0, Lane 2 Lane 3 Lane 4	Link 0, Link 0, Link 0, Lane 2 Lane 3 Lane 4	Link 0, Link 0, Link 0, Lane 2 Lane 3 Lane 4	Link 0, Link 0, Link 0, Lane 2 Lane 3 Lane 4	Link 0, Link 0, Host Lane 2 Lane 3 Disabled			
	Lane 0 Lane 1		Link 0, Link 0, Lane 0 Lane 1	Link 0, Link 0, Lane 0 Lane 1	Link 0, Link 0, Lane 0 Lane 1	Link 0, Lane 0	Link 0, Link 0, Lane 0 Lane 1	Link 0, Link 0, Lane 0 Lane 1	Link 0, Link 0, Lane 0 Lane 1	Link 0, Link 0, Lane 0 Lane 1		Link 0, Link 0, Lane 0 Lane 1	Link 0, Link 0, Lane 0 Lane 1		Link 0, Link 0, Lane 0 Lane 1	Link 0, Link 0, Lane 0 Lane 1	Link 0, Link 0, Lane 0 Lane 1	Link 0, Link 0, Lane 0 Lane 1	Link 0, Link 0, Lane 0 Lane 1			
	Resulting Link		1 x8	1 x4	1×2	1x1	1 x8	1×8*	1 x8	1×16		1 x4	1×2		1 ×16	1 x8•	1 x16	1 x16	1 x4*			
	BIF[2:0]#	00000	00000	00090	00090	00090	00090	00000	00900	00090	00000	00090	00090	00000	00000	00000	00090	00090	00090	00900	00000	01000
	Upstream Links	1 Link	1 Link	1 Link	1 Link	1 Link	1 Link	1 Link	1 Link	1 Link	1 Link	1 Link	1 Link	1 Link	1 Link	1 Link	1 Link	1 Link	1 Link	1 Link	1 Link	4 Link
	Upstream Devices	1 Upstream Socket	1 Upstream Socket	1 Upstream Socket	1 Upstream Socket	1 Upstream Socket	1 Upstream Socket	1 Upstream Socket	1 Upstream Socket	1 Upstream Socket	1 Upstream Socket	1 Upstream Socket	1 Upstream Socket	1 Upstream Socket	1 Upstream Socket	1 Upstream Socket	1 Upstream Socket	1 Upstream Socket	1 Upstream Socket	1 Upstream Socket		-
	Host	1 Host	1 Host	1 Host	1 Host	1 Host	1 Host	1 Host	1 Host	1 Host	1 Host	1 Host	1 Host	1 Host	1 Host	1 Host	1 Host	1 Host	1 Host	1 Host	1 Host	1 1000
Add.in.Card	Encoding PRSNTB[3:0]#	061111	001110	001110	061110	061110	0b1101	001101	001100	001100	0b1011	061010	0b1001	001000	000111	000110	050101	000100	060011	060010	00001	000000
Supported Rifurcation Modes		Card Not Present	1 x8, 1 x4, 1 x2, 1 x1	1 x4, 1 x2, 1 x1	1×2, 1×1	1x1	1×8,1×4,1×2,1×1 2×4,2×2,2×1	2 x8, 2 x4, 2 x2, 2 x1 4 x4, 4 x2, 4 x1	1 x8, 1 x4 2 x4, 1 x8 Option D 4 x2 (Firet 8 lanes), 4 x1	1 x15, 1 x8, 1 x4 2 x8, 2 x4, 1 x15 Option D 4 x4, 4 x2 (First 8 lanes), 4 x1	RSVD	2 ×4, 2 ×2, 2 ×1 1 ×6, 1 ×2, 1 ×1	4 x2 (First 8 Ianes), 4 x1 2 x2, 2 x1 4 x2 a x4	RSVD for future x8 encoding	1 ×16, 1 ×8, 1 ×4, 1 ×2, 1 ×1	2 x8, 2 x4, 2 x2, 2 x1	1 x16, 1 x8, 1 x4, 1 x2, 1 x1 1 x16 Option B 2 x8, 2 x4, 2 x2, 2 x1	1 x16, 1 x8, 1 x4 2 x8, 2 x4, 2 x2, 2 x1 1 x15 Option C 4 x6, 4 x2, 4 x1	4 x4, 4 x2, 4 x1	RSVD	RSVD	DEVID
Summerted Rifurcation Modes Add.in.Card	Min Card Card Short Width Name	Not Present	1 x8 Option A	1 x4	1/2	bt	1 x8 Option B	2 x8 Option B	1 x8 Option D	X16 Option D	RSVD	2 x4	ş		Option A	2 x8 Option A	1 x16 Option B	1 x16 Option C	4 24	RSVD		
F	tin Card Card S Width Name	N e/u									RSVD	x	,	9		\$C	40			RSVD R	RSVD R	

 Table 29: Bifurcation for Single Host, Single Socket and Single Upstream Link (BIF[2:0]#=0b000)

Rev 0.63

	_		_	_				_	_	_		_		_		_		_	<u> </u>								_	_
			Lane 15							Host	Link 1, Lane 7			Link 0,	Lane 15						Link 0, Lane 15	Link 1, Lane 7	Link 0, Lane 15	Link 0, Lane 15	Host			
			Lane 14							Host Host Host Host Host Host Host Host	Link 1, Lane 6			Link 0,	Lane 13 Lane 14						Link 0, Lane 14	Link 1, Lane 6	Link 0, Link 0, Link 0, Lane 13 Lane 14 Lane 15	Link 0, Lane 14	Host Host Host Host Host Disabled Disab			ſ
			Lane 13							Host	Link 1, Lane 5			Link 0,	Lane 13						Link 0, Lane 13	Link 1, Lane 5	Link 0, Lane 13	Link 0, Lane 13	Host			
			Lane 12							Host Disabled	Link 1, Iane 4			Link 0,	Lane 12						Link 0, Lane 12	Link 1, Lane 4	Link 0, Lane 12	Link 0, Lane 12	Host			
			Lane 11				t			Host	Link 1, Iane 3			Link 0,	Lane 11						Link 0, Lane 11	Link 1, Lane 3	Link 0, Lane 11	Link 0, Lane 11	Link 2, Lane 3			ľ
			Lane 10				l			Host	Link 1, Lane 2			Link 0,	Lane 10 Lane 11						Link 0, Lane 10	Link 1, Lane 2	Link 0, Link 0, Link 0, Lane 10 Lane 11 Lane 12	Link 0, Lane 10	Link 2, Lane 2			Ī
			Lane 9				t			Host Disabled	Link 1, Iane 1	-			Lane 9						Link 0, Lane 9	Link 1, Lane 1	Link 0, Lane 9		Unk 2, Lane 1			ľ
			Lane 8				T			Host Disabled	Link 1, Lane 0			Link 0,	Lane 8						Link 0, Lane 8	Link 1, Lane 0	Link 0, Lane 8	Link 0, Lane 8	Link 2, Lane 0			Ī
			Lane 7		Link 0, Lane 7		I			Link 0, Lane 7	Link 0, Lane 7	Link 0,	Lane 7	Link 0,	Lane 7						Link 0, Lane 7	Link 0, Lane 7	Link 0, Lane 7	Link 0, Lane 7	Host			Ī
			Lane 6		Link 0, Lane 6		T			Link 0, Lane 6	Link 0, Lane 6	Link 0,	Lane 6	Link 0,	Lane 6						Link 0, Lane 6	Link 0, Lane 6	Link 0, Lane 6	Link 0, Lane 6	Host Disabled			Ī
			Lane 5		Link 0, Lane 5		I			Link 0, Lane 5	Link 0, Lane 5	Link 0,	Lane 5	Link 0,	Lane 5						Link 0, Lane 5	Link 0, Lane 5	Link 0, Lane 5	Link 0, Lane 5	Host Disabled			Ī
			Lane 4		Link 0, Lane 4					Link 0, Lane 4	Link 0, I ane 4	Link 0,	Lane 4	Link 0,	Lane 4						Link 0, Lane 4	Link 0, Lane 4	Link 0, Lane 4	Link 0, Lane 4	Host Host Host Host Host Disabled Disabled Disabled			ĺ
			Lane 3		Link 0, Lane 3	Link 0,				Link 0, Lane 3	Link 0, Lane 3	Link 0,	Lane 3	Link 0,	Lane 3		Link 0, Lane 3				Link 0, Lane 3	Link 0, Lane 3	Link 0, Lane 3	Link 0, Lane 3	Link 0, Lane 3			Ī
			Lane 2		Link 0, Lane 2	Link 0,				Link 0, Lane 2	Link 0, Lane 2	Link 0,	Lane 2	Link 0,	Lane 2		Link 0, Lane 2				Link 0, Lane 2	Link 0, Lane 2	Link 0, Lane 2	Link 0, Lane 2	Link 0, Lane 2			
			Lane 1		Link 0, Lane 1	Link 0,	link0	Lane 1		Link 0, Lane 1	Link 0,	Link 0,	Lane 1	Link 0,	Lane 1		Link 0, Lane 1	Link 0,	Lane 1		Link 0, Lane 1	Link 0, Lane 1	Link 0, Lane 1	Link 0, Lane 1	Link 0, Lane 1			Ī
			Lane 0		Link 0, Lane 0	Link 0,	linko	Lane 0	Link 0, Lane 0	Link 0, Lane 0	Link 0,	Link 0,	Lane 0	Link 0,	Lane 0		Link 0, Lane 0	Link 0,	Lane 0		Link 0, Lane 0	Link 0, Lane 0	Link 0, Lane 0	Link 0, Lane 0	Link 0, Lane 0			
			Resulting Link		1x8	1.14	10	1	114	1,18	2 x8	1.08		1×16			1.x4	1×2			1x16	2 x8	1x16	1x16	2 x4*			
		BIF[2:0]#		00090	00090	00090		00090	00000	00090	00000		00090		00090	00000	00000		00090	00000	00000	00090	00000	00090	00000	00090	00000	
			Upstream Links	1 or 2 Links	1 or 2 Links	1 or 2 Links	1 or 2 Links		1 or 2 Links	1 or 2 Links	1 or 2 Links	1 or 2 Links		1 or 2 Links		1 or 2 Links	1 or 2 Links	1 or 2 Links		1 or 2 Links	1 or 2 Links	1 or 2 Links	1 or 2 Links	1 or 2 Links	1 or 2 Links	1 or 2 Links	1 or 2 Links	
1 x16, 1 x8, 1 x4, 1 x2, 1 2 x8 2 x4 2 v2 2 v1			Upstream Devices	1 Upstream Socket	1 Upstream Socket	1 Upstream Socket	1 I Instream Socket		1 Upstream Socket	1 Upstream Socket	1 Upstream Socket	1 Upstream Socket		1 Upstream Socket		1 Upstream Socket	1 Upstream Socket	1 Upstream Socket		1 Upstream Socket	1 Upstream Socket	1 Upstream Socket	1 Upstream Socket	1 Upstream Socket	1 Upstream Socket	1 Upstream Socket	1 Upstream Socket	
			Host	1 Host	1 Host	1 Host	1 Host	-	1 Host	1 Host	1 Host	1 Host		1 Host		1 Host	1 Host	1 Host		1 Host	1 Host	1 Host	1 Host	1 Host	1 Host	1 Host	1 Host	
am Linke	Add-in-Card	Encoding	PRSNTB[3:0]#	001111	0b1110	001110	061110		0b1110	001101	0b1101	001100		001100		10101	0b1010	001001		001000	060111	01100	060101	00100	000011	060010	000001	
Single Host Single Instream Socket One or Two Instream Links	Supported Bifurcation Modes A			Card Not Present 0	1x8,1x4,1x2,1x1 0	1 x4, 1 x2, 1 x1 0	10 141		1×1	1×1	2x1		8 lanes). 4 x1		2 x8, 2 x4, 1 x16 Option D 4 x4, 4 x2 (First 8 lanes), 4 x1		2 x4, 2 x2, 2 x1 1 x4, 1 x2, 1 x1	nes), 4 x1	2 x2, 2 x1 1 x2, 1 x1	RSVD for future x8 encoding 0	1 ×16, 1 ×8, 1 ×4, 1 ×2, 1 ×1 0	2 x8, 2 x4, 2 x2, 2 x1 0	1 x16 Ontion B 2 x8, 2 x4, 2 x2, 2 x1 0				RSVD	
ict Single Hoctre		Min Card Card Short		Not Present (1 x8 Option A			1×2	1×1	1 x8 Ontion B 2 x4 2 x2 2 x1	2 v8 Ontion B		1 x8 Option D		1 x16 Option D	RSVD	2 x4		4×2	RSVD	1 x16 Option A	2 x8 Option A	1 x16 Option B	1X16, 1X8, 1X4 2X8, 2X4, 2X2,	4 x4		RSVD	
of a Ho		fin Card	Width Name	/a	×			N	×	ų	J.		ų			RSVD			х	9	40	40	40			RSVD	RSVD	

 Table 30: Bifurcation for Single Host, Single Socket and Single/Dual Upstream Links (BIF[2:0]#=0b000)

