

OCP NIC 3.0 Design Specification

Version 0.57

Author: OCP Server Workgroup, OCP NIC subgroup

Table of Contents

1	Overview.		8
	1.1 License		
	1.2 Background		9
	1.3 Ackr	nowledgements	11
	1.4 Ove	rview	
	1.4.1	Mechanical Form factor overview	12
	1.4.2	Electrical overview	14
	1.5 Refe	rences	16
2	Card Form	Factor	17
	2.1 Forn	n Factor Options	17
	2.2 1/01	pracket	
	2.2.1	Small Form Factor Add-in Card I/O Bracket	
	2.2.2	Small Form Factor Add-in Card Critical-to-Function (CTF) Dimensions	
	2.2.3	Small Form Factor Baseboard Critical-to-Function (CTF) Dimensions	
	2.2.4	Large Form Factor Add-in Card I/O Bracket	
	2.2.5	Large Form Factor Add-in Card Critical-to-Function (CTF) Dimensions	
	2.2.6	Large Form Factor Baseboard Critical-to-Function (CTF) Dimensions	
		Side I/O Implementations	
		Implementations	
	2.4.1	Add-in Card LED Configuration	
	2.4.2	Add-in Card LED Ordering	
	2.4.3	Baseboard LEDs Configuration Over the Scan Chain	
		hanical Keepout Zones	
	2.5.1	Baseboard Keep Out Zones – Small Card Form Factor	
	2.5.2	Baseboard Keep Out Zones – Large Card Form Factor	
	2.5.3	Small Card Form Factor Keep Out Zones	
	2.5.4	Large Card Form Factor Keep Out Zones	
		lation Requirements	
	2.6.1	Small Card Insulator	
	2.6.2	Large Card Insulator	
		ling Requirements	
		Implementation Examples	
	2.9 Non 2.9.1	-NIC Use Cases PCIe Retimer card	36
	2.9.2 2.9.3	Accelerator card Storage HBA / RAID card	
3		and Baseboard Connector Interface	
3	-	l Finger Requirements	
	3.1.1	Gold Finger Mating Sequence	
	-	board Connector Requirements	
	3.2.1	Right Angle Connector	
	3.2.2	Right Angle Offset	
	3.2.2	Straddle Mount Connector	
	3.2.4	Straddle Mount Offset and PCB Thickness Options	
	3.2.5	Large Card Connector Locations	

	3.3	Pin	definition	44
	3.4	Sigr	al Descriptions – Common	48
	3.4	4.1	PCIe Interface Pins	48
	3.4	4.2	PCIe Present and Bifurcation Control Pins	51
	3.4	4.3	SMBus Interface Pins	53
	3.4	4.4	Power Supply Pins	54
	3.4	4.5	Miscellaneous Pins	55
	3.5	Sigr	al Descriptions – OCP Bay (Primary Connector)	56
	3.	5.1	PCIe Interface Pins – OCP Bay (Primary Connector)	56
	3.	5.2	NC-SI Over RBT Interface Pins – OCP Bay (Primary Connector)	57
	3.	5.3	Scan Chain Pins – OCP Bay (Primary Connector)	63
	3.	5.4	Primary Connector Miscellaneous Pins – OCP Bay (Primary Connector)	68
	3.6	PCI	e Bifurcation Mechanism	69
	3.	5.1	PCIe Add-in Card to Baseboard Bifurcation Configuration (PRSNTA#, PRSNTB[3:0]#)	70
	3.	6.2	PCIe Baseboard to Add-in Card Bifurcation Configuration (BIF[2:0]#)	70
	3.	6.3	PCIe Bifurcation Decoder	70
	3.	6.4	Bifurcation Detection Flow	72
	3.	6.5	PCIe Bifurcation Examples	73
	3.7	PCI	e Clocking Topology	78
	3.8	PCI	e Bifurcation Results and REFCLK Mapping	79
	3.9	Pow	er Capacity and Power Delivery	
	3.9	9.1	NIC Power Off	89
	3.9	9.2	ID Mode	
	3.9	9.3	Aux Power Mode (S5)	89
	3.9	9.4	Main Power Mode (S0)	90
	3.10	Р	ower Supply Rail Requirements and Slot Power Envelopes	90
	3.11	F	lot Swap Considerations for 12V and 3.3V Rails	90
	3.12	Р	ower Sequence Timing Requirements	91
4	Mana	igem	ent	92
	4.1	Side	band Management Interface and Transport	92
	4.2		SI Traffic	
	4.3	Mai	nagement Controller (MC) MAC Address Provisioning	92
	4.4		perature Reporting	
	4.5		ver Consumption Reporting	
	4.6	-	gable Module Status Reporting	
	4.7	Firn	nware Inventory and Update	
	4.	7.1	Secure Firmware	
	4.	7.2	Firmware Inventory	
	4.	7.3	Firmware Inventory and Update in Multi-Host Environments	
	4.8	NC-	SI Package Addressing and Hardware Arbitration Requirements	
	4.8	8.1	NC-SI over RBT Package Addressing	
	4.8	8.2	Arbitration Ring Connections	97
	4.9	SMI	Bus 2.0 Addressing Requirements	
	4.9	9.1	SMBus Address Map	
	4.10		RU EEPROM	
		10.1	FRU EEPROM Address, Size and Availability	
		10.2	FRU EEPROM Content Requirements	
5	Data	Netv	vork Requirements	. 100

	5.1	Network Boot	. 100
6	Routi	ng Guidelines and Signal Integrity Considerations	. 101
	6.1	NC-SI Over RBT	. 101
	6.2	PCIe	. 101
7	Therr	nal and Environmental	. 102
	7.1	Environmental Requirements	. 102
	7.	1.1 Thermal Simulation Boundary Example	. 102
	7.2	Shock & Vibration	. 102
	<mark>7.3</mark>	Regulatory	. 102
8	Revis	ion History	. 104

List of Figures

Figure 1: Representative Small OCP NIC 3.0 Card with Quad SFP Ports	
Figure 2: Representative Large OCP NIC 3.0 Card with Dual QSFP Ports and on-board DRAM	. 10
Figure 3: Small and Large Card Form-Factors (not to scale)	. 12
Figure 4: Example Small Card Form Factor	. 17
Figure 5: Example Large Card Form Factor	. 18
Figure 6: Primary Connector (4C + OCP Bay) and Secondary Connector (4C) (Large) Add-in Cards	. 18
Figure 7: Primary Connector (4C + OCP Bay) Only (Large) Add-in Cards	. 18
Figure 8: Primary Connector (4C + OCP Bay) with 4C and 2C (Small) Add-in Cards	. 19
Figure 9: Small Card Standard I/O Bracket	. 20
Figure 10: Small Card Customized bracket for RJ-45 Connector	. 20
Figure 11: Small Card 3D Bracket Assembly (Standalone)	. 20
Figure 12: Small Card 3D Bracket Assembly (Installed on Add-in Card)	. 20
Figure 13: Small Form Factor Add-in Card Critical-to-Function (CTF) Dimensions (Top View)	.21
Figure 14: Small Form Factor Add-in Card Critical-to-Function (CTF) Dimensions (Front View)	
Figure 15: Small Form Factor Add-in Card Critical-to-Function (CTF) Dimensions (Side View – Left)	. 22
Figure 16: Small Form Factor Add-in Card Critical-to-Function (CTF) Dimensions (Side View – Right)	.22
Figure 17: Small Form Factor Baseboard Chassis Critical-to-Function (CTF) Dimensions (Rear View)	
Figure 18: Small Form Factor Baseboard Chassis Critical-to-Function (CTF) Dimensions (Side View)	
Figure 19: Small Form Factor Baseboard Chassis Critical-to-Function (CTF) Dimensions (Rear Rail Guide View)	
Figure 20: Small Form Factor Baseboard Chassis Critical-to-Function (CTF) Dimensions (Rail Guide Detail)	
Figure 21: Baseboard and Rail Assembly Drawing for Small Cards	
Figure 22: Large Card Standard I/O Bracket	. 25
Figure 23: Large Card Customized bracket for RJ-45 Connector	. 25
Figure 24: Large Card 3D Bracket Assembly (Standalone)	
Figure 25: Large Card 3D Bracket Assembly (Installed on Add-in Card)	
Figure 26: Large Form Factor Add-in Card Critical-to-Function (CTF) Dimensions (Top View)	
Figure 27: Large Form Factor Add-in Card Critical-to-Function (CTF) Dimensions (Front View)	
Figure 28: Large Form Factor Add-in Card Critical-to-Function (CTF) Dimensions (Side View – Left)	
Figure 29: Large Form Factor Add-in Card Critical-to-Function (CTF) Dimensions (Side View – Right)	
Figure 30: Large Form Factor Baseboard Chassis Critical-to-Function (CTF) Dimensions (Rear View)	
Figure 31: Large Form Factor Baseboard Chassis Critical-to-Function (CTF) Dimensions (Side View)	
Figure 32: Large Form Factor Baseboard Chassis Critical-to-Function (CTF) Dimensions (Rear Rail Guide View)	.26
Figure 32: Large Form Factor Baseboard Chassis Critical-to-Function (CTF) Dimensions (Rear Rail Guide View) Figure 33: Large Form Factor Baseboard Chassis Critical-to-Function (CTF) Dimensions (Rail Guide Detail)	
Figure 32: Large Form Factor Baseboard Chassis Critical-to-Function (CTF) Dimensions (Rear Rail Guide View) Figure 33: Large Form Factor Baseboard Chassis Critical-to-Function (CTF) Dimensions (Rail Guide Detail) Figure 34: Baseboard and Rail Assembly Drawing for Large Card	26
Figure 33: Large Form Factor Baseboard Chassis Critical-to-Function (CTF) Dimensions (Rail Guide Detail)	26 26
Figure 33: Large Form Factor Baseboard Chassis Critical-to-Function (CTF) Dimensions (Rail Guide Detail) Figure 34: Baseboard and Rail Assembly Drawing for Large Card Figure 35: LED Ordering – Example Small Card Link/Activity and Speed LED Placement	26 26 28
Figure 33: Large Form Factor Baseboard Chassis Critical-to-Function (CTF) Dimensions (Rail Guide Detail) Figure 34: Baseboard and Rail Assembly Drawing for Large Card	26 26 28 30
Figure 33: Large Form Factor Baseboard Chassis Critical-to-Function (CTF) Dimensions (Rail Guide Detail) Figure 34: Baseboard and Rail Assembly Drawing for Large Card Figure 35: LED Ordering – Example Small Card Link/Activity and Speed LED Placement Figure 36: Small Form Factor Keep Out Zone – Top View	26 26 28 30 31
Figure 33: Large Form Factor Baseboard Chassis Critical-to-Function (CTF) Dimensions (Rail Guide Detail) Figure 34: Baseboard and Rail Assembly Drawing for Large Card Figure 35: LED Ordering – Example Small Card Link/Activity and Speed LED Placement Figure 36: Small Form Factor Keep Out Zone – Top View Figure 37: Small Form Factor Keep Out Zone – Bottom View	26 26 28 30 31 31
Figure 33: Large Form Factor Baseboard Chassis Critical-to-Function (CTF) Dimensions (Rail Guide Detail) Figure 34: Baseboard and Rail Assembly Drawing for Large Card Figure 35: LED Ordering – Example Small Card Link/Activity and Speed LED Placement Figure 36: Small Form Factor Keep Out Zone – Top View Figure 37: Small Form Factor Keep Out Zone – Bottom View Figure 38: Small Form Factor Keep Out Zone – Side View	26 28 30 31 31 31
 Figure 33: Large Form Factor Baseboard Chassis Critical-to-Function (CTF) Dimensions (Rail Guide Detail) Figure 34: Baseboard and Rail Assembly Drawing for Large Card Figure 35: LED Ordering – Example Small Card Link/Activity and Speed LED Placement Figure 36: Small Form Factor Keep Out Zone – Top View Figure 37: Small Form Factor Keep Out Zone – Bottom View Figure 38: Small Form Factor Keep Out Zone – Side View Figure 39: Large Form Factor Keep Out Zone – Top View Figure 40: Large Form Factor Keep Out Zone – Bottom View Figure 41: Large Form Factor Keep Out Zone – Side View 	26 28 30 31 31 32 33 33
Figure 33: Large Form Factor Baseboard Chassis Critical-to-Function (CTF) Dimensions (Rail Guide Detail) Figure 34: Baseboard and Rail Assembly Drawing for Large Card Figure 35: LED Ordering – Example Small Card Link/Activity and Speed LED Placement Figure 36: Small Form Factor Keep Out Zone – Top View Figure 37: Small Form Factor Keep Out Zone – Bottom View Figure 38: Small Form Factor Keep Out Zone – Side View Figure 39: Large Form Factor Keep Out Zone – Top View Figure 40: Large Form Factor Keep Out Zone – Bottom View	26 28 30 31 31 32 33 33
 Figure 33: Large Form Factor Baseboard Chassis Critical-to-Function (CTF) Dimensions (Rail Guide Detail) Figure 34: Baseboard and Rail Assembly Drawing for Large Card Figure 35: LED Ordering – Example Small Card Link/Activity and Speed LED Placement Figure 36: Small Form Factor Keep Out Zone – Top View Figure 37: Small Form Factor Keep Out Zone – Bottom View Figure 38: Small Form Factor Keep Out Zone – Side View Figure 39: Large Form Factor Keep Out Zone – Top View Figure 40: Large Form Factor Keep Out Zone – Bottom View Figure 41: Large Form Factor Keep Out Zone – Side View 	26 28 30 31 31 32 33 33 33
 Figure 33: Large Form Factor Baseboard Chassis Critical-to-Function (CTF) Dimensions (Rail Guide Detail) Figure 34: Baseboard and Rail Assembly Drawing for Large Card Figure 35: LED Ordering – Example Small Card Link/Activity and Speed LED Placement Figure 36: Small Form Factor Keep Out Zone – Top View Figure 37: Small Form Factor Keep Out Zone – Bottom View Figure 38: Small Form Factor Keep Out Zone – Side View Figure 39: Large Form Factor Keep Out Zone – Top View Figure 40: Large Form Factor Keep Out Zone – Bottom View Figure 41: Large Form Factor Keep Out Zone – Side View Figure 42: Small Card Bottom Side Insulator (Top and 3/4 View) 	26 28 30 31 31 32 33 33 34 34
Figure 33: Large Form Factor Baseboard Chassis Critical-to-Function (CTF) Dimensions (Rail Guide Detail) Figure 34: Baseboard and Rail Assembly Drawing for Large Card Figure 35: LED Ordering – Example Small Card Link/Activity and Speed LED Placement Figure 36: Small Form Factor Keep Out Zone – Top View Figure 37: Small Form Factor Keep Out Zone – Bottom View Figure 38: Small Form Factor Keep Out Zone – Side View Figure 39: Large Form Factor Keep Out Zone – Top View Figure 40: Large Form Factor Keep Out Zone – Bottom View Figure 41: Large Form Factor Keep Out Zone – Side View Figure 42: Small Card Bottom Side Insulator (Top and 3/4 View) Figure 43: Small Card Bottom Side Insulator (Side View)	26 28 30 31 31 32 33 33 34 34 35
Figure 33: Large Form Factor Baseboard Chassis Critical-to-Function (CTF) Dimensions (Rail Guide Detail) Figure 34: Baseboard and Rail Assembly Drawing for Large Card Figure 35: LED Ordering – Example Small Card Link/Activity and Speed LED Placement Figure 36: Small Form Factor Keep Out Zone – Top View Figure 37: Small Form Factor Keep Out Zone – Bottom View Figure 38: Small Form Factor Keep Out Zone – Side View Figure 39: Large Form Factor Keep Out Zone – Top View Figure 40: Large Form Factor Keep Out Zone – Bottom View Figure 41: Large Form Factor Keep Out Zone – Side View Figure 42: Small Card Bottom Side Insulator (Top and 3/4 View) Figure 44: Large Card Bottom Side Insulator (Top and 3/4 View)	26 28 30 31 31 32 33 33 33 34 35 35
Figure 33: Large Form Factor Baseboard Chassis Critical-to-Function (CTF) Dimensions (Rail Guide Detail) Figure 34: Baseboard and Rail Assembly Drawing for Large Card Figure 35: LED Ordering – Example Small Card Link/Activity and Speed LED Placement Figure 36: Small Form Factor Keep Out Zone – Top View Figure 37: Small Form Factor Keep Out Zone – Bottom View Figure 38: Small Form Factor Keep Out Zone – Side View Figure 39: Large Form Factor Keep Out Zone – Top View Figure 40: Large Form Factor Keep Out Zone – Bottom View Figure 41: Large Form Factor Keep Out Zone – Side View Figure 42: Small Card Bottom Side Insulator (Top and 3/4 View) Figure 43: Small Card Bottom Side Insulator (Top and 3/4 View) Figure 44: Large Card Bottom Side Insulator (Top and 3/4 View) Figure 45: Large Card Bottom Side Insulator (Side View)	26 28 30 31 31 32 33 33 34 35 35 37
Figure 33: Large Form Factor Baseboard Chassis Critical-to-Function (CTF) Dimensions (Rail Guide Detail) Figure 34: Baseboard and Rail Assembly Drawing for Large Card Figure 35: LED Ordering – Example Small Card Link/Activity and Speed LED Placement Figure 36: Small Form Factor Keep Out Zone – Top View Figure 37: Small Form Factor Keep Out Zone – Bottom View Figure 38: Small Form Factor Keep Out Zone – Side View Figure 39: Large Form Factor Keep Out Zone – Top View Figure 40: Large Form Factor Keep Out Zone – Bottom View Figure 41: Large Form Factor Keep Out Zone – Side View Figure 42: Small Card Bottom Side Insulator (Top and 3/4 View) Figure 43: Small Card Bottom Side Insulator (Top and 3/4 View) Figure 44: Large Card Bottom Side Insulator (Top and 3/4 View) Figure 45: Large Card Bottom Side Insulator (Side View) Figure 46: Small Size Primary Connector Gold Finger Dimensions – x16 – Top Side ("B" Pins)	26 28 30 31 31 33 33 33 34 35 35 37 37
 Figure 33: Large Form Factor Baseboard Chassis Critical-to-Function (CTF) Dimensions (Rail Guide Detail) Figure 34: Baseboard and Rail Assembly Drawing for Large Card Figure 35: LED Ordering – Example Small Card Link/Activity and Speed LED Placement Figure 36: Small Form Factor Keep Out Zone – Top View Figure 37: Small Form Factor Keep Out Zone – Bottom View Figure 38: Small Form Factor Keep Out Zone – Side View Figure 39: Large Form Factor Keep Out Zone – Top View Figure 40: Large Form Factor Keep Out Zone – Bottom View Figure 41: Large Form Factor Keep Out Zone – Side View Figure 42: Small Card Bottom Side Insulator (Top and 3/4 View) Figure 43: Small Card Bottom Side Insulator (Top and 3/4 View) Figure 44: Large Card Bottom Side Insulator (Side View) Figure 45: Large Card Bottom Side Insulator (Side View) Figure 45: Large Card Bottom Side Insulator (Side View) Figure 45: Small Size Primary Connector Gold Finger Dimensions – x16 – Top Side ("B" Pins) Figure 47: Small Size Primary Connector Gold Finger Dimensions – x16 – Bottom Side ("A" Pins) 	26 28 30 31 31 33 33 33 34 35 35 37 37 38
Figure 33: Large Form Factor Baseboard Chassis Critical-to-Function (CTF) Dimensions (Rail Guide Detail) Figure 34: Baseboard and Rail Assembly Drawing for Large Card Figure 35: LED Ordering – Example Small Card Link/Activity and Speed LED Placement Figure 36: Small Form Factor Keep Out Zone – Top View Figure 37: Small Form Factor Keep Out Zone – Bottom View Figure 38: Small Form Factor Keep Out Zone – Side View Figure 39: Large Form Factor Keep Out Zone – Top View Figure 40: Large Form Factor Keep Out Zone – Bottom View Figure 41: Large Form Factor Keep Out Zone – Side View Figure 42: Small Card Bottom Side Insulator (Top and 3/4 View) Figure 43: Small Card Bottom Side Insulator (Top and 3/4 View) Figure 45: Large Card Bottom Side Insulator (Side View) Figure 46: Small Size Primary Connector Gold Finger Dimensions – x16 – Top Side ("B" Pins) Figure 47: Small Size Primary Connector Gold Finger Dimensions – x16 – Bottom Side ("A" Pins) Figure 48: Large Size Card Gold Finger Dimensions – x32 – Top Side ("B" Pins)	26 28 30 31 31 33 33 33 33 33
Figure 33: Large Form Factor Baseboard Chassis Critical-to-Function (CTF) Dimensions (Rail Guide Detail) Figure 34: Baseboard and Rail Assembly Drawing for Large Card Figure 35: LED Ordering – Example Small Card Link/Activity and Speed LED Placement Figure 36: Small Form Factor Keep Out Zone – Top View Figure 37: Small Form Factor Keep Out Zone – Bottom View Figure 38: Small Form Factor Keep Out Zone – Side View Figure 39: Large Form Factor Keep Out Zone – Top View Figure 40: Large Form Factor Keep Out Zone – Bottom View Figure 41: Large Form Factor Keep Out Zone – Side View Figure 42: Small Card Bottom Side Insulator (Top and 3/4 View) Figure 43: Small Card Bottom Side Insulator (Top and 3/4 View) Figure 44: Large Card Bottom Side Insulator (Top and 3/4 View) Figure 45: Large Card Bottom Side Insulator (Side View) Figure 46: Small Size Primary Connector Gold Finger Dimensions – x16 – Top Side ("B" Pins) Figure 47: Small Size Primary Connector Gold Finger Dimensions – x16 – Bottom Side ("A" Pins) Figure 48: Large Size Card Gold Finger Dimensions – x32 – Top Side ("B" Pins) Figure 49: Large Size Card Gold Finger Dimensions – x32 – Bottom Side ("A" Pins)	26 28 30 31 31 33 35 35 37 35 35 37 35 37 35 35 35 37 35 37 35 37
Figure 33: Large Form Factor Baseboard Chassis Critical-to-Function (CTF) Dimensions (Rail Guide Detail) Figure 34: Baseboard and Rail Assembly Drawing for Large Card	26 28 30 31 32 33 33 34 35 37 37 38 38 38 40 41
Figure 33: Large Form Factor Baseboard Chassis Critical-to-Function (CTF) Dimensions (Rail Guide Detail) Figure 34: Baseboard and Rail Assembly Drawing for Large Card Figure 35: LED Ordering – Example Small Card Link/Activity and Speed LED Placement Figure 36: Small Form Factor Keep Out Zone – Top View Figure 37: Small Form Factor Keep Out Zone – Bottom View Figure 38: Small Form Factor Keep Out Zone – Side View Figure 39: Large Form Factor Keep Out Zone – Top View Figure 40: Large Form Factor Keep Out Zone – Top View Figure 41: Large Form Factor Keep Out Zone – Bottom View Figure 42: Small Card Bottom Side Insulator (Top and 3/4 View) Figure 43: Small Card Bottom Side Insulator (Top and 3/4 View) Figure 44: Large Card Bottom Side Insulator (Top and 3/4 View) Figure 45: Large Card Bottom Side Insulator (Top and 3/4 View) Figure 46: Small Size Primary Connector Gold Finger Dimensions – x16 – Top Side ("B" Pins) Figure 47: Small Size Primary Connector Gold Finger Dimensions – x16 – Bottom Side ("A" Pins) Figure 48: Large Size Card Gold Finger Dimensions – x32 – Top Side ("B" Pins) Figure 49: Large Size Card Gold Finger Dimensions – x32 – Bottom Side ("A" Pins) Figure 49: Large Size Card Gold Finger Dimensions – x32 – Bottom Side ("A" Pins) Figure 49: Large Size Card Gold Finger Dimensions – x32 – Bottom Side ("A" Pins) Figure 49: Large Size Card Gold Finger Dimensions – x32 – Bottom Side ("A" Pins) Figure 50: 168-pin Base Board Primary Connector – Right Angle Figure 51: 140-pin Base Board Secondary Connector – Right Angle	26 28 30 31 32 33 33 33 34 35 35 37 38 37 38 38 38 40 41
Figure 33: Large Form Factor Baseboard Chassis Critical-to-Function (CTF) Dimensions (Rail Guide Detail) Figure 34: Baseboard and Rail Assembly Drawing for Large Card	26 28 30 31 31 32 33 33 33 34 35 35 37 37 38 37 38 40 41 42 42
Figure 33: Large Form Factor Baseboard Chassis Critical-to-Function (CTF) Dimensions (Rail Guide Detail) Figure 34: Baseboard and Rail Assembly Drawing for Large Card Figure 35: LED Ordering – Example Small Card Link/Activity and Speed LED Placement Figure 36: Small Form Factor Keep Out Zone – Top View Figure 38: Small Form Factor Keep Out Zone – Bottom View Figure 39: Large Form Factor Keep Out Zone – Top View Figure 39: Large Form Factor Keep Out Zone – Top View Figure 39: Large Form Factor Keep Out Zone – Top View Figure 40: Large Form Factor Keep Out Zone – Bottom View Figure 41: Large Form Factor Keep Out Zone – Side View Figure 42: Small Card Bottom Side Insulator (Top and 3/4 View) Figure 43: Small Card Bottom Side Insulator (Top and 3/4 View) Figure 43: Small Card Bottom Side Insulator (Top and 3/4 View) Figure 44: Large Card Bottom Side Insulator (Side View) Figure 45: Small Size Primary Connector Gold Finger Dimensions – x16 – Top Side ("B" Pins) Figure 47: Small Size Primary Connector Gold Finger Dimensions – x16 – Bottom Side ("A" Pins) Figure 48: Large Size Card Gold Finger Dimensions – x16 – Bottom Side ("A" Pins) Figure 49: Large Size Card Gold Finger Dimensions – x16 – Bottom Side ("A" Pins) Figure 50: 168-pin Base Board Primary Connector – Right Angle Figure 51: 140-pin Base Board Primary Connector – Right Angle Figure 51: 140-pin Base Board Primary Connector – Straddle Mount Figure 52: Add-in Card and Host Offset for Right Angle Connectors Figure 53: 168-pin Base Board Primary Connector – Straddle Mount Figure 55: Add-in Card and Host PCB Thickness Options for Straddle Mount Connectors	26 28 30 31 31 33 34 35 37 37 37 37 37 35 37 47 37 47
Figure 33: Large Form Factor Baseboard Chassis Critical-to-Function (CTF) Dimensions (Rail Guide Detail) Figure 34: Baseboard and Rail Assembly Drawing for Large Card	26 28 30 31 31 33 34 35 37 37 37 37 37 35 37 47 37 47

Figure 58: Primary and Secondary Connector Locations for Large Card Support with Right Angle Connectors	44
Figure 59: Primary and Secondary Connector Locations for Large Card Support with Straddle Mount Connectors	44
Figure 60: PCIe Present and Bifurcation Control Pins	52
Figure 61: Example SMBus Connections	54
Figure 62: Example Power Supply Topology	55
Figure 63: NC-SI Over RBT Connection Example – Single Primary Connector	
Figure 64: NC-SI Over RBT Connection Example – Dual Primary Connector	62
Figure 65: Scan Bus Connection Example	67
Figure 66: PCIe Bifurcation Pin Connections Support	69
Figure 67: Single Host (1 x16) and 1 x16 Add-in Card (Single Controller)	73
Figure 68: Single Host (2 x8) and 2 x8 Add-in Card (Dual Controllers)	74
Figure 69: Four Hosts (4 x4) and 4 x4 Add-in Card (Single Controller)	75
Figure 70: Four Hosts (4 x4) and 4 x4 Add-in Card (Four Controllers)	76
Figure 71: Single Host with no Bifurcation (1 x16) and 2 x8 Add-in Card (Two Controllers)	77
Figure 72: PCIe Interface Connections for 1 x16 and 2 x8 Add-in Cards	78
Figure 73: PCIe Interface Connections for a 4 x4 Add-in Card	
Figure 74: Baseboard Power States	
Figure 75: Power Sequencing	91

List of Tables

Table 1: Acknowledgements – By Company	. 11
Table 2: OCP 3.0 Form Factor Dimensions	. 13
Table 3: Baseboard to OCP NIC Form factor Compatibility Chart	.13
Table 4: OCP NIC 3.0 Card Definitions	. 19
Table 5: Mechanical BOM for the Small Card Bracket	
Table 6: Mechanical BOM for the Large Card Bracket	. 25
Table 7: OCP 3.0 Line Side I/O Implementations	.27
Table 8: Add-in Card LED Configuration with Two Physical LEDs per Port	. 27
Table 9: Baseboard LED Configurations with Two Physical LEDs per Port	. 29
Table 10: Contact Mating Positions for the Primary and Secondary Connectors	. 38
Table 11: Right Angle Connector Options	.40
Table 12: Straddle Mount Connector Options	.41
Table 13: Primary Connector Pin Definition (x16) (4C + OCP Bay)	.45
Table 14: Secondary Connector Pin Definition (x16) (4C)	.47
Table 15: Pin Descriptions – PCIe 1	.48
Table 16: Pin Descriptions – PCIe Present and Bifurcation Control Pins	.51
Table 17: Pin Descriptions – SMBus	.53
Table 18: Pin Descriptions – Power	.54
Table 19: Pin Descriptions – Miscellaneous 1	. 55
Table 20: Pin Descriptions – PCIe 2	.56
Table 21: Pin Descriptions – NC-SI Over RBT	. 58
Table 22: Pin Descriptions – Scan Chain	.63
Table 23: Pin Descriptions – Scan Chain DATA_OUT Bit Definition	.64
Table 24: Pin Descriptions – Scan Bus DATA_IN Bit Definition	.65
Table 25: Pin Descriptions – Miscellaneous 2	
Table 26: PCIe Bifurcation Decoder for x16 and x8 Card Widths	.71
Table 27: PCIe Clock Associations	.78
Table 28: Bifurcation for Single Host, Single Socket and Single Upstream Link (BIF[2:0]#=0b000)	.80
Table 29: Bifurcation for Single Host, Single Socket and Single/Dual Upstream Links (BIF[2:0]#=0b000)	
Table 30: Bifurcation for Single Host, Single Socket and Single/Dual/Quad Upstream Links (BIF[2:0]#=0b000)	
Table 31: Bifurcation for Single Host, Dual Sockets and Dual Upstream Links (BIF[2:0]#=0b001)	
Table 32: Bifurcation for Single Host, Four Sockets and Four Upstream Links (BIF[2:0]#=0b010)	
Table 33: Bifurcation for Single Host, Four Sockets and Four Upstream Links – First 8 PCIe Lanes (BIF[2:0]#=0b011)	
Table 34: Bifurcation for Dual Host, Dual Sockets and Dual Upstream Links (BIF[2:0]#=0b101)	
Table 35: Bifurcation for Quad Host, Quad Sockets and Quad Upstream Links (BIF[2:0]#=0b110)	.87
Table 36: Bifurcation for Quad Host, Quad Sockets and Quad Upstream Links – First 8 lanes (BIF[2:0]#=0b111)	.88
Table 37: Power States	. 89
Table 38: Baseboard Power Supply Rail Requirements – Slot Power Envelopes	.90
Table 39: Power Sequencing Parameters	.91
Table 40: Sideband Management Interface and Transport Requirements	.92
Table 41: NC-SI Traffic Requirements	.92
Table 42: MC MAC Address Provisioning Requirements	.93
Table 43: Temperature Reporting Requirements	.94
Table 44: Power Consumption Reporting Requirements	.95
Table 45: Pluggable Module Status Reporting Requirements	.96
Table 46: Firmware Update Requirements	
Table 47: SMBus Address Map	
Table 48: FRU EEPROM Record – OEM Record 0xC0, Offset 0x00	
Table 49: FRU EEPROM Record – OEM Record 0xC0, Offset 0x01	.99
Table 50: FRU EEPROM Record – OEM Record 0xC0, Offset 0x02	.99
Table 51: FRU EEPROM Record – OEM Record 0xC0, Offset 0x03	.99
Table 52: FRU EEPROM Record – OEM Record 0xC0, Offset 0x04	

1 Overview

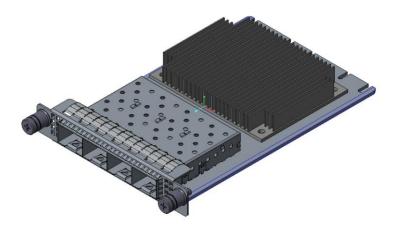
1.1 License

As of July 26, 2016, the following persons or entities have made this Specification available under the Open Compute Project Hardware License (Permissive) Version 1.0 (OCPHL-P)

OCP NIC Subgroup

An electronic copy of the OCPHL-P is available at:

http://www.opencompute.org/assets/download/01-Contribution-Licenses/OCPHL-Permissive-v1.0.pdf


Your use of this Specification may be subject to other third party rights. THIS SPECIFICATION IS PROVIDED "AS IS." The contributors expressly disclaim any warranties (express, implied, or otherwise), including implied warranties of merchantability, non-infringement, fitness for a particular purpose, or title, related to the Specification. The Specification implementer and user assume the entire risk as to implementing or otherwise using the Specification. IN NO EVENT WILL ANY PARTY BE LIABLE TO ANY OTHER PARTY FOR LOST PROFITS OR ANY FORM OF INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES OF ANY CHARACTER FROM ANY CAUSES OF ACTION OF ANY KIND WITH RESPECT TO THIS SPECIFICATION OR ITS GOVERNING AGREEMENT, WHETHER BASED ON BREACH OF CONTRACT, TORT (INCLUDING NEGLIGENCE), OR OTHERWISE, AND WHETHER OR NOT THE OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

1.2 Background

The OCP NIC 3.0 specification is a follow-on to the OCP 2.0 form-factor for PCIe add-in cards. The OCP NIC 3.0 specification supports two basic card sizes: Small Card, and Large Card. The Small Card allows for up to 16 PCIe lanes on the card edge while a Large Card supports up to 32 PCIe lanes. Compared to the OCP Mezz Card 2.0 Design Specification, the updated specification provides a broader solution space for NIC and system vendors to support the following use case scenarios:

- NICs with a higher TDP
- Support up to 80W of power delivery to a single connector (Small) card; and 150W to a dual connector (Large) card
- Support up to PCIe Gen5 on the system and add-in card
- Support for up to 32 lanes of PCIe per add-in card
- Support for single host, multi-root complex and multi-host environments
- Support a greater board area for more complex add-in card designs
- Support for Smart NIC implementations with on-board DRAM and accelerators
- Simplification of FRU installation and removal while reducing overall down time

A representative Small Card OCP 3.0 NIC mezzanine card is shown in Figure 1 and a representative Large Card is shown in Figure 2.

Figure 1: Representative Small OCP NIC 3.0 Card with Quad SFP Ports

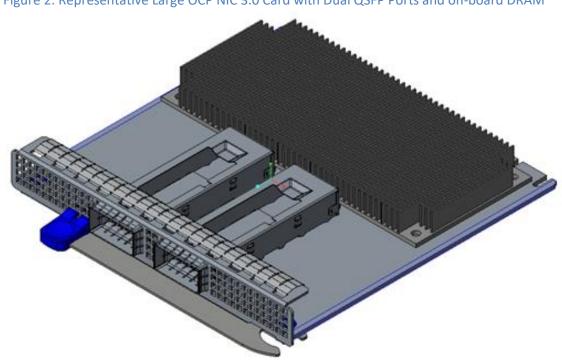


Figure 2: Representative Large OCP NIC 3.0 Card with Dual QSFP Ports and on-board DRAM

In order to achieve the features outlined in this specification, OCP 3.0 compliant cards are not backwards compatible to OCP Mezz 2.0 cards.

This specification is created under OCP Server workgroup – OCP NIC subgroup. An electronic copy of this specification can be found on the Open Compute Project website:

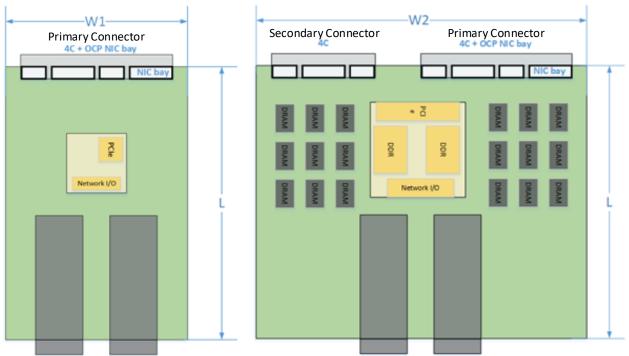
http://www.opencompute.org/wiki/Server/Mezz#Specifications_and_Designs

1.3 Acknowledgements

The OCP NIC Subgroup would like to acknowledge the following member companies for their contributions to the OCP NIC 3.0 specification:

Table 1: Acknowledgements – By Company

Amphenol ICC / TCS	Intel Corporation
Broadcom	Lenovo
Dell	Mellanox
Facebook	Netronome
Hewlett Packard Enterprise	TE


1.4 Overview

1.4.1 Mechanical Form factor overview

The OCP NIC 3.0 specification defines a third generation mechanical form factor that allows for interoperability between compliant baseboards and add-in cards.

OCP NIC 3.0 cards have two form factors – Small and Large. These cards are shown in Figure 3 below. The components shown in the figures are for illustrative purposes. The Small form factor card has one connector (Primary connector) on baseboard. The Large form factor card has one or two connectors (Primary Connector only and both the Primary and Secondary Connectors) on the baseboard.

Both the Primary and Secondary connectors are defined in and compliant to SFF-TA-1002. On the add-in card side, the card edge is implemented with gold fingers. The small card gold finger area only occupies the Primary Connector area for up to 16 PCIe lanes. The large card gold finger area may occupy both the Primary and Secondary connectors for up to 32 PCIe lanes, or optionally just the Primary connector for up to 16 PCIe lane implementations. The gold finger design follows SFF-TA-1002 as well.

Figure 3: Small and Large Card Form-Factors (not to scale)

The two form factor dimensions are shown in Table 2.

Form Factor	Width	Depth	Primary Connector	Secondary Connector	Typical Use Case
Small	W1 = 76 mm	L = 115 mm	4C + OCP sideband 168 pins	N/A	Low profile and NIC with a similar profile as an OCP NIC 2.0 add-in card; up to 16 PCIe lanes.
Large	W2 = 139 mm	L = 115 mm	4C + OCP sideband 168 pins	4C 140 pins	Larger PCB width to support additional NICs; up to 32 PCIe lanes.

The OCP NIC 3.0 design allows downward compatibility between the two card sizes. Table 3 shows the compatibility between the baseboard and NIC combinations. A small size baseboard slot may only accept a small sized NIC. A Large size baseboard slot may accept a small or large sized NIC.

Talela 2. Decele court a		fa at a v Cana	and the filter of the set
Table 3: Baseboard t	O OCP NIC FO	rm factor Com	patibility Chart

Baseboard	NIC Size / Supported PCIe Width		
Slot Size	Small	Large	
Small	Up to 16 PCIe lanes	Not Supported	
Large	Up to 16 PCIe lanes	Up to 32 PCIe lanes	

There are two baseboard connector options available for system designers: straddle mount and right angle (RA). The straddle mount connector option allows the OCP NIC and baseboard to exist in a coplaner position. To achieve this, a cutout exists on the baseboard and is defined in this specification. Alternatively, the right angle option allows the OCP NIC to be installed on top of the baseboard. A baseboard cutout is not required for the right angle connector. The right angle option allows the baseboard to use this area for additional routing or backside component placement. The straddle mount and right angle connectors are shown in Section 3.2.

For both the baseboard and OCP card, this specification defines the component and routing keep out areas. Refer to Section 2.5 for details.

Both the straddle mount and right angle implementations shall accept the same OCP add-in card and shall be supported in the baseboard chassis regardless of the baseboard connector selection (right angle or straddle mount) so long as the baseboard slot side and add-in card sizes are a supported combination as shown in Table 3.

This specification defines the form factor at the add-in card level, including the front panel, latching mechanism and card guide features.

More details about the card form-factor is shown in Section 2.

1.4.2 Electrical overview

This specification defines the electrical interface between baseboard and the add-in card. The electrical interface is implemented with a right angle or straddle mount connector on baseboard and gold finger on the add-in card. As previously noted in the mechanical overview, each card may implement a Primary Connector or Primary + Secondary Connector. Cards using only the Primary connector are suitable for both the Small and Large form-factors and may support up to 16 lanes of PCIe. The Secondary connector, when used in conjunction with the Primary connector, allows Large form-factor implementations and may support up to 32 lanes of PCIe.

1.4.2.1 Primary Connector

The Primary connector provides all OCP specific management functions as well as up to 16 lanes of PCIe between the OCP NIC and the system motherboard.

Management Function Overview (OCP Bay):

- DSP0222 1.1 compliant Network Controller Sideband Interface (NC-SI) RMII Based Transport (RBT) Physical Interface
- Power management and status reporting
 - Power disable
 - State change control
- SMBus 2.0
- Control / status serial bus
 - NIC-to-Host status
 - Port LED Link/Activity
 - Environmental Indicators
 - Host-to-NIC configuration Information
- Multi-host PCIe support signals (2x PCIe resets, 2x reference clocks)
 - The OCP bay provides PERST2#, PERST3#, REFCLK2 and REFCLK3. This enables support for up to four hosts when used in conjunction with PERST0#, PERST1#, REFCLK0 and REFCLK1 in the Primary 4C region.
- PCIe Wake signal

See Section 0 for a complete list of pin and function descriptions for the OCP Bay portion of the primary connector.

PCIe Interface Overview (4C Connector):

- 16x differential transmit/receive pairs
 - Up to PCle Gen 5 support
- 2x 100 MHz differential reference clocks
- Control signals
 - 2x PCIe Resets
 - o Link Bifurcation Control
 - o Card power disable/enable
- Power

- o 12V /12V AUX
- 3.3V AUX

See Section 3.4 for a complete list of pin and function descriptions for the 4C connector.

1.4.2.2 Secondary Connector

The secondary connector provides an additional 16 lanes of PCIe and their respective control signals.

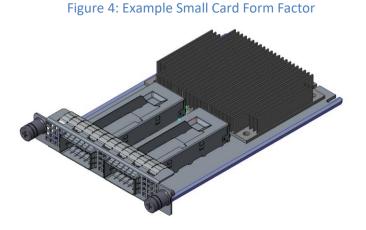
PCIe Interface Overview (4C Connector):

- 16x differential transmit/receive pairs
 - Up to PCIe Gen 5 support
- 2x 100 MHz differential reference clocks
- Control signals
 - 2x PCIe Resets
 - o Link Bifurcation Control
 - Card power disable/enable
- Power
 - 12V /12V AUX
- 3.3V AUX

See Section 3.4 for a complete list of pin and function descriptions for the 4C connector.

1.5 References

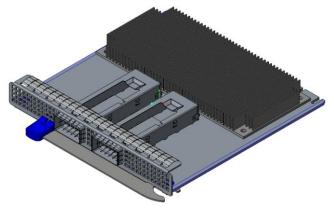
- DMTF Standard. *DSP0222, Network Controller Sideband Interface (NC-SI) Specification.* Distributed Management Task Force, Rev 1.1.0, September 23rd, 2015.
- DMTF Standard. *DSP0222, Network Controller Sideband Interface (NC-SI) Specification.* Distributed Management Task Force, Rev 1.2.0, Work-in-progress.
- EDSFF. *Enterprise and Datacenter SSD Form Factor Connector Specification*. Enterprise and Datacenter SSD Form Factor Working Group, Rev 0.9 (draft), August 2nd 2017.
- IPMI Platform Management FRU Information Storage Definition, v1.2, February 28th, 2013.
- National Institute of Standards and Technology (NIST). *Special Publication 800-147, BIOS Protection Guidelines,* April 2011.
- NXP Semiconductors. *I*²*C*-bus specification and user manual. NXP Semiconductors, Rev 6, April 4th, 2014.
- Open Compute Project. OCP NIC Subgroup. Online. http://www.opencompute.org/wiki/Server/Mezz
- PCIe Base Specification. PCI Express Base Specification, Revision 4.0 (draft).
- PCIe CEM Specification. PCI Express Card Electromechanical Specification, Revision 4.0 (draft).
- SMBus Management Interface Forum. *System Management Bus (SMBus) Specification*. System Management Interface Forum, Inc, Version 2.0, August 3rd, 2000.
- SNIA. SFF-TA-1002, Specification for Protocol Agnostic Multi-Lane High Speed Connector. SNIA SFF TWG Technology Affiliate, Rev 1.0, December 12th, 2017.


2 Card Form Factor

2.1 Form Factor Options

OCP3.0 provides two fundamental form factor options: a small card (76mm x 115mm) and a large card (139mm x 115mm).

These form factors support a Primary Connector and optionally, a Secondary Connector. The Primary Connector is defined to be a SFF-TA-1002 compliant 4C connector plus a 28-pin bay for OCP 3.0 specific pins. The Secondary Connector is the 4C connector as defined in SFF-TA-1002. The 4C specification supports up to 32 differential pairs for a x16 PCIe connection per connector. For host platforms, the 28-pin OCP bay is required for the Primary connector. This is also mandatory for add-in cards.


The small card uses the Primary 4C connector to provide up to a x16 PCIe interface to the host. The additional 28-pin OCP bay carries sideband management interfaces as well as OCP NIC 3.0 specific control signals for multi-host PCIe support. The small size card provides sufficient faceplate area to accommodate up to 2x QSFP modules, 4x SFP modules, or 4x RJ-45 for BASE-T operation. The small card form factor supports up to 80W of delivered power to the card edge.

The large card uses the Primary 4C + OCP bay connector to provide the same functionality as the small card along with an additional Secondary 4C connector to provide up to a x32 PCIe interface. The large card may utilize both the Primary and Secondary connectors, or just the Primary connector for lower PCIe lane count applications. Table 4 summarizes the large card permutations. The large size card supports higher power envelopes and provides additional board area for more complex designs. The large card form factor supports up to 150W of delivered power to the card edge across the two connectors.

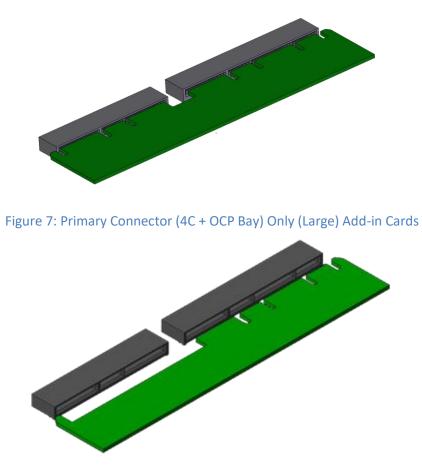


Figure 5: Example Large Card Form Factor

For large cards, implementations may use both the Primary and Secondary Connector (as shown in Figure 6), or may use the Primary Connector only (as shown in Figure 7) for the card edge gold fingers.

For both form-factors, an add-in card may optionally implement a subset of pins to support up to a x8 PCIe connection. This is implemented using a 2C card edge per SFF-TA-1002. The Primary Connector may

support a 2C sized add-in card along with the 28 pin OCP bay. The following diagram from the SFF-TA-1002 specification illustrates the supported host Primary and Secondary Connectors and add-in card configurations.

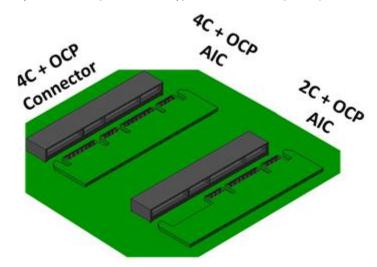
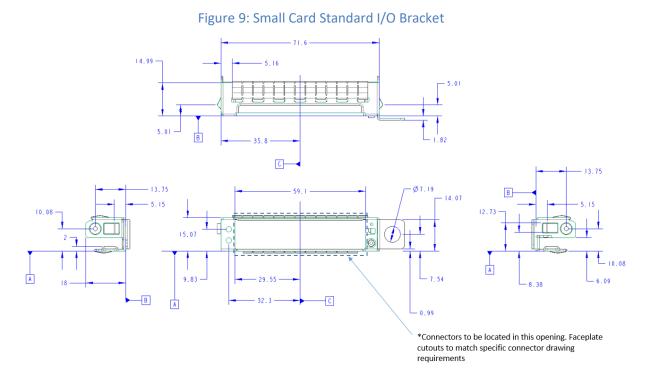


Figure 8: Primary Connector (4C + OCP Bay) with 4C and 2C (Small) Add-in Cards

Table 4 summarizes the supported card form factors. Small form factors cards support the Primary Connector and up to 16 PCIe lanes. Large form factor cards support implementations with both the Primary and Secondary Connectors and up to 32 PCIe lanes, or a Primary Connector only implementation with up to 16 PCIe lanes.

Add in Card Size and	Secondary Connector		Primary Connector		
max PCIe Lane Count	4C Connect	or, x16 PCle	4C Connector, x16 PCIe		OCP Bay
Small (x8)				2C	OCP Bay
Small (x16)			4	С	OCP Bay
Large (x8)				2C	OCP Bay
Large (x16)			4	С	OCP Bay
Large (x24)		2C	4C		OCP Bay
Large (x32)	4C		4C		OCP Bay

Table 4: OCP NIC 3.0 Card Definitions



2.2 I/O bracket

The following section defines the standard I/O bracket and standard chassis opening required for both the Small and Large form-factor cards.

2.2.1 Small Form Factor Add-in Card I/O Bracket

Figure 9 defines the standard Small Card form factor I/O bracket.

Note: The add-in card supplier shall add port identification on bracket that meet their manufacturing and customer requirements.

For RJ-45 implementations, a customized bracket must be created. Figure 10 shows an implementation example.

Figure 10: Small Card Customized bracket for RJ-45 Connector Drawing to be inserted

Figure 11 shows the standalone bracket assembly and Figure 12 shows the bracket assembly on the addin card.

Figure 11: Small Card 3D Bracket Assembly (Standalone)

TBD

Figure 12: Small Card 3D Bracket Assembly (Installed on Add-in Card)

TBD

In addition to the sheet metal, Table 5 lists the additional hardware components used for the Small Card bracket assembly.

Item description	Supplier Part Number
Top and bottom EMI fingers	TF187VE32F11
Screw / Rivet (part of bracket assy)?	TBD
Side EMI Finger	TBD
Thumb screw	TBD
Pull Tab	TBD
Latch	TBD
Screw (attaching Bracket & NIC)	TBD
SMT Nut (on NIC)	TBD

Table 5: Mechanica	I BOM for the	Small Card Bracket
--------------------	---------------	--------------------

2.2.2 Small Form Factor Add-in Card Critical-to-Function (CTF) Dimensions

The following dimensions are considered critical-to-function (CTF) for each small form factor add-in card.