Rev 0.63

		4 Lane 15						Host Disabled	Link 1, Lane 7	[2:(Link 0, [(0	b0	00)		Link 0, 4 Lane 15	, Link 1, 5 Lane 7	Link 0, 4 Lane 15	Link 0, 4 Lane 15	Link 3, Lane 3			
		b Lane 14						d Disable	Link 1, Lane 6		Link 0, B Lane 14					Link 0, B Lane 14	Link 1, Lane 6	Link 0, B Lane 14	Link 0, B Lane 14	Link 3, Lane 2			
		Lane 13						Host Disable	Link 1, Lane 5		Link 0, Link 0, Link 0, Link 0, Lane 10 Lane 11 Lane 12 Lane 13					Link 0, Lane 13	Link 1, Lane 5	Link 0, Lane 13	Link 0, Lane 13	Link 3, Lane 1			
		Lane 12						Host Disable	Link 1, Lane 4		Link 0, Lane 12					Link 0, Lane 12	Link 1, Lane 4	Link 0, Lane 12	Link 0, Lane 12	Link 3, Lane 0			
		Lane 11						Host Disabled	Link 1, Lane 3		Link 0, Lane 11					Link 0, Lane 11	Link 1, Lane 3	Link 0, Lane 11	Link 0, Lane 11	Link 2, Lane 3			
		Lane 10						Host Disabled	Link 1, Lane 2							Link 0, Lane 10	Link 1, Lane 2	Link 0, Lane 10	Link 0, Lane 10	Link 2, Lane 2			
		Lane 9						Host Disabled	Link 1, Lane 1		Link 0, Lane 9					Link 0, Lane 9	Link 1, Lane 1	Link 0, Lane 9	Link 0, Lane 9	Link 2, Lane 1			
		Lane 8						Host Disabled	Link 1, Lane 0		Link 0, Lane 8				Γ	Link 0, Lane 8	Link 1, Lane 0	Link 0, Lane 8	Link 0, Lane 8	Link 2, Lane 0			
		Lane 7		Link 0, Lane 7				Link 0, Lane 7	Link 0, Lane 7	Link 0, Lane 7	Link 0, Lane 7	T	Link 1, Lane 3		ſ	Link 0, Lane 7	Link 0, Lane 7	Link 0, Lane 7	Link 0, Lane 7	Link 1, Lane 3			
		Lane 6		Link 0, Lane 6				Link 0, Lane 6	Link 0, Lane 6	Link 0, Lane 6	Link 0, Lane 6	T	Link 1, Lane 2		ſ	Link 0, Lane 6	Link 0, Lane 6	Link 0, Lane 6	Link 0, Lane 6	Link 1, Lane 2			
		Lane 5		Link 0, Lane 5				Link 0, Lane 5	Link 0, Lane 5	Link 0, Lane 5	Link 0, Lane 5	T	Link 1, Lane 1	Link 1, Lane 1		Link 0, Lane 5	Link 0, Lane 5	Link 0, Lane 5	Link 0, Lane 5	Link 1, Lane 1			
		Lane 4	Í	Link 0, Lane 4				Link 0, Lane 4	Link 0, Lane 4	Link 0, Lane 4	Link 0, Lane 4		Link 1, Lane 0	Link 1, Lane 0		Link 0, Lane 4	Link 0, Lane 4	Link 0, Lane 4	Link 0, Lane 4	Link 1, Lane 0			ſ
		Lane 3	ĺ	Link 0, Lane 3	Link 0, Lane 3			Link 0, Lane 3	Link 0, Lane 3	Link 0, Lane 3	Link 0, Lane 3		Link 0, Lane 3			Link 0, Lane 3	Link 0, Lane 3	Link 0, Lane 3	Link 0, Lane 3	Link 0, Lane 3			f
		Lane 2		Link 0, Lane 2	Link 0, Lane 2			Link 0, Lane 2	Link 0, Lane 2	Link 0, Lane 2	Link 0, Lane 2	t	Link 0, Lane 2		t	Link 0, Lane 2	Link 0, Lane 2	Link 0, Lane 2	Link 0, Lane 2	Link 0, Lane 2	ŀ		
		Lane 1		Link 0, 1 Lane 1	Link 0, 1 Lane 1 L	Link 0, Lane 1		Link 0, 1 Lane 1 L	Link 0, 1 Lane 1	Link 0, 1 Lane 1 L	Link 0, 1 Lane 1 L	t	Link 0, 1 Lane 1	Link 0, Lane 1	F	Link 0, 1 Lane 1 L	Link 0, 1 Lane 1 L	Link 0, 1 Lane 1 L	Link 0, 1 Lane 1 L	Link 0, 1 Lane 1	ŀ		-
		Lane 0		Link 0, 1 Lane 0	Link 0, 1 Lane 0 L	Link 0, L	Link 0, Lane 0	Link 0, L	Link 0, L	Link 0, L Lane 0 L	Link 0, L	t	Link 0, L	Link 0, 1 Lane 0 L	ŀ	Link 0, 1 Lane 0 L	Link 0, L	Link 0, L	Link 0, L Lane 0 L	Link 0, L	t		ľ
		Resutting Link		1×8	134	1×2	14	1x8	2x8	1.46	1x16			2×2		1×16 L	2x8	1×16	1×16 L	4 346			
		BiF[2:0]#	00000	0000	00000	00000	00900	00900	00000	00090	00090	00900	0000	00000	00000	00090	00000	00900	00090	00000	00000	00090	About a
		Upstream Links	1, 2, or 4 Links	1, 2, or 4 Links	1, 2, or 4 Links	1, 2, or 4 Links	1, 2, or 4 Links	1, 2, or 4 Links	1, 2, or 4 Links	1, 2, or 4 Links	1, 2, or 4 Links	1 2 or 4 links	1, 2, or 4 Links	1, 2, or 4 Links	1.2. or 4 Links	1, 2, or 4 Links	1, 2, or 4 Links	1, 2, or 4 Links	1, 2, or 4 Links	1, 2, or 4 Links	1, 2, or 4 Links	1, 2, or 4 Links	1 2 or 4 links
1 x16, 1 x8, 1 x4, 1 x2, 1	4 x4, 4 x2, 4 x1	Upstream Devices			1 Upstream Socket	1 Upstream Socket	1 Upstream Socket	1 Upstream Socket	1 Upstream Socket	1 Upstream Socket	1 Upstream Socket	1 Unstream Socket		1 Upstream Socket	1 Upstream Socket	1 Upstream Socket	1 Upstream Socket	1 Upstream Socket	1 Upstream Socket	1 Upstream Socket	1 Upstream Socket 1, 2, or 4 Links	1 Upstream Socket	1 Instrant Contrat
		Host	1 Host	1 Host	1 Host	1 Host	1 Host	1 Host	1 Host	1 Host	1 Host	1 Host	1 Host	1 Host	1 Host	1 Host	1 Host	1 Host	1 Host	1 Host	1 Host	1 Host	1 HAGE
	Ipstream Links	Add-in-Card Encoding PRSNTB(3:0)#	F	0b1110	0b1110	061110	061110	0b1101	061101	0b1100	001100		001010	001001	001000	060111	060110	060101	060100	000011		06001	
	Single Host, Single Upstream Socket, One, Two or Four Upstream Links	Supported Bifurcation Modes	Card Not Present	1 x8, 1 x4, 1 x2, 1 x1	1×4, 1×2, 1×1	1×2,1×1	1×1	1 x8 Option B 2 x4, 2 x2, 2 x1	2 x8, 2 x4, 2 x2, 2 x1 4 x4, 4 x2, 4 x1	1	1 X16, 1 X8, 1 X4 2 X8, 2 X4,	LX TO UDIION U 4 XM, 4 XZ (FIIST 6 IGNES), 4 XI	x2, 2x1 x2, 1x1	4 x2 (First 8 lanes), 4 x1 2 x2, 2 x1 1 x2, 1 x1	RSVD for future x8 encoding	1 ×16, 1 ×8, 1 ×4, 1 ×2, 1 ×1	2 x8, 2 x4, 2 x2, 2 x1	1 x16, 1 x8, 1 x4, 1 x2, 1 x1 1 x16 Option B 2 x8, 2 x4, 2 x2, 2 x1	1 x16, 1 x8, 1 x4 2 x8, 2 x4, 2 x2, 2 x1 1 x16 Option C 4 x4, 4 x2, 4 x1	4 x4, 4 x2, 4 x1		RSVD	
	lost, Single Upstr	Min Card Card Short Width Name	Not Present	1 x8 Option A	2 x4	1×2	101	1 x8 Option B	2 x8 Option B			T XTD ODDIOU O	2 x4	412	RSVD	1 x16 Option A	2 x8 Option A	1 x16 Option B	1 x16 Option C	4 x4	RSVD	RSVD	
	Single H	Min Card Width	n/a	SC	2C	2C	SC	SC	54	5		BSVD		20	RSVD	4C	40	40	ų	54	RSVD	RSVD	Distant.

Table 31: Bifurcation for Single Host, Single Socket and Single/Dual/Quad Upstream Links

Rev 0.63

			3	Ι		Ι					Host	abled	Link 1,	Lane 7			Link 1,	Lane 7		Ι						Link 1,	Lane /	Lane 7	Link 1,	Lane 7					[
	╞			ł						_	Host	bled Dis	_	Lane 6 La		_	Link 1, Li	lane 6 La								Link 1, Li	_		-		+		ł		ł
	L			ļ							⊢	led Disat	_	_			-						_				+								l
				ļ							Host	P	-	Lane 5			Link 1,	tane 5								Link 1,			+						
											Host	Disable		Lane 4			Link 1,	Lane 4								Link 1,									
											Host	Disabled	Link 1,	Lane 3			Link 1,	Lane 3								Link 1,	Lane 2	Lane 3	Link 1,	Lane 3	Link 3	Lane 3			
				Ī							Host	Disabled	Link 1,	Lane 2			Link 1,	Lane 2								Link 1,	Lone 2	Lane 2	Link 1,	Lane 2	Link 0	Lane 2			
				Ī							Host	isabled [Link 1,	Lane 1			Link 1,	Lane 1								Link 1,	Lank 1	Lane 1	Link 1,	Lane 1	1 int 3	Lane 1			
				İ		Ī					Host	Isabled D	Link 1,	Lane 0	_	_	Link 1,	Lane 0	I	T	_			Ī		Link 1,	Lane U	Lane 0	Link 1,	Lane 0	C qui I	Lane 0			
					Link 0, Lane 7						Link 0,			-	Link 0,	Lane 7	Link 0,	Lane 7	t	T					Link 0, Lane 7	Link 0,			-						
			-	ł	Link 0, 1 Lane 6		_	-			Link 0, 1			_	_	Lane 6 L	Link 0, 1	Lane 6 L	t	t		$\left \right $		t	Link 0, 1 Lane 6	Link 0, 1			-			-	t		
			-	ł	Lane 5 Li	÷	_	-			Link 0, L	_	-	-	_	Lane 5 Li	Link 0, L	lane 5 Li	t	t					Link 0, L Lane 5 Li	Link 0, L	+		+-			-	╞	$\left \right $	
			-	÷	Lane 4 La		_	-			Link 0, Li			_	_	Lane 4 Li	Link 0, Li	Lane 4 La	t	+					Link 0, Li Lane 4 Li	Link 0, Li	+		+		+	_	╞		
	_	_		ł	Link 0, Li Lane 3 La	linko	Lane 3	-			Link 0, Li	_	-	-		Lane 3 La	Link 0, Li	Lane 3 La	+	1 inte 0	Lane 3				Link 0, Li Lane 3 La	Link 0, Li	+	_	+		1 int 0	Lane 3			
			-	ł	Link 0, Lin Lane 2 Lai	+	_	-			Link 0, Lir			-	_	Lane 2 Lai	Link 0, Lir	Lane 2 Lai		+					Link 0, Lir Lane 2 Lai	Link 0, Lir	+		+		1 Int 0		-		
		1	-	ł	_	-	_	0	-		-	_		-	_	_	+		+	0.1010		°	1		-	-	+	_	+		+	_	-		
			+	ł	0, Link 0, 0 Lane 1	+-	_	_	0 Lane 1	o' 9	0, Link 0,			_		0 Lane 1	0. Link 0,	0 Lane 1		0 1040		0, Link 0,	0 Lane 1		0, Link 0, 0 Lane 1	0, Link 0,	+	_	-		0 link 0		-		
					Link 0, Lane 0	t				Lane 0	Link 0,		Link 0,	Lane 0	_	Lane 0	Link	Lane 0		1 ot 0	-	Link 0,	Lane 0		Link 0, Lane 0	Link 0,	Linko	Lane 0	Link 0,	Lane 0	1 int 0	_	+		
		Second Second Second	-		1 x8 (Socket 0 only)	1 wf	(Socket 0 only)	1×2	(Socket 0 only)	1 ×1 (Socket 0 only)	1 x8	(Socket 0 only)	2 x8		1×8	(Socket 0 only)	2 x8			1 44	(Socket 0 only)	1×2	(Socket 0 only)		1 x8 (Socket 0 only)	2 x8	2 v8		2 x8		100	(EP 0 and 2 only)			
		BIF[2:0]#	0001	10000	00001		0000	0000		06001		0000	00001			10090		10090	01-001	TOOOD	06001		10090	06001	06001	10090	T	00001		10090		06001	00001	06001	
		And Adversion of Adverse	2 Links	* 11114	2 Links	2 linke		2 Links		2 Links	2 Links		2 Links		2 Links		2 Links		A Links	2 LINKS		2 Links		2 Links	2 Links	2 Links	2 Links		2 Links		2 Links	2 11 122	2 Links	2 Links	
1×2, 1×1 2×2, 2d		a sector of the			2 Upstream Sockets	m Contraste		m Sockets		m Sockets	m Sockets		m Sockets		m Sockets		2 Upstream Sockets		O I Instrument Conference	m Cockets		m Sockets		2 Upstream Sockets	m Sockets	m Sockets	m Survete		m Sockets		m Contraste		m Sockets	1 Host 2 Upstream Sockets	
1 x8, 1 x4, 1 x2, 1 x1 2 x8, 2 x4, 2 x2, 2x1			2 Linstream	* Oparica	2 Upstrea	3 I Instraum Contrate		2 Upstream Sockets		2 Upstream Sockets	2 Upstream Sockets		2 Upstream Sockets		2 Upstream Sockets		2 Upstrea		A lineared	2 Upstream Sockets		2 Upstream Sockets		2 Upstrea	2 Upstream Sockets	2 Upstream Sockets	2 I Instream Sorkets		2 Upstream Sockets		3 I Instraum Corbate	and a	2 Upstream Sockets	2 Upstrea	
		1	1 Hnst	101	1 Host	1 Mores	_	1 Host		1 Host	1 Host	_	1 Host		1 Host		1 Host		-	1 Hore		1 Host		1 Host		1 Host	1 Hoer	_	1 Host		Hore		1 Host	Host	
			T										-		-		-		*		_	-1				-					-	-	-		
	Add-in-Card	Encoding	Ob1111		001110	061110		001110		001110	0b1101		001101		001100		001100		011011	TTOTOO		0b1001		0b1000	111090	060110	01010		00100		050011	Topo	000010	060001	
am Links	odes A	<u> </u>		Î	3			0		3	0		0		3			1									Τ		0				0	0	
Single Host, Two Upstream Sockets, Two Upstream Links	upported Bifurcation Modes Add-in-Card		Card Not Present		1 x8, 1 x4, 1 x2, 1 x1	1 41 1 42 1 41		1x2, 1x1		-	1 x8, 1 x4, 1 x2, 1 x1	1 x8 Option B 2 x4, 2 x2, 2 x1	2 x8, 2 x4, 2 x2, 2 x1	2 x8 Option B 4 x4, 4 x2, 4 x1	1x8,1x4	2 x4, 1 v8 Ontion D 4 v2 (Eirer 8 lanae) 4 v1	1 x16, 1 x8, 1 x4	2 x8, 2 x4,	4, 4 XZ (FIIST & IGNES	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 x4, 1 x2, 1 x1	4 x2 (First 8 Ianes), 4 x1	2×2, 2×1 1×2, 1×1	RSVD for future x8 encoding	1×16, 1×8, 1×4, 1×2, 1×1	2 x8, 2 x4, 2 x2, 2 x1	1 V 15 1 VE 1 VE 1 VE 1 V	1 x16 Option B 2 x8, 2 x4, 2 x2, 2 x1	1 x16, 1 x8, 1 x4	2 x8, 2 x4, 2 x2, 2 x1	1 x16 Option C 4 x4, 4 x2, 4 x1 4 v4 - 4 v2 - 4 v1	** * K4, * K4	0/	0/	
Ipstream	Ins			t	đ	T				3		ion B 2x	2 ×	ion B 4 x	<u>,</u>	2 x4, ion D / 4 v2	1×1	2×	LION D A X4, 4	2 6		4×					-	ion B 2x	1	2 ×	tion C 4 X			RSVD	
ost, Two U		Min Card Card Short	Not Present		1 x8 Option		1 x4		1×2	141		1 ×8 Opt.		2 x8 Opt		1 v8 One			DO OTX T	DACH	2 x4		4x2	RSVD	1 x16 Option /		Ido ox 7	1 ×16 Opt			1 ×16 Op	4 X 4	RSVD	RSVD	
ugle Ho		Min Card SI	10 M		20	Γ	SC		z	2		2		40		20		5	6	DAG.	20		20	e	40		Ţ	4C	Γ		ų		RSVD	RSVD RSVD	

Table 32: Bifurcation for Single Host, Dual Sockets and Dual Upstream Links (BIF[2:0]#=0b001)