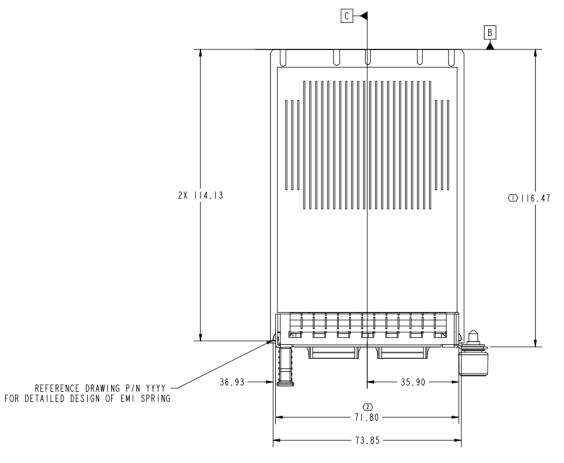


Figure 14: Small Form Factor Add-in Card Critical-to-Function (CTF) Dimensions (Front View)

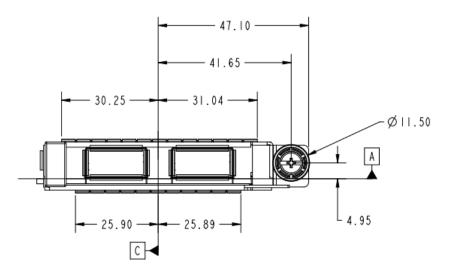
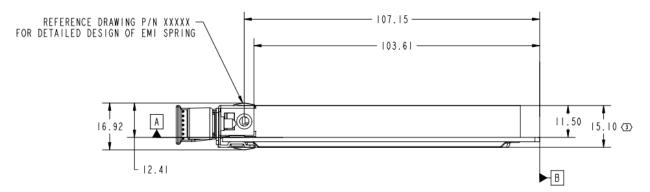



Figure 15: Small Form Factor Add-in Card Critical-to-Function (CTF) Dimensions (Side View – Left)

Figure 16: Small Form Factor Add-in Card Critical-to-Function (CTF) Dimensions (Side View – Right)

2.2.3 Small Form Factor Baseboard Critical-to-Function (CTF) Dimensions

The following dimensions are considered critical-to-function (CTF) for each small form factor baseboard chassis.

Figure 17: Small Form Factor Baseboard Chassis Critical-to-Function (CTF) Dimensions (Rear View)

Rev 0.57

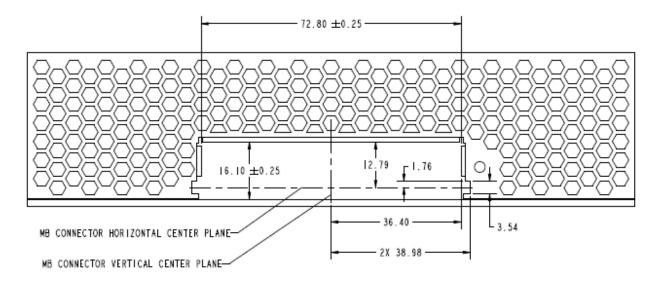


Figure 18: Small Form Factor Baseboard Chassis Critical-to-Function (CTF) Dimensions (Side View)

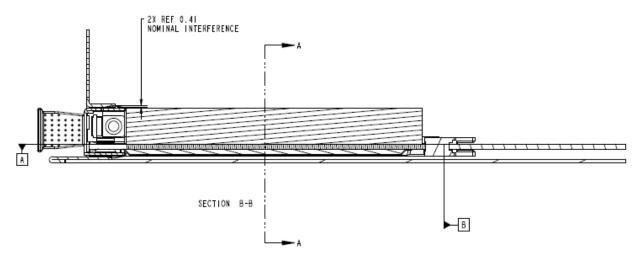


Figure 19: Small Form Factor Baseboard Chassis Critical-to-Function (CTF) Dimensions (Rear Rail Guide View)

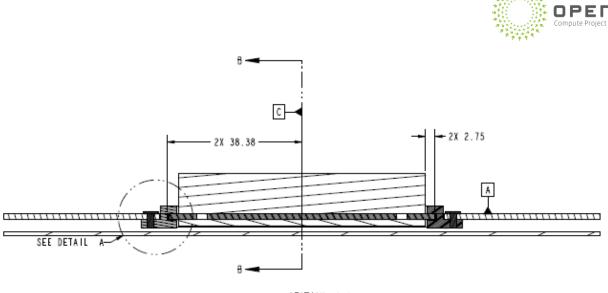
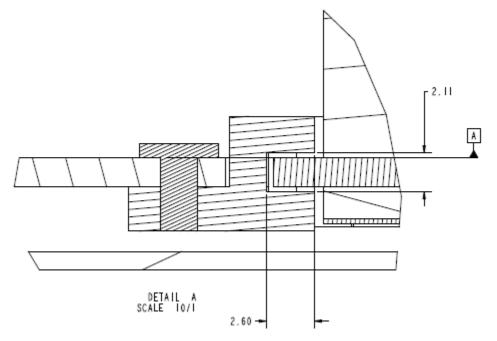



Figure 20: Small Form Factor Baseboard Chassis Critical-to-Function (CTF) Dimensions (Rail Guide Detail)

On the baseboard side, the following mechanical dimensions shall be met to support a small form factor add-in card:

Figure 21: Baseboard and Rail Assembly Drawing for Small Cards TBD; need 3D baseboard and rail assembly drawing.

2.2.4 Large Form Factor Add-in Card I/O Bracket

TBD. Definition is in progress. All drawings from the Small Form-Factor implementation need to be replicated for the Large form-factor.

Figure 22 defines the standard Large Card form factor I/O bracket.

Figure 22: Large Card Standard I/O Bracket TBD

Note: The add-in card supplier shall add port identification on bracket that meet their manufacturing and customer requirements.

For RJ-45 implementations, a customized bracket must be created. Figure 23 shows an implementation example.

Figure 23: Large Card Customized bracket for RJ-45 Connector Drawing to be inserted

Figure 24 shows the standalone bracket assembly and Figure 25 shows the bracket assembly on the addin card.

Figure 24: Large Card 3D Bracket Assembly (Standalone)

<mark>TBD</mark>

Figure 25: Large Card 3D Bracket Assembly (Installed on Add-in Card)

TBD

In addition to the sheet metal, Table 6Table 5 lists the additional hardware components used for the Small Card bracket assembly.

Item description	Supplier Part Number
Top and bottom EMI fingers	TBD
Screw / Rivet (part of bracket assy)?	TBD
Side EMI Finger	TBD
Thumb screw	TBD
Pull Tab	TBD
Latch	TBD
Screw (attaching Bracket & NIC)	TBD
SMT Nut (on NIC)	TBD

Table 6: Mechanical BOM for the Large Card Bracket

2.2.5 Large Form Factor Add-in Card Critical-to-Function (CTF) Dimensions

The following dimensions are considered critical-to-function (CTF) for each large form factor add-in card.

Figure 26: Large Form Factor Add-in Card Critical-to-Function (CTF) Dimensions (Top View) TBD

Figure 27: Large Form Factor Add-in Card Critical-to-Function (CTF) Dimensions (Front View)

TBD

Figure 28: Large Form Factor Add-in Card Critical-to-Function (CTF) Dimensions (Side View – Left) TBD
Figure 29: Large Form Factor Add-in Card Critical-to-Function (CTF) Dimensions (Side View – Right) TBD
2.2.6 Large Form Factor Baseboard Critical-to-Function (CTF) Dimensions The following dimensions are considered critical-to-function (CTF) for each large form factor baseboard chassis.
Figure 30: Large Form Factor Baseboard Chassis Critical-to-Function (CTF) Dimensions (Rear View) TBD
Figure 31: Large Form Factor Baseboard Chassis Critical-to-Function (CTF) Dimensions (Side View) TBD
Figure 32: Large Form Factor Baseboard Chassis Critical-to-Function (CTF) Dimensions (Rear Rail Guide View) TBD
Figure 33: Large Form Factor Baseboard Chassis Critical-to-Function (CTF) Dimensions (Rail Guide Detail) TBD

On the baseboard side, the following mechanical dimensions shall be met to support a large form factor add-in card:

Figure 34: Baseboard and Rail Assembly Drawing for Large Card TBD; need 3D baseboard and rail assembly drawing for large card.

2.3 Line Side I/O Implementations

At the time of this writing, the Small and Large form-factor implementations have been optimized to support the following standard line side I/O implementations:

Form Factor	Max Topology Connector Count	
Small	2x QSFP28	
Small	4x SFP28	
Small	4x RJ-45	
Large	2x QSFP28	
Large	4x SFP28	
Large	4x RJ-45	

Table 7: OC	P 3.0 Line Sid	e I/O Imp	lementations
-------------	----------------	-----------	--------------

Additional combinations are permissible as I/O form-factor technologies and thermal capabilities evolve.

2.4 LED Implementations

LEDs shall be implemented on the OCP NIC 3.0 I/O bracket when there is sufficient space for local indication. LEDs may also be implemented on the card Scan Chain (as defined in Section 3.5.3) for remote link/activity indication on the baseboard. These two cases are described below. In both cases, the actual link rate may be directly queried through the management interface.

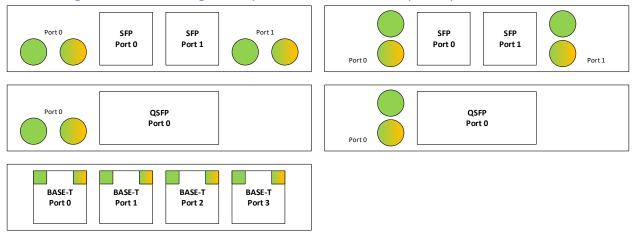
2.4.1 Add-in Card LED Configuration

For low I/O count small form-factor cards without built in light pipes (such as 1x QSFP28, 2x SFP28, or 2x RJ-45), or a large form-factor OCP 3.0 NIC, where additional I/O bracket area is available, the card shall implement on-board link/activity indications in place of the Scan Chain LED stream. The recommended local (on-card) LED implementation uses two physical LEDs (a discrete Link/Activity LED and a bi-colored Speed A/Speed B LED). Table 8 describes the add-in card LED implementations.

LED Pin	LED Color	Description
Link /	Green	Active low. Multifunction LED.
Activity		This LED shall be used to indicate link and link activity. When the link is up and no link activity is present, then this LED shall be lit and solid. This indicates that the link is established, there are no local or remote faults, and the link is ready for data packet transmission/reception.
		When the link is up and there is link activity, then this LED should blink at the interval of 50-500ms during link activity.
		The Link/Activity LED shall be located on the left hand side or located on the top for each port when the add-in card is viewed in the horizontal plane.
Speed	Green	Active low. Bicolor multifunction LED.
	Amber	

Table 8: Add-in Card LED Configuration with Two Physical LEDs per Port

Off	The LED is Green when the port is linked at its maximum speed. The LED is Amber when the port is linked at it second highest speed. The LED is off when the device is linked at a speed lower than the second highest capable speed, or no link is present.
	The Amber Speed LED indicator may be used for port identification through vendor specific link diagnostic software.
	The bicolor speed LED shall be located on the right hand side or located on the bottom for each port when the add-in card is viewed in the horizontal plane.


2.4.2 Add-in Card LED Ordering

For all add-in card use cases, each port shall implement the green Link/Activity LED and a bicolor green/amber speed A/B LED. For all baseboards, each port shall implement the green Link/Activity LED and a green speed A LED.

For horizontal LED positions, the Link/Activity LED shall be located on the left side for each port and the speed LED shall be located on the right side for each port.

For vertical LED positions, the Link/Activity LED shall be located on top and the speed LED shall be located on the bottom.

The placement of the LEDs on the faceplate may be left up to the discretion of the add-in card and baseboard designers. The LED port association shall be clearly labeled on the add-in card and on the baseboard.

Figure 35: LED Ordering – Example Small Card Link/Activity and Speed LED Placement

2.4.3 Baseboard LEDs Configuration Over the Scan Chain

A small form-factor OCP NIC 3.0 with a fully populated I/O bracket (2x QSFP28, 4x SFP28 or 4x RJ-45) does not have sufficient space for discrete on-board (faceplate) LED indicators. In this case, the line side link and activity LED indicators are implemented on the baseboard system via the Scan Chain. The Scan Chain bit stream is defined in Section 3.5.3.

The baseboard LED implementation uses two discrete LEDs (Link/Activity and Speed indication). Table 9 describes the baseboard LED configuration for baseboard implementations.

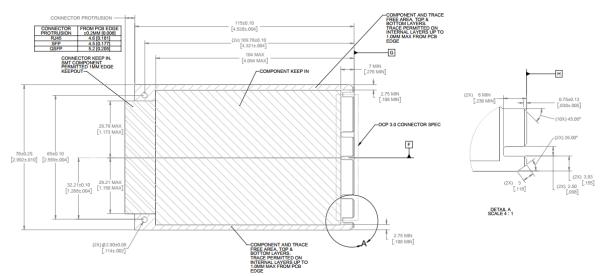
The LED implementation is required for all add-in cards. The LED implementation is optional for baseboards.

LED Pin	LED Color	Description
Link /	Green	Active low. Multifunction LED.
Activity		
		This LED shall be used to indicate link and link activity.
		When the link is up and no link activity is present, then this LED shall
		be lit and solid. This indicates that the link is established, there are no
		local or remote faults, and the link is ready for data packet
		transmission/reception.
		When the link is up and there is link activity, then this LED should blink
		at the interval of 50-500ms during link activity.
		The baseboard Link/Activity LED location is not mandated in this
		specification and will be defined by the system vendor.
Speed	Green	Active low. Multifunction LED.
	Off	
		The LED is Green when the port is linked at its maximum speed.
		The LED is off when the device is linked at a speed lower than the
		highest capable speed, or no link is present.
		The baseboard speed LED location is not mandated in this
		specification and will be defined by the system vendor.
		Note: The baseboard speed LED is only defined to be a single color due
		to the scan chain bit definition. For dual color indication, the
		baseboard may obtain this information through the NIC Management
		Interface.

Table 9: Baseboard LED Configurations with Two Physical LEDs per Port

At the time of this writing, the Scan Chain definition allows for up to one link/activity and one speed LED per port. A total of up to 8 ports are supported in the Scan Chain. The bit stream defines the LEDs to be active low (on). The Scan Chain LED implementation allows the NIC LED indicators to be remotely located on the OCP 3.0 compliant chassis (e.g. front LED indicators with rear I/O cards).

2.5 Mechanical Keepout Zones


2.5.1 Baseboard Keep Out Zones – Small Card Form Factor

TBD – Need keepout drawings and envelopes for small / large size baseboard including primary/secondary/rail keepouts/cutout for straddle mount/keepout for right angle.

2.5.2 Baseboard Keep Out Zones – Large Card Form Factor

TBD. – need input from mechanical engineering

2.5.3 Small Card Form Factor Keep Out Zones

Figure 36: Small Form Factor Keep Out Zone – Top View

Rev 0.57

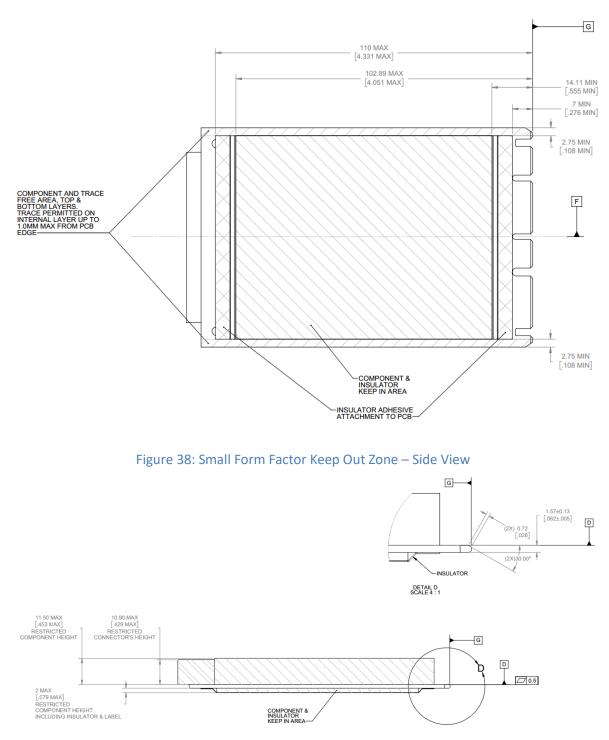
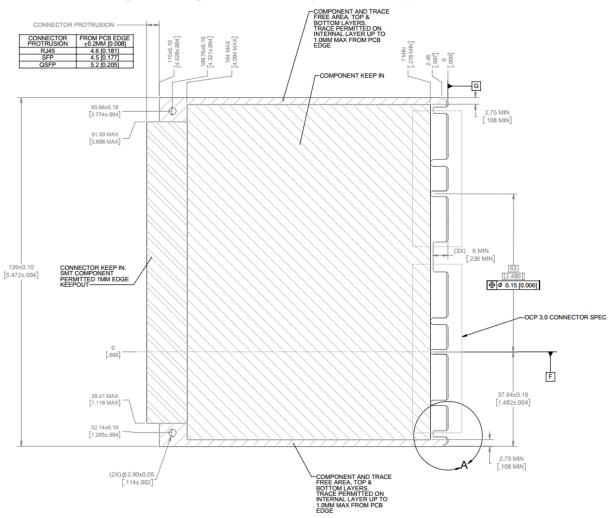
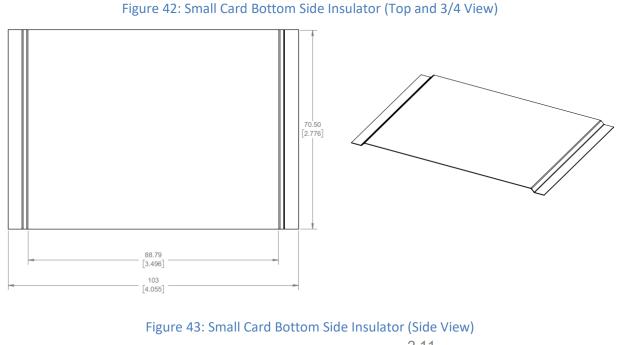



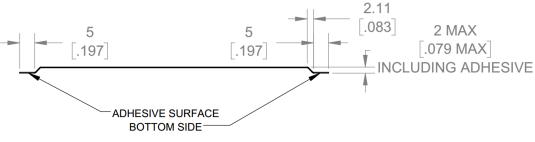
Figure 37: Small Form Factor Keep Out Zone – Bottom View

2.5.4 Large Card Form Factor Keep Out Zones

Figure 39: Large Form Factor Keep Out Zone – Top View

Rev 0.57


Figure 40: Large Form Factor Keep Out Zone – Bottom View



2.6 Insulation Requirements

All cards shall implement an insulator to prevent the bottom side card components from shorting out to the baseboard chassis. The recommended insulator thickness is 0.25mm and shall reside within the following mechanical envelope for the Small and Large size cards.

2.6.1 Small Card Insulator

2.6.2 Large Card Insulator

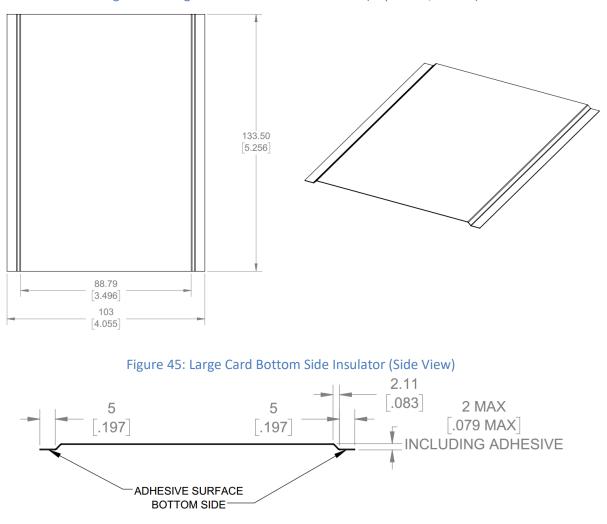


Figure 44: Large Card Bottom Side Insulator (Top and 3/4 View)

2.7 Labeling Requirements

TBD

Editor's note [TN 20171214]: Consider the following label attributes:

Label attributes are human (e.g. ASCII) and machine readable (e.g. barcode)

Add-in card MAC address shall be visible (used MAC address range, or base value)

Board serial number

2.8 NIC Implementation Examples

<mark>TBD</mark>

2.9 Non-NIC Use Cases

"PCIe interface with extra management sideband"

2.9.1 PCIe Retimer card

TBD

- 2.9.2 Accelerator card
- TBD
- 2.9.3 Storage HBA / RAID card

<mark>TBD</mark>

3 Card Edge and Baseboard Connector Interface

3.1 Gold Finger Requirements

The OCP NIC 3.0 add-in cards are compliant to the SFF-TA-1002 specification with respect to the gold fingers and connectors.

Small Size cards fit in the Primary Connector. Primary Connector compliant cards are 76mm x 115mm and may implement the full 168-pins. The Primary Connector cards may optionally implement a subset of gold finger pins if there is a reduced PCIe width requirement (such as 1 x8 and below). In this case, the card edge gold finger may implement a 2C design. The overall board thickness is 1.57mm. The gold finger dimensions for the Primary Connector compliant cards are shown below.

Large Size Cards support up to a x32 PCIe implementation and may use both the Primary and Secondary connectors. Large Size Cards may implement a reduced PCIe lane count and optionally implement only the Primary Connector 4C, or 2C plus OCP bay.

Note: The "B" pins on the connector are associated with the top side of the add-in card. The "A" pins on the connector are associated with the bottom side of the add-in card.

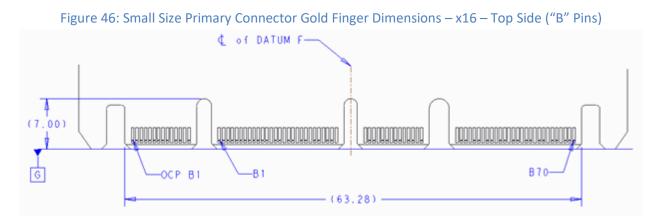


Figure 47: Small Size Primary Connector Gold Finger Dimensions – x16 – Bottom Side ("A" Pins)

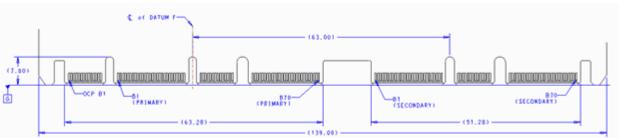
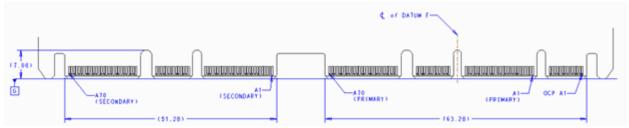
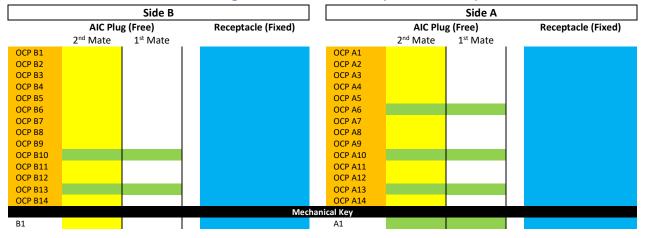



Figure 48: Large Size Card Gold Finger Dimensions – x32 – Top Side ("B" Pins)



3.1.1 Gold Finger Mating Sequence

Per the SFF-TA-1002 specification, the Primary and Secondary connectors are protocol agnostic and are optimized for high speed differential pairs. For use in the OCP NIC 3.0 application, some pin locations are used for single ended control nets or power and would benefit from a shorter pin length for staggering. As such, the recommended add-in card gold finger staging is shown in Table 10 for a two stage, first-mate, last-break functionality. The host connectors have a single stage mating and do not implement different pin lengths.

The AIC Plug (Free) side refers to the add-in card gold fingers; the receptacle (Fixed) side refers to the physical connector on the host platform. This table is based on the SFF-TA-1002 Table A-1 with modifications for OCP NIC 3.0. Refer to the mechanical drawings for pin the first-mate and second-mate lengths.

Table 10: Contact Mating Positions for the Primary and Secondary Connectors

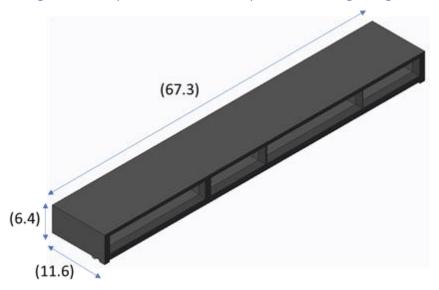
Open Compute Project • NIC • 3.0

Rev 0.57

					Nev 0.57
B2			A2		
B3			A3		
B4			A4		
B5			A5		
B6			A6		
B7			A7		
B8			A8		
B9			A9		
B10			A10		
B11			A11		
B12			A12		
B13			A13		
B14			A14		
B15			A15		
			AIS		
B16			A16		
B17			A17		
B18			A18		
B19			A19		
B20			A20		
B21			A21		
B22			A22		
B23			A23		
B24			A24		
B25			A25		
B26			A26		
B27			A27		
B28			A28		
		Mech	nanical Key		
B29			A29		
B30			A30		
B31			A31		
B32			A32		
			ASZ		
B33			A33		
B34			A34		
B35			A35		
B36			A36		
B37			A37		
B38			A38		
B39			A39		
B40			A40		
B41			A41		
B42			A42		
		Mec	nanical Key		
B43		ince.	A43		
			A43		
B44			A44		
B45			A45		
B46			A46		
B47			A47		
B48			A48		
B49			A49		
B49 B50			A49 A50		
B51			A51		
B52			A52		
B53			A53		
B54			A54		
B55			A55		
B56			A56		
			ASO		
B57			A57		
B58			A58		
B59	1		A59		
B60			A60		
B61			A61		
B62			A62		
B63			A63		
B64			A64		
B65			A65		
B66			A66		
			A67		
B67			AD/		
B68			A68		
B69			A69		
	1		A70		
B70			A/U		

3.2 Baseboard Connector Requirements

The OCP NIC 3.0 connectors are compliant to the "4C connector" as defined in the SFF-TA-1002 specification for a right angle or straddle mount form-factor. The 4C connector is 140-pins in width and includes support for up to 32 differential pairs to support a x16 PCIe connection. The connector also provides 6 pins of 12V for payload power. This implementation is common between both the Primary and Secondary Connectors. In addition, the Primary Connector has a 28-pin OCP Bay to the right of pin 1. These pins are used for management and support for up to a 4 x2 and 4 x4 multi-host configuration on the Primary Connector. The Primary and Secondary Connector. The Primary and Secondary Connector.