Rev 0.63

Mile Card Contr Short Meson With Minners Control Minners Minners <th>3</th> <th>Add.ac.Cod Add.ac.Cod Eccode 0011110 0011110 001110 001100 001100 001100 001100 001100 001100</th> <th>Heat 1 1.06st 1 1.06st</th> <th>Uptreem Devices Ut</th> <th>iuks</th> <th>BIF[2:0]# 0b010 0b010</th> <th>_</th> <th>Lane 0 Lu Link 0, Li</th> <th>Lane 1</th> <th>Lone 2 Lane 3</th> <th>4 mm</th> <th>Lane 5</th> <th></th> <th></th> <th></th> <th>0</th> <th></th> <th></th> <th></th> <th></th> <th></th>	3	Add.ac.Cod Add.ac.Cod Eccode 0011110 0011110 001110 001100 001100 001100 001100 001100 001100	Heat 1 1.06st 1 1.06st	Uptreem Devices Ut	iuks	BIF[2:0]# 0b010 0b010	_	Lane 0 Lu Link 0, Li	Lane 1	Lone 2 Lane 3	4 mm	Lane 5				0					
dith n								- 66							_			_			
								-	-			-						the second second			
						-		-			-		a a a	rane /			rane to			reue	
				 upstream societs Upstream Societs Upstream Societs Upstream Societs 4 Upstream Societs 4 Upstream Societs 4 Upstream Societs 		_	-		H	÷				I	ł		l	╞			
				4 Upstream Sockets 4 Upstream Sockets 4 Upstream Sockets 4 Upstream Sockets 4 Upstream Sockets 4 Upstream Sockets			(Socket 0 only)	Lane 0 La	Link 0, Lin Lane 1 Lan	Link 0, Link 0, Lane 2 Lane 3	5 9										
				4 Upstream Sockets 4 Upstream Sockets 4 Upstream Sockets 4 Upstream Sockets 4 Upstream Sockets			1 ×4	Link 0, Li	Link 0, Lin	Link 0, Link 0,	ő										
				4 Upstream Sockets 4 Upstream Sockets 4 Upstream Sockets 8 Upstream Sockets 4 Upstream Sockets		06010	(Viuc	_	-	_							_	_	_		
				4 Upstream Sockets 4 Upstream Sockets 4 Upstream Sockets 4 Upstream Sockets		00010	1 ×2 (Socket 0 only)	Lane 0 La	Link 0, Lane 1												
				4 Upstream Sockets 4 Upstream Sockets 4 Upstream Sockets		06010		Link 0,													
				4 Upstream Sockets 4 Upstream Sockets 4 Upstream Sockets		1	Millio	4	+	+	÷	-	+		+	+	+	+	+		
				4 Upstream Sockets 4 Upstream Sockets	$\left \right $	06010	2 x4	Lane 0 La	Lane 1 Lan	Link 0, Link 0, Lane 2 Lane 3	0, Link I, 3 Lane D	Lane 1	Link 1, Lane 2	Link 1, Lane 3	Host Host Host Host Host Host Disabled Disabled Disabled	Host Host H	Host Ho	Host Host isabled Disable	t Host ad Disable	Host Host Host Host Disabled	Host
			_	4 Upstream sockets 4 Upstream Sockets	+	ł	T	+		+	+										
1 x6, 2 x4,				4 Upstream Sockets		06010	4 X4	Lane 0 La	_	Link 0, Link 0, Lane 2 Lane 3	0, LINK I, 3 Lane 0	Lane 1	Lane 2	Lane 3	Lane 0 D	Link 2, Link 2, Lane 1 Lane 2		Link 2, Link 3, Lane 3 Lane 0	 LINK 5, Lane 1 	Link 3, Lane 2	Lane 3
2 ×4,					4 Links		2 ×4	LINK 0, LI	Link 0, Lini	Link 0, Link 0,	0, Link 1,	, Link 1,	Link 1,	Link 1,							
		t			_	06010		Lane 0 La	Lane 1 Lan	Lane 2 Lane 3	3 Lane 0	b Lane 1	Lane 2	Lane 3							
It x8 Option D 4 x2 (First 8 lanes), 4 x1																l	_	_			
1 ×16,	2 x4.		1 Host	4 Upstream Sockets	4 Links		4 ×4	Link 0, Li	-	-	_			_		_			-	_	-
2 ×8,1						01000			Lane 1 Lan	Lane 2 Lane 3	13 Lane 0	D Lane 1	Lane 2	Lane 3	Lane 0 Li	Lane 1 La	Lane 2 Lan	Lane 3 Lane 0	0 Lane 1	Lane 2	Lane 3
	x2 (First 8 lanes), 4 x1																				
RSVD RSVD RSVD			-	4 Upstream Sockets	4 Links 0	06010															
		001010	1 Host	4 Upstream Sockets	4 Links 0	06010	2 x4		_		_	_	Link 1,	Link 1,							
C 2.X4 1.X4, 1			+					_	+	Lane 2 Lane 5	+	-	Lane 2	Lane 5							
4 ×2	4 x2 (First 8 lanes), 4 x1 0	001001	1 Host	4 Upstream Sockets	4 Links	01010	2×2	Unko, U	Link 0,		Link 1,	Link1,									
20 4×2 1×2	x2, 1x1										1	_					_	_	_		
RSVD RSVD RSVD	RSVD for future x8 encoding 0	001000	1 Host	4 Upstream Sockets	4 Links 0	0b010															
4C 1 x16 Option A	1×16, 1×8, 1×4, 1×2, 1×1	000111		4 Upstream Sockets	4 Links (1 x4 (Socket 0 only)	Link 0, Li Lane 0 La	Link 0, Lini Lane 1 Lan	Link 0, Link 0, Lane 2 Lane 3	0.5										
	2 x8, 2 x4, 2 x2, 2 x1 0	000110	1 Host	4 Upstream Sockets	4 Links	01000	2 X4	_	_	-	0.1					_	-	Link 2,			
- 7 X8 Uption W	Τ	İ	+			6	-	+	+	+	2	ļ	Į	I	+	+	+	raue o	+		
4C 1 x16 Option B 2 x8. 2	1×15,1×6,1×4,1×2,1×1 2×8.2×4.2×2.2×1	101000	1 HOSE	4 Upstream sockets	* LINKS	06010	2 x4 Socket 0 & 2 only)	Lane 0 La	Lane 1 Lan	Linko, Linko, Lane 2 Lane 3	0, 10				Lane 0 Li	Lane 1 La	Link 2, Link 2, Lane 2 Lane 3	Lane 3			
1 x16		060100	1 Host	4 Upstream Sockets	4 Links		4 x4	-	Link 0, Lin	Link 0, Link 0,	0, Link 1,	Link 1.	Link 1,	Link 1,	Link 2, L	Link 2, Li	Link 2, Lin	Link 2, Link 3,	3, Link 3,	Link 3,	Link 3,
2 x8, 2 1 x16 Option C 4 x4, 4	2 x8, 2 x4, 2 x2, 2 x1 4 x6, 4 x2, 4 x1					01000			lane 1 Lan	Lane 2 Lane 3	3 Lane 0	lane 1	Lane 2	Lane 3	Lane 0 Li	Lane 1 La	Lane 2 Lan	Lane 3 Lane 0	0 lane 1	Lane 2	Lane 3
4C 4 x4	4 x4, 4 x2, 4 x1	000011	1 Host	4 Upstream Sockets	4 Links (0100	4 ×4	Linko, Li Laneo La	Link 0, Lini Lane 1 Lan	Link 0, Link 0, Lane 2 Lane 3	0, Link 1, 3 Lane 0	Lane 1	Link 1, Lane 2	Link 1, Lane 3	Lane 0 L	Link 2, Li Lane 1 La	Link 2, Lini Lane 2 Lan	Link 2, Link 3, Lane 3 Lane 0	3, Link 3, 0 Lane 1	Link 3, Lane 2	Link 3, Lane 3
RSVD RSVD RSVD		0100010	1 Host	4 Upstream Sockets	4 Links 0	00010											-				
				4 Upstream Sockets	4 Links 0	06010									f						
RSVD RSVD RSVD		000000	1 Host	4 Upstream Sockets	4 Links (00100									F		-				

 Table 33: Bifurcation for Single Host, Quad Sockets and Quad Upstream Links (BIF[2:0]#=0b010)

Open Compute Project • NIC • 3.0

Rev 0.63

								(E	BIF	[2:0	0]	#=	0	b0	11)										
		Lane 15																								
		Lane 14									T													T	Ī	
		Lane 13									t													T	T	
		ane 12									t													t	ľ	
		Lane 11 Lane 12									t													t	t	
		ane 10									t													t	t	
		Lane 9 Lane 10									t													t	ſ	
		Lane 8									t													t	l	
		Lane 7								Link 3, Lane 1	Link 3	Lane 1			Link 3, Iana 1							_		t	t	
		Lane 6								Link 3, Lane 0	link 8				Link 3,	_								t	t	
		Lane 5						Link 1, Lane 1	Link 1, Lane 1	Link 2, Lane 1	1 ink 2			Link 1, Lane 1	Link 2, 1	_			Link 1, Lane 1		Link 1, Iane 1		Link 1, Lane 1			ſ
		Lane 4						Link 1, 1 Lane 0 1	Link 1, 1 Lane 0 L	Link 2, 1 Lane 0 L	1 ink 2			Link 1, I Lane 0	Link 2, 1	_			Link 1, 1 Lane 0 L		Link 1, 1		Link 1, 1	-		
		Lane 3								Link 1, Lane 1	1 int 1				Link 1,	_									t	
		Lane 2								Link 1, Lane 0	1 ink 1				Link 1,	_								t	t	
		Lane 1		Link 0, Lane 1	Link 0, Lane 1	Link 0, Lane 1		Link 0, Lane 1	Link 0, Lane 1	Link 0, Lane 1	ink 0			Link 0, Lane 1	Link 0,	_		Link 0, Lane 1	Link 0, Lane 1	Link 0, Lane 1	Link 0, Lane 1		Link 0, Lane 1			
		Lane 0		Link 0, 1 Lane 0 L	Link 0, 1 Lane 0 L	Link 0, 1 Lane 0	Link 0, Lane 0	Link 0, 1 Lane 0 1	Link 0, 1 Lane 0 L	Link 0, 1 Lane 0	l ink 0			Link 0, 1 Lane 0 L	Link 0, 1	_		Link 0, 1 Lane 0 L	Link 0, 1 Lane 0 L	Link 0, 1 Lane 0 L	Link 0, 1	_	Link 0, 1 Lane 0	-	t	
		Resutting Link		1 x2 (Socket 0 only)	1 x2 (Socket 0 only)	1 x2 (Socket 0 only)	1x1 (Socket 0 only)	2 x2 Socket 0 & 2 only)	2 x2 Socket 0 & 2 only)	4 ×2	40	_		2 x2 (Socket 0 & 2 only)	4×2	,		1 x2 (Socket 0 only)	2 x2 (Socket 0 & 2 only)	1 x2 (Socket 0 only)	2 x2 Socket 0 & 7 only		4 x2 Socket 0 & 2 only!			
		BIF[2:0]#	06011		06011 (5	06011 (5	06011 (5	06011 (So	06011 (So	06011	+	06011	06011	06011 (So	10401		00011	06011 (5	06011 (So	06011 (5	09/11/00	-	06011 (50	H	06011	06011
		BIF Upstream Links	4 Links 0b	4 Links 00	4 Links 0b	4 Links 00	4 Links 00	4 Links 00	4 Links 00	4 Links 06	41 inke		4 Links 0b	4 Links 0b	4 Links	3	4 Links 0b	4 Links 0b	4 Links 0b	4 Links 0b	4 Links	-	4 Links 0b	4 Links 00	╞	4 Links 06
			-								+		-								_			-	L	
4 x2, 4x1		Upstream Devices	4 Upstream Sockets	4 Upstream Sockets	4 Upstream Sockets	4 Upstream Sockets	4 Upstream Sockets	4 Upstream Sockets	4 Upstream Sockets	4 Upstream Sockets	4 Instream Soriets		4 Upstream Sockets	4 Upstream Sockets	4 Upstream Sockets		4 Upstream Sockets	4 Upstream Sockets	4 Upstream Sockets	4 Upstream Sockets	4 Upstream Sockets		4 Upstream Sockets	4 Upstream Sockets	4 Upstream Sockets	1 Host 4 Upstream Sockets
			1 Host		1 Host	1 Host	1 Host	1 Host	1 Host	1 Host	1 Hot		1 Host	1 Host	1 Host	_	Host	1 Host	1 Host	1 Host	I Host		1 Host		1 Host	Host
First 8 lanes	Add-in-Card	Encoding PRSNTB(3:0)#	061111 0	001110	001110	001110	001110	001101	101100	001100	001100		001011	061010	001001			060111	060110	060101	00100		000011		00001	
Single Host, Four Upstream Sockets, Four Upstream Links - First 8 lanes	Supported Bifurcation Modes Add	Enc	Card Not Present 0b1	1×8, 1×4, 1×2, 1×1 0b1	1 x4, 1 x2, 1 x1 0b1	1x2, 1x1 0b1	1×1 0b1		2 x8, 2 x4, 2 x2, 2 x1 0b1 4 x4, 4 x2, 4 x1		1 x8 Option D 4 x2 (First 8 lanes), 4 x1 1 x16 1 x8 1 x4 0h1	lanes), 4 x1		2 x4, 2 x2, 2 x1 1 x4, 1 x2, 1 x1	4 x2 (First 8 lanes), 4 x1 0b1	12,111	RSVD for future x8 encoding 0b1000	1 x16, 1 x8, 1 x4, 1 x2, 1 x1 0b0	2 x8, 2 x4, 2 x2, 2 x1 0b0	1 x16, 1 x8, 1 x4, 1 x2, 1 x1 0b0 1 x16 Option B 2 x8, 2 x4, 2 x2, 2 x1	1 x16, 1 x8, 1 x4 2 x8 2 v4 2 v2 2 v1	x4, 4 x2, 4 x1	4 x4, 4 x2, 4 x1 0b0		RSVD 0b0	
ost, Four Upstrea.	82	Min Card Card Short Width Name	Not Present C	1 x8 Option A	1 14	1×2	1×1	1 x8 Option B 2	2 x8 Option B 4		1 x8 Option D	1 x16 Option D 4	RSVD	2 x4 1	4.0	4×2	RSVD	1 x16 Option A	2 x8 Option A	1 x16 Option B	-	1 x16 Option C 4 x4, 4 x2, 4 x1	4 ad		RSVD	
ingle Hc		Win Card St Width Name	n/a	×	×	×	x	x	40		x	4	ę	x		x	RSVD	4C	40	40		40	5	RSVD	RSVD	RSVD

 Table 34: Bifurcation for Single Host, Quad Sockets and Quad Upstream Links – First 8 PCIe Lanes
 (BIF[2:0]#=0b011)