All diagram units are in mm unless otherwise noted.

3.2.1 Right Angle Connector

The following offset and height options are available for the right angle Primary and Secondary Connectors.

Name	Pins	Style and Baseboard Thickness	Offset (mm)
Primary Connector – 4C + OCP	168 pins	Right Angle	4mm
Secondary Connector – 4C	140 pins	Right Angle	4mm

Table 11: Right Angle Connector Options

Figure 50: 168-pin Base Board Primary Connector – Right Angle

Figure 51: 140-pin Base Board Secondary Connector – Right Angle

3.2.2 Right Angle Offset

The OCP NIC 3.0 right angle connectors have a 4.0mm offset from the baseboard (pending SI simulation results). This is shown in Figure 52.

Figure 52: Add-in Card and Host Offset for Right Angle Connectors

TBD

3.2.3 Straddle Mount Connector

The following offset and height options are available for the straddle mount Primary and Secondary Connectors.

Name	Pins	Style and Baseboard Thickness	Offset (mm)
Primary Connector – 4C + OCP	168 pins	Straddle Mount for 0.062"	Coplanar (0mm)
Primary Connector – 4C + OCP	168 pins	Straddle Mount for 0.076"	-0.3mm
Primary Connector – 4C + OCP	168 pins	Straddle Mount for 0.093"	Coplanar (0mm)
Secondary Connector – 4C	140 pins	Straddle Mount for 0.062"	Coplanar (0mm)
Secondary Connector – 4C	140 pins	Straddle Mount for 0.076"	-0.3mm
Secondary Connector – 4C	140 pins	Straddle Mount for 0.093"	Coplanar (0mm)

Table 12: Straddle Mount Connector Options

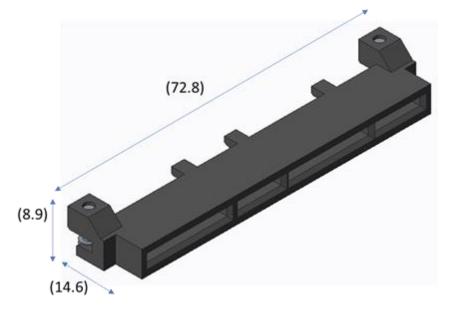
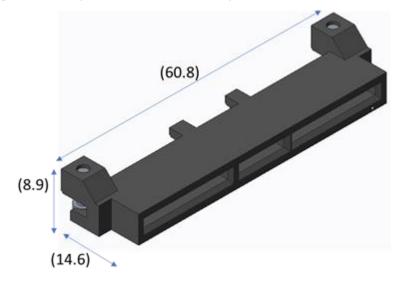



Figure 53: 168-pin Base Board Primary Connector – Straddle Mount

Figure 54: 140-pin Base Board Secondary Connector – Straddle Mount

3.2.4 Straddle Mount Offset and PCB Thickness Options

The OCP NIC 3.0 straddle mount connectors have four PCB thicknesses they can accept. The available options are shown in Figure 55. The thicknesses are 0.062'', 0.076'', 0.093'', and 0.105''. These PCBs must be controlled to a thickness of ±8%. These are available for both the Primary and Secondary connector locations. At the time of this writing, the most commonly used part is expected to be the 0.076'' host board thickness.

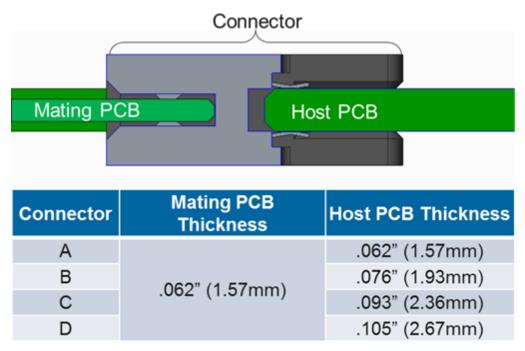


Figure 55: Add-in Card and Host PCB Thickness Options for Straddle Mount Connectors

The connectors are capable of being used coplanar as shown in Figure 56. Additionally, the connectors are also capable of having a 0.3mm offset from the centerline of the host board as shown in Figure 57.

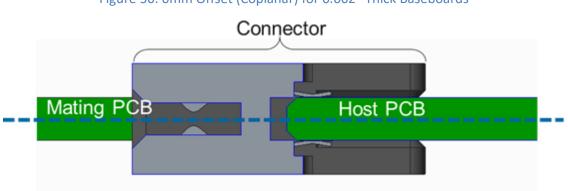
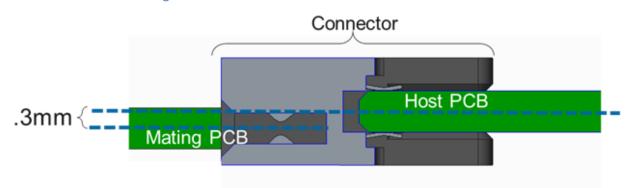
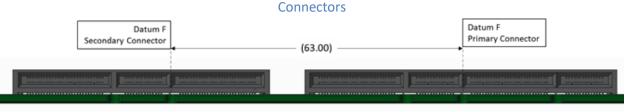
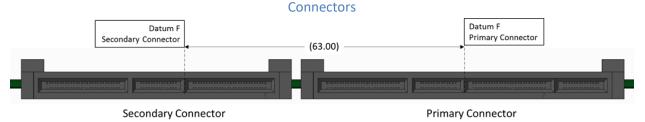



Figure 56: 0mm Offset (Coplanar) for 0.062" Thick Baseboards


Figure 57: 0.3mm Offset for 0.076" Thick Baseboards

3.2.5 Large Card Connector Locations

In order to the support the large form factor, systems must locate the Primary and Secondary Connectors per the mechanical drawing shown in Figure 58 and Figure 59.


Figure 58: Primary and Secondary Connector Locations for Large Card Support with Right Angle

Secondary Connector

Primary Connector

Figure 59: Primary and Secondary Connector Locations for Large Card Support with Straddle Mount

3.3 Pin definition

The pin definitions of an OCP NIC 3.0 card with up to a x32 PCIe interface are shown in Table 13 and Table 14. All signal directions are shown from the perspective of the baseboard.

A baseboard system may provide a combination of Primary Connectors only, or Primary and Secondary Connectors to support multiple sizes of add-in cards. Both connectors share common functionality with power, SMBus 2.0, x16 PCIe and bifurcation control. The Primary Connector has an additional OCP Bay (pins OCP_A[1:14], OCP_B[1:14]) with additional REFCLKs for supporting up to four PCIe hosts, NC-SI connectivity and a Scan Chain for information exchange between the host and card. The NIC is required

to implement the Scan Chain, while the baseboard may choose to optionally implement it. Depending on the baseboard form-factor, multiple OCP NIC 3.0 compliant cards may be designed into the system.

The pins common to the Primary and Secondary Connectors are shown in Section 3.4. The OCP Bay pins on the Primary Connector only are shown in Section 0.

Cards or systems that do not require the use of a PCIe x16 connection may optionally implement a subset electrical connections as applicable to the design. For example, a x8 (or smaller) card using the first 8 PCIe lanes that is compliant with the Primary Connector pinout. Refer to Sections 3.1 and 3.2 for mechanical details. For these cases, the Primary Connector matches the 2C dimensions as defined in SFF-TA-1002.

In all cases, the physical baseboard connectors shall support x16 PCIe widths and must be implemented with the Primary (4C + OCP Bay) and Secondary (4C) connectors.

	Side B	Side A			
OCP B1	NIC PWR GOOD	PERST2#	OCP A1	P	P
OCP B2	PWRBRK#	PERST3#	OCP A2	rim	rim
OCP_B3	LD#	WAKE#	OCP_A3	laŋ	iaŋ
OCP_B4	DATA_IN	RBT_ARB_IN	OCP_A4	, C	, Co
OCP_B5	DATA_OUT	RBT_ARB_OUT	OCP_A5	nn	nn
OCP_B6	CLK	GND	OCP_A6	ect	ect
OCP_B7	SLOT_ID	RBT_TX_EN	OCP_A7	or (or (
OCP_B8	RBT_RXD1	RBT_TXD1	OCP_A8	×16	X8,
OCP_B9	RBT_RXD0	RBT_TXD0	OCP_A9	5, 1	11
OCP_B10	GND	GND	OCP_A10	68-	2-р
OCP_B11	REFCLKn2	REFCLKn3	OCP_A11	pin	ina
OCP_B12	REFCLKp2	REFCLKp3	OCP_A12	Primary Connector (x16, 168-pin add-in card with OCP Bay)	Primary Connector (x8, 112-pin add-in card with OCP bay)
OCP_B13	GND	GND	OCP_A13	d-ir	-ii
OCP_B14	RBT_CRS_DV	RBT_CLK_IN	OCP_A14	1 03	car
		ical Key		ird	d ¥
B1	+12V/+12V_AUX	GND	A1	vit	/ith
B2	+12V/+12V_AUX	GND	A2	ЪО	Q
B3	+12V/+12V_AUX	GND	A3	Ç	Pb
B4	+12V/+12V_AUX	GND	A4	Ва	ay)
B5	+12V/+12V_AUX	GND	A5	5	•
B6	+12V/+12V_AUX	GND	A6	_	
B7	BIFO#	SMCLK	A7	_	
B8	BIF1#	SMDAT	A8	-	
B9	BIF2#	SMRST#	A9	-	
B10	PERSTO#	PRSNTA#	A10	-	
B11	+3.3V/+3.3V_AUX	PERST1#	A11	-	
B12	PWRDIS	PRSNTB2#	A12	-	
B13	GND	GND	A13	-	
B14	REFCLKn0	REFCLKn1	A14	-	
B15	REFCLKp0	REFCLKp1	A15	-	
B16	GND	GND	A16	-	
B17	PETn0	PERnO	A17	-	
B18	РЕТрО	PERpO	A18	_	
B19	GND	GND	A19	-	
B20	PETn1	PERn1	A20	-	
B21	PETp1	PERp1	A21		

Table 13: Primary Connector Pin Definition (x16) (4C + OCP Bay)

022			422	
B22	GND	GND	A22	
B23	PETn2	PERn2	A23	
B24	PETp2	PERp2	A24	
B25	GND	GND	A25	
B26	PETn3	PERn3	A26	
B27	PETp3	PERp3	A27	
B28	GND	GND	A28	
820		ical Key	120	
B29	GND	GND	A29	
B30	PETn4	PERn4	A30	
B31	PETp4	PERp4	A31	
B32	GND	GND	A32	
B33	PETn5	PERn5	A33	
B34	PETp5	PERp5	A34	
B35	GND	GND	A35	
B36	PETn6	PERn6	A36	
B37	РЕТр6	PERp6	A37	
B38	GND	GND	A38	
B39	PETn7	PERn7	A39	
B40	РЕТр7	PERp7	A40	
B41	GND	GND	A41	
B42	PRSNTBO#	PRSNTB1#	A42	
		nical Key		
B43	GND	GND	A43	
B44	PETn8	PERn8	A44	
B45	PETp8	PERp8	A45	
B46	GND	GND	A46	
B47	PETn9	PERn9	A47	
B48	РЕТр9	PERp9	A48	
B49	GND	GND	A49	
B50	PETn10	PERn10	A50	
B51	PETp10	PERp10	A51	
B52	GND	GND	A52	
B53	PETn11	PERn11	A53	
B54	PETp11	PERp11	A54	
B55	GND	GND	A55	
B56	PETn12	PERn12	A56	
B57	PETp12	PERp12	A57	
B58	GND	GND	A58	
B59	PETn13	PERn13	A59	
B60	PETp13	PERp13	A60	
B61	GND	GND	A61	
B62	PETn14	PERn14	A62	
B63	PETp14	PERp14	A63	
B64	GND	GND	A64	
B65	PETn15	PERn15	A65	
		PERp15	A66	
866	PEID15			
	PETp15 GND			
B67	GND	GND	A67	
B66 B67 B68 B69				

Rev 0.57

Table 14: Secondary	Connector Pin	Definition (x16) (4C)
---------------------	----------------------	-----------------------

Side B Side A B1 +12V/+12V_AUX GND	A1 0
B2 +12V/+12V_AUX GND	A1 Secondary A2
B3 +12V/+12V_AUX GND	A3 0
B4 +12V/+12V_AUX GND	A4 dary
B5 +12V/+12V_AUX GND	A5 C
B6 +12V/+12V_AUX GND	A6 0
B7 BIF0# SMCLK B8 BIF1# SMDAT	A7 Ct A8 Ct
	A9 X
	A10 5
B10 PERSTO# PRSNTA# B11 +3.3V/+3.3V_AUX PERST1#	A10 4
	A11 6 A12 5
B12 PWRDIS PRSNTB2#	
B13 GND GND	A13 dd
B14 REFCLKn0 REFCLKn1	A14 5
B15 REFCLKp0 REFCLKp1	A15 G
B16 GND GND	
B17 PETRO PERRO	A17
B18 PETp0 PERp0	A18
B19 GND GND	A19
B20 PETn1 PERn1	A20
B21 PETp1 PERp1	A21
B22 GND GND	A22
B23 PETn2 PERn2	A23
B24 PETp2 PERp2	A24
B25 GND GND	A25
B26 PETn3 PERn3	A26
B27 PETp3 PERp3	A27
B28 GND GND	A28
Mechanical Key	
B29 GND GND	A29
B30 PETn4 PERn4	A30
B31 PETp4 PERp4	A31
B32 GND GND	A32
B33 PETn5 PERn5	A33
B34 PETp5 PERp5	A34
B35 GND GND	A35
B36 PETn6 PERn6	A36
B37 PETp6 PERp6	A37
B38 GND GND	A38
B39 PETn7 PERn7	A39
B40 PETp7 PERp7	A40
B41 GND GND	A41
B42 PRSNTB0# PRSNTB1#	A42
Mechanical Key	
B43 GND GND	A43
B44 PETn8 PERn8	A44
B45 PETp8 PERp8	A45
B46 GND GND	<u>A46</u>
B47 PETn9 PERn9	A47
B48 PETp9 PERp9	A48
B49 GND GND	A49
	A49 A50 A51

B52	GND	GND	A52	
B53	PETn11	PERn11	A53	
B54	PETp11	PERp11	A54	
B55	GND	GND	A55	
B56	PETn12	PERn12	A56	
B57	PETp12	PERp12	A57	
B58	GND	GND	A58	
B59	PETn13	PERn13	A59	
B60	PETp13	PERp13	A60	
B61	GND	GND	A61	
B62	PETn14	PERn14	A62	
B63	PETp14	PERp14	A63	
B64	GND	GND	A64	
B65	PETn15	PERn15	A65	
B66	PETp15	PERp15	A66	
B67	GND	GND	A67	
B68	RFU, N/C	RFU, N/C	A68	
B69	RFU, N/C	RFU, N/C	A69	
B70	PRSNTB3#	RFU, N/C	A70	

3.4 Signal Descriptions – Common

The pins shown in this section are common to both the Primary and Secondary Connectors. All pin directions are from the perspective of the baseboard.

The add-in card shall implement protection methods to prevent leakage paths between the Vaux and Vmain power domains in the event that a NIC is powered down in a powered up baseboard.

Note: Pins that are only used on Primary Connector 28-pin OCP bay are defined in Section 0.

3.4.1 PCIe Interface Pins

This section provides the pin assignments for the PCIe interface signals. The AC/DC specifications are defined in the PCIe CEM Specification, Rev 4.0. Example connection diagrams for are shown in Figure 73.

Signal Name	Pin #	Baseboard Direction	Signal Description
REFCLKn0 REFCLKp0	B14 B15	Output	PCIe compliant differential reference clock #0, and #1. 100MHz reference clocks are used for the add-in
REFCLKn1 REFCLKp1	A14 A15	Output	card PCIe core logic. For baseboards, the REFCLK0 and REFCLK1 signals
			shall be available at the connector. Baseboards shall disable REFCLK1 if it is not used by the add-in card.
			For add-in cards, the required REFCLKs shall be connected per the endpoint datasheet. Unused REFCLKs on the add-in card shall be left as a no connect.

Table 1	5: Pin	Descriptions -	- PCle 1
---------	--------	-----------------------	----------