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

Rev 0.63

ŀ	ſ		a set to de la						ľ	ŀ	ŀ	ŀ	ŀ	ŀ	ŀ	ŀ	ŀ	ŀ	$\left \right $				L
Min Card Card Short	rid Short		Add-m-Lard Encoding				BIF[2:0]#																
Width Nai			PRSNTB[3:0]#	Host	Upstream Devices	Upstream Links		Resulting Link	Lane 0	Lane 1	Lane 2	Lane 3 L	Lane 4 L	Lane 5 La	Lane 6 Lan	Lane 7 Lan	Lane 8 Lane	Lane 9 Lane	Lane 10 Lane 11	1 Lane 12		Lane 13 Lane 14	Lane 15
n/a No	Not Present	Card Not Present	061111	2 Host	2 Upstream Sockets	2 Links	06101																
		1 x8, 1 x4, 1 x2, 1 x1	001110	2 Host	2 Upstream Sockets	2 Links	00101	1×8	Link 0,	Link 0,	_		_	-		Link 0,							
-1	1 x8 Option A							(Host 0 only)	Lane 0	Lane 1	Lane 2 L	-	Lane 4 Lz	Lane 5 La	Lane 6 Lan	Lane 7							
	1 ×4	1 x4, 1 x2, 1 x1	001110	2 Host	2 Upstream Sockets	2 Links	00101	1 x4 (Host 0 only)	Link 0, Lane 0	Link 0, Lane 1	Link 0, L	Link 0, Lane 3											
-		1×2, 1×1	001110	2 Host	2 Upstream Sockets	2 Links	06101	1 x2 (Host 0 only)	Link 0, Lane 0	Link 0, Lane 1				\vdash									
		1×1	001110	2 Host	2 Upstream Sockets	2 Links	06101	1 x1 (Host 0 only)	Link 0, Lane 0			\vdash		\vdash		-	-	_					
		1 x8, 1 x4, 1 x2, 1 x1	001101	2 Host	2 Upstream Sockets	2 Links	06101	1×8	Link 0,	Link 0,	Link 0, L	Link 0, Li	Link 0, Li	Link 0, Li	Link 0, Lini	Link 0, Host	st Host	A Host	t Host	Host	Link 0, Host Host Host Host Host Host Host Host	Host	Host
-	xe uption p				A Disconcession & and and	A 1 1 1 1		(LIOSE U OUIÀ)	Lane U	Taue T	+	+	+	-								Disabled	BIDPSID
2	2 x8 Option B	2 x8, 2 x4, 2 x2, 2 x1 4 x4, 4 x2, 4 x1	101100	2 HOST	2 Upstream Sockets	2 LINKS	00101	2.46	Lane 0	Link 0, Lane 1	Lane 2 L	Link 0, Li Lane 3 Li	Lane 4 La	Link 0, Li Lane S La	Lane 6 Lan	Link 0, Link 1, Lane 7 Lane 0	1, LINK 1, E 0 Lane 1	1, LINK1, 1 Lane 2	1, LINK 1, 2 Lane 3	Lane 4	Lane 5	Lane 6	Link 1, Link 1, Lane 6 Lane 7
		1 x8, 1 x4	001100	2 Host	2 Upstream Sockets	2 Links		1x8	Link 0,	Link 0,	Link 0, L	Link 0, Li	Link 0, Li	Link 0, Li	Link 0, Lin	Link 0,							
-	x8 Option D	2 x4, 1 x8 Option D 4 x2 (First 8 lanes). 4 x1					00101	(Host 0 only)	Lane 0	Lane 1	Lane 2 L	Lane 3 Li	Lane 4 Lt	Lane S La	Lane 6 Lane 7	e 7							
		1 x16, 1 x8, 1 x4	001100	2 Host	2 Upstream Sockets	2 Links		2 x8	Link 0,	Link 0,	-	Link 0, Li	Link 0, Li		Link 0, Lini	Link 0, Link 1,	 Link 1, 	1, Link 1,	1, Link 1,	. Link 1,	Link 1,	Link 1,	Link 1,
		2 x8, 2 x4,					00101		Lane 0	Lane 1	Lane 2 L	Lane 3 La	Lane 4 La	Lane 5 La	Lane 6 Lan	Lane 7 Lan	Lane 0 Lane 1	1 Lane 2	2 Lane 3	Lane 4	Lane 5	Lane 6	Lane 7
	T UDIION 9TX	T X TR ODLION D 4 X#' # X7 (FILST 8 IBUGS), # XT																					
RSVD RSV	RSVD	RSVD	001011	2 Host	2 Upstream Sockets	2 Links	00101				-		+	+									
	2.x4	2 x4, 2 x2, 2 x1 1 x6, 1 x2, 1 x1	0b1010	2 Host	2 Upstream Sockets	2 Links	00101	1 x4 (Host 0 only)	Link 0, Lane 0	Link 0, Lane 1	Link 0, L Lane 2 L	Link 0, Lane 3	_	_	_	_	_						
		4 x2 (First 8 Ianes), 4 x1	0b1001	2 Host	2 Upstream Sockets	2 Links		112	Link 0,	Link 0,													
	4×2	2 x2, 2 x1 1 x2, 1 x1					00101	(Host 0 only)	lane 0	Lane 1													
RSVD RSV	RSVD	RSVD for future x8 encoding	061000	2 Host	2 Upstream Sockets	2 Links	06101																
1	1 x16 Option A	1 ×16, 1 ×8, 1 ×4, 1 ×2, 1 ×1	000111	2 Host	2 Upstream Sockets	2 Links	00101	1 x8 (Host 0 only)	Link 0, Lane 0	Link 0, Lane 1	Link 0, 1 Lane 2 L	Link 0, Li Lane 3 La	Link 0, Li Lane 4 Lz	Link 0, Li Lane S La	Link 0, Link 0, Lane 6 Lane 7	Link 0, Lane 7							
2	2 x8 Option A	2 x8, 2 x4, 2 x2, 2 x1	000110	2 Host	2 Upstream Sockets	2 Links	06101	2 x6	Link 0, Lane 0	Link 0, Lane 1	Link 0, 1 Lane 2 L	Link 0, Li Lane 3 Li	Link 0, Li Lane 4 Li	Link 0, Li Lane S La	Lunk 0, Lini Lane 6 Lan	Link 0, Link 1, Lane 7 Lane 0	1, Link 1, = 0 Lane 1	1, Unk1, 1 Lane 2	1, Unk 1, 2 Lane 3	Lane 4	Link 1, Lane 5	Link 1, Lane 6	Link 1, Lane 7
	60	1 ×16, 1 ×8, 1 ×4, 1 ×2, 1 ×1 2 ×8, 2 ×4, 2 ×2, 2 ×1	000101	2 Host	2 Upstream Sockets	2 Links	06101	2 x8	Link 0, Lane 0	Link 0, Lane 1	Link 0, 1 Lane 2 L	Link 0, Li Lane 3 Li	Link 0, Li Lane 4 Li	Link 0, Li Lane S La	Lane 6 Lan	Link 0, Link 1, Lane 7 Lane 0	1. Unk 1.	1, Unk1, 1 Lane 2	1, Unk 1, 2 Lane 3	Lane 4	Link 1, Lane 5	Link 1, Lane 6	Link 1, Lane 7
	1 x16 Option C	1×16,1×8,1×4 2×8,2×4,2×2,2×1 4×4,4×2,4×1	000100	2 Host	2 Upstream Sockets	2 Links	00101	2.x8	Link 0, Lane 0	Link 0, Lane 1	Link 0, 1 Lane 2 L	Link 0, Li Lane 3 Li	Link 0, Li Lane 4 Li	Link 0, Li Lane 5 La	Link 0, Lini Lane 6 Lan	Link 0, Link 1, Lane 7 Lane 0	1, Link 1, e 0 Lane 1	1, Link 1, 1 Lane 2	1, Link 1, 2 Lane 3	Link 1, Lane 4	Link 1, Lane 5	Link 1, Lane 6	Link 1, Lane 7
	4 24	4 x4, 4 x2, 4 x1	000011	2 Host	2 Upstream Sockets	2 Links	06101	2 x4 (EP 0 and 2 only)	Link 0, Lane 0	Link 0, Lane 1	Link 0, 1 Lane 2 L	Link 0, Lane 3				Link 1, Lane 0	Link 1, Link 1, Lane 0 Lane 1	1, Unk 1, 1 Lane 2	1, Link 1, 2 Lane 3				
RSVD RSV			000010	2 Host	2 Upstream Sockets	2 Unks	00101						$\left \right $	\vdash									
	RSVD	RSVD	00001	2 Host	2 Upstream Sockets	2 Links	06101																
RSVD RSV		RSVD	00000	2 Host	2 Host 2 Upstream Sockets	2 Links	00101											_					

Table 35: Bifurcation for Dual Host, Dual Sockets and Dual Upstream Links (BIF[2:0]#=0b101)

Rev 0.63

Min Card Card Short Width Name		Supported Bifurcation Modes	Add-in-Card							ſ	ŀ	ŀ	╞	ŀ	┝	┝	ŀ	╞	ŀ	ŀ	L	L	L
Width N	ard Short		Encoding				BIF[2:0]#																
	ame		PRSNTB(3:0)#	Host	Upstream Devices	Upstream Links		Resulting Link	Lane 0	Lane 1	Lane 2	Lane 3	Lane 4 L	Lane S L	Lane 6 Las	Lane 7 Lan	Lane 8 Lane 9	9 Lane 10	10 Lane 11	1 Lane 12		Lane 13 Lane 14	Lane 15
n/a No	Not Present		001111	4 Host	4 Host 4 Upstream Sockets	4 Links	00110																
		1 x8, 1 x4, 1 x2, 1 x1	0b1110	4 Host	4 Upstream Sockets	4 Links	00000	1 ×4	Link 0,	Link 0,	Link 0,	Link 0,											
-	1 x8 Option A						01100	(Host 0 only)	Lane 0	Lane 1	Lane 2	Lane 3	_		_	_	_	_	_	_			
		1x4,1x2,1x1	0b1110	4 Host	4 Upstream Sockets	4 Links		1 ×4	Link 0,	Link 0,	Link 0,	Link 0,	$\left \right $			$\left \right $	$\left \right $						
	1 x4						06110	(Host 0 only)	Lane 0	Lane 1	Lane 2	Lane 3	_	_	_	_	_	_	_	_			
		1x2,1x1	0b1110	4 Host	4 Upstream Sockets	4 Links	01000	1×2	Link 0,	Link 0,													
2C	1×2						ATTON	(Host 0 only)	Lane 0	Lane 1			_		_	_	_	_	_	_			
		1x1	001110	4 Host	4 Upstream Sockets	4 Links	00000	1x1	Link 0,														
	1×1						nTTON	(Host 0 only)	Lane 0		_	_	_	_	_					_			
		1x8,1x4,1x2,1x1	001101	4 Host	4 Upstream Sockets	4 Links	011010	2.×4	Link 0,	Link 0,	Link 0,	Link 0, L	Link 1, U	Link 1, U	Link 1, Lin	Link 1, Host	st Host	tt Host	t Host	Host	Host	Host	Host
2C 1	1 x8 Option B	1 x8 Option B 2 x4, 2 x2, 2 x1							Lane 0	Lane 1	Lane 2	Lane 3	Lane 0 La	ine 1 La	ne 2 Lar	e 3 Disat	iled Disab	led Disabl	ed Disabl	ed Disable	Lane 1 Lane 2 Lane 3 Disabled Disabled Disabled Disabled Disabled Disabled Disabled Disabled Disabled	Disabled	Disable
f		2×1	001101	4 Host	4 Upstream Sockets	4 Links		4 ×4	Link 0.	Link 0.	Link 0.	Link 0.	Link 1. U	Unk 1. U	Link 1. Lin	k 1. Link	Unk 1. Unk 2. Unk 2.		Link 2. Link 2.	Link 3.	Unk 3.	Link 3.	Link 3.
4C 2	2 x8 Option B						0110		Lane 0	Lane 1	lane 2	Lane 3	Lane 0 La	Lane 1 La	Lane 2 Lar	Lane 3 Lan	Lane 0 Lane	Lane 1 Lane 2	2 Lane 3	a lane 0	Lane 1	Lane 2	Lane 3
			001100	4 Host	4 Upstream Sockets	4 Links		2.84	Link 0.	Link 0.	+	-		-		Unk 1.							
							06110		ane 0	ane 1		_		-	_	S and S							
2C 1	1 x8 Ontion D	1 x8 Ontion D 4 x2 (First 8 Ianes) 4 x1									_	_	_		_	;							
Γ		Γ	0b1100	4 Host	4 Upstream Sockets	4 Links		4 x4	Link 0.	Link 0.	Link 0.	Link 0.	Link 1. Li	Link 1.	Link 1. Lin	Link 1. Link 2.	.2. Link 2.	2. Link 2	2. Link 2.	Link 3.	Link S.	Link 3.	Link 3.
							00110		Lane 0	Lane 1	_	_	_	_	_	_	_			_		Lane 2	
4C 1:	x16 Option D	1 x16 Option D 4 x4, 4 x2 (First 8 lanes), 4 x1																					
	RSVD	RSVD	001011	4 Host	4 Upstream Sockets	4 Unks	00110																
		2 x4, 2 x2, 2 x1	001010	4 Host	4 Upstream Sockets	4 Links		2 x4	Link 0,	Link 0,	Link 0,	Link 0, L	Link 1, Li	Link 1, L	Link 1, Lin	Link 1,							
2C	2 x4	1x4, 1x2, 1x1					ntton		Lane 0	Lane 1	Lane 2 1	Lane 3 L	Lane 0 La	Lane 1 La	Lane 2 Lar	Lane 3	_	_	_				
		8 Ianes), 4 x1	0b1001	4 Host	4 Host 4 Upstream Sockets	4 Links		2 × 2	Link 0,	Link 0,		-		Link 1,									
2	ş	232,231					00110		Lane 0	Lane 1		_	Lane 0 La	Lane 1									
c	Г	future x8 encodine	001000	4 Host	4 Unstream Sorkets	4 Links	00110			T	t	t	t	t	╞	╞	╞	+	╞	+			
	Γ		060111	4 Host	4 Upstream Sockets	4 Links		1×4	Link 0,	Link 0,	Link 0,	Link 0,	╞	╞	╞	╞	╞	╞	Ļ	L			
4C 1	1 x16 Option A						01100	(Host 0 only)	Lane 0	Lane 1	Lane 2 1	Lane 3	_		_	_	_	_	_	_			
, , , , , , , , , , , , , , , , , , ,	2 ut Coston A	2 x8, 2 x4, 2 x2, 2 x1	060110	4 Host	4 Upstream Sockets	4 Links	06110	2 x4 More D 8, 2 central	Link 0,	Link 0,	Link 0,	Link 0,				(in)	Link 2, Link 2,	2, Link 2,	2, Link 2,	-1.5			
Γ		1 x16, 1 x8, 1 x4, 1 x2, 1 x1	060101	4 Host	4 Upstream Sockets	4 Links		2.84	Link 0,	Link 0,	+-	Link 0,	╞	╞	╞	Lin	-	-					
4C 1	x16 Option B	1 x16 Option B 2 x8, 2 x4, 2 x2, 2 x1						(Host 0 & 2 only)	Lane 0	Lane 1	Lane 2 1	Lane 3			_	Lan	Lane 0 Lane 1	1 Lane 2	2 Lane 3	5			
			000100	4 Host	4 Upstream Sockets	4 Links		4 ×4	Link 0,	Link 0,	-	-	_	_	-	_	_			_	_	Link 3,	_
4C 1	1 x16 Option C	2 x8, 2 x4, 2 x2, 2 x1 4 x4, 4 x2, 4 x1					00110		Lane 0	Lane 1	Lane 2	Lane 3	Lane 0 La	Lane 1 La	Lane 2 Lar	Lane 3 Lan	Lane 0 Lane 1	1 Lane 2	2 Lane 3	3 Lane 0	l lane 1	Lane 2	Lane 3
			050011	4 Host	4 Upstream Sockets	4 Links	0110	4 x4	Link 0, Lane 0	Link 0, Lane 1	Link 0, 1	Link 0, L	Link 1, Li Lane 0 Lz	Link 1, Li Lane 1 La	Link 1, Lin Lane 2 Lar	Link 1, Link	Link 2, Link 2, Lane 0 Lane 1	2, Link 2,	2, Link 2, 2 Lane 3	Link 3, Lane 0	Link 3, Lane 1	Link 3, Lane 2	Link 3, Lane 3
WD R			000010	4 Host	4 Upstream Sockets	4 Links	00110			ſ	-				$\left \right $	+	+	-	ŀ	L	-	L	
RSVD RS	RSVD	RSVD	000001	4 Host		4 Links	00110																
WD R			000000	4 Host	4 Upstream Sockets	4 Links	00110			ſ	F	F	╞	╞	╞	╞	╞	-	Ļ				