Note: For cards that only support 1 x16, REFCLK0 is used. For cards that support 2 x8, REFCLK0 is used for the first eight PCIe lanes, and REFCLK1 is used for the first eight PCIe lanes.PETn0B17OutputRefer to Section 2.1 in the PCIe CEM Specification, Rev 4.0 for electrical details.PETn0B18connected from the baseboard transmitterPETn1B20Outputdifferential pairs (0:15). These pins are connected from the baseboard transmitterPETn2B23OutputThe PCIe transmit pins shall be AC coupled on the baseboard with capacitors shall be placed next to the baseboard transmitters. The AC coupling capacitor value shall be between 176nF (min) and 265nF (max).PETn4B30OutputPETn5B33OutputPETn6B36OutputPETn7B39OutputPETn8B44OutputPETp9B43For baseboards, the PET[0:15] signals are required at the connector.PETn10B50OutputPETn11B53OutputPETp13B56OutputPETp14B63OutputPETn13B59OutputPETn14B62OutputPETn13B50OutputPETn14B63OutputPETn15B66OutputPETn14B62OutputPETn15B66OutputPETn14B62OutputPETn15B65OutputPETn14B62OutputPETn15B65OutputPETn14B62O				
PETn0B17OutputRev 4.0 for electrical details.PETp0B18Connected from the baseboard transmitterPETn1B20OutputPETn2B21Connected from the baseboard transmitterPETp1B21Connected from the baseboard transmitterPETp2B24ContputPETp3B27CoutputPETp4B30OutputPETp4B31Coupling capacitor value shall be AC coupled on the baseboard with capacitors. The capacitors shall be placed next to the baseboard transmitters. The AC coupling capacitor value shall be between 176nFPETp4B33OutputPETn5B34OutputPETn6B36OutputPETp6B37For baseboards, the PET[0:15] signals are required at the connector.PETp8B44OutputPETp7B40For add-in cards, the required PET[0:15] signals shall be connected to the endpoint silicon. For silicon that uses less than a x16 connection, the appropriatePETp1B53OutputPETn10B50OutputPETn11B53OutputPETn12B57PETn13B60PETp14B63PETn14B62OutputPETp15B66PETn14B62PERn0A17PERn1A20PERn1A21PERn2A23PERn2A23PERn2A23PERn2A24PERn2A24				used. For cards that support 2 x8, REFCLKO is used for the first eight PCIe lanes, and REFCLK1 is used for the
PETp0B18connected from the baseboard transmitter differential pairs to the receiver differential pairs on the add-in card.PETn1B21outputPETp2B24OutputPETp3B27DutputPETp3B27DutputPETp4B31The PCIe transmit pins shall be AC coupled on the baseboard with capacitors. The capacitors shall be placed next to the baseboard transmitters. The AC coupling capacitor value shall be between 176nF (min) and 265nF (max).PETp5B33OutputPETp6B37For baseboards, the PET[0:15] signals are required at the connector.PETp6B37For baseboards, the PET[0:15] signals are required at the connector.PETp6B37For add-in cards, the required PET[0:15] signals shall be connected to the endpoint silicon. For silicon that uses less than a x16 connection, the appropriate PET[0:15] signals shall be connected per the endpoint datasheet.PETp1B47Output PETp1PETp1B53Output PETp1PETp1B54Output PETp13PETp1B55Output PETp13PETn14B62Output PETp15PERn0A17Input A18PERn1A20Input A21PERp1A21Input A21PERp2A23InputPERp2A24Input				
PETn1B20Outputdifferential pairs to the receiver differential pairs on the add-in card.PETp2B23Outputthe add-in card.PETp2B24The PCIe transmit pins shall be AC coupled on the baseboard with capacitors. The capacitors shall be placed next to the baseboard with capacitors. The capacitors shall be placed next to the baseboard transmitters. The AC coupling capacitor value shall be between 176nF (min) and 265nF (max).PETp4B30OutputPETp5B33OutputPETp6B37For baseboards, the PET[0:15] signals are required at the connector.PETp6B37OutputPETp7B40OutputPETp8B44OutputPETp7B40OutputPETp8B44OutputPETp9B47OutputPETp9B47OutputPETp11B50OutputPETp12B57OutputPETn11B53OutputPETn12B56OutputPETp13B60OutputPETp14B63PETn15B65OutputPERn1A20InputPERn1A20PERn1A21PERn2A23PERn2A23PERn2A23PERp2A24	PETn0	B17	Output	Transmitter differential pairs [0:15]. These pins are
PETp1B21the add-in card.PETp2B23OutputPETp3B26OutputPETp3B27The PCIe transmit pins shall be AC coupled on the baseboard with capacitors. The capacitors shall be placed next to the baseboard transmitters. The AC coupling capacitor value shall be between 176nF (min) and 265nF (max).PETp5B33OutputPETp5B34OutputPETp6B37OutputPETp6B37OutputPETp7B40For baseboards, the PET[0:15] signals are required at the connector.PETp7B40OutputPETp8B44OutputPETp9B47OutputPETp9B48OutputPETp9B48OutputPETp10B51OutputPETp11B53OutputPETp12B57OutputPETp13B60PETn11PETp14B63OutputPETp15B66OutputPETp15B66OutputPETp15B66PERn1PERn1A20InputPERn2A23InputPERn2A24The PCIe receive pins shall be AC coupled on the add-	РЕТрО	B18		connected from the baseboard transmitter
PETn2B23 PETn2OutputPETp2B24OutputPETp3B27Daseboard with capacitors. The capacitors shall be baseboard with capacitors. The capacitors shall be coupling capacitor value shall be between 176nF (min) and 265nF (max).PETn5B33OutputPETn6B36OutputPETn7B30OutputPETn7B40For baseboards, the PET[0:15] signals are required at the connecter.PETn8B44OutputPETn9B48PET[0:15] signals shall be connected per the endpoint datasheet.PETn10B50OutputPETn11B53OutputPETn12B56OutputPETn13B60PETn14B62PETn15B66PETn15B66PERn0A17PERn1A20PERn1A21PERn2A23PERn2A24DetacePERever differential pairs (0:15]. These pins are connected from the add-in card transmitterPER	PETn1	B20	Output	
PETp2B24The PCIe transmit pins shall be AC coupled on the baseboard with capacitors. The capacitor shall be placed next to the baseboard transmitters. The AC coupling capacitor value shall be between 176nF pETp4PETp4B30OutputPETp4B31OutputPETp5B33OutputPETp6B36OutputPETp6B37For baseboards, the PET[0:15] signals are required at the connector.PETp6B37For add-in cards, the required PET[0:15] signals shall be connected to the endpoint silicon. For silicon that uses less than a x16 connection, the appropriate PETp9PETn10B50Output B51PETn11B53Output B51PETn12B56Output B51PETn13B60Refer to Section 6.1 in the PCle CEM Specification, Rev 4.0 for details.PETn14B62Output B66PETn15B65Output B66PERn0A17Input A18PERn1A20InputPERn2A24Input The OPC receive pins shall be AC coupled on the add- metashal pairs to the receiver differential pairs to the caupled on the add- metashal pairs on the baseboard.	PETp1	B21		the add-in card.
PETn3B26Outputbaseboard with capacitors. The capacitors shall bePETp3B27Outputplaced next to the baseboard transmitters. The ACPETn4B30Outputcoupling capacitor value shall be between 176nFPETp5B33Output(min) and 265nF (max).PETn5B36OutputFor baseboards, the PET[0:15] signals are required atPETp6B37Petrp7PETn7B39OutputPETp7B40For add-in cards, the required PET[0:15] signals shallPETp7B40PetrofPETp8B45OutputPETp9B48Petrof.15] signals shallPETn9B47OutputPETp10B51OutputPETp11B53OutputPETp12B57OutputPETp13B60Petrn14PETp14B63OutputPETp15B66OutputPETp14B63OutputPETp15B66OutputPETp14A20InputPERp1A21InputPERp1A21The PCle receive pins shall be AC coupled on the add-PERp2A24Input	PETn2	B23	Output	
PETp3B27placed next to the baseboard transmitters. The AC coupling capacitor value shall be between 176nF (min) and 265nF (max).PETn5B33OutputPETn5B34OutputPETn6B36OutputPETn6B37For baseboards, the PET[0:15] signals are required at the connector.PETn7B39OutputPETn8B44OutputPETp8B45OutputPETp9B47OutputPETp10B50OutputPETp11B53OutputPETp12B56OutputPETp13B60OutputPETp14B62OutputPETp15B65OutputPETp14B62OutputPETp15B65OutputPETp14B62OutputPETp14A17InputPERn0A17InputPERn1A20InputPERn2A24InputPERp2A24The PCle receive pins shall be AC coupled on the add-in	PETp2	B24		
PETn4B30Outputcoupling capacitor value shall be between 176nFPETp4B31Outputcoupling capacitor value shall be between 176nFPETn5B33OutputFor baseboards, the PET[0:15] signals are required atPETp6B37For baseboards, the required PET[0:15] signals are required atPETp7B40For add-in cards, the required PET[0:15] signals shallPETp7B40CutputPETp8B44OutputPETp8B45CutputPETp9B47OutputPETp10B50OutputPETp11B54OutputPETp12B57OutputPETp13B60OutputPETp14B63OutputPETp15B66OutputPETp14B63CutputPERp0A17InputPERp1A20InputPERp1A21InputPERp2A24Input	PETn3	B26	Output	
PETp4B31OutputPETp4B31(min) and 265nF (max).PETn5B33OutputPETp5B34OutputPETp6B37For baseboards, the PET[0:15] signals are required at the connector.PETp7B40OutputPETp7B40OutputPETp8B44OutputPETp9B47OutputPETp9B48PET[0:15] signals shall be connected to the endpoint silicon. For silicon that uses less than a x16 connection, the appropriatePETp19B48OutputPETp10B51OutputPETp11B53OutputPETp12B56OutputPETp13B60OutputPETp14B63OutputPETp15B66OutputPETp15B66OutputPERn0A17InputPERn1A20InputPERn1A21InputPERn2A24InputPERp2A24The PCle receive pins shall be AC coupled on the add-	PETp3	B27		
PETn5B33 B34OutputPETn5B34For baseboards, the PET[0:15] signals are required at the connector.PETn6B37For baseboards, the PET[0:15] signals are required at the connector.PETp6B37For add-in cards, the required PET[0:15] signals shall be connected to the endpoint silicon. For silicon that uses less than a x16 connection, the appropriate PETp8PETn7B40OutputPETp7B44Output PETp8PETn9B47Output B51PETn10B50Output B51PETn11B53Output PETp12PETn12B56Output PETp13PETn13B59Output PETp14PETn14B63Output PETp15PERn0A17 PERn1InputPERn1A20 A21InputPERn2A23 A24InputPERn2A24The PCle receive pins shall be AC coupled on the add-	PETn4	B30	Output	
PETp5B34For baseboards, the PET[0:15] signals are required at the connector.PETn6B37Petrp6B37PETp7B39Output be connected to the endpoint silicon. For silicon that uses less than a x16 connection, the appropriate PETp8PETn9B47Output B47PET[0:15] signals shall be connected to the endpoint silicon. For silicon that uses less than a x16 connection, the appropriate PET[0:15] signals shall be connected per the endpoint datasheet.PETn9B47Output B51PET[0:15] signals shall be connected per the endpoint datasheet.PETn10B50Output B51PET[0:15] signals shall be connected per the endpoint datasheet.PETp11B53Output B51PETn11PETp12B56Output PETp13PETp13B60OutputPETp14B63PETn15PERn0A17Input PERp1PERn1A20InputPERn2A23Input PERp2PERn2A24The PCle receive pins shall be AC coupled on the add-	PETp4	B31		(min) and 265nF (max).
PETn6B36OutputPETn6B37OutputPETn7B39OutputPETp7B40For add-in cards, the required PET[0:15] signals shall be connected to the endpoint silicon. For silicon that uses less than a x16 connection, the appropriate PET[0:15] signals shall be connected per the endpoint datasheet.PETn9B47OutputPETp9B48PETn10B50OutputPETp11B53OutputPETp12B57PETn13B59OutputPETp14B63PETn15B66PERn0A17PERn1A20PERn1A20PERn1A21PERn2A24PERn2A24	PETn5	B33	Output	
PETp6B37PETp6B37PETp7B40PETp7B40PETp7B40PETp8B44OutputPETp8B45PETp9B47PETp9B48PETn10B50PETn11B53PETn11B53PETn11B53PETn12B56PETn13B59PETn14B62PETn15B65PETn14B63PETn15B66PERN0A17PERN0A17PERN1A20PERN1A21PERN1A21PERN1A21PERN2A24PERN2A24	PETp5	B34		
PETn7B39 B40Output B40For add-in cards, the required PET[0:15] signals shall be connected to the endpoint silicon. For silicon that uses less than a x16 connection, the appropriate PETp8PETn8B44Output PETp8PET[0:15] signals shall be connected per the endpoint datasheet.PETn9B47Output PETp9PET[0:15] signals shall be connected per the endpoint datasheet.PETp10B50Output B51PETer to Section 6.1 in the PCIe CEM Specification, Rev 4.0 for details.PETp11B53Output PETp12PETn12B56Output B57PETn13B59Output PETp13PETn14B62Output PETp15PETn15B66OutputPERn0A17Input A18PERn1A20Input A21PERn2A23Input PERp2PERp2A24The PCIe receive pins shall be AC coupled on the add-	PETn6	B36	Output	the connector.
PETp7B40B44PETp7B40be connected to the endpoint silicon. For silicon that uses less than a x16 connection, the appropriate PETp8PETp8B45OutputPETp9B47Output B50PETn10B50Output B51PETp10B51Refer to Section 6.1 in the PCIe CEM Specification, Rev 4.0 for details.PETp11B53Output PETp12PETn12B56Output B57PETn13B59Output PETp14PETp14B63PETn15B66PERn0A17PERn1A20PERn1A21PERn2A24PERn2A24	PETp6	B37		
PETDDiffPETN8B44OutputPETp8B45PET[0:15] signals shall be connected per the endpoint datasheet.PETp9B48PET[0:15] signals shall be connected per the endpoint datasheet.PETn10B50Output B51PETn11B53Output PETp11PETp12B56Output PETp12PETn13B59Output PETp14PETp14B63Output PETp15PERn0A17Input PERp1PERn1A20Input PERp1PERn1A21Input PERp2PERn2A24The PCle receive pins shall be AC coupled on the add-	PETn7	B39	Output	
PETD8B45OutputPETp8B45OutputPETn9B47OutputPETp9B48PET100PETn10B50OutputPETp10B51PET11PETp11B53OutputPETp12B56OutputPETp13B50OutputPETp14B53OutputPETp15B60PET14PETp15B66OutputPETp15B66PERN0PERN0A17InputPERp1A21InputPERp1A21InputPERn2A24Input	PETp7	B40	-	
PETn9B47OutputPETn9B48outputPETn10B50OutputPETn10B51Refer to Section 6.1 in the PCIe CEM Specification, Rev 4.0 for details.PETn11B53OutputPETn12B56OutputPETn12B56OutputPETn13B59OutputPETn14B62OutputPETn15B66OutputPETn15B66OutputPERn0A17InputPERn1A20InputPERn1A21InputPERn2A24The PCIe receive pins shall be AC coupled on the add-	PETn8	B44	Output	
PETN9B47OutputPETp9B48PETn10B50OutputPETp10B51PETn11B53OutputPETp11B54PETn12B56OutputPETp12B57PETn13B59OutputPETp14B60PETn15B66PETn15B66PERn0A17InputPERp1A20InputPERp1A21PERp2A24	PETp8	B45	-	
PETn10B50OutputRefer to Section 6.1 in the PCIe CEM Specification, Rev 4.0 for details.PETn11B53OutputPETn11B53OutputPETn12B56OutputPETn12B57OutputPETn13B59OutputPETn14B62OutputPETp15B66OutputPETp15B66OutputPERn0A17InputPERn1A20InputPERp1A21InputPERp2A24The PCIe receive pins shall be AC coupled on the add-	PETn9	B47	Output	datasheet.
PETn10BS0OutputPETp10B51Rev 4.0 for details.PETn11B53OutputPETp11B54PetronPETn12B56OutputPETp12B57PetronPETn13B60PetronPETp13B60PetronPETp14B63PetronPETp15B66PetronPERn0A17InputPERp1A20InputPERp1A21the baseboard.PERp2A24The PCle receive pins shall be AC coupled on the add-	PETp9	B48		
PETp10BS1PETn11B53OutputPETp11B54PETn12B56OutputPETp12B57PETn13B60PETp13B60PETp14B63PETp15B66PERn0A17InputPERp1A20InputPERp1A21PERp2A24The PCle receive pins shall be AC coupled on the add-	PETn10	B50	Output	•
PETp11B54PETn12B56OutputPETp12B57PETn13B59OutputPETp13B60PETn14B62OutputPETp15B65OutputPERn0A17InputPERp0A18connected from the add-in card transmitterPERp1A21InputPERp2A24The PCIe receive pins shall be AC coupled on the add-	PETp10	B51		Rev 4.0 for details.
PETp11B54PETn12B56OutputPETp12B57PETn13B59OutputPETp13B60PETn14B62OutputPETp15B65OutputPERn0A17InputPERp0A18connected from the add-in card transmitterPERp1A21InputPERp2A24The PCIe receive pins shall be AC coupled on the add-	PETn11	B53	Output	
PETn12B56OutputPETp12B57PETn13B59OutputPETp13B60PETn14B62OutputPETp14B63PETp15B66PERn0A17InputPERp0A18PERn1A20InputPERp1A21PERp2A24The PCle receive pins shall be AC coupled on the add-	PETp11	B54		
PETp12B57PETn13B59OutputPETp13B60PETn14PETp14B62OutputPETp14B63PETn15PETp15B66PETp15PER00A17InputPERp0A18connected from the add-in card transmitterPERp1A21InputPERp2A24InputPERp2A24The PCIe receive pins shall be AC coupled on the add-in	-	B56	Output	
PETn13B59OutputPETp13B60PETn14PETn14B62OutputPETp14B63PETn15PETn15B66PETp15PERn0A17InputPERp0A18connected from the add-in card transmitterPERp1A20InputPERp1A21differential pairs to the receiver differential pairs on the baseboard.PERp2A24The PCIe receive pins shall be AC coupled on the add-in card transmitter				
PETp13B60PETn14B62OutputPETp14B63	_	B59	Output	1
PETn14B62OutputPETp14B63OutputPETn15B65OutputPETp15B66PERn0PERp0A17InputReceiver differential pairs [0:15]. These pins are connected from the add-in card transmitterPERp1A20Inputdifferential pairs to the receiver differential pairs on the baseboard.PERp2A24Input			· ·	
PETp14B63PETn15B65OutputPETp15B66PERn0PERp0A17InputReceiver differential pairs [0:15]. These pins are connected from the add-in card transmitterPERp1A20Inputdifferential pairs to the receiver differential pairs on the baseboard.PERp2A24Input	· ·	-	Output	1
PETn15B65OutputPETp15B66PERn0PERn0A17InputPERp0A18connected from the add-in card transmitterPERn1A20InputPERp1A21differential pairs to the receiver differential pairs on the baseboard.PERn2A24Input				
PETp15B66Receiver differential pairs [0:15]. These pins are connected from the add-in card transmitterPERp0A18connected from the add-in card transmitterPERn1A20Inputdifferential pairs to the receiver differential pairs on the baseboard.PERp1A21InputPERp2A24The PCIe receive pins shall be AC coupled on the add-	· ·		Output	1
PERn0A17InputReceiver differential pairs [0:15]. These pins are connected from the add-in card transmitterPERn1A20Inputdifferential pairs to the receiver differential pairs on the baseboard.PERp1A21InputPERp2A24The PCIe receive pins shall be AC coupled on the add-				
PERp0A18connected from the add-in card transmitterPERn1A20Inputdifferential pairs to the receiver differential pairs on the baseboard.PERp1A21InputPERp2A23InputPERp2A24The PCIe receive pins shall be AC coupled on the add-	· ·		Input	Receiver differential pairs [0:15]. These pins are
PERn1A20Inputdifferential pairs to the receiver differential pairs on the baseboard.PERp1A21InputPERn2A23InputPERp2A24The PCIe receive pins shall be AC coupled on the add-				
PERp1A21the baseboard.PERn2A23InputPERp2A24The PCIe receive pins shall be AC coupled on the add-	· · ·		Input	
PERn2 A23 Input PERp2 A24 The PCIe receive pins shall be AC coupled on the add-				
PERp2 A24 The PCIe receive pins shall be AC coupled on the add-	· · ·		Input	1
			.	The PCIe receive pins shall be AC coupled on the add-
	PERn3	A26	Input	

PERp3	A27		next to the add-in card transmitters. The AC coupling
PERn4	A30	Input	capacitor value shall be between 176nF (min) and
PERp4	A31	mput	265nF (max).
PERn5	A33	Input	
PERp5	A34	mput	For baseboards, the PER[0:15] signals are required at
PERn6	A36	Input	the connector.
PERp6	A37	mput	
PERn7	A39	Input	For add-in cards, the required PER[0:15] signals shall
PERp7	A39 A40	mput	be connected to the endpoint silicon. For silicon that
PERn8	A40	Input	uses less than a x16 connection, the appropriate
PERp8	A44 A45	mput	PER[0:15] signals shall be connected per the endpoint
PERn9	A43 A47	Input	datasheet.
		Input	
PERp9	A48	la a st	Refer to Section 6.1 in the PCIe CEM Specification,
PERn10	A50	Input	Rev 4.0 for details.
PERp10	A51	la avat	
PERn11	A53	Input	
PERp11	A54		4
PERn12	A56	Input	
PERp12	A57		-
PERn13	A59	Input	
PERp13	A60		-
PERn14	A62	Input	
PERp14	A63		-
PERn15	A65	Input	
PERp15	A66		
PERSTO#	B10	Output	PCIe Reset #0, #1. Active low.
PERST1#	A11		
			When PERSTn# is deasserted, the signal shall indicate
			the applied power is within tolerance and stable for
			the add-in card.
			PERST# shall be deasserted at least 100ms after the
			power rails are within the operating limits per the
			PCIe CEM Specification. The PCIe REFCLKs shall also
			become stable within this period of time.
			PERST shall be pulled high to 3.3Vaux on the
			baseboard.
			For OCP NIC 3.0, PERST deassertion shall also indicate
			the full card power envelope is available to the add-in
			card.
			For baseboards, the PERST[0:1]# signals are required
			at the connector.

For add-in cards, the required PERST[0:1]# signals shall be connected to the endpoint silicon. Unused PERST[0:1]# signals shall be left as a no connect.
Note: For cards that only support 1 x16, PERSTO# is used. For cards that support 2 x8, PERSTO# is used for the first eight PCIe lanes, and PERST1# is used for the second eight PCIe lanes.
Refer to Section 2.2 in the PCIe CEM Specification, Rev 4.0 for details.

3.4.2 PCIe Present and Bifurcation Control Pins

This section provides the pin assignments for the PCIe present and bifurcation control signals. The AC/DC specifications are defined in Section 3.12. An example connection diagram is shown in Figure 60.

The PRSNTA#/PRSNTB[0:3]# state shall be used to determine if a card has been physically plugged in. The BIF[0:2]# pins shall be latched before PWRDIS deassertion to ensure the correct values are detected by the system. Changing the pin states after this timing window is not allowed. Refer to the AC timing diagram in Section 3.12 for details.

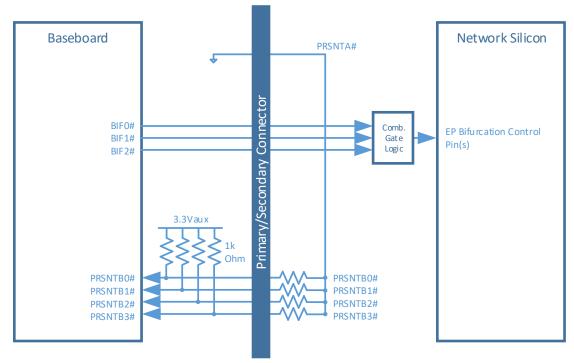
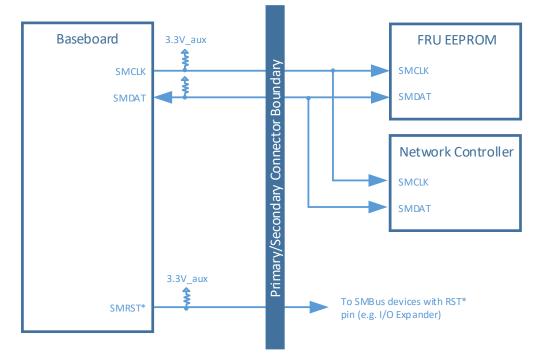

Signal Name	Pin #	Baseboard Direction	Signal Description
PRSNTA#	A10	Output	Present A is used for add-in card presence and PCIe capabilities detection. For baseboards, this pin shall be directly connected to GND.
PRSNTB0#	B42	Input	For add-in cards, this pin shall be directly connected to the PRSNTB[3:0]# pins. Present B [0:3]# are used for add-in card presence
PRSNTB1# PRSNTB2#	A42 A12	mput	and PCIe capabilities detection.
PRSNTB3#	B70		For baseboards, these pins shall be connected to the I/O hub and pulled up to +3.3Vaux using 1kOhm resistors.
			For add-in cards, these pins shall be strapped to PRSNTA# per the encoding definitions described in Section 3.6.
			Note: PRSNTB3# is located at the bottom of the 4C connector and is only applicable for add-in cards with a PCIe width of x16 (or greater). Add-in cards that

Table 16: Pin Descriptions – PCIe Present and Bifurcation Control Pins

			implement a 2C card edge do not use the PRSNTB3# pin for capabilities or present detection.
BIFO# BIF1#	B7 B8	Output	Bifurcation [0:2]# pins allow the baseboard to force configure the add-in card bifurcation.
BIF2#	B9		For baseboards, these pins shall be outputs driven from the baseboard I/O hub and allow the system to force configure the add-in card bifurcation. The baseboard may optionally tie the BIF[0:2]# signals to 3.3Vaux or to ground per the definitions are described in Section 3.6 if no dynamic bifurcation configuration is required.
			For add-in cards, these signals shall connect to the endpoint bifurcation pins if it is supported.
			Note: the required combinatorial logic output for endpoint bifurcation is dependent on the specific silicon and is not defined in this specification.

Figure 60: PCIe Present and Bifurcation Control Pins


3.4.3 SMBus Interface Pins

This section provides the pin assignments for the SMBus interface signals. The AC/DC specifications are defined in the SMBus 2.0 and I²C bus specifications. An example connection diagram is shown in Figure 61.

Signal Name	Pin #	Baseboard	Signal Description
olgital Hame		Direction	
SMCLK	A7	Output, OD	SMBus clock. Open drain, pulled up to 3.3Vaux on the baseboard.
			For baseboards, the SMCLK from the platform SMBus master shall be connected to the connector.
			For add-in cards, the SMCLK from the endpoint silicon shall be connected to the card edge gold fingers.
SMDAT	A8	Input / Output, OD	SMBus Data. Open drain, pulled up to 3.3Vaux on the baseboard.
			For baseboards, the SMDAT from the platform SMBus master shall be connected to the connector.
			For add-in cards, the SMDAT from the endpoint silicon shall be connected to the card edge gold fingers.
SMRST#	A9	Output, OD	SMBus reset. Open drain.
			For baseboards, this pin shall be pulled up to 3.3Vaux. The SMRST pin may be used to reset optional downstream SMBus devices (such as temperature sensors). The SMRST# implementation shall be mandatory for baseboard implementations.
			For add-in cards, SMRST# is optional and is dependent on the add-in card implementation. The SMRST# signal shall be left as a no connect if it is not used on the add-in card.

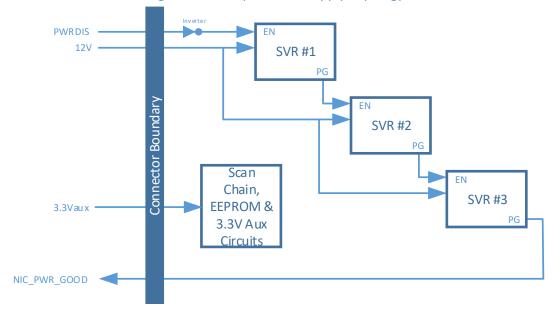
Table 17: Pin Descriptions – SMBus

Figure 61: Example SMBus Connections

3.4.4 Power Supply Pins

This section provides the pin assignments for the power supply interface signals. The AC/DC specifications are defined in the PCIe CEM Specification, Rev 4.0 and amended in Section 3.10. An example connection diagram is shown in Figure 62.

Signal Name	Pin #	Baseboard Direction	Signal Description
GND	Various	GND	Ground return; a total of 46 ground pins are on the main 140-pin connector area. Refer to Section 3.3 for details.
+12V/+12V_AUX	B1, B2, B3, B4, B5, B6	Power	12V main or 12V Aux power; total of 6 pins per connector. The 12V pins shall be rated to 1.1A per pin with a maximum derated power delivery of 80W. The +12V power pins shall be within the rail tolerances as defined in Section 3.10 when the PWRDIS pin is driven low by the baseboard.
+3.3V/3.3V_AUX	B11	Power	 3.3V main or 3.3V Aux power; total of 1 pin per connector. The 3.3V pin shall be rated to 1.1A for a maximum derated power delivery of 3.63W. The 3.3Vaux/main power pin shall be within the rail tolerances as defined in Section 3.10 when the PWRDIS pin is driven low by the baseboard.


Table 18: Pin Descriptions – Power

Open Compute Project • NIC • 3.0

Rev 0.57

PWRDIS	B12	Output, O/D	Power disable. Active high. Open-drain
			This signal shall be pulled up to 3.3V through a 10kOhm resistor on the baseboard.
			When high, all add-in card supplies shall be disabled.
			When low, add-in card supplies shall be enabled.

3.4.5 Miscellaneous Pins

This section provides the pin assignments for the miscellaneous interface signals.

Signal Name	Pin #	Baseboard	Signal Description
		Direction	
RFU, N/C	B68,	Input /	Reserved future use pins. These pins shall be left as
	B69,	Output	no connect.
	A68,		
	A69, A70		

Table 19: Pin Descriptions – Miscellaneous 1

3.5 Signal Descriptions – OCP Bay (Primary Connector)

The following section describes the functions in the Primary Connector 28-pin OCP bay. This 28-pin bay is shown in Section 3.3 and have pin numbers designated as OCP_B[1:14], and OCP_A[1:14]. All pin directions on this OCP bay are from the perspective of the baseboard.

The add-in card shall implement protection methods to prevent leakage paths between the Vaux and Vmain power domains in the event that a NIC is powered down in a powered up baseboard.

Note: The pins that are common to both the Primary and Secondary Connectors are defined in Section 3.4.

3.5.1 PCIe Interface Pins – OCP Bay (Primary Connector)

This section provides the pin assignments for the PCIe interface signals on the Primary Connector OCP bay. The AC/DC specifications are defined in the PCIe CEM Specification. An example connection diagram that shows REFCLK2, REFCLK3, PERST2# and PERST3# is shown in Section 3.7.

Signal Name	Pin #	Baseboard	Signal Description
		Direction	
REFCLKn2	OCP_B11	Output	PCIe compliant differential reference clock #2, and
REFCLKp2	OCP_B12		#3. 100MHz reference clocks are used for the add-in
REFCLKn3	OCP_A11	Output	card PCIe core logic.
REFCLKp3	OCP_A12		
			For baseboards, the REFCLK2 and REFCLK3 signals
			are required at the Primary connector. Baseboards
			shall disable REFCLK2 and REFCLK3 if they are not
			used by the add-in card.
			For add-in cards, the required REFCLKs shall be
			connected per the endpoint datasheet. Unused
			REFCLKs on the add-in card shall be left as a no
			connect.
			connect.
			Note: REFCLK2 and REFCLK3 are not used for cards
			that only support a 1 x16, 1 x8 or 2 x8 connection.
			Refer to Section 2.1 in the PCIe CEM Specification,
			Rev 4.0 for details.
PERST2#	OCP_A1	Output	PCIe Reset #2, #3. Active low.
PERST3#	OCP_A2		
			When PERSTn# is deasserted, the signal shall
			indicate the applied power is within tolerance and
			stable for the add-in card.
			PERST# shall be deasserted at least 100ms after the
			power rails are within the operating limits per the

Table 20: Pin Descriptions – PCIe 2

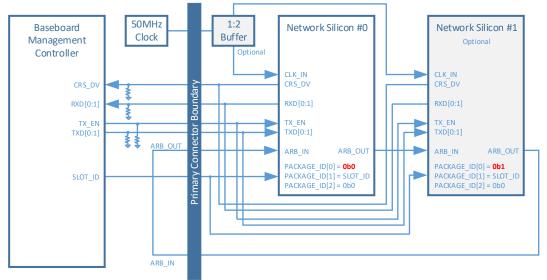
			Rev 0.57
			PCIe CEM Specification. The PCIe REFCLKs shall also become stable within this period of time.
			PERST shall be pulled high to 3.3Vaux on the baseboard.
			For OCP NIC 3.0, PERST deassertion shall also indicate the full card power envelope is available to the add-in card.
			For baseboards, the PERST[2:3]# signals are required at the connector.
			For add-in cards, the required PERST[2:3]# signals shall be connected to the endpoint silicon. Unused PERST[2:3]# signals shall be left as a no connect.
			Note: PERST2# and PERST3# are not used for cards that only support a 1 x16 or 2 x8 connection.
			Refer to Section 2.2 in the PCIe CEM Specification, Rev 4.0 for details.
WAKE#	OCP_A3	Input, OD	WAKE#. Open drain. Active low.
			This signal shall be driven by the add-in card to notify the baseboard to restore PCIe link. For add-in cards that support multiple WAKE# signals, their respective WAKE# pins may be tied together as the signal is open-drain to form a wired-OR.
			For baseboards, this signal shall be pulled up to +3.3V on the baseboard with a 10kOhm resistor. This signals shall be connected to the system WAKE# signal.
			For add-in cards, this signal shall be directly connected to the endpoint silicon WAKE# pin(s). This pin shall be left as a no connect if WAKE# is not supported by the silicon.
			Refer to Section 2.3 in the PCIe CEM Specification, Rev 4.0 for details.

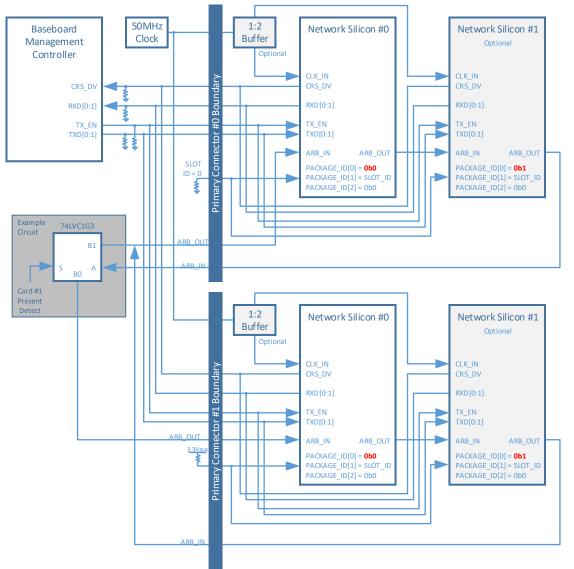
3.5.2 NC-SI Over RBT Interface Pins – OCP Bay (Primary Connector)

This section provides the pin assignments for the NC-SI over RBT interface signals on the Primary Connector OCP bay. The AC/DC specifications are defined in the DSP0222 NC-SI specification. An example connection diagram is shown in Figure 63.

Signal Name	Pin #	Baseboard Direction	Signal Description
RBT_CLK_IN	OCP_A14	Output	Reference clock input. Synchronous clock reference for receive, transmit and control interface. The clock shall have a nominal frequency of 50MHz ±100ppm.
			For baseboards, this pin shall be connected between the baseboard NC-SI over RBT PHY and the Primary connector OCP bay. This signal requires a 100kOhm pull down resistor on the baseboard. If the baseboard does not support NC-SI over RBT, then this signal shall be terminated to ground through a 100kOhm pull down resistor.
			For add-in cards, this pin shall be connected between the gold finger to the endpoint silicon. This pin shall be left as a no connect if NC-SI is not supported.
RBT_CRS_DV	OCP_B14	Input	Carrier sense/receive data valid. This signal is used to indicate to the baseboard that the carrier sense/receive data is valid. For baseboards, this pin shall be connected between
			the baseboard NC-SI over RBT PHY and the connector. This signal requires a 100kOhm pull down resistor on the baseboard. If the baseboard does not support NC-SI over RBT, then this signal shall be terminated to ground through a 100kOhm pull down resistor.
			For add-in cards, this pin shall be connected between the gold finger to the endpoint silicon. This pin shall be left as a no connect if NC-SI is not supported.
RBT_RXD0 RBT_RXD1	OCP_B9 OCP_B8	Input	Receive data. Data signals from the network controller to the BMC.
			For baseboards, this pin shall be connected between the baseboard NC-SI over RBT PHY and the connector. This signal requires a 100kOhm pull-up resistor to 3.3Vaux on the baseboard. If the baseboard does not support NC-SI over RBT, then this signal shall be terminated to 3.3Vaux through a 100kOhm pull-up.

Table 21: Pin Descriptions – NC-SI Over RBT


			For add-in cards, this pin shall be connected between the gold finger and the RBT_RXD[0:1] pins on endpoint silicon. This pin shall be left as a no connect if NC-SI is not supported.
RBT_TX_EN	OCP_A7	Output	Transmit enable.
			For baseboards, this pin shall be connected between the baseboard NC-SI over RBT PHY and the connector. This signal requires a 100kOhm pull down resistor to ground on the baseboard. If the baseboard does not support NC-SI over RBT, then this signal shall be terminated to ground through a 100kOhm pull down.
			For add-in cards, this pin shall be connected between the gold finger to the endpoint silicon. This pin shall be left as a no connect if NC-SI is not supported.
RBT_TXD0 RBT_TXD1	OCP_A9 OCP_A8	Output	Transmit data. Data signals from the BMC to the network controller.
			For baseboards, this pin shall be connected between the baseboard NC-SI over RBT PHY and the connector. This signal requires a 100kOhm pull-up resistor to 3.3Vaux on the baseboard. If the baseboard does not support NC-SI over RBT, then this signal shall be terminated to 3.3Vaux through a 100kOhm pull-up.
			For add-in cards, this pin shall be connected between the gold finger to the RBT_TXD[0:1] pins on the endpoint silicon. This pin shall be left as a no connect if NC-SI is not supported.
RBT_ARB_OUT	OCP_A5	Output	NC-SI hardware arbitration output. This pin shall only be used if the endpoint silicon supports hardware arbitration. This pin shall be connected to the RBT_ARB_IN signal of an adjacent device in the hardware arbitration ring.
			The baseboard shall implement a multiplexing implementation that directs the RBT_ARB_OUT to the RBT_ARB_IN pin of the next NC-SI capable device in the ring, or back to the RBT_ARB_IN pin of the source device if there is a single device on the ring.
			For baseboards, this pin shall be connected between the baseboard OCP connector(s) to complete the hardware arbitration ring. If the baseboard does not support NC-SI over RBT, this signal shall be directly


			connected to the RBT_ARB_IN pin to allow a
			complete hardware arbitration ring on the add-in
			card.
			For add-in cards, this pin shall be connected from the
			gold finger to the RBT_ARB_IN pin on the endpoint
			silicon. This pin shall be directly connected to the card edge RBT_ARB_IN pin if NC-SI is not supported.
			This allows the hardware arbitration signals to pass
			through in a multi-primary connector baseboard.
RBT_ARB_IN	OCP_A4	Input	NC-SI hardware arbitration input. This pin shall only
	_		be used if the endpoint silicon supports hardware
			arbitration. This pin shall be connected to the
			RBT_ARB_OUT signal of an adjacent device in the
			hardware arbitration ring.
			The baseboard shall implement a multiplexing
			implementation that directs the RBT_ARB_IN to the
			RBT_ARB_OUT pin of the next NC-SI capable device
			in the ring, or back to the RBT_ARB_OUT pin of the
			source device if there is a single device on the ring.
			For baseboards, this pin shall be connected between
			the baseboard OCP connector(s) to complete the
			hardware arbitration ring. If the baseboard does not
			support NC-SI over RBT, this signal shall be directly
			connected to the RBT_ARB_OUT pin to allow a
			complete hardware arbitration ring on the add-in card.
			For add-in cards, this pin shall be connected between
			the gold finger to the RBT_ARB_OUT pin on the
			endpoint silicon. This pin shall be directly connected
			to the card edge RBT_ARB_OUT pin if NC-SI is not
			supported. This allows the hardware arbitration
			signals to pass through in a multi-primary connector baseboard.
SLOT_ID	OCP_B7	Output	NC-SI Address pin. This pin shall only be used if the
			end point silicon supports package identification.
			For baseboards, this pin shall be used to identify the
			slot ID value. This pin shall be directly to GND for
			SlotID = 0. This pin shall be pulled up to 3.3Vaux for
			SlotID = 1.
			For add in cards, this pip shall be connected to the
			For add-in cards, this pin shall be connected to the
L			endpoint device GPIO associated with the Package

ID[1] field. Refer to Section 4.8.1 and the device datasheet for details.
For add-in cards with multiple endpoint devices, the SLOT_ID pin may be used to configure a different Package ID value so long as the resulting combination does not cause addressing interferences.
For endpoint devices without NC-SI support, this pin shall be left as a no connect on the add-in card.

Figure 64: NC-SI Over RBT Connection Example – Dual Primary Connector

Note 1: For baseboard designs with a single Primary Connector, connect ARB_IN to ARB_OUT to complete the NC-SI hardware arbitration ring. For designs with multiple Primary Connectors, connect ARB_IN and ARB_OUT to an analog mux to complete the NC-SI arbitration ring based on the number of cards installed in the system. An example dual Primary Connector implementation is shown in Figure 64.

Note 2: For add-in cards with two discrete endpoint silicon, the Package ID[0] bit shall be statically set based on its silicon instance. For example, the figure above shows Network Silicon #0 and Network Silicon #1. Network Silicon #0 has Package ID[0] = 0b0, Network Silicon #1 has Package ID[0] = 0b1.

3.5.3 Scan Chain Pins – OCP Bay (Primary Connector)

This section provides the pin assignments for the Scan Bus interface signals on the Primary Connector OCP Bay. The AC/DC specifications are defined in Section XXX. An example connection diagram is shown in Figure 65.

Signal Name	Pin #	Baseboard Direction	Signal Description
CLK	OCP_B6	Output	Scan clock. The CLK is an output pin from the baseboard to the add-in card. The CLK may run up to 12.5MHz.
			For baseboard implementations, the CLK pin shall be connected to the Primary Connector. The CLK pin shall be tied directly to GND if the scan chain is not used.
			For NIC implementations, the CLK pin shall be connected to Shift Registers 0 & 1, and optionally connected to Shift Registers 2 & 3 (if implemented) as defined in the text and Figure 65, below. The CLK pin shall be pulled up to 3.3Vaux through a 1kOhm resistor.
DATA_OUT	OCP_B5	Output	Scan clock data output from the baseboard to the add-in card. This bit stream is used to shift in NIC configuration data.
			For baseboard implementations, the DATA_OUT pin shall be connected to the Primary Connector. The DATA_OUT pin shall be tied directly to GND if the scan chain is not used.
			For NIC implementations, the DATA_OUT pin may be left floating if it is not used for add-in card configuration. The DATA_OUT pin shall be pulled up to 3.3Vaux through a 1kOhm resistor.
DATA_IN	OCP_B4	Input	Scan clock data input to the baseboard. This bit stream is used to shift out NIC status bits.
			For baseboard implementations, the DATA_IN pin shall be pulled up to 3.3Vaux through a 10kOhm resistor to prevent the input signal from floating if a card is not installed. This pin may be left as a no connect if the scan chain is not used.

Table 22: Pin	Descriptions -	Scan Chain
---------------	----------------	------------

			For NIC implementations, the DATA_IN scan chain is required. The DATA_IN pin shall be connected to Shift Registers 0 & 1, as defined in the text and Figure 65.
LD#	OCP_B3	Output	Scan clock shift register load. Used to latch configuration data on the add-in card.
			For baseboard implementations, the LD# pin shall be pulled up to 3.3Vaux through a 1kOhm resistor if the scan chain is not used to prevent the add-in card from erroneous data latching.
			For NIC implementations, the LD# pin implementation is required. The LD# pin shall be connected to Shift Registers 0 & 1 as defined in the text and Figure 65. The LD# pin shall be pulled up to 3.3Vaux through a 1kOhm resistor.

The scan chain provides side band status indication between the add-in card and the baseboard. The scan chain bit definition is defined in the two tables below. The scan chain data stream is 32-bits in length for both the DATA_OUT and the DATA_IN streams. The scan chain implementation is optional on the host, but is mandatory on all OCP NIC 3.0 cards. The scan chain components operates on the 3.3Vaux power domain.

The DATA_OUT bus is an output from the host. The DATA_OUT bus provides initial configuration options to the add-in card. At the time of this writing, the default implementation does not use the DATA_OUT stream and is not implemented on the NIC. However, all baseboard systems that implement the Scan Chain shall connect DATA_OUT between the platform and the Primary Connector for future-proofing NIC implementations and subsequent revisions of this specification.

Byte.bit	DATA_OUT Field	Default	Description
	Name	Value	
0.[07]	RSVD	0b00000	Reserved. Byte 0 value is 0h00.
1.[07]	RSVD	0h00	Reserved. Byte 1 value is 0h00.
2.[07]	RSVD	0h00	Reserved. Byte 2 value is 0h00.
3.[07]	RSVD	0h00	Reserved. Byte 3 value is 0h00.

Table 23: Pin Descriptions – Scan Chain DATA OUT Bit Definition

The DATA_IN bus is an input to the host and provides NIC status indication. The default implementation is completed with two 8-bit 74LV165 parallel in to serial out shift registers in a cascaded implementation. Up to four shift registers may be implemented to provide additional NIC status indication to the host platform.

DATA_IN shift registers 0 & 1 shall be mandatory for scan chain implementations. DATA_IN shift registers 2 & 3 are optional depending on the card type and fields being reported to the host. DATA_IN shift register 2 may be used to indicate future definitions of the scan chain bit stream. DATA_IN shift

registers 3 (in conjunction with shift register 2) are required for reporting link/activity indication on card implementations with 5-8 ports.

The host should read the DATA_IN bus multiple times to qualify the incoming data stream. The number of data qualification reads is dependent on the baseboard implementation.

A 1kOhm pull up resistor shall be implemented on the NIC to the SER input of the last shift register on the DATA_IN scan chain to maintain a default bit value of 0b1 for unused bits for implementations using less than four shift registers.

Byte.bit	DATA_OUT Field	Default	Description
	Name	Value	
0.0	PRSNTB[0]#	0bX	PRSNTB[3:0]# bits shall reflect the same state as
0.1	PRSNTB[1]#	0bX	the signals on the Primary Connector.
0.2	PRSNTB[2]#	0bX	
0.3	PRSNTB[3]#	0bX	
0.4	WAKE_N	0bX	PCIe WAKE_N signal shall reflect the same state as
			the signal on the Primary Connector.
0.5	TEMP_WARN_N	0b1	Temperature monitoring pin from the on-card
			thermal solution. This pin shall be asserted low
			when temperature sensor exceeds the temperature
			warning threshold.
0.6	TEMP_CRIT_N	0b1	Temperature monitoring pin from the on-card
			thermal solution. This pin shall be asserted low
			when temperature sensor exceeds the temperature
			critical threshold.
0.7	FAN_ON_AUX	0b0	When high, FAN_ON_AUX shall request the system
			fan to be enabled for extra cooling in the S5 state.
1.0	LINK_ACT_P0	0b1	Port 03 link/activity indication. Active low.
1.1	LINK_ACT_P1	0b1	
1.2	LINK_ACT_P2	0b1	0b0 – Link LED is illuminated on the host platform.
1.3	LINK_ACT_P3	0b1	0b1 – Link LED is not illuminated on the host
			platform.
			Steady = link is detected on the port.
			Blinking = activity is detected on the port. The blink
			rate should blink low for 50-500ms during activity
			periods.
			Off = the physical link is down or disabled
1.4	SPEED_A_PO	0b1	Port 03 speed A (max rate) indication. Active low.
1.5	SPEED_A_P1	0b1	
1.6	SPEED_A_P2	0b1	0b0 – Port is linked at maximum speed.
1.7	SPEED_A_P3	0b1	0b1 – Port is not linked at the maximum speed or
			no link is present.
2.0	ScanChainVer[0]	0b1	

Table 24: Pin Descriptions – Scan Bus DATA_IN Bit Definition

2.1	ScanChainVer[1]	0b1	ScanChainVer[1:0] shall be used to indicate the scan chain bit definition version. The encoding shall
			be as follows:
			be as follows:
			0b11 – Scan chain bit definition version 1
			corresponding to OCP NIC 3.0 version 1.0.
			All other encoding values shall be reserved.
2.2	RSVD	0b1	Byte 2 bits [2:7] are reserved. These bits shall
2.3	RSVD	0b1	default to the value of 0b1. These bits may be used
2.4	RSVD	0b1	in future versions of the scan chain.
2.5	RSVD	0b1	
2.6	RSVD	0b1	
2.7	RSVD	0b1	
3.0	LINK_ACT_P4	0b1	Port 47 link/activity indication. Active low.
3.1	LINK_ACT_P5	0b1	
3.2	LINK_ACT_P6	0b1	0b0 – Link LED is illuminated on the host platform.
3.3	LINK_ACT_P7	0b1	0b1 – Link LED is not illuminated on the host
			platform.
			Steady = link is detected on the port.
			Blinking = activity is detected on the port. The blink
			rate should blink low for 50-500ms during activity
			periods.
			Off = the physical link is down or disabled
3.4	SPEED A P4	0b1	Port 47 speed A (max rate) indication. Active low.
3.5	SPEED A P5	0b1	
3.6	SPEED A P6	0b1	0b0 – Port is linked at maximum speed.
3.7	SPEED A P7	0b1	0b1 – Port is not linked at the maximum speed or
			no link is present.

Rev 0.57

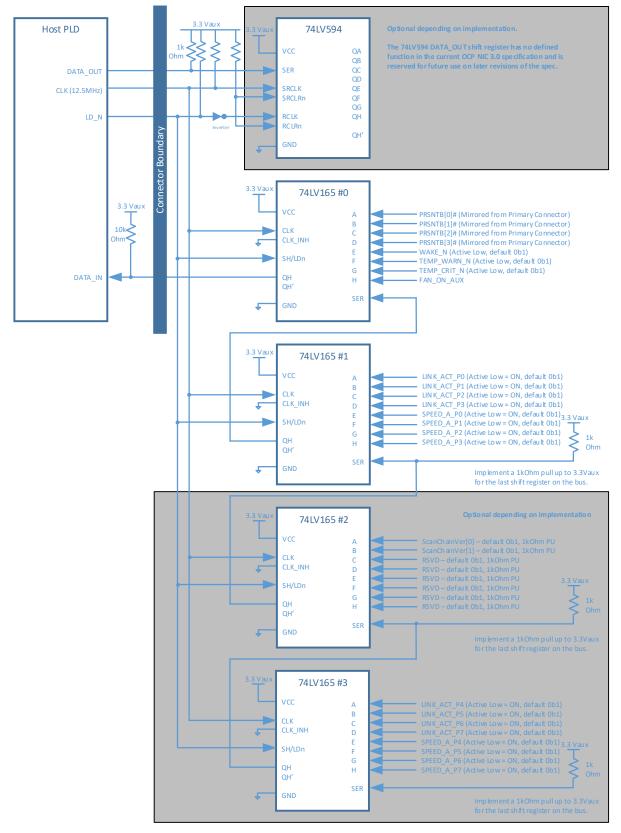


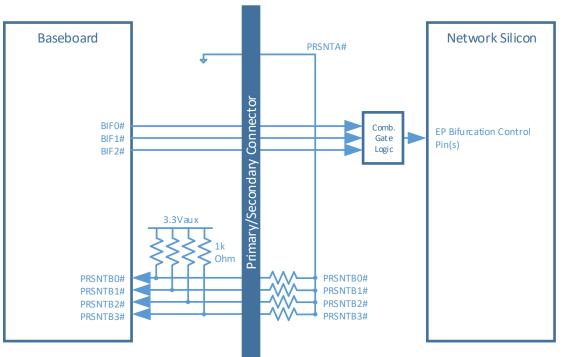
Figure 65: Scan Bus Connection Example

3.5.4 Primary Connector Miscellaneous Pins – OCP Bay (Primary Connector)

This section provides the miscellaneous pin assignments for the pins on the Primary Connector OCP Bay. The AC/DC specifications are defined in the PCIe CEM Specification, Rev 4.0 and Section 3.12. An example PWRBRK# connection is shown in the PCIe CEM Specification. An example NIC_PWR_GOOD connection diagram is shown in Figure 62.

Signal Name	Pin #	Baseboard Direction	Signal Description
PWRBRK#	OCP_B2	Output, OD	Power break. Active low, open drain.
			This signal shall be pulled up to 3.3Vaux on the add- in card with a minimum of 95kOhm. The pull up on the baseboard shall be a stiffer resistance in-order to meet the timing specs as shown in the PCIe CEM Specification.
			When this signal is driven low by the baseboard, the Emergency Power Reduction State is requested. The add-in card shall move to a lower power consumption state.
NIC_PWR_GOOD	OCP_B1	Input	NIC Power Good. Active high. This signal is driven by the add-in card.
			When high, this signal shall indicate that all of the add-in card power rails are operating within nominal tolerances.
			When low, this signal shall indicate that the add-in card power supplies are not yet within nominal tolerances or are in a fault condition.
			For baseboards, this pin may be connected to the platform I/O hub as a NIC power health status indication. This signal shall be pulled down to ground with a 100kOhm resistor on the baseboard to prevent a false power good indication if no add- in card is present.
			For add-in cards this signal shall indicate the add-in card power is "good". This signal may be implemented by a cascaded power good or a discrete power good monitor output.
GND	OCP_A6	GND	Ground return; a total of 5 ground pins are on the OCP bay area.

Table 25: Pin Descriptions – Miscellaneous 2


OCP_A10	
OCP_A13	
OCP B10	
OCP_B13	

3.6 PCIe Bifurcation Mechanism

OCP3.0 baseboards and add-in cards support multiple bifurcation combinations. Single socket baseboards with a single or multiple root ports, as well as a multi-socket baseboards with a single or multiple root ports are supported. The bifurcation mechanism also supports add-in cards with a single or multiple end points. These features are accomplished via I/O pins on the Primary and Secondary connector:

- PRSNTA#, PRSNTB[3:0]#. The PRSNTA# pin shall connect to the PRSNTB# pins as a hard coded value on the add-in card. The encoding of the PRSNTB[3:0]# pins allows the baseboard to determine the PCIe Links available on the add-in card.
- BIF[3:0]#. The BIF# pin states shall be controlled by the baseboard to allow the baseboard to
 override the default end point bifurcation for silicon that support bifurcation. Additional
 combinatorial logic is required and is specific to the card silicon. The combinatorial logic is not
 covered in this specification. The BIF[3:0]# pins may optionally be hardcoded for baseboards
 that do not require a dynamic bifurcation override.

A high level bifurcation connection diagram is shown in Figure 66.

Figure 66: PCIe Bifurcation Pin Connections Support

3.6.1 PCIe Add-in Card to Baseboard Bifurcation Configuration (PRSNTA#, PRSNTB[3:0]#)

The add-in card to baseboard configuration mechanism consists of four dual use pins (PRSNTB[3:0]#) on the add-in card and a grounded PRSNTA# pin on the baseboard. These pins provide card presence detection as well as mechanism to notify the baseboard of the pre-defined PCIe lane width capabilities. The PRSNTB[3:0]# pins are pulled up to 3.3Vaux on the baseboard and are active low signals. A state of 0b1111 indicates that no card is present in the system. Depending on the capabilities of the add-in card, a selection of PRSNTB[3:0]# signals may be strapped to the PRSNTA# signal and is pulled low by the baseboard. The encoding of the PRSTNB[3:0]# bits is shown in Table 26 for x16 and x8 PCIe cards.

3.6.2 PCIe Baseboard to Add-in Card Bifurcation Configuration (BIF[2:0]#)

Three signals (BIF[2:0]#) are driven by the baseboard to notify requested bifurcation on the add-in card silicon. This allows the baseboard to set the lane configuration on the add-in card that supports multiple bifurcation options.

For example, a baseboard that has four separate hosts that support a 4 x4 connection, should appropriately drive the BIF[2:0]# pins per Table 26 and indicate to the add-in card silicon to setup a 4 x4 configuration.

As previously noted, the BIF[2:0]# signals require additional combinatorial logic to decode the BIF[2:0]# value and appropriately apply it to the end-point silicon. The combinatorial logic is not covered in the specification as its implementation is specific to the vendor silicon used.

3.6.3 PCIe Bifurcation Decoder

The combination of the PRSNTB[3:0]# and BIF[2:0]# pins deterministically sets the PCIe lane width for a given combination of baseboard and add-in cards. Table 26 shows the resulting number of PCIe links and its width for known combinations of baseboards and add-in cards.

***Note:** The baseboard must disable PCIe lanes during the initialization phase if the number of detected PCIe links are greater than what is supported on the baseboard to prevent a nondeterministic solution. For example, if the baseboard only supports a 1 x16 connection, and the add-in card only supports a 2 x8 connection, the baseboard must disable PCIe lanes 8-15 to prevent any potential LTSSM issues during the discovery phase.

							Г				Dual Host	Vice paper
			Host	1 Host	1 Host	-	1 Host	1 Host	1 Host		Z Hosts	
			Host CPU Sockets	1 Upstream Socket	1 Upstream Socket		1 Upstream Sockets 2 Upstream Sockets 4 Upstream Sockets	4 Upstream Sockets	4 Sockets (1 Socket per Host) First 8 PCIe lanes	DVSH	Z Upstream Sockets (1 Socket per Host)	4 Upstream Sockets (1 Socket per Host)
	Network Card - Supported PCle	Network Card - Supported PCle Configurations	Total PCIe Links	1Link (No Bifurcation)	1 or 2 Links	1, 2, or 4 Links	2 Links	4 Links	4 x2 links	RSVD	2 Links	4 Links
			System Support	1x16, 1x8, 1x4, 1x2, 1x1	1x16, 1x8, 1x4, 1x2, 1x1	-	188,184,182,181			RSVD		
					2 x8, 2 x4, 2 x2, 2 x1	2x8,2x4,2x2,2x1	2 x8, 2 x4, 2 x2, 2x1				2 x8, 2 x4, 2 x2, 2 x1	
Minimum						4 ×4, 4 ×2, 4 ×1		4 84, 4 82, 481	4 x2, 4 x1			4 ×4, 4 ×2, 4 ×1
Required			System Encoding BIF[2:0]#	00090	00090	00000	0000	0b010	0b011	0b100	0b101	0b110
Card Edne	Card Short Name	Supported Bifurcation Modes	Add-in-Card Encoding PBSNTB(3-0)#	1	1	1	1	1	1			1
nla	sent	Card Not Present	061111	BSVD - Card not present in the system	in the sustem					1		
		1×8,1×4,1×2,1×1	0b1 110	1×8	1×8	1×8	1×8 610	184 (C10	1x2 (0-1-10-1-10		1x8 64010	1x4 at == 0 == 1.5
7		1x4, 1x2, 1x1	0b1110	1×4	1×4	184	(Jocker U only) 1x4	(Jocket U only) 1x4	Locket u only) 1x2	•	(Indet U only) 1x4	(moscu only) 1x4
	1×4						(Socket 0 only)	(Socket 0 only)	(Socket 0 only)		(Host 0 only)	(Host 0 only)
20	182	1x2,1x1	0b1 110	1#2	1#2	1x2	1x2 (Socket 0 only)	1x2 (Socket 0 only)	1x2 (Socket 0 only)	1	1x2 (Host 0 only)	1x2 (Host 0 only)
	ž	1×1	0b1 110	1×1	1×1	1x1	1×1 (Socket 0 only)	1x1 (Socket 0 only)	1x1 (Socket () only)		1×1 (Host 0 onlu)	1x1 (Host 0 only)
	1×8 Option B	1×8 Dption B 2×4, 2×2, 2×1	0b1 101	1×8	1x8	1×8	1x8 (Socket 0 only)	2.44	2 x2 [Socket 0 & 2 only]		1x8 (Host 0 only)	2x4
4	2 x8, 2 x4, 2 x2 2 x8 Option B 4 x4, 4 x2, 4 x1	2 x8, 2 x4, 2 x2, 2 x1 4 x4, 4 x2, 4 x1	0b1 101	1×8*	2 ×8	2×8	2×8	4 44	2 x2 (Socket 0 & 2 only)		2×8	4 x4
	1B Orelian D	1.8 Device D 4.2 (Even 8 Device) 4.4	0b1 100	1*8	8÷	1×8	1x8 (Socket 0 only)	2,44	4 *2		1×8 (Host 0 only)	2.k4
- ÷	1×16 Ontion O	1x16,1x8,1x4 2x8,2x4, 1x16 Detion D,4x4,4x2 (First 8 Janes) 4x1	0b1 100	1×16	1×16	1×16	2×8	4×4	4 + 2		2 48	4 x4
RSVD	RSVD	RSVD	0b1011	RSVD - The encoding of (0b1011 is reserved due to i	RSVD - The encoding of 0:1011 is reserved due to insufficient spacing between PPSNIA and PPSNIA2 pin to provide positive card identification.	n PRSNTA and PRSNTB2	pin to provide positive card	identification.			
	2 44	2x4,2x2,2x1 1x4,1x2,1x1	0b1 010	1×4	184	2.44	1x4 (Socket 0 only)	2,44	2 x2 (Socket 0 & 2 only)		1x4 (Host 0 only)	2 *4
	4 ×2	4 x2 (First 8 lanes), 4 x1 2 x2, 2 x1 1 x2, 1 x1	0b1 001	1x2	1+2	2 + 2	1x2 (Socket 0 only)	242	4 ×2		1x2 (Host 0 only)	2,42
RSVD	RSVD	RSVD for future x8 encoding	0b1 000									
40	1×16 Option A	1x16,1x8,1x4,1x2,1x1	060111	1x16	1×16	1×16	1x8 (Socket 0 only)	1x4 (Socket 0 only)	1x2 (Socket 0 only)	1	1x8 (Host 0 only)	1x4 (Host 0 only)
4		2x8,2x4,2x2,2x1	0b0110	1×8*	2 #8	2×8	2*8	2x4 (Socket 0 & 2 only)	2x2 [Socket 0 & 2 only]		2*8	2 x4 (Host 0 & 2 only)
4	1×16 Option B	1x16.044,1x2,1x1 1x16.0410 B 2x8,2x4,2x2,2x1	060101	1x16	1×16	1×16	2×8	2x4 (Socket 0 & 2 only)	1x2 (Socket 0 only)		2×8	2 x4 (Host 0 & 2 only)
Ą	1×16 Option C	1x16,1x8,1x8,1x4 2x8,2x4,2x2,2x1 1x16 Option C 4x4,4x2,4x1	0b0 100	1x16	1×16	1×16	2 x8	4 84	2 x2 (Socket 0 & 2 only)		2 + 8	4 _N 4
	4×4	4 x4, 4 x2, 4 x1	0b0 011	184	2.44*	4 84	2 x4 (EP 0 and 2 only)	4 84	4 x2 (Socket 0 & 2 only)		2x4 (EP 0 and 2 only)	4 x4
RSVD	RSVD	RSVD	060010									
		BSVD	00001			-						
RSVD		RSVD	000000			-						

Table 26: PCIe Bifurcation Decoder for x16 and x8 Card Widths

18:2 only) 1 x2 2x2 0&1only) 4x2 <u>18.1only)</u> 2x2 18.1only) Rev 0.57

3.6.4 Bifurcation Detection Flow

[Need input and clarification from system vendors]

The following detection flow shall be used to determine the resulting link count and lane width based on the baseboard and add-in card configurations.