 Table 36: Bifurcation for Quad Host, Quad Sockets and Quad Upstream Links (BIF[2:0]#=0b110)

Rev 0.63

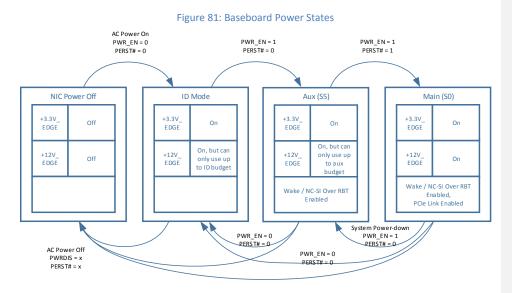

	Supported Bifurcation Modes	Supported Bifurcation Modes Add-in-Card												-				┝				L
		Encoding				BIF[2:0]#				_			_		_							
		PRSNTB(3:0)#	Host		Upstream Links		Resulting Link	Lane 0	Lane 1	Lane 2	Lane 3	Lane 4 L	Lane 5 La	Lane 6 La	Lane 7 Lar	Lane 8 Lane 9	19 Lane 10	10 Lane 11	11 Lane 12	12 Lane 13	Lane 14	Lane 15
8	Card Not Present	0b1111	4 Host	4 Upstream Sockets 4 x2 Links	4 x2 Links	06111												_				
**	1 ×8, 1 ×4, 1 ×2, 1 ×1	001110	4 Host	4 Upstream Sockets	4 x2 Links	00111	1 x2 (Host 0 only)	Link 0, Lane 0	Link 0, Lane 1													
	1 x4, 1 x2, 1 x1	001110	4 Host	4 Upstream Sockets	4 x2 Links	06111	1 x2 (Host 0 only)	Link 0, Lane 0	Link 0, Lane 1													
	1x2,1x1	01110	4 Host	4 Upstream Sockets	4 x2 Links	06111	1 x2 (Host 0 only)	Link 0, Lane 0	Link 0, Lane 1													
	14	001110	4 Host	4 Upstream Sockets	4 x2 Links	06111	IXI (Host 0 only)	Link 0, Lane 0		\square		\vdash	\vdash									
	1 x8. 1 x4, 1 x2, 1 x1 1 x8 Option B 2 x4, 2 x2, 2 x1	001101	4 Host	4 Upstream Sockets	4 x2 Links	06111 (2 x2 (Host 0 & 2 only)	Link 0, Lane 0	Link 0, Lane 1	Host Host Unk 2. Disabled Disabled Lane 0	Host I		Link 2, H Lane 1 Dist	Host H sabled Dise	Host Ho sabled Disa	Host Host Host Host Host Host Host Host	st Host led Disable	t Host led Disable	t Host led Disable	t Host ed Disable	Host d Disabled	Host Disable
2 x8 Option B	2 x8, 2 x4, 2 x2, 2 x1 4 x6, 4 x2, 4 x1	001101	4 Host	4 Upstream Sockets	4 x2 Links	06111	2 x2 (Host 0 & 2 only)	Link 0, Lane 0	Link 0, Lane 1	Host Host Disabled Disabled		Link 2, L Lane 0 Li	Link 2, H Lane 1 Dist	Host H isabled Dise	Host Ho isabled Disa	Host Host Host Host Host Host Host Host	st Host led Disable	t Host led Disable	t Host led Disable	t Host ed Disable	Host d Disabled	Host Host Disabled Disabled
	1 x8, 1 x4	001100	4 Host	4 Upstream Sockets	4 x2 Links		4 ×2	Link 0,	Link 0,	Link 1,	Link 1,	Link 2, U	Link 2, Lie	Link 3, Lir	Link 3,							
	2 xd, 1 x8 Option D 4 x2 (First 8 lanes). 4 x1					06111		Lane 0	Lane 1	Lane 0	Lane 1	Lane 0	Lane 1 La	Lane 0 La	Lane 1							
	1 x16, 1 x8, 1 x4	0b1100	4 Host	4 Upstream Sockets	4 x2 Links	F	4×2	Link 0,	-	-		_	-	-	Link 3,		\vdash	\vdash	\vdash			
	2 x8, 2 x4, 1 x16 Option D 4 x6, 4 x2 (First 8 lanes). 4 x1					06111		Lane 0	Lane 1	Lane 0	Lane 1	Lane 0 Li	Lane 1 La	lane 0 la	Lane 1							
	RSVD	0b1011	4 Host	4 Upstream Sockets	4 x2 Links	06111																
	2 M4, 2 X2, 2 X1 1 M4, 1 X2, 1 X1	001010	4 Host	4 Upstream Sockets	4 x2 Links		2 x2 (Host 0 & 1 only)	Link 0, Lane 0	Link 0, Lane 1	Link 1, Lane 0	Link 1, Lane 1											
	4 x2 (First 8 lanes), 4 x1	100100	4 Host	4 Upstream Sockets	4 x2 Links	+	4 x2	Link 0,		-		-	-	-	Link 3,							
	2 ×2, 2 ×1 1 ×2, 1 ×1					06111		Lane 0	Lane 1	Lane 0	lane 1	Lane 0	Lane 1 La	Lane 0 La	Lane 1							
	RSVD for future x8 encoding	001000	4 Host	4 Upstream Sockets	4 x2 Links	0b111		ſ		ŀ		╞	-	╞			╞	╞	╞	ŀ		L
1 x16 Option A	1 ×16, 1 ×8, 1 ×4, 1 ×2, 1 ×1	111090	4 Host	4 Upstream Sockets	4 x2 Links	06111	1 x2 (Host 0 only)	Link 0, Lane 0	Link 0, Lane 1													
_	2 x8, 2 x4, 2 x2, 2 x1	0P0110	4 Host	4 Upstream Sockets	4 x2 Links	06111	1 x2 (Host 0 only)	Link 0, Lane 0	Link 0, Lane 1													
	1 x16 Option B 2 x8, 2 x4, 2 x2, 2 x1	050101	4 Host	4 Upstream Sockets	4 x2 Links	06111	1 x2 (Host 0 only)	Link 0, Lane 0	Link 0, Lane 1					-								
	1 ×16, 1 ×8, 1 ×4 2 ×8, 2 ×4, 2 ×2, 2 ×1	000100	4 Host	4 Upstream Sockets	4 x2 Links	06111 (2 x2 (Host 0 & 2 only)	Link 0, Lane 0	Link 0, Lane 1			Link 2, Li Lane 0 Li	Link 2, Lane 1									
	1 x16 Option C 4 x4, 4 x2, 4 x1							1	1	1	1	_	+	+			+	+	+	_		
	4 x4, 4 x2, 4 x1	000011	4 Host	4 Upstream Sockets	4 x2 Links	06111	2 x2 (Host 0 & 2 only)	Lane 0	Link 0, Lane 1			Lane 0 L	Link 2, Lane 1		_							
	RSVD	000010	4 Host	4 Upstream Sockets	4 x2 Links	00111		Ī														
	RSVD	00001	4 Host	4 Upstream Sockets	4 x2 Links	06111																
	RSVD	000000	4 Host	4 Host 4 Linstream Sockets	4 x2 Links	00111					-	-	_									

Table 37: Bifurcation for Quad Host, Quad Sockets and Quad Upstream Links – First 8 lanes

Rev 0.63

3.9 Power Capacity and Power Delivery

There are four permissible power states: NIC Power Off, ID Mode, Aux Power Mode (S5), and Main Power Mode (S0). The transition of these states is shown in Figure 81. The max available power envelopes for each of these states are defined in Table 38.

Table 38: Power States

Power State	PWR_EN	PERSTn	FRU	Scan Chain	WAKEn	RBT Link	PCle Link	+3.3V _EDGE	+12V _EDGE
NIC Power Off	Invalid / Don't Care	Invalid / Don't Care							
ID Mode	Low	Low	Х	Х				Х	Х
Aux Power Mode (S5)	High	Low	Х	х	Х	Х		х	Х
Main Power Mode (S0)	High	High	Х	Х	Х	х	х	Х	Х

3.9.1 NIC Power Off

In NIC power off mode, all power delivery has been turned off or disconnected from the baseboard. Transition to this state can be from any other state.

3.9.2 ID Mode

In the ID Mode, only +3.3V_EDGE is available for powering up management only functions. FRU and scan chain accesses are only allowed in this mode. The +12V_EDGE rail is not intended to be used in ID Mode, however leakage current may be present. The max leakage is defined in Section 3.10. An OCP NIC 3.0 card shall transition to this mode when PWR_EN=0 and PERST#=0.

Rev 0.63

3.9.3 Aux Power Mode (S5)

In Aux Power Mode provides both +3.3V_EDGE as well as +12V_EDGE is available. +12V_EDGE in Aux mode may be used to deliver power to the OCP NIC 3.0 card, but only up to the Aux mode budget as defined in Table 39. An OCP NIC 3.0 card shall transition to this mode when PWR_EN=1 and PERST#=0.

3.9.4 Main Power Mode (S0)

In Main Power Mode provides both +3.3V_EDGE and +12V_EDGE across the OCP connector. The OCP NIC 3.0 card operates in full capacity. Up to 80W may be delivered on +12V_EDGE for a Small Card and up to 150W for a Large Card. Additionally, up to 3.63W is delivered on each +3.3V_EDGE pin. An OCP NIC 3.0 card shall transition to this mode when PWR_EN=1 and PERST#=1.

3.10 Power Supply Rail Requirements and Slot Power Envelopes

The baseboard provides +3.3V_EDGE and +12V_EDGE to both the Primary and Secondary Connectors. The rail requirements are leveraged from the PCIe CEM 4.0 specification. For OCP NIC 3.0 cards, the requirements are as follows:

Power Rail	15W Slot	25W Slot	35W Slot	80W Slot	150W
	Small Card	Small Card	Small Card	Small Card	Large Card
	Hot Aisle	Hot Aisle	Hot Aisle	Cold Aisle	Cold Aisle
+3.3V_EDGE					
Voltage Tolerance	±9% (max)	±9% (max)	±9% (max)	±9% (max)	±9% (max)
Supply Current					
ID Mode	375mA (max)	375mA (max)	375mA (max)	375mA (max)	375mA (max)
Aux Mode	1.1A (max)	1.1A (max)	1.1A (max)	1.1A (max)	2.2A (max)
Main Mode	1.1A (max)	1.1A (max)	1.1A (max)	1.1A (max)	2.2A (max)
Capacitive Load	150µF (max)	150µF (max)	150µF (max)	150µF (max)	300µF (max)
+12V_EDGE					
Voltage Tolerance	±8% (max)	±8% (max)	±8% (max)	±8% (max)	±8% (max)
Supply Current					
ID Mode	100mA (max)	100mA (max)	100mA (max)	100mA (max)	100mA (max)
Aux Mode	0.7A (max)	1.1A (max)	1.5A (max)	3.3A (max)	6.3A (max)
Main Mode	1.25A (max)	2.1A (max)	2.9A (max)	6.6A (max)	12.5A (max)
Capacitive Load	500µF (max)	500µF (max)	1000µF (max)	1000µF (max)	2000µF (max)

Table 39: Baseboard Power Supply Rail Requirements – Slot Power Envelopes

Note: While cards may draw up to the published power ratings, the baseboard vendor shall evaluate its cooling capacity for each slot power envelope. Additionally, the baseboard shall advertise its slot power limits to aid in the overall board power budget allocation to prevent a high power card from being enabled in a lower power class slot. This is implemented via the Slot Power Limit Control mechanism as defined in the PCIe Base Specification. The end point silicon will power up in a low power state until power is negotiated.

The OCP NIC 3.0 FRU definition also provides a record for the max power consumption of the card. This value may also be used to aid in determining if the card may be enabled in a given OCP slot. Refer to Section 4.10.2 for the available FRU records.

3.11 Hot Swap Considerations for +12V_EDGE and +3.3V_EDGE Rails

For baseboards that support system hot (powered on) OCP NIC 3.0 card insertions and extractions, the system implementer shall consider the use of hotswap controllers on both the +12V_EDGE and +3.3V_EDGE pins to prevent damage to the baseboard or the OCP NIC 3.0 card. Hotswap controllers

Commented [NT23]: 500uF/500uF/1000uF/1000uF/2000uF. Tentative. Waiting for recommended values from system vendors

Commented [CP24]: Do we still plan to put in some basic protection mechanism (either ME or TVS) to prevent system damage from undesired user hot-swap?

Commented [TN25R24]: Snippet from e-mail conversation:

Section 3.11 -

<PC> This will be provided this week from our power experts. The need of ME protection mechanism to avoid unwanted hot-swaps on unsupported servers should also be discussed. Had this topic been brought up in the ME sessions yet? JH 1/16 – We haven't discussed in that meeting; I have discussed with Jia in detail though. We have two versions of faceplates for W1, one that's tool-less and one that has a thumbscrew. The thumbscrew version does have some added 'inconvenience' to dissuade users from doing this. HPE ME's appear solely focused on the thumbscrew version. We have no space to add additional mechanism to do this more actively. In my experience this will occur no matter the amount of barriers you put in place, the HW must be able to do this without sustaining damage. In my past systems such an event would require system power cycle for recovery.

Rev 0.63

help with in-rush current limiting while also providing overcurrent protection, undervoltage and overvoltage protection capabilities.

The hotswap controller may gate the +12V_EDGE and +3.3V_EDGE based on the PRSNTB[3:0]# value. Per Section 3.6.3, a card is present in the system when the encoded value is not 0b1111. The PRSNTB[3:0]# may be AND'ed together and connected to the hotswap controller to accomplish this result. Per the OCP NIC 3.0 mechanical definition (Section 3.1.1), the present pins are short pins and engage only when the card is positively seated.

Baseboards that do not support hot insertion, or hot extractions may opt to not implement these features.

3.12 Power Sequence Timing Requirements

The following figure shows the power sequence of PRSNTB[3:0]#, +3.3V_EDGE, +12V_EDGE relative to PWR_EN, BIF[2:0]#, PERSTn*, REFCLK stable, the OCP NIC 3.0 card power ramp and NIC_PWR_GOOD. Please refer to Section 3.5.4 for the NIC_PWR_GOOD definition.

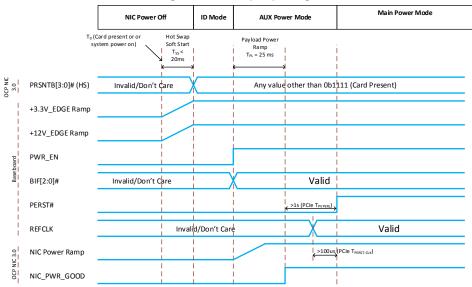
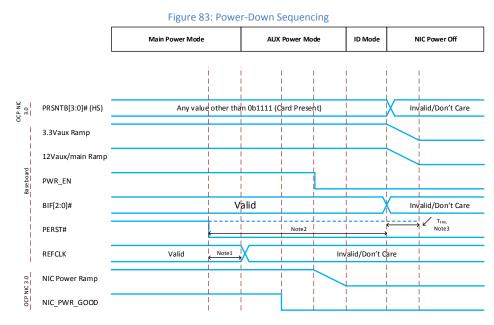



Figure 82: Power-Up Sequencing

Rev 0.63

Note1: REFCLK go inactive after PERST# goes active. Note2: PEREST# goes active before the power on the connector is removed.

Note3: In the case of a surprise power down, PERST# goes active TFAIL after power is no longer stable.