- 1. The baseboard shall read the state of the PRSNTB[3:0]# pins. An add-in card is present in the system if the resulting value is not 0b1111.
- 2. Firmware determines the add-in card PCIe lane width capabilities per Table 26 by reading the PRSNTB[3:0]# pins.
- 3. The baseboard reconfigures the PCIe bifurcation on its ports to match the highest common lane width and lowest common link count on the card.
- 4. For cases where the baseboard request a link count override (such as requesting a 4-host baseboard requesting 4 x4 operation on a supported card that would otherwise default to a 2 x8 case), the BIF[0:2]# pins shall be asserted as appropriate. Asserting the BIF[0:2]# pins assumes the add-in card supports the requested link override.
- 5. PERST# shall be deasserted after the >100ms window as defined by the PCIe specification. Refer to Section 3.12 for timing details.

3.6.5 PCIe Bifurcation Examples

For illustrative purposes, the following figures show several common bifurcation permutations.

Figure 67 illustrates a single host baseboard that supports x16 with a single controller add-in card that also supports x16. The PRSTNB[3:0]# state is 0b0111. The BIF[2:0]# state is 0b000 as there is no need to instruct the end-point network controller to a specific bifurcation. The PRSNTB encoding notifies the baseboard that this card is only capable of 1 x16. The single host baseboard determines that it is also capable of supporting 1 x16. The resulting link width is 1 x16.

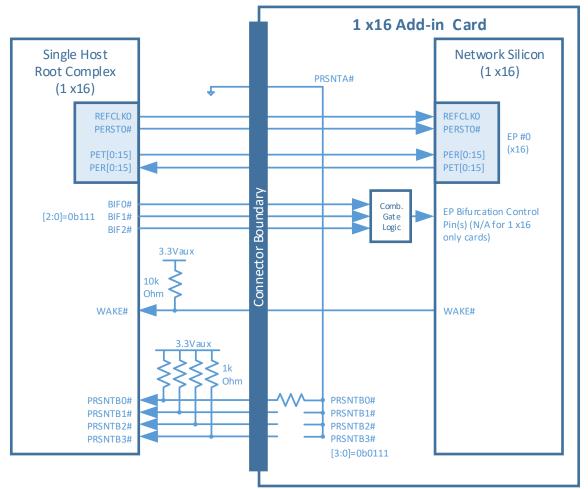
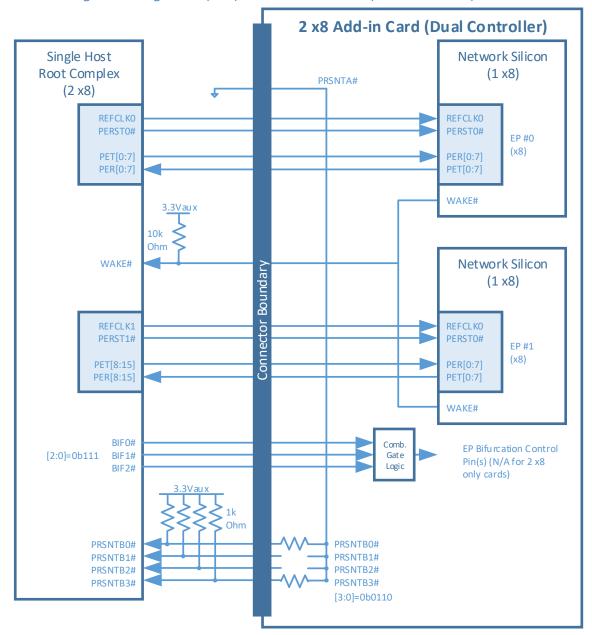



Figure 67: Single Host (1 x16) and 1 x16 Add-in Card (Single Controller)

Figure 68 illustrates a single host baseboard that supports 2 x8 with a single controller add-in card that also supports 2 x8. The PRSTNB[3:0]# state is 0b0110. The BIF[2:0]# state is 0b111 as there is no need to instruct the end-point network controllers to a specific bifurcation. The PRSNTB encoding notifies the baseboard that this card is only capable of 2 x8. The single host baseboard determines that it is also capable of supporting 2 x8. The resulting link width is 2 x8.

Figure 68: Single Host (2 x8) and 2 x8 Add-in Card (Dual Controllers)

Open Compute Project • NIC • 3.0

Figure 69 illustrates a four host baseboard that supports 4 x4 with a single controller add-in card that supports 1 x16, 2 x8 and 4 x4. The PRSTNB[3:0]# state is 0b0011. The BIF[2:0]# state is 0b101 as the end point network controller is forced to bifurcate to 4 x4. The PRSNTB encoding notifies the baseboard that this card is only capable of 1 x16, 2 x8 and 4 x4. The four host baseboard determines that it is also capable of supporting 4 x4. The resulting link width is 4 x4.

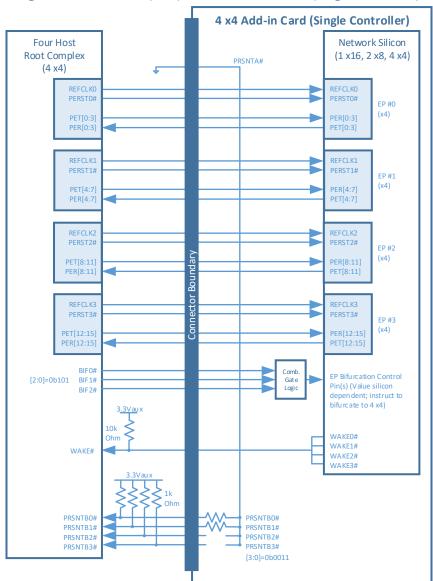


Figure 70 illustrates a four host baseboard that supports 4 x4 with a four controller add-in card that supports 4 x4. The PRSTNB[3:0]# state is 0b0011. The BIF[2:0]# state is 0b111 as there is no need to instruct the end-point network controllers to a specific bifurcation. The PRSNTB encoding notifies the baseboard that this card is only capable of 4 x4. The four host baseboard determines that it is also capable of supporting 4 x4. The resulting link width is 4 x4.

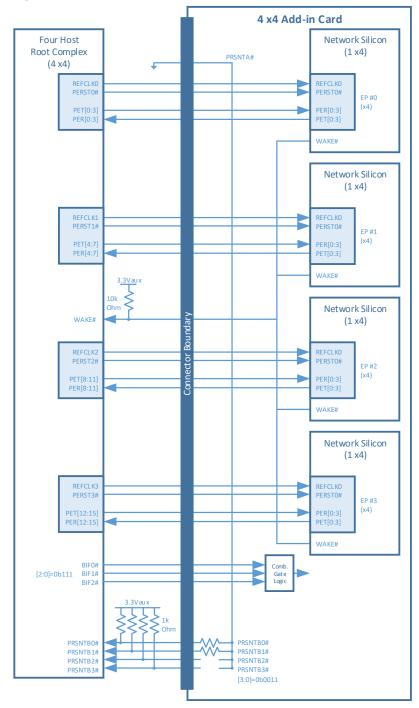


Figure 71 illustrates a single host baseboard that supports 1 x16 with a dual controller add-in card that supports 2 x8. The PRSTNB[3:0]# state is 0b0110. The BIF[2:0]# state is 0b111 as there is no need to instruct the end-point network controllers to a specific bifurcation. The PRSNTB encoding notifies the baseboard that this card is only capable of 2 x8. The four host baseboard determines that it is capable of 1x 16, but down shifts to 1 x8. The resulting link width is 1 x8 and only on endpoint 0.

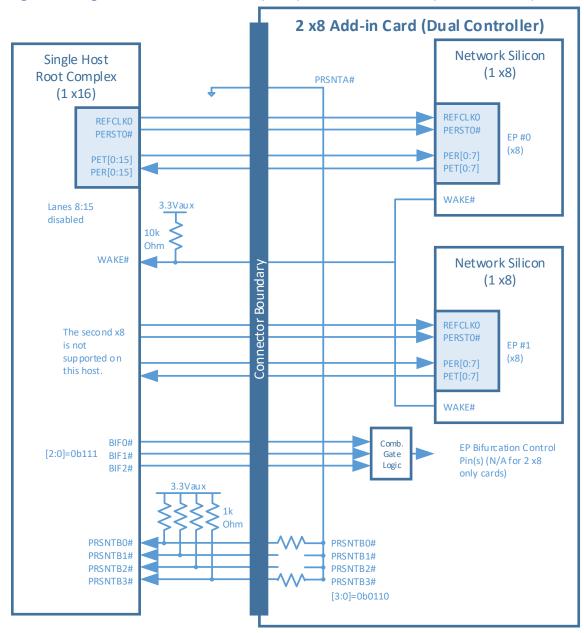
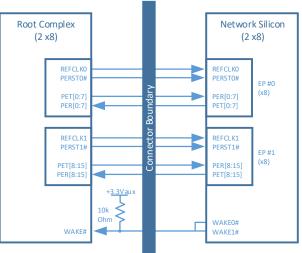


Figure 71: Single Host with no Bifurcation (1 x16) and 2 x8 Add-in Card (Two Controllers)

3.7 PCIe Clocking Topology

The OCP NIC 3.0 specification allows for up to four PCIe REFCLKs on the Primary Connector and up to two PCIe REFCLKs on the Secondary Connector. In general, the association of each REFCLK is based on the PCIe Link number on a per connector basis and is shown in Table 27. Cards that implement both the Primary and Secondary connectors have a total of up to 6 REFCLKs.


REFCLK #	Description	Availability (Connector)
REFCLKO	REFCLK associated with Link 0.	Primary and Secondary Connectors.
REFCLK1	REFCLK associated with Link 1.	Primary and Secondary Connectors.
REFCLK2	REFCLK associated with Link 2.	Primary Connector only.
REFCLK3	REFCLK associated with Link 3.	Primary Connector only.


Table 27: PCIe Clock Associations

For each add-in card, the following REFCLK connection rules must be followed:

- For a 1 x16 capable add-in card, REFCLK0 shall be used for lanes [0:15].
- For a 2 x8 capable add-in card, REFCLKO shall be used for lanes [0:7] and REFCLK1 shall be used for lanes [8:15].
- For a 4 x4 capable add-in card, REFCLKO shall be used for lanes [0:3], REFCLK1 shall be used for lanes [4:7], REFCLK2 shall be used for lanes [8:11] and REFCLK3 shall be used for lanes [12:15].
 Pins for REFCLK2 and REFCLK3 are described in Section 3.5.1 and are located on the 28-pin OCP bay.

Rev 0.57

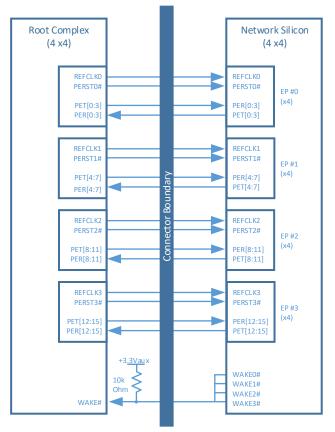


Figure 73: PCIe Interface Connections for a 4 x4 Add-in Card

3.8 PCIe Bifurcation Results and REFCLK Mapping

For the cases where the baseboard and add-in card bifurcation are permissible, this section enumerates all of the supported PCIe link, lane and REFCLK mappings for each supported configuration. The bifurcation decoder is shown in Section 3.6.3.

Table 28: Bifurcation for Single Host, Single Socket and Single Upstream Link (BIF[2:0]#=0b000)

Apporte muntation modes Nume Cond Short Supporte muntation modes 166 (Priceant 164, 102, 101 114, 102, 101 186 (Priceant 164, 102, 101 114, 102, 101 112 114, 102, 101 114, 102, 101 113 114, 102, 101 116, 101 116, 101 114 114 114, 102, 101 116, 101 114 114, 102, 101 116, 106 202, 201 114 116, 106 202, 201 204, 202, 201 114 116, 106 204, 202, 201 204, 202, 201 114 116, 106 204, 202, 201 204, 202, 201 1146 204, 202, 201 204, 202, 201 204, 202, 201 1146 204, 202, 201 204, 202, 201 204, 202, 201 1146 204, 202, 201 204, 202, 201 204, 202, 201 1146 204, 202, 201 204, 202, 201 204, 202, 201 1246 204, 202, 201 204, 202, 201 204, 202, 201 1246 204, 202, 201 204, 202, 201 204, 202, 201	Single	Host, Single Ups	C	ık, no bifurcation		1 x16, 1 x8, 1 x4, 1 x2, 1						-	-	-	-	_							-	
Interface Interface <t< th=""><th>Min Ca Width</th><th>Ind Card Short</th><th>Supported Bifurcation Modes</th><th>Add-in-Card Encoding PRSNTB[3:0]#</th><th>Host</th><th>Upstream Devices</th><th>Upstream Links</th><th>BIF[2:0]#</th><th>Resulting Link</th><th>Lane 0</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>Lane 10</th><th></th><th></th><th></th><th></th><th></th></t<>	Min Ca Width	Ind Card Short	Supported Bifurcation Modes	Add-in-Card Encoding PRSNTB[3:0]#	Host	Upstream Devices	Upstream Links	BIF[2:0]#	Resulting Link	Lane 0									Lane 10					
1 1	e/u	Not Present	Card Not Present	0b1111	1 Host	1 Upstream Socket	1 Link	000000																
1 <td>sc</td> <td>1 x8 Option A</td> <td></td> <td>0b1110</td> <td>1 Host</td> <td>1 Upstream Socket</td> <td>1 Link</td> <td>00000</td> <td>1 x8</td> <td>Link 0, Lane 0</td> <td></td> <td><u> </u></td> <td></td> <td><u> </u></td> <td><u> </u></td> <td><u> </u></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Igr</td>	sc	1 x8 Option A		0b1110	1 Host	1 Upstream Socket	1 Link	00000	1 x8	Link 0, Lane 0		<u> </u>		<u> </u>	<u> </u>	<u> </u>								Igr
14.1 14.1 0110 106 106 107 106 107 106<	SC 2	1 x4	1 x4, 1 x2, 1 x1	0b1110	1 Host	1 Upstream Socket	1 Link	00000	1 x4	Link 0, Lane 0			nk 0, ne 3											
14 14 010 140 010 140 010 140 010 140 010 140 010 140 010 140 010 140	3C	1x2	1 x2, 1 x1	0b1110	1 Host	1 Upstream Socket	1 Link	00000	1x2	Link 0, Lane 0	Link 0, Lane 1													
16.1 16.1 10.1 <th< td=""><td>5C</td><td>1x1</td><td>1×1</td><td>0b1110</td><td>1 Host</td><td>1 Upstream Socket</td><td>1 Link</td><td>00000</td><td>1x1</td><td>Link 0, Lane 0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	5C	1x1	1×1	0b1110	1 Host	1 Upstream Socket	1 Link	00000	1x1	Link 0, Lane 0														
3 2 4 3 - 2 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 -	2C	1 x8 Option B	1 x8, 1 x4, 1 x2, 1 x1 2 x4, 2 x2, 2 x1	0b1101	1 Host	1 Upstream Socket	1 Link	00000	1 x8	Link 0, Lane 0								Host d Disabled	Host Disabled	Host Disabled	Host Disabled	Host Disabled Di	Host H Host Hist	ost abled
	40	2 x8 Option B	2 x8, 2 x4, 2 x2, 2 x1 4 x4, 4 x2, 4 x1	0b1101	1 Host	1 Upstream Socket	1 Link	00000	1 x8*	Link 0, Lane 0								Host d Disabled	Host Disabled	Host Disabled	Host Disabled	Host Disabled Di	Host H Host Hist	<u> </u>
			1 x8, 1 x4 2 x4,	0b1100	1 Host	1 Upstream Socket	1 Link	00090	1 x8	Link 0, Lane 0														
	2C	1 x8 Option D	1 4 x2 (First 8 lanes), 4 x1									_			_									
	4C		1 x16, 1 x8, 1 x4 2 x8, 2 x4, 0 4 x4, 4 x2 (First 8 lanes), 4 x1	0b1100	1 Host	1 Upstream Socket	1 Link	00090	1 x16	Link 0, Lane 0									Link 0, Lane 10		Link 0, Lane 12			7k 0,
	RSVD		RSVD	0b1011	1 Host	1 Upstream Socket	1 Link	00090																
	2C	2 x4	2 x4, 2 x2, 2 x1 1 x4, 1 x2, 1 x1	0b1 010	1 Host	1 Upstream Socket	1 Link	00090	1 x4	Link 0, Lane 0			nk 0, ne 3											
	20		4 x2 (First 8 lanes), 4 x1 2 x2, 2 x1 1 x2, 1 x1	0b1 001	1 Host	1 Upstream Socket	1 Link	00000	1 x2	Link 0, Lane 0	Link 0, Lane 1													
	RSVD		RSVD for future x8 encoding	0b1000	1 Host	1 Upstream Socket	1 Link	000000																יצ ו
3600001 3.63, 2.43, 2.42, 2.41 00.010 Hold Hold Hold Intol	4C	1 x16 Option A		0b0111	1 Host	1 Upstream Socket	1 Link	00090	1 x16	Link 0, Lane 0									Link 0, Lane 10		Link 0, Lane 12			nk 0, ne 15
11.65 Optione 13.64, 14.64, 14.64, 14. 000.00 140.64	4C	2 x8 Option A		0b0110	1 Host	1 Upstream Socket	1 Link	00000	1 x8*	Link 0, Lane 0									Host Disabled	Host Disabled	Host Disabled	Host Disabled Di		ost abled
1 x45, 34, 34 00,000 1 Hot 1 Hot 1 x45, 34, 32, 34 0 Hot, I me, 0	4C	1 x16 Option E	1 x16, 1 x8, 1 x4, 1 x2, 1 x1 3 2 x8, 2 x4, 2 x2, 2 x1	0b0101	1 Host	1 Upstream Socket	1 Link	00000	1 x16	Link 0, Lane 0									Link 0, Lane 10		Link 0, Lane 12			nk 0, ne 15
4/4 4/4,4/4 00011 Inot UpstreamSociet ILInit 00000 I/4* Lance Linit Lance	40	1 x16 Option C	1 x16, 1 x8, 1 x4 2 x8, 2 x4, 2 x2, 2 x1 2 4 x4, 4 x2, 4 x1	060100	1 Host	1 Upstream Socket	1 Link	00000	1 x16	Link 0, Lane 0									Link 0, Lane 10		Link 0, Lane 12			7k 0, 16 15
RSVD RSVD D0000 1 Host LUprame Societ 11/Ini 00000 RSVD RSVD<	4C	4 x4	4 x4, 4 x2, 4 x1	0b0011	1 Host	1 Upstream Socket	1 Link	00000	1 x4*	Link 0, Lane 0				st Ho bled Disat	st Ho: oled Disat	t Host ed Disable	Host d Disable	Host d Disabled	Host Disabled	Host Disabled	Host Disabled	Host Disabled Di	Host H Habled Dis	ost abled
RSVD RSVD Dc0001 1 Host 1 Upstream Socket 1 Unk 00000 RSVD RSVD Dc0000 1 Host 1 Upstream Socket 1 Unk 0b000	RSVD		RSVD	0b0010	1 Host	1 Upstream Socket	1 Link	00000																
RSVD RSVD 1 Host 1 Upstream Socket 1 Link	RSVD		RSVD	0b0001	1 Host		1 Link	00000																T
	RSVD		RSVD	000000	1 Host		1 Link	00000					_	_	_							_	-	

Open Compute Project • NIC • 3.0

Rev 0.57

 Table 29: Bifurcation for Single Host, Single Socket and Single/Dual Upstream Links (BIF[2:0]#=0b000)