Table 40: Power Sequencing Parameters

Parameter	Value	Units	Description
T _{ss}	20	ms	Max time between system +3.3V_EDGE and +12V_EDGE ramp to power stable.
T _{PL}	<25	ms	Max time between PWR_EN assertion to NIC_PWR_GOOD assertion.
T _{PVPERL}	>1	S	Minimum time between NIC_PWR_GOOD assertion and PERST# deassertion. For OCP NIC 3.0 applications, this value is >1 second. This is longer than the minimum value specified in the PCIe CEM Specification, Rev 4.0.
T _{PERST-CLK}	>100	μs	Min Time REFCLK is stable before PERST# inactive
T _{FAIL}	<500	ns	In the case of a surprise power down, PERST# goes active T_{FAIL} after power is no longer stable.

Rev 0.63

4 Management and Pre-OS Requirements

OCP NIC 3.0 card management is an important aspect to overall system management. This section specifies a common set of management requirements for OCP NIC 3.0 implementations. There are three types of implementations (RBT+MCTP Type, RBT Type, and MCTP Type) depending on the physical sideband management interfaces, transports, and traffic supported over different transports. An OCP NIC 3.0 implementation shall support at least one type of implementation for card management. For a given type of implementation, an OCP NIC 3.0 card shall support type specific requirements described in Sections 4.1 through 4.7.

4.1 Sideband Management Interface and Transport

OCP NIC 3.0 sideband management interfaces are used by a Management Controller (MC) or Baseboard Management Controller (BMC) to communicate with the NIC. Table 41 summarizes the sideband management interface and transport requirements.

Requirement	RBT+MCTP	RBT Type	МСТР
	Туре		Туре
NC-SI 1.1 compliant RMII Based Transport (RBT) including	Required	Required	N/A
physical interface defined in Section 10 of DMTF DSP0222			
I ² C compliant physical interface for FRU EEPROM	Required	Required	Required
SMBus 2.0 compliant physical interface	Required	N/A	Required
Management Component Transport Protocol (MCTP) Base	Required	N/A	Required
1.3 (DSP0236 1.3 compliant) over MCTP/SMBus Binding			
(DSP0237 1.1 compliant)			
PCIe VDM compliant physical interface	Optional	Optional	Optional
Management Component Transport Protocol (MCTP) Base	Optional	Optional	Optional
1.3 (DSP0236 1.3 compliant) over MCTP/PCIe VDM Binding			
(DSP0238 1.0 compliant)			

Table 41: Sideband Management Interface and Transport Requirements

4.2 NC-SI Traffic

DMTF DSP0222 defines two types of NC-SI traffic: Pass-Through and Control. Table 42 summarizes the NC-SI traffic requirements.

Table 42: NC-SI Traffic Requirements

Requirement	RBT+MCTP	RBT Type	МСТР
	Туре		Туре
NC-SI Control over RBT (DMTF DSP0222 1.1 or later	Required	Required	N/A
compliant)			
NC-SI Control over MCTP (DMTF DSP0261 1.2 compliant)	Required	N/A	Required
NC-SI Pass-Through over RBT (DMTF DSP0222 1.1 compliant)	Required	Required	N/A
NC-SI Pass-Through over MCTP (DMTF DSP0261 1.2	Optional	N/A	Optional
compliant)			

Note: A Management Controller (MC) is allowed to use NC-SI Control traffic only without enabling NC-SI pass-through.

Commented [HS26]: Pat will send Hemal definition of each term here. Change MCTP to MCTP/SMBus Type.

Rev 0.63

4.3 Management Controller (MC) MAC Address Provisioning

An OCP NIC 3.0 compliant card that supports NC-SI pass-through shall provision one or more MAC addresses for Out-Of-Band (OOB) management traffic. The number of MC MAC addresses provisioned is implementation dependent. These MAC addresses are not exposed to the host(s) as available MAC addresses. The MC is not required to use these provisioned MAC addresses. Table 43 summarizes the MC MAC address provisioning requirements.

Table 43: MC N	AC Address	Provisioning	Requirements

Requirement	RBT+MCTP Type	RBT Type	MCTP Type
One or more MAC Addresses shall be provisioned for the MC.	Required	Required	Optional
The OCP NIC 3.0 platform may use the NIC vendor allocated MAC addresses for the BMC. Each management channel requires a dedicated MAC address. Some platforms may employ multiple BMCs (or virtual BMCs) each with a dedicated MAC address. The NIC may also support multiple partitions on a physical port.			
The recommended MAC address allocation scheme is stated below.			
 Assumptions: The number of BMCs or virtual BMCs is the same as the number of hosts (1:1 relationship between each host and the BMC). The maximum number of partitions on each port is the same. 			
Variables:			
 num_ports - Number of Ports on the OCP NIC 3.0 card 			
 max_parts - Maximum number of partitions on a port 			
 num_hosts - Number of hosts supported by the NIC 			
 first_addr - The MAC address of the first port on the first host for the first partition on that port host_addr[i] - base MAC address of ith host (0 			
 ≤ i ≤ num_hosts-1) bmc_addr[i] - base MAC address of ith BMC (0 			

Rev 0.63

			KeV 0.63
Formulae:			
 host_addr[i] = first_addr + i*num_ports*(max_parts+1) 			
• The assignment of MAC address used by i th host on port j			
for the partition k is out of the scope of this			
specification.			
 bmc_addr[i] = host_addr[i] + num_ports*max_parts 			
• The MAC address used by i^{th} BMC on port j, where $0 \le i \le i$			
num_hosts-1 and 0 ≤ j ≤ num_ports -1 is bmc_addr[i] + j			
Support at least one of the following mechanism for	Required	Required	Optional
 provisioned MC MAC Address retrieval: NC-SI Control/RBT (DMTF DSP0222 1.1 or later 			
compliant)			
Note: This capability is planned to be included in revision			
1.2 of the NC-SI specification.			
 NC-SI Control/MCTP (DMTF DSP0261 1.2 compliant) 			

4.4 Temperature Reporting

An OCP NIC 3.0 implementation can have several silicon components including one or more ASICs implementing NIC functions and one or more transceiver modules providing physical network media connectivity. For the system management, it is important that temperatures of these components can be retrieved over sideband interfaces.

The temperature reporting interface shall be accessible in Aux Power Mode (S5), and Main Power Mode (S0). Table 44 summarizes temperature reporting requirements. These requirements improve the system thermal management and allow the baseboard management device to access key component temperatures on an OCP NIC 3.0 card. When the temperature reporting function is implemented, it is recommended that the temperature reporting accuracy is within $\pm 3^{\circ}$ C.

Table 44: Temperature Reporting Requirements

Requirement	RBT+MCTP Type	RBT Type	МСТР Туре
Component Temperature Reporting for a component with TDP ≥8W	Required	Required	Required
Component Temperature Reporting for a component with TDP <8W	Recommended	Recommended	Recommended
When the temperature sensor reporting function is implemented, the OCP NIC 3.0 card shall support PLDM for Platform Monitoring and Control (DSP0248 1.1 compliant) for temperature reporting.	Required	Required	Required
When the temperature sensor reporting function is implemented, the OCP NIC 3.0 card shall report upper-warning, upper-critical, and	Required	Required	Required

Commented [JN27]: Other than Temperature, is there other information in transceiver may be extracted? Such as serial number / Serdes settings?

Commented [NT28R27]: Per Jia – deferring this comment as it will not be addressed in the v0.70 release.

Commented [CR29]: Section 4 (or anywhere else) does not define a place for the card to report the sensor maximum or target for closed loop fan control - this needs to be defined for the

Commented [CR30]: Section 4.4 does not define where/how the card should report a maximum for sensors that report temperature. This is required in order for systems to implement closed loop control.

Rev 0.63

		1	1
upper-fatal thresholds for PLDM numeric			
sensors.			
Note: For definitions of the warning, critical,			
and fatal thresholds, refer to DSP0248 1.1.			
When the temperature reporting function is	Required	Required	Required
implemented using PLDM numeric sensors, the			
temperature tolerance shall be reported.			
Support for NIC self-shutdown.	Required	Required	Required
The purpose of this feature is to "self-protect"			
the NIC from permanent damage due to high			
operating temperature experienced by the NIC.			
The NIC shall monitor its temperature and shut-			
down itself as soon as the threshold value is			
reached. The value of the self-shutdown			
threshold is implementation specific. It is			
recommended that the self-shutdown			
threshold value is higher than the maximum			
junction temperature of the ASIC implementing			
the NIC function and this value is between the			
critical and fatal temperature thresholds.			
Note: It is assumed that a system management			
function will prevent a component from			
reaching its fatal threshold temperature.			
The OCP NIC 3.0 card does not need to know			
the reason for the self-shutdown threshold			
crossing (e.g. fan failure). After entering the			
self-shutdown state, the OCP NIC 3.0 card is not			
required to be operational. This might cause			
the system with the OCP NIC 3.0 card to			
become unreachable via the NIC. An AC power			
cycle of the system may be required to bring			
the NIC back to an operational state. In order to			
recover the NIC from the self-shutdown state,			
the OCP NIC 3.0 card should go through the NIC			
power off state as described in Section 3.9.1.			
power on state as described in Section 5.9.1.		1	<u> </u>

4.5 Power Consumption Reporting

An OCP NIC 3.0 implementation may be able to report the power consumed by one or more component implementing NIC functions. It is important for the system management that the information about the power consumption can be retrieved over sideband interfaces. Table 45 summarizes power consumption reporting requirements.

Table 45: Power Consumption Reporting Requirements

Rev 0.63

Requirement	RBT+MCTP	RBT Type	МСТР
	Туре		Туре
Component Estimated Power Consumption Reporting	Required	Required	Required
Component Runtime Power Consumption Reporting	Optional	Optional	Optional
PLDM for Platform Monitoring and Control (DSP0248 1.1 compliant) for component power consumption reporting	Required	Required	Required

4.6 Pluggable Transceiver Module Status and Temperature Reporting

Pluggable modules like an optical module or a direct attached copper cable is used to connect an OCP NIC to a physical medium. It is important to know the presence of pluggable modules and information about insertion/deletion of pluggable modules. Table 46 summarizes pluggable module status reporting requirements.

Table 46: Pluggable	Module Status	Reporting	Requirements

Requirement	RBT+MCTP Type	RBT Type	МСТР Туре
Pluggable Transceiver modules Presence Status and Temperature Reporting	Required	Required	Required
PLDM for Platform Monitoring and Control (DSP0248 1.1 compliant) for reporting the pluggable transceiver module presence status and pluggable transceiver module temperature	Required	Required	Required

4.7 Management and Pre-OS Firmware Inventory and Update

An OCP NIC 3.0 implementation can have different types of firmware components for data path, control path, and management path operations. It is desirable that OCP NIC 3.0 implementations support an OS-independent mechanism for the management firmware update. It is desirable that the management firmware update does not require a system reboot for the new firmware image to become active. Table 47 summarizes the firmware inventory and update requirements.

Table 47: Management and Pre-OS Firmware Inventory and Update Requirements

Requirement	RBT+MCTP	RBT Type	МСТР
	Туре		Туре
Network boot in UEFI driver (supporting both IPv4 and	Required	Required	Required
IPv6 addressing for network boot)			
UEFI secure boot for UEFI drivers	Required	Required	Required
UEFI secure firmware update	Required	Required	Required
PLDM for Firmware Update (DSP0267 1.0 compliant)	Required	Recommended	Required

4.7.1 Secure Firmware

It is highly recommended that an OCP NIC 3.0 card supports a secure firmware feature. In the future versions of the OCP NIC 3.0 specification, the secure firmware feature is intended to be required. When the secure firmware feature is enabled and where export compliance permits, the OCP NIC 3.0 card shall verify firmware components prior to the execution, execute only signed and verified firmware components, and only allow authenticated firmware updates. Where applicable, an OCP NIC 3.0

Commented [HS31]: Hemal to work with Jon Lewis to refine this definition.

Rev 0.63

implementation shall use the guidelines provided in NIST SP 800-193 (draft) Platform Resiliency Guidelines for the following secure firmware functions:

- Signed Firmware Updates
 - Ensure only valid/authenticated firmware updates can be applied. Refer to: NIST 800-193 Section 3.5 Firmware Update Mechanisms, and 4.1.2 Root of Trust for Update (RTU) and Chain of Trust for Update (CTU)
 - Ensure authentication mechanisms cannot be bypassed. Refer to NIST 800-193 Section 4.2 Protection.
- Secure Boot
 - Only boot trusted/authenticated firmware: NIST 800-193 4.1.3 Root of Trust for Detection (RTD) and Chain of Trust for Detection (CTD), and Section 4.3 Detection
 - o Recovery mechanism in case of boot failure: NIST 800-193 Section 4.4 Recovery

4.7.2 Firmware Inventory

The OCP NIC 3.0 card shall allow queries to obtain the firmware component versions, device model, and device ID via in-band and out-of-band interfaces without impacting NIC function and performance of said paths.

4.7.3 Firmware Inventory and Update in Multi-Host Environments

A multi-host capable OCP NIC 3.0 card shall gracefully handle concurrent in-band queries from multiple hosts and out-of-band access from the BMC for firmware component versions, device model, and device ID information.

A multi-host capable OCP NIC 3.0 card shall only permit one entity to perform write accesses to NIC firmware at a time, without creating contention.

A multi-host capable OCP NIC 3.0 card shall gracefully handle exceptions when more than one entity attempts to perform concurrent NIC firmware writes.

4.8 NC-SI Package Addressing and Hardware Arbitration Requirements

NC-SI over RBT is implemented via RMII pins between the MC and the OCP NIC 3.0 card. Protocol and implementation details of NC-SI over RBT can be found in the DMTF DSP0222 standard.

4.8.1 NC-SI over RBT Package Addressing

NC-SI over RBT capable OCP NIC 3.0 cards shall use a unique Package ID per ASIC when multiple ASICs share the single NC-SI physical interconnect to ensure there are no addressing conflicts.

Baseboards use the Slot_ID pin on the Primary Connector for this identification. The Slot_ID value may be directly connected to GND (Slot ID = 0), or pulled up to +3.3V_EDGE (Slot ID = 1).

Package ID[2:0] is a 3-bit field and is encoded in the NC-SI Channel ID as bits [7:5]. Package ID[2] defaults to 0b0 in the NC-SI specification, but is optionally configurable if the target silicon supports configuring this bit. Package ID[1] is directly connected to the SLOT_ID pin. Package ID[0] is set to 0b0 for Network Controller ASIC #0. For an OCP NIC 3.0 card with two discrete silicon instances, Package ID[0] shall be set

Rev 0.63

to 0b1 for Network Controller ASIC #1. Refer to the specific endpoint device datasheet for details on the Package ID configuration options.

Up to four silicon devices are supported on the bus if only Package ID[1:0] is configurable (e.g. Package ID[2] is statically set to 0b0). Up to eight silicon devices are supported on the NC-SI bus if Package ID[2:0] are all configurable.

Refer to the DMTF DSP0222 standard for more information on package addressing, Slot ID and Package ID.

4.8.2 Arbitration Ring Connections

For baseboards that implement two or more Primary Connectors, the NC-SI over RBT arbitration ring may be connected to each other. The arbitration ring shall support operation with a one card, or both cards installed. Figure 71 shows an example connection with dual Primary Connectors.

4.9 SMBus 2.0 Addressing Requirements

The SMBus provides a low speed management bus for the OCP NIC 3.0 card. The FRU EEPROM and onboard temperature sensors are connected on this bus. Additionally, network controllers may utilize the SMBus interface for MCTP communications. Proper power domain isolation shall be implemented on the NIC.

4.9.1 SMBus Address Map

OCP NIC 3.0 cards shall support SMBus ARP (be ARP-capable) to allow the cards to be dynamically assigned addresses for MCTP communications to avoid address conflicts and eliminate the need for manual configuration of addresses. The address type of dynamic addresses can be either dynamic and persistent address device or dynamic and volatile address device. Refer to SMBus 2.0 specification and Section 6.11 of DSP0237 1.1 for details on SMBus address assignment.

A system implementation may choose to only use fixed addresses for an OCP NIC 3.0 card on the system. The assignment of these fixed addresses is system dependent and outside the scope of this specification. When fixed addresses are assigned to OCP NIC 3.0 card, then the OCP NIC 3.0 card shall be a fixed and discoverable SMBus device. Refer to SMBus 2.0 specification for more details.

All predefined SMBus addresses for OCP NIC 3.0 are shown in Table 48. Baseboard and OCP NIC 3.0 card designers must ensure additional devices do not conflict. The addresses shown are in 8-bit format and represent the read/write address pair.

Table 48: SMBus Address Map						
Address (8-bit)	Device	Notes				
0xA0 / 0xA1 – SLOT0 0xA2 / 0xA3 – SLOT1	EEPROM	On-board FRU EEPROM.				
		Mandatory. Powered from Aux power domain.				
		The EEPROM ADDR0 pin shall be connected to the SLOT_ID pin on the OCP NIC 3.0 card gold finger to allow up to two OCP NIC 3.0 cards to exist on the same I ² C bus.				

Commented [HS32]: Pat will send Hemal text to differentiate dynamic persistent and dynamic non-persistent. Add a reference to the SMBus address table from DSP0237 1.1.

Rev 0.63

4.10 FRU EEPROM

4.10.1 FRU EEPROM Address, Size and Availability

The FRU EEPROM provided for the baseboard to determine the card type and is directly connected to the SMBus on the card edge. Only one EEPROM is required for a single physical OCP NIC 3.0 card regardless of the PCIe width or number of physical card edge connectors it occupies. The FRU EEPROM shall be connected to the Primary Connector SMBus.

The EEPROM is addressable at the addresses indicated in Table 48. The write/read pair is presented in 8bit format. The size of EEPROM shall be at least 4Kbits for the base EEPROM map. OCP NIC 3.0 card suppliers may use a larger size EEPROM if needed to store vendor specific information.

The FRU EEPROM is readable in all three power states (ID mode, AUX(S5) mode, and MAIN(S0) mode.

4.10.2 FRU EEPROM Content Requirements

The FRU EEPROM shall follow the data format specified in the IPMI Platform Management FRU Information Storage Definition v1.2. Both the Product Info and Board Info records shall be populated in the FRU EEPROM. The OEM record 0xC0 is used to store specific records for the OCP NIC 3.0. For an OCP NIC 3.0 card, the FRU EEPROM OEM record content based on the format defined in <u>Table 49</u>Table 49 shall be populated.

Table 49: FRU EEPROM Record – OEM Record 0xC0, Offset 0x00

Offset	Length	Description				
0	3	Manufacturer ID, LS Byte first (3 bytes total).				
		For OCP NIC 3.0 compliant cards, the value of this field shall be set to the OCP IANA assigned number. This value is 0x7FA600, LS byte first. (42623 in decimal)				
3	1	OCP NIC 3.0 FRU OEM Record Version. For OCP NIC 3.0 cards compliant to this specification, the value of this field shall be set to 1.				
4	1	Card Max power (in Watts) in MAIN(S0) mode. Rounded up to the nearest Watt for fractional values.				
5	1	Card Max power (in Watts) in AUX(S5) mode. Rounded up to the nearest Watt for fractional values.				
6	1	Hot Aisle Card Cooling Tier.				
		The encoded value reports the OCP NIC 3.0 Card Hot Card Cooling Tier as defined in Section 6.6.1.				
		0x00 – RSVD				
		0x01 – Hot Aisle Cooling Tier 1				
		0x02 – Hot Aisle Cooling Tier 2				
		0x03 – Hot Aisle Cooling Tier 3				
		0x04 – Hot Aisle Cooling Tier 4				
		0x05 – Hot Aisle Cooling Tier 5				
		0x06 – Hot Aisle Cooling Tier 6 0x07 – Hot Aisle Cooling Tier 7				
		0x07 – Hot Aisle Cooling Tier 7 0x08 – Hot Aisle Cooling Tier 8				
		0x09 – Hot Aisle Cooling Tier 9				
		0x0A – Hot Aisle Cooling Tier 10				
		0x0B – Hot Aisle Cooling Tier 11				
		0x0C – Hot Aisle Cooling Tier 12				

Commented [HS33]: Should PLDM for FRU data transfer be specified? Hemal to take a look at PLDM for FRU spec mandatory requirements and optional requirements as they apply to OCP NIC 3.0.

Commented [HS34]: Need feedback.

Commented [TN35]: Need to scrub FRU EEPROM map – Particularly for any thermal related records. To be updated once the thermal section is finalized.

Rev 0.63

		0x0D – 0xFE – Reserved 0xFF – Unknown
7	1	Cold Aisle Card Cooling Tier.
,		The encoded value reports the OCP NIC 3.0 Card Cold Aisle Cooling Tier as defined in Section 6.6.2.
		0x00 – RSVD
		0x01 – Cold Aisle Cooling Tier 1
		0x02 – Cold Aisle Cooling Tier 2 0x03 – Cold Aisle Cooling Tier 3
		0x03 - Cold Aisle Cooling Tier 3 0x04 - Cold Aisle Cooling Tier 4
		0x05 – Cold Aisle Cooling Tier 5
		0x06 – Cold Aisle Cooling Tier 6
		0x07 – Cold Aisle Cooling Tier 7
		0x08 – Cold Aisle Cooling Tier 8 0x09 – Cold Aisle Cooling Tier 9
		0x0A – Cold Aisle Cooling Tier 10
		0x0B – Cold Aisle Cooling Tier 11
		0x0C – Cold Aisle Cooling Tier 12
		0x0D – 0xFE – Reserved
8	1	0xFF – Unknown Card active/passive cooling.
0	-	This bit defines if the card has passive cooling (there is no fan on the card) or
		active cooling (a fan is located on the card).
		0x00 – Passive Cooling
		0x01 – Active Cooling
		0x02-0xFE – Reserved
_		0xFF – Unknown
9	2	Hot aisle standby airflow requirement
		The encoded value represents the amount of airflow, in LFM, required to cool the card in AUX (S5) mode while operating in a hot aisle environment.
		Byte 9 is the LS byte, byte 10 is the MS byte.
		0x0000-0xFFFE – LFM required for cooling card in Hot Aisle Operation. 0xFFFF – Unknown.
11	2	Cold aisle standby airflow requirement
		The encoded value represents the amount of airflow, in LFM, required to cool the card in AUX (S5) mode while operating in a cold aisle environment.
		Byte 11 is the LS byte, byte 12 is the MS byte.
		0x0000-0xFFFE – LFM required for cooling card in Cold Aisle Operation. 0xFFFF – Unknown.
13	1	Temperature Target Max – ASIC 0.
		The T_{max} value of ASIC 0. The temperature value is in degrees Celsius.
14	1	Temperature Target Max – ASIC 1.
		The T_{max} value of ASIC 0. The temperature value is in degrees Celsius.
15:30	16	Reserved for future use.
		Set each byte to 0xFF for this version of the specification.
31	1	Number of physical controllers (N). Value is an equal to or greater than 0.
	I	

Rev 0.63

		A value of 0 denotes that no controllers exist on the OCP NIC 3.0 card.
32:47	16	Controller 1 UDID. MS Byte First (to align the FRU order to the reported UDID order on the SMBus)
32+16*(N- 1):16*N+31	16	Controller N UDID. MS Byte First (to align the FRU order to the reported UDID order on the SMBus). This field is applicable for values of $N \ge 2$.

Rev 0.63

Routing Guidelines and Signal Integrity Considerations 5

5.1 NC-SI Over RBT

For the purposes of this specification, the min and max electrical trace length of the NC-SI signals shall be between 2 inches and 4 inches. The traces shall be implemented as 50 Ohm impedance controlled nets.

5.2 PCle

This section is a placeholder for the PCIe routing guidelines and SI considerations.

OCP NIC 3.0 card suppliers shall follow the PCIe routing specifications. At this time, the OCP NIC 3.0 subgroup is working to identify and agree to the channel budget for an OCP NIC 3.0 card and leave sufficient margin for the baseboard. Refer to the PCIe CEM and PCIe Base specifications for end-to-end channel signal integrity considerations.

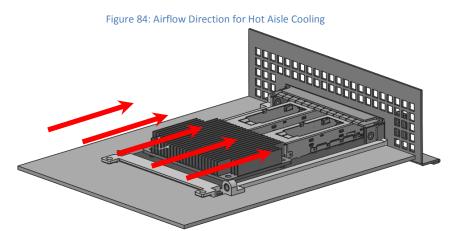
Commented [CP36]: We are expecting more information such as IL/RL/Jitter/Xtalk requirements in this section

Commented [JN37]: 1.Discussion point of 1st draft (define or not define in 1.00?) 2. Anything other than loss and impedance shall be defined to be complete

Commented [TN38]: Point to the PCIe spec for the electrical specs (See PCIe CEM Section 6.3.x. 4.7.x, 4.8) and SFF-TA-1002.

Rev 0.63

6 Thermal and Environmental


6.1 Airflow Direction

The OCP NIC 3.0 is designed to operate in either of two different airflow directions which are referred to as Hot Aisle and Cold Aisle. In both Hot Aisle and Cold Aisle configurations all airflow is directed over the topside of the card. Component placement must assume that no airflow will exist on the bottom side of the card. The local approach air temperature and speed to the card is dependent on the capability of the system adopting OCP NIC 3.0 card. These parameters may be impacted by the operational altitude and relative humidity in Hot Aisle or Cold Aisle configurations. Design boundary conditions for Hot Aisle and Cold Aisle cooling are included below in Sections 6.1.1 and 6.1.2 respectively.

The two airflow directions should not result in multiple thermal solutions to separately satisfy the varying thermal boundary conditions. Ideally, any specific OCP NIC 3.0 card design should function in systems with either Hot Aisle or Cold Aisle cooling. Thermal analysis in support of this specification have shown the Hot Aisle configuration to be more challenging than Cold Aisle but card vendors should make that determination for each card that is developed.

6.1.1 Hot Aisle Cooling

The airflow in typical server systems will approach from the card edge or heatsink side of the card. This airflow direction is referred to as Hot Aisle cooling and is illustrated below in Figure 84. The term Hot Aisle refers to the card being located at the rear of the system where the local inlet airflow is preheated by the upstream system components (e.g. HDD, CPU, DIMM, etc.).

The boundary conditions for Hot Aisle cooling are shown below in Table 50 and Table 51. The low temperature is listed at 5°C and assumes fresh air could be ducted to the back of the system from the front. More typically the inlet temperature to the OCP NIC 3.0 card will be in the same range as PCle cards located at the back of the system – 55°C. Depending on the system design, power density, and airflow the inlet temperature to the OCP NIC 3.0 card may be as high as 60°C or 65°C. The airflow velocities listed in Table 51 represent the airflow velocities typical in mainstream servers. Higher airflow

http://opencompute.org

Commented [CP39]: Do we plan to add in the connector environmental environmental requirements such as connector gold plating thickness? Similar to what's been defined in the PCIe CEM 3.0 CH 6.4.

Commented [TN40R39]: See Section 6.8, below.

Rev 0.63

velocities are available within the Hot Aisle cooling tiers listed in Table 55 but card designers must be sure to understand the system level implications of such high card LFM requirements.

Table 50: Hot Aisle Air Temperature Boundary Conditions

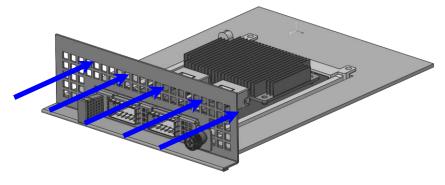

	Low	Typical	High	Max	
Local Inlet air	5॑°C	55°C	60°C	65°C	
temperature	(system inlet)	55 C	00 C	05 C	

	Table 51: Hot Aisle	Airflow Boundary C	onditions	
	Low	Typical	High	Max
Local inlet air velocity	50 LFM	100-200 LFM	300 LFM	System Dependent

6.1.2 Cold Aisle Cooling

When installed in the front of a server the airflow will approach from the I/O connector (e.g. SFP, QSFP or RJ-45) side of the card. This airflow direction is referred to as Cold Aisle cooling and is illustrated below in Figure 85. The term Cold Aisle refers to the card being located at the front of the system where the local inlet airflow is assumed to be the same temperature as the system inlet airflow.

Figure 85: Airflow Direction for Cold Aisle Cooling

The boundary conditions for Cold Aisle cooling are shown below in Table 52 and Table 53. The temperature values listed in Table 52 assume the inlet temperature to the OCP NIC 3.0 card to be the same as the system inlet. The low, typical, high, and max temperatures listed align with the ASHRAE A1, A2, A3, and A4 environmental classes. Depending on the system, the supported ASHRAE class may be limit the maximum temperature to the OCP 3.0 NIC card. However, for more broad industry support, cards should be designed to the upper end of the ASHRAE classes (i.e. A4).

Table 52: Cold Aisle Air Temperature Boundary Conditions

	Low	Typical	High	Max	
Local Inlet Air	5°C	25-35°C	40°C	45°C	
Temperature	50	ASHRAE A1/A2	ASHRAE A3	ASHRAE A4	

Rev 0.63

Table 53: Cold Aisle Airflow Boundary Conditions

	Low	Typical	High	Max
Local Inlet Air	50 LFM			System
Velocity	SU LEIVI	100 LFM	200 LFM	Dependent

6.2 Design Guidelines

The information in this section is intended to serve as a quick reference guide for OCP NIC 3.0 designers early in the design process. The information should be used as a reference for upfront thermal design and feasibility and should not replace detailed card thermal design analysis. The actual cooling capability of the card shall be defined based on the testing with the OCP NIC 3.0 thermal test fixture documentation in Section 6.4.

6.2.1 ASIC Cooling – Hot Aisle

The ASIC or controller chip is typically the highest power consumer on the card. Thus, as OCP NIC 3.0 cards are developed it is important to understand the ASIC cooling capability. Figure 86 below provides an estimate of the maximum ASIC power that can be supported as a function of the local inlet velocity for the small card form factor. Each curve in Figure 86 represents a different local inlet air temperature from 45°C to 65°C.

The curves shown in Figure 86 were obtained using CFD analysis of a reference OCP NIC 3.0 small form factor card. The reference card has a 20mm x 20mm ASIC with two QSFP connectors. Figure 87 shows a comparison of the 3D CAD and CFD model geometry for the reference OCP NIC 3.0 card. Additional card geometry parameters and boundary conditions used in the reference CFD analysis are summarized in Table 54. The OCP NIC 3.0 simulation was conducted within a virtual version of the test fixture defined in Section 6.4.

An increase in the supported ASIC power or a decrease in the required airflow velocity may be achieved through heatsink size and material changes. For example, a larger heatsink or a heatsink made out of copper could improve ASIC cooling and effectively shift up the supportable power curves shown in Figure 86.

Rev 0.63

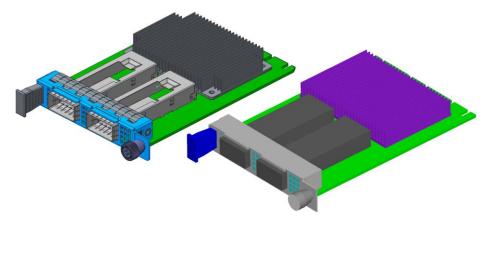



Figure 87: OCP NIC 3.0 Reference Geometry CAD & CFD

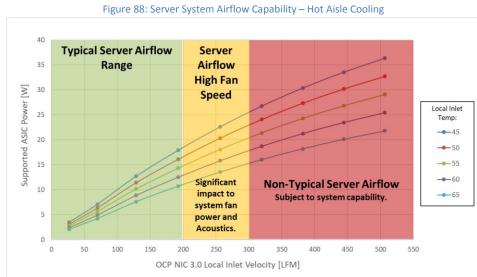

Rev 0.63

Table 54: Reference OCP NIC 3	.0 Small Card Geometry
OCP NIC 3.0 Form Factor	Small Card
Heatsink Width	65mm
Heatsink Length	54mm
Heatsink Height	9.24mm
Heatsink Base Thickness	1.5mm
Fin Count/Thickness	28/0.5mm
Heatsink Material	Extruded Aluminum
ASIC Width	20
ASIC Length	20
ASIC Height	2.26
ASIC Theta-JC	0.17 C/W
ASIC Theta-JB	10 C/W
OCP PCB In-Plane Conductivity	34 W/mK
OCP PCB Normal Conductivity	0.33 W/mK
ASIC Max T-case	95°C
OCP NIC 3.0 I/O Connectors	Two QSFP @ 3.5W each

It is important to point out that the curves shown in Figure 86 represent only the maximum ASIC power that can be supported vs. the supplied inlet velocity. Other heat loads on the card may require airflow velocities above and beyond that required to cool the ASIC. SFP or QSFP optical transceivers located downstream of the AISC will in many cases pose a greater cooling challenge than the ASIC cooling. Cooling the optical transceivers becomes even more difficult as the ASIC power is increased due to additional preheating of the air as it moves through the ASIC heatsink. OCP NIC 3.0 designers must consider all heat sources early in the design process to ensure the card thermal solution is sufficient for the feature set.

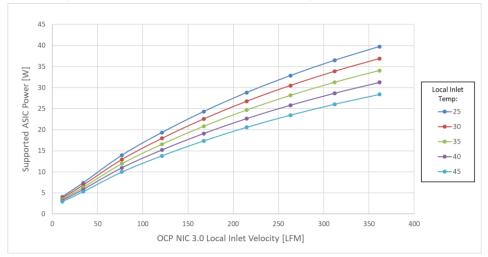
Card designers must also consider the airflow capability of the server systems that the cards are targeted for use within. Figure 88 below shows the ASIC supportable power curves with an overlay of three server airflow capability ranges. Designers must ensure that their thermal solutions and resulting card airflow requirements fall within the range of supportable system airflow velocity. Cards that are under-designed (e.g. require airflow greater than the system capability) will have thermal issues when deployed into the server system. Card designers are advised to work closely with system vendors to ensure they target the appropriate airflow and temperature boundary conditions.

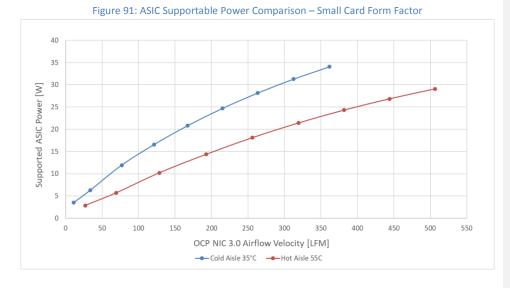
Rev 0.63

Rev 0.63

6.2.2 ASIC Cooling – Cold Aisle

Compared to the Hot Aisle cooling there are several key differences for Cold Aisle ASIC cooling. With Cold Aisle cooling the airflow is pulled from the I/O connector side of the card. The I/O connectors and faceplate venting may affect the airflow through the ASIC heatsink. The I/O connectors may also preheat the airflow by some amount. In a Cold Aisle cooling configuration, other parallel airflow paths may result in less airflow passing over and through the OCP NIC 3.0 card compared to the Hot Aisle. The ASIC cooling analysis for Cold Aisle was conducted utilizing the same geometry and boundary conditions described in Figure 87 and Table 54 with airflow moving from I/O connector to ASIC (opposite to the Hot Aisle analysis). Figure 89 below shows the results of this analysis for the Cold Aisle cooling configuration. Each curve in Figure 89 represents a different system inlet air temperature from 25°C to 45°C.




Figure 89: ASIC Supportable Power for Cold Aisle Cooling – Small Card Form Factor

Similar to Figure 88 for Hot Aisle cooling, Figure 90 below shows the ASIC supportable power curves with an overlay of three Cold Aisle server airflow capability ranges. Designers must ensure that their thermal solutions and resulting card airflow requirements fall within the range of supportable Cold Aisle system airflow velocity. Cards that are under-designed (e.g. require airflow greater than the system capability) will have thermal issues when deployed into the server system. Card designers are advised to work closely with system vendors to ensure they target the appropriate airflow and temperature boundary conditions for both Hot and Cold Aisle cooling.

Rev 0.63

A comparison of Hot Aisle (55°C) and Cold Aisle (35°C) ASIC cooling capability curves is shown below in Figure 91. The comparison shows the Hot Aisle ASIC cooling capability at 12W at 150LFM while the cold Aisle cooling capability shows support for 19W at 150LFM. In general, based on the reference geometry, the Cold Aisle cooling configuration allows for higher supported ASIC power at lower velocities due primarily to the lower inlet temperatures local to the OCP NIC 3.0 card when in the Cold Aisle cooling configuration.

Rev 0.63

6.3 Thermal Simulation (CFD) Modeling

Thermal simulation of OCP NIC 3.0 cards using CFD is recommended. The information that follows includes details of the geometry that should be used for CFD modeling of the OCP NIC 3.0 Small form factor. The geometry described below was developed to ensure consistency across card vendors when analyzing the card cooling and thermal solution. The geometry to be used for CFD analysis is based on the OCP NIC 3.0 thermal test fixture detailed in Section 6.4.

6.3.1 CFD Geometry – Small Card

The geometry to be used for CFD analysis is defined by the following parameters:

- Sheet metal enclosure
- Internal width: 128mm
- Internal height: 40.6mm
- Internal length: 256.7mm
- Fixture Faceplate Open Area Ratio: 25% (as shown in Figure 92)
- Internal height between top side of board and fixture cover: 34.94mm
- OCP Card is centered on the width of the host PCB.
- Inlet temperature boundary condition: desired approach temperature, e.g. 55°C
- Airflow boundary condition: Desired volume flow in the range of 1 to 20 CFM
- OCP NIC 3.0 local velocity monitor:
- Hot Aisle Cooling monitor plane 25mm upstream from ASIC heatsink
- Cold Aisle Cooling monitor planes upstream and downstream of ASIC heatsink depending on I/O connector proximity to ASIC heatsink.

CAD step files for the Hot Aisle CFD geometry are available for download here: NEED A LINK CAD step files for the Cold Aisle CFD geometry are available for download here: NEED A LINK

6.3.2 Optics Simulation Modeling This section TBD.

Rev 0.63

6.4 Thermal Test Fixture – Small Card

Full definition of the thermal test fixture will be included in a future specification release. Images of preliminary design are shown in Figure 92 and Figure 93.

CAD Files for the current revision of the test fixture are available for download here: NEED A LINK.

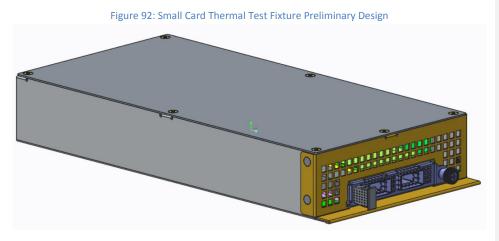
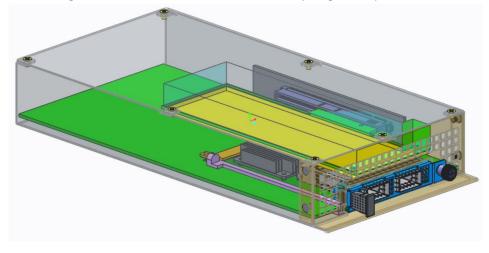



Figure 93: Small Card Thermal Test Fixture Preliminary Design – Transparent View

6.5 Sensor Requirements

See Sections 4.4 to 4.6 for information relating to temperature sensor and reporting requirements.

Rev 0.63

6.6 Card Cooling Tiers

Section 4.10.2 defines a number of registers that may be read by the associated baseboard system. Two of these registers provide the Hot Aisle and Cold Aisle Card Cooling Tiers that may be used for fan speed control. The Card Cooling Tiers relate the card local inlet temperature to the required local inlet velocity which allows the system to set fan speeds according to the cooling requirements of the card.

The Card Cooling Tier registers are particularly useful for systems that do not implement temperature sensor monitoring. The register may also be used as a backup for cards that do implement temperature sensor monitoring.

6.6.1 Hot Aisle Cooling Tiers

Card Cooling Tiers for Hot Aisle Cooling are defined in Table 55. Future releases of this specification will provide more detail to the Card Cooling Tier curve definition.

	Target Operating Region			Server High Fa		Non-Typical Server Airflow - Subject to System Capability						
OCP NIC 3.0 Local Inlet Temperature [°C]	Tier 1	Tier 2	Tier 3	Tier 4	Tier 5	Tier 6	Tier 7	Tier 8	Tier 9	Tier 10	Tier 11	Tier 12
5												
10												
15						<u>k-in</u>		- ave	285			
20						1in	Dru	Dgig	500			
25					Mak	K III	111,	9				
30				V	وه ال	33 -						
35												
40												
45												
50												
55	50	100	150	200	250	300	350	400	450	500	750	1000
60												
65												

Table 55: Hot Aisle Card Cooling Tier Definitions

6.6.2 Cold Aisle Cooling Tiers

Card Cooling Tiers for Cold Aisle Cooling are defined in Table 56. Future releases of this specification will provide more detail to the Card Cooling Tier curve definition.

Rev 0.63

	Table 56: Cold Aisle Card Cooling Tier Definitions											
	Target Operating Region			Target Operating Region Server Airflow High Fan Speed				Non-Typical Server Airflow - Subject to System Capability				apability
OCP NIC 3.0 Local Inlet Temperat ure [°C]	Tier 1	Tier 2	Tier 3	Tier 4	Tier 5	Tier 6	Tier 7	Tier 8	Tier 9	Tier 10	Tier 11	Tier 12
5								ogre	55			
10						in	_Dra	DRIE	500			
15				N	Mar	K_111	1 9 9 4	90				
20				V	101	12						
25												
30												
35	50	100	150	200	250	300	350	400	450	500	750	1000
40												
45												
50												
55												
60												
65												

6.7 Shock & Vibration

This specification does not cover the shock and vibration testing requirements for an OCP NIC 3.0 add in card or its associated baseboard systems. OCP NIC 3.0 components are deployed in various environments. It is up to each OCP NIC 3.0 card and baseboard vendor to decide how the shock and vibration tests shall be done.

6.8 Gold Finger Plating Requirements

This section defines the minimum plating/quality requirements for the OCP NIC 3.0 gold fingers.

Per Section 6.4 (Environmental Requirements) of the PCIe CEM specification, the minimum gold finger plating is 30 microinches of gold over 50 microinches of nickel. OCP NIC 3.0 card vendors shall individually evaluate the minimum plating required. The recommendation for OCP NIC 3.0 is to 30 microinches of gold over 150 microinches of nickel.

Rev 0.63

7 Regulatory

7.1 Required Compliance

An OCP NIC 3.0 card shall meet the following Environmental, EMC and safety requirements.

7.1.1 Required Environmental Compliance

- China RoHS Directive
- **EU RoHS 2 Directive (2011/65/EU)** aims to reduce the environmental impact of electronic and electrical equipment (EEE) by restricting the use of certain hazardous materials. The substances banned under RoHS are lead, mercury, cadmium, hexavalent chromium, polybrominated biphenyls, polybrominated diphenyl ether, and four phthalates.
- EU REACH Regulation (EC) No 1907/2006 addresses the production and use of chemical substances and their potential impact on human health and the environment.
- EU Waste Electrical and Electronic Equipment ("WEEE") Directive (2012/19/EU) mandates the treatment, recovery and recycling of EEE.
- The Persistent Organic Pollutants Regulation (EC) No. 850/2004 bans production, placing on the market and use of certain persistent organic pollutants.
- The California Safe Drinking Water and Toxic Enforcement Act of 1986 ("Prop 65") sets forth a list of regulated chemicals that require warnings in the State of California.
- The Packaging and Packaging Waste Directive 94/62/EC limits certain hazardous substances in the packaging materials
- Batteries Directive 2006/66/EC regulates the manufacture and disposal of all batteries and accumulators, including those included in appliances.

7.1.2 Required EMC Compliance

 Radiated and Conducted Emissions requirements are based on deployed geographical locations. Refer to Table 57 for details.

Targeted Geography	Applicable Specifications
USA	FCC, 47 CFR Part 15, Class A digital device (USA)
Canada	ICES-003, class A (CAN)
EU	EN 55032: 2015 Class A Radiated and Conducted Emissions requirements for European Union
	EN 55024: 2010 Immunity requirements for European Union (EU)
Australia/New Zealand	AS/NZS CISPR 22:2009 + A1:2010 Class A and
	CISPR 32:2015 for Radiated and Conducted Emissions
	requirements
Japan	VCCI:2015-04 Class A Radiated and Conducted Emissions requirements
Korea	KN32 – Radiated and Conducted Emissions
	KN35- Immunity

Table 57: FCC Class A Radiated and Conducted Emissions Requirements Based on Geographical Location

Rev 0.63

Taiwan	BSMI CNS13438: 2006 (complete) Class A Radiated and Conducted		
	Emissions requirements		

• CE – Equipment must pass the CE specification

• All technical requirements covered under EMC Directive (2014/30/EU)

7.1.3 Required Product Safety Compliance

• Safety - requirements are listed in Table 58.

Table 58: Safety Requirements

Targeted Geography	Applicable Specifications
Safety	UL/CSA 60950-1-07, 2nd Edition + amendment 1, dated 2011/12/19.
	The Bi-National Standard for Safety of Information Technology Equipment, EN60950-1: 2006+A11:2009+A1:2010+A12:2010+A2:2013 62368-1 may also be co-reported depending on region

7.2 Recommended Compliance

An OCP NIC 3.0 card is recommended to meet below compliance requirements.

7.2.1 Recommended Environmental Compliance

- Halogen Free: IEC 61249-2-21 Definition of halogen free: 900ppm for Br or Cl, or 1500ppm combined.
- Arsenic: 1000 ppm (or 0.1% by weight)
- Emerging: US Conflict Minerals law: section 1502 of the Dodd-Frank Act requires companies using tin, tantalum, tungsten, and gold ("3TG") in their products to verify and disclose the mineral source. While this does not apply to products that are used to provide services, such as Infrastructure hardware products, the OCP NIC Subgroup is considering voluntarily reporting of this information.

7.2.2 Recommended EMC Compliance

• 10dB margin to FCC sub-part 15 b class A emission requirements as specified in Section 7.1.2.

Rev 0.63

8 Revision History					
Author	Description	Revision	Date		
Thomas Ng	Initial draft with contributions and collaboration	0.01-0.63	01/19/2018		
Intel Corporation	from the OCP NIC 3.0 subgroup.				
OCP NIC 3.0	Initial public review.	0.70	01/25/2018		

Subgroup