Single	Host, Single Ups	Single Host, Single Upstream Socket, One or Two Upstream Links	am Links		2 x8, 2 x4, 2 x2, 2 x1 2 x8, 2 x4, 2 x2, 2 x1																			
Min Car Wideb	Min Card Short	Supported Bifurcation Modes	Add-in-Card Encoding	tron	Hartenan Daviear	Instrument links	BIF[2:0]#	Daruteina Link	d our l	t enr	C	C 0011	V our	1	3 000		0 000	0 and 1	01 0001	ar 11	1 one 1	12 Lane 14	14	sing
n/a	Not Present	Card Not Present		1 Host	1 Upstream Socket	1 or 2 Links	00000	·				-												
20	1 x8 Option A	1 x8, 1 x4, 1 x2, 1 x1			1 Upstream Socket	1 or 2 Links	00090	1 x8	Link 0, Lane 0	Link 0, Lane 1	Link 0, Lane 2	Link 0, Lane 3	Link 0, Lane 4	Link 0, Lane 5	Link 0, 1 Lane 6 L	Link 0, Lane 7								
SC	1 x4	1 x4, 1 x2, 1 x1	0b1110	1 Host	1 Upstream Socket	1 or 2 Links	00000	1 x4	Link 0, Lane 0	Link 0, Lane 1	Link 0, Lane 2	Link 0, Lane 3												05
ç	1×2	1 x2, 1 x1	0b1110	1 Host	1 Upstream Socket	1 or 2 Links	00000	1x2	Link 0, Lane 0	Link 0, Lane 1														ι, ο
2C	1x1	1×1	0b1110	1 Host	1 Upstream Socket	1 or 2 Links	00090	1x1	Link 0, Lane 0															
20	1 x8 Option B	1 x8, 1 x4, 1 x2, 1 x1 1 x8 Option B 2 x4, 2 x2, 2 x1	0b1101	1 Host	1 Upstream Socket	1 or 2 Links	00090	1 x8	Link 0, Lane 0	Link 0, Lane 1	Link 0, Lane 2	Link 0, Lane 3	Link 0, Lane 4	Link 0, Lane 5	Link 0, 1 Lane 6 L	Link 0, 1 Lane 7 Dis	Host F sabled Dis	Host H Isabled Disa	Host H Isabled Disa	Host Hc Isabled Disa	Host Host sabled Disable	Host Host Host Host Host Host Host Host	t Host led Disable	
4C	2 x8 Option B	2 x8, 2 x4, 2 x2, 2 x1 2 x8 Option B 4 x4, 4 x2, 4 x1	0b1101	1 Host	1 Upstream Socket	1 or 2 Links	00090	2 x8	Link 0, Lane 0	Link 0, Lane 1	Link 0, Lane 2	Link 0, Lane 3	Link 0, Lane 4	Link 0, Lane 5	Link 0, L Lane 6 L	Link 0, Li Lane 7 La	Link 1, Li Lane 0 La	Link 1, Lir Lane 1 Lai	Link 1, Lir Lane 2 Lai	Link 1, Lin Lane 3 Lar	Link 1, Link 1, Lane 4 Lane 5	1, Link 1, a 5 Lane 6	1, Link 1, 6 Lane 7	
2C	1 x8 Option D	1 x8, 1 x4 2 x4, 1 x8 Option D 4 x2 (First 8 lanes), 4 x1	0b1100	1 Host	1 Upstream Socket	1 or 2 Links	00000	1×8	Link 0, Lane 0	Link 0, Lane 1	Link 0, Lane 2	Link 0, Lane 3	Link 0, Lane 4	Link 0, Lane 5	Link 0, 1 Lane 6 L	Link 0, Lane 7								Ске
4C		1 x16, 1 x8, 1 x4 2 x8, 2 x4, 1 x16 Option D 4 x4, 4 x2 (First 8 lanes), 4 x1	0b1100	1 Host	1 Upstream Socket	1 or 2 Links	00000	1 x16	Link 0, Lane 0	Link 0, Lane 1	Link 0, Lane 2	Link 0, Lane 3	Link 0, Lane 4	Link 0, Lane 5	Link 0, L Lane 6 L	Link 0, Li Lane 7 La	Link 0, Li Lane 8 La	Link 0, Lir Lane 9 Lar	Link 0, Lir Lane 10 Lar	Link 0, Lin Lane 11 Lan	Link 0, Link 0, Lane 12 Lane 13	0, Link 0, 13 Lane 14	0, Link 0, 14 Lane 15	
RSVD				1 Host	1 Upstream Socket	1 or 2 Links	00090																	
2C	2 x4	2 x4, 2 x2, 2 x1 1 x4, 1 x2, 1 x1		1 Host	1 Upstream Socket	1 or 2 Links	00090	1 x4	Link 0, Lane 0	Link 0, Lane 1	Link 0, Lane 2	Link 0, Lane 3												
2C	4 x2	4 x2 (First 8 lanes), 4 x1 2 x2, 2 x1 1 x2, 1 x1	0b1 001	1 Host	1 Upstream Socket	1 or 2 Links	00000	1x2	Link 0, Lane 0	Link 0, Lane 1														ngie
RSVD	RSVD	RSVD for future x8 encoding		1 Host	1 Upstream Socket	1 or 2 Links	00090																	=/
4C	1 x16 Option A	1 ×16, 1 ×8, 1 ×4, 1 ×2, 1 ×1	0b0111	1 Host	1 Upstream Socket	1 or 2 Links	00090	1 x16	Link 0, Lane 0	Link 0, Lane 1	Link 0, Lane 2	Link 0, Lane 3	Link 0, Lane 4	Link 0, Lane 5	Link 0, 1 Lane 6 L	Link 0, Li Lane 7 La	Link 0, Li Lane 8 La	Link 0, Lir Lane 9 Lar	Link 0, Lir Lane 10 Lar	Link 0, Lin Lane 11 Lan	Link 0, Link 0, Lane 12 Lane 13	0, Link 0, 13 Lane 14	0, Link 0, 14 Lane 15	200
40	2 x8 Option A	2 x8, 2 x4, 2 x2, 2 x1	0b0110	1 Host	1 Upstream Socket	1 or 2 Links	00090	2 x8	Link 0, Lane 0	Link 0, Lane 1	Link 0, Lane 2	Link 0, Lane 3	Link 0, Lane 4	Link 0, Lane 5	Link 0, 1 Lane 6 L	Link 0, Li Lane 7 La	Link 1, Li Lane 0 La	Link 1, Lir Lane 1 Lai	Link 1, Lir Lane 2 Lai	Link 1, Lin Lane 3 Lar	Link 1, Link 1, Lane 4 Lane 5	1, Link 1, = 5 Lane 6	1, Link 1, 6 Lane 7	
4	1 x16 Option E	1 x16, 1 x8, 1 x4, 1 x2, 1 x1 1 x16 Option B 2 x8, 2 x4, 2 x2, 2 x1	0b0101	1 Host	1 Upstream Socket	1 or 2 Links	00090	1 x16	Link 0, Lane 0	Link 0, Lane 1	Link 0, Lane 2	Link 0, Lane 3	Link 0, Lane 4	Link 0, Lane 5	Link 0, 1 Lane 6 L	Link 0, Li Lane 7 La	Link 0, Li Lane 8 La	Link 0, Lir Lane 9 Lar	Link 0, Lir Lane 10 Lar	Link 0, Lin Lane 11 Lan	Link 0, Link 0, Lane 12 Lane 13	0, Link 0, 13 Lane 14	0, Link 0, 14 Lane 15	
4C	1 x16 Option C	4 . 2 x1		1 Host	1 Upstream Socket	1 or 2 Links	00000	1 x16	Link 0, Lane 0	Link 0, Lane 1	Link 0, Lane 2	Link 0, Lane 3	Link 0, Lane 4	Link 0, Lane 5	Link 0, L Lane 6 L	Link 0, Li Lane 7 La	Link 0, Li Lane 8 La	Link 0, Lir Lane 9 Lar	Link 0, Lir Lane 10 Lar	Link 0, Lin Lane 11 Lan	Link 0, Link 0, Lane 12 Lane 13	0, Link 0, 13 Lane 14	0, Link 0, 14 Lane 15	
4C		x2, 4 x1		1 Host	1 Upstream Socket	1 or 2 Links	00090	2 x4*	Link 0, Lane 0	Link 0, Lane 1	Link 0, Lane 2	Link 0, Lane 3 D	Host isabled D	Host isabled Di	Host Host Host Host Disabled Disabled Disabled		Link 2, Li Lane 0 La	Link 2, Lir Lane 1 Lai	Link 2, Lir Lane 2 Lai	Link 2, Ho Lane 3 Disa	Host Host isabled Disable	Host Host Host Host Host Disabled Disabled Disabled	t Host led Disable	2ai
RSVD		RSVD	1	1 Host	1 Upstream Socket	1 or 2 Links	00090			1	1	1		1		+	+	+	+		+	+	+	
RSVD	RSVD		00001	1 Host	1 Upstream Socket	1 or 2 Links	00000		T	t	t	+	1	+		+	+	+	+	+	+	+	+	
RSVD			000000	1 Host	1 Upstream Socket	1 or 2 Links	00000											_	_	_				

(BIF[2:0]#=0b000) Host Host Disabled Disabled Link 1, Link 1, Lane 6 Lane 7 Link (), Link (), Lane 14 Lane 15 Link 1, Link 1, Link 1, Link 1, Link (), Link 0, Lane 14 Lane 14 Lane 14 Lane 15 Link (), Link 0, Lane 14 Lane 15 Lane 15 Link 0, Lane 15 Link 3, Lane 3 Link 0, Lane 14 Link 3, Lane 2 Lane 14
 Image
 <th Host Host Disabled Disabled C Link 1, Link 1, Lane 4 Lane 5 Link 0, Lane 13 Lane 13 Link 3, Lane 1 Lane 12 Link 0, Lane 12 Link 3, Lane 0 Host Disabled [Link 1, Lane 3 Link 0, Lane 11 Lane 11 Link 2, Jane 3 Host Disabled Link 1, Lane 2 Link 0, Lane 10 Link 1, Lane 2 Link 0, Lane 10 Link 0, Lane 10 Lane 10 Link 0, Lane 10 Link 2, Lane 2 Host Disabled Link 1, Lane 1 Lane 9 Link 0, Lane 9 Link 0, Lane 9 Link 1, Lane 1 Link 0, Link 0, Link 0, Lane 9 Link 2, Lane 1 Host Disabled Link 1, Lane 0 Link 0, Lane 8 Link 1, Lane 0 Link 0, Lane 8 Link 0, Lane 8 Link 0, Lane 8 Lane 8 Link 2, Lane 0 Link 0, Lane 7 Link 0, Link 0, Lane 7 Lane 7 Link 0, Lane 7 Lane 7 Link 0, Lane 7 Link 1, Lane 3 Link 1, ane 3 Link 0, Lane 6 Link 0, Lane 6 Link 0, Lane 6 Lane 6 Link 0, Lane 6 Link 0, Lane 6 Link 1, Lane 2 Link 0, Lane 6 Link 0, Lane 6 Link 0, Lane 6 Link 0, Lane 6 Link 1, Lane 2 Link 0, Lane 5 Link 0, Lane 5 Link 0, Lane 5 Lane 5 Link 0, Lane 5 Link 0, Lane 5 Link 1, Lane 1 Link 1, Lane 1 Link 0, Lane 5 Link 1, Lane 1 Link 0, Lane 4 Link 0, Lane 4 Link 0, Lane 4 Link 1, Lane 0 Link 1, Lane 0 Lane 4 Link 0, Lane 4 Link 1, Lane 0 Link 0, Lane 3 Lane 3 Lane 3 Link 0, Lane 3 Link 0, Lane 3 Lane 3 Link 0, Link 0, Link 0, Lane 3 Link 0, Lane 3 Link 0, Lane 3 Lane 3 Link 0, Lane 2 Lane 2 Link 0, Lane 1 Link 0, Link 0, Lane 1 Link 0, Lane 0 Link 0, Lane 0 Lane 0 Link 0, Link 0, Lane 0 Lane 0 Lane 0 Link 0, Lane 0 Link 0, Lane 0 Link 0, Lane 0 Lane 0 Link 0, Lane 0 Link 0, Link 0, Link 0, Link 0, Lane 0 Link 0, Link 0, Lane 0 Resulting Link 1 x16 2 x8 1 x8 1 x4 1x2 1x1 1x8 2 x8 1 ×8 1 x16 2 x4 2×2 1 x16 1 x16 4 ×4 BIF[2:0]# 00000 00090 00090 00090 00090 00000 00090 00000 00090 00090 00090 00000 00090 00000 00000 00090 00090 1, 2, or 4 Links Links nks Upstream Links 1, 2, or 4 Links 1 Upstream Socket 1 Upstream Socket 1 Upstream Socket 1 x16, 1 x8, 1 x4, 1 x2, 1 2 x8, 2 x4, 2 x2, 2 x1 4 x4, 4 x2, 4 x1 Upstream Devices 1 Upstream Socket Socket Socket 1 Upstream Socket 1 Upstream Socket Socket Socket 1 Upstream 1 Upstream 1 Upstream 1 Upstream 1 Upstream 1 Host 1 Host 1 Host 1 Host 1 Host Host 1 Host 1 Host Host 1 Host Host 1 Host 1 Host 1 Host Host Host Host Host Host Host Host 1 Host r Upstream Links Add-in-Card Encoding PRSNTB[3:0]# 0b11110 0b1110 0b1110 0b1110 0b1101 0b1100 0b1011 0b0010 0b0001 0b0000 0b1110 0b1101 b1100 b1001 0b1000 0b0111 0b0110 0b0100 0b0011 b0101 168, 194, 192, 114 ion 8 294, 292, 294 298, 292, 294 298, 294, 292, 294 198, 194 198, 198 198, 198 294, 198, 198 294, 492 (First 8) anes), 441 294, 422 (First 8) anes), 441 294, 422 (First 8) anes), 441 2000 tream Socket, One, Two or Four I Supported Bifurcation Modes encoding 2, 1 x1 1 x16, 1 x8, 1 x4, 1 x2, 1 x1 2 x8, 2 x4, 2 x2, 2 x1 1 x16, 1 x8, 1 x4 2 x8, 2 x4, 2 x2, 2 x1 4 x4, 4 x2, 4 x1 4 x4, 4 x2, 4 x1 2 %, 2 X, 2 X1 1 X4, 1 X, 1 X1 4 X2 [First 8 lanes), 4 X1 2 X2, 2 X1 1 X2, 1 X1 8 SVD for future x8 encodit 1 X16, 1 x8, 1 X4, 1 X2, 1 X1 Card Not Present 1 x8, 1 x4, 1 x2, 1 x1 2 x8, 2 x4, 2 x2, 2 x1 l x4, 1 x2, 1 x1 x2, 1 x1 1 x16 Option D RSVD 1 x16 Option A 1 x8 Option B 2 x8 Option B 2 x8 Option A 1 x8 Option A Single Host, Single Ups 1 x16 Option 1 x8 Option 4 x2 RSVD 4 x4 RSVD RSVD RSVD Min Card Short Width Name n/a Not Present 1 x16 Optic 1 x4 1×2 1×1 2 ×4 4C RSVD RSVD RSVD 4C RSVD 2C RSVD

30

ĸ ĸ ĸ

상 4 4 왖

Я 2

Table 30: Bifurcation for Single Host, Single Socket and Single/Dual/Quad Upstream Links

Rev 0.57

Single H	'ost, Two Upstrei	Single Host, Two Upstream Sockets, Two Upstream Links	и		1 x8, 1 x4, 1 x2, 1 x1 2 x8, 2 x4, 2 x2, 2x1																			
Min Card	Min Card Short	Supported Bifurcation Modes	Add-in-Card Encoding				BIF[2:0]#						-	-										
Width	Width Name		PRSNTB[3:0]#	Host	Upstream Devices	Upstream Links		Resulting Link	Lane 0	Lane 1	Lane 2	Lane 3 Li	Lane 4 La	Lane 5 La	Lane 6 Lan	Lane 7 Lane 8	_	Lane 9 Lane 10	10 Lane 11	11 Lane 12	2 Lane 13	lane 14	Lane 15	_
n/a	Not Present	Card Not Present	0b1111	1 Host	2 Upstream Sockets	2 Links	0b001			_	_	_	_	_	_									
2C	1 x8 Option A	1 x8, 1 x4, 1 x2, 1 x1	0b1110	1 Host	2 Upstream Sockets	2 Links	00001	1 x8 (Socket 0 only)	Link 0, Lane 0	Link 0, Lane 1	Link 0, 1 Lane 2 L		Link 0, Li Lane 4 La	Link 0, Lir Lane 5 Lai	Link 0, Lin Lane 6 Lan	Link 0, Lane 7								igi
2C	1 x4	1 x4, 1 x2, 1 x1	0b1110	1 Host	2 Upstream Sockets	2 Links	06001	1 x4 (Socket 0 only)	Link 0, Lane 0	Link 0, Lane 1	Link 0, 1 Lane 2 L	Link 0, Lane 3												er
2C	1x2	1 x2, 1 x1	0b1110	1 Host	2 Upstream Sockets	2 Links	06001	1 x2 (Socket 0 only)	Link 0, Lane 0	Link 0, Lane 1														10
2C	1x1	1×1	0b1110	1 Host	2 Upstream Sockets	2 Links	06001	1 x1 (Socket 0 only)	Link 0, Lane 0															ςι,
2C	1 x8 Option B	1 x8, 1 x4, 1 x2, 1 x1 1 x8 Option B 2 x4, 2 x2, 2 x1	0b1101	1 Host	2 Upstream Sockets	2 Links	06001	1 x8 (Socket 0 only)	Link 0, Lane 0	Link 0, Lane 1	Link 0, 1 Lane 2 L	Link 0, Li Lane 3 La	Link 0, Li Lane 4 La	Link 0, Lir Lane 5 Lai	Link 0, Lin Lane 6 Lan	Link 0, Host Lane 7 Disable	st Host bled Disable	Host Host Host Host Host Host Host Host	t Host led Disable	t Host ed Disable	Host ed Disable	Host d Disable	Host d Disable	Dι
4C	2 x8 Option B	2 x8, 2 x4, 2 x2, 2 x1 2 x8 Option B 4 x4, 4 x2, 4 x1	0b1101	1 Host	2 Upstream Sockets	2 Links	06001	2 x8	Link 0, Lane 0	Link 0, Lane 1	Link 0, 1 Lane 2 L	Link 0, Li Lane 3 La	Link 0, Li Lane 4 La	Link 0, Lir Lane 5 Lai	Link 0, Lin Lane 6 Lan	Link 0, Link 1, Lane 7 Lane 0	Link 1, Link 1, Lane 0 Lane 1	:1, Link1, e1 Lane2	1, Link 1, 2 Lane 3	1, Link 1, 3 Lane 4	, Link 1, 4 Lane 5	Link 1, Lane 6	Link 1, Lane 7	
		1 x8, 1 x4 2 x4,	0b1100	1 Host	2 Upstream Sockets	2 Links	00001	1 x8 (Socket 0 only)	Link 0, Lane 0	Link 0, Lane 1	Link 0, 1 Lane 2 L	Link 0, Li Lane 3 La	Link 0, Li Lane 4 La	Link 0, Lir Lane 5 Lai	Link 0, Lin Lane 6 Lan	Link 0, Lane 7								50
2C	1 x8 Option D	1 x8 Option D 4 x2 (First 8 lanes), 4 x1								_	_	_	-	_	_			_	_	_				
4C	1 x16 Option D	1 x16, 1 x8, 1 x4 2 x8, 2 x4, 1 x16 Option D 4 x4, 4 x2 (First 8 lanes), 4 x1	0b1100	1 Host	2 Upstream Sockets	2 Links	0001	2 x8	Link 0, Lane 0	Link 0, Lane 1	Link 0, 1 Lane 2 1	Link 0, Li Lane 3 La	Link 0, Li Lane 4 La	Link 0, Lir Lane 5 Lai	Link 0, Lin Lane 6 Lan	Link 0, Link 1, Lane 7 Lane 0	Link 1, Link 1, Lane 0 Lane 1	: 1, Link 1, e 1 Lane 2	1, Link 1, 2 Lane 3	1, Link 1, 3 Lane 4	, Link 1, 4 Lane 5	Link 1, Lane 6	Link 1, Lane 7	kets
RSVD	RSVD	RSVD	0b1011	1 Host	2 Upstream Sockets	2 Links	00001																	
2C	2 x4	2 ×4, 2 ×2, 2 ×1 1 ×4, 1 ×2, 1 ×1	0b1010	1 Host	2 Upstream Sockets	2 Links	06001	1 x4 (Socket 0 only)	Link 0, Lane 0	Link 0, Lane 1	Link 0, 1 Lane 2 L	Link 0, Lane 3												ano
2C	4 x2	4 x2 (First 8 lanes), 4 x1 2 x2, 2 x1 1 x2, 1 x1	001001	1 Host	2 Upstream Sockets	2 Links	00001	1 x2 (Socket 0 only)	Link 0, Lane 0	Link 0, Lane 1														ע ג
RSVD	RSVD	RSVD for future x8 encoding	0b1000	1 Host	2 Upstream Sockets	2 Links	0b001																	
4C	1 x16 Option A		0b0111	1 Host	2 Upstream Sockets	2 Links	0b001	1 x8 (Socket 0 only)	Link 0, Lane 0	Link 0, Lane 1	Link 0, 1 Lane 2 1	Link 0, Li Lane 3 La	Link 0, Li Lane 4 La	Link 0, Lir Lane 5 Lai	Link 0, Lin Lane 6 Lan	Link 0, Lane 7								
40	2 x8 Option A	2 x8, 2 x4, 2 x2, 2 x1	0b0110	1 Host	2 Upstream Sockets	2 Links	06001	2 x8	Link 0, Lane 0	Link 0, Lane 1	Link 0, 1 Lane 2 L	Link 0, Li Lane 3 La	Link 0, Li Lane 4 La	Link 0, Lir Lane 5 Lai	Link 0, Lin Lane 6 Lan	Link 0, Link 1, Lane 7 Lane 0	k 1, Link 1, e 0 Lane 1	:1, Link1, e1 Lane2	1, Link 1, 2 Lane 3	1, Link 1, 3 Lane 4	, Link 1, 4 Lane 5	Link 1, Lane 6	Link 1, Lane 7	ps
4C	1 x16 Option B	1 x16, 1 x8, 1 x4, 1 x2, 1 x1 1 x16 Option B 2 x8, 2 x4, 2 x2, 2 x1	0b0101	1 Host	2 Upstream Sockets	2 Links	06001	2 ×8	Link 0, Lane 0	Link 0, Lane 1	Link 0, 1 Lane 2 L	Link 0, Li Lane 3 La	Link 0, Li Lane 4 La	Link 0, Lir Lane 5 Lai	Link 0, Lin Lane 6 Lan	Link 0, Link 1, Lane 7 Lane 0	k1, Link1, e0 Lane1	:1, Link1, e1 Lane2	1, Link 1, 2 Lane 3	1, Link 1, 3 Lane 4	, Link 1, 4 Lane 5	Link 1, Lane 6	Link 1, Lane 7	
		1 x16, 1 x8, 1 x4 2 x8, 2 x4, 2 x2, 2 x1	0b0100	1 Host	2 Upstream Sockets	2 Links	00001	2 x8	Link 0, Lane 0	Link 0, Lane 1	Link 0, 1 Lane 2 L	Link 0, Li Lane 3 La	Link 0, Li Lane 4 La	Link 0, Lir Lane 5 Lai	Link 0, Lin Lane 6 Lan	Link 0, Link 1, Lane 7 Lane 0	k 1, Link 1, e 0 Lane 1	:1, Link 1, e 1 Lane 2	1, Link 1, 2 Lane 3	1, Link 1, 3 Lane 4		Link 1, Lane 6	Link 1, Lane 7	ean
ų	1 x16 Option C	1 x16 Option C 4 x4, 4 x2, 4 x1								+	+						+	+	+					
4C	4 x4	4 x4, 4 x2, 4 x1	110000	1 Host	2 Upstream Sockets	2 LINKS	00001	2 x4 (EP 0 and 2 only)	Link 0, Lane 0	Link 0, Lane 1	Link 0, 1 Lane 2 1	Link 0, Lane 3				Link 2, Lane 0	k 2, Link 2, e 0 Lane 1	: 2, Link 2, e 1 Lane 2	2, Link 2, 2 Lane 3	3 6				LI
			0b0010	1 Host	2 Upstream Sockets	2 Links	0b001																	
	RSVD	RSVD	00001	1 Host	2 Upstream Sockets	2 Links	00001																	K:
RSVD			0000000	1 Host	2 Upstream Sockets	2 Links	0b001) د ا

ngle H	lost, Four Upstri	Single Host, Four Upstream Sockets, Four Upstream Links	nks		4 x4, 4 x2, 4x1																		
lin Card	Min Card Short	Supported Bifurcation Modes	Add-in-Card Encoding				BIF[2:0]#																
الع	Width Name		PRSNTB[3:0]#	Host		Upstream Links	01 040	Resulting Link	Lane 0	Lane 1	Lane 2	Lane 3	Lane 4	Lane 5	Lane 6 La	Lane 7 La	Lane 8 Lai	Lane 9 Lane	Lane 10 Lane 11	11 Lane 12	12 Lane 13	13 Lane 14	4 Lane 15
e/u	Not Present	Lard Not Present	TTTTON	1 HOST	4 Upstream sockets	4 LINKS	NTNON				Ì												
20	1 x8 Option A	1 x8, 1 x4, 1 x2, 1 x1	0b1110	1 Host	4 Upstream Sockets	4 Links	0b010	1 x4 (Socket 0 only)	Link 0, Lane 0	Link 0, Lane 1	Link 0, Lane 2	Link 0, Lane 3											
		1 x4, 1 x2, 1 x1	0b1110	1 Host	4 Upstream Sockets	4 Links	00010	1 x4	Link 0,	Link 0,	Link 0,	Link 0,											
2C	1 x4							(Socket 0 only)	Lane 0	Lane 1	Lane 2	Lane 3											_
2C	1×2	1 x2, 1 x1	0b1 110	1 Host	4 Upstream Sockets	4 Links	0b010	1 x2 (Socket 0 only)	Link 0, Lane 0	Link 0, Lane 1													
2C	1x1	1×1	0b1110	1 Host	4 Upstream Sockets	4 Links	0b010	1 x1 (Socket 0 only)	Link 0, Lane 0														
2		1 x8, 1 x4, 1 x2, 1 x1	0b1101	1 Host	4 Upstream Sockets	4 Links	06010	2 x4	Link 0,	Link 0,	Link 0,		<u> </u>	-	-	Link 1, H	Host H	Host Ho	Host Host	st Host	st Host	t Host	Host
	T X8 Obtiou B	2 X4, 2 X2, 2 X1	01 4404						rane u	T aug	rane z	+	+	+	+					-			
4C	2 x8 Option B	2 x8 Option B 4 x4, 4 x2, 2 x1 2 x8 Option B 4 x4, 4 x2, 4 x1	TOTTON	1 HOST	4 Upstream sockets	4 LINKS	0b010	4 X4	Lane 0	LINK U, Lane 1	Lane 2	Lane 3 L	Lane 0 L	Lane 1 La	Lane 2 Lai	Lane 3 La	Lane 0 Lar	Lane 1 Lan	Lane 2 Lane 3	e 3 Lane 0	3, LINK3, = 0 Lane 1	 Lane 2 	2 Lane 3
		1 x8, 1 x4	0b1100	1 Host	4 Upstream Sockets	4 Links		2 x4	Link 0,	Link 0,	Link 0,	Link 0, 1	Link 1, L	Link 1, Li	Link 1, Lir	Link 1,							
2C	1 x8 Option D	2 x4, 1 x8 Option D 4 x2 (First 8 lanes). 4 x1					0b010		Lane 0	Lane 1	Lane 2	Lane 3	Lane 0 L	Lane 1 La	Lane 2 Lai	Lane 3							
40	1 x16 Option D	1 x16, 1 x8, 1 x4 2 x8, 2 x4, 1 x16 Option D 4 x4 4 x2 (First 8 James) 4 x1	0b1 100	1 Host	4 Upstream Sockets	4 Links	06010	4 x4	Link 0, Lane 0	Link 0, Lane 1	Link 0, Lane 2	Link 0, 1 Lane 3 L	Link 1, L Lane 0 L	Link 1, Li Lane 1 La	Link 1, Lir Lane 2 Lai	Link 1, Lii Lane 3 La	Link 2, Lin Lane 0 Lar	Link 2, Lin Lane 1 Lan	Link 2, Link 2, Lane 2 Lane 3	c 2, Link 3, e 3 Lane 0	3, Link 3, e 0 Lane 1	3, Link 3, 1 Lane 2	, Link 3, 2 Lane 3
RSVD	RSVD	RSVD	061011	1 Host	4 Upstream Sockets	4 Links	00010																
sc	2 x4	2 ×4, 2 ×2, 2 ×1 1 ×4, 1 ×2, 1 ×1	0b1010	1 Host	4 Upstream Sockets	4 Links	0b010	2 x4	Link 0, Lane 0	Link 0, Lane 1	Link 0, Lane 2	Link 0, 1 Lane 3	Link 1, L Lane 0 L	Link 1, Li Lane 1 La	Link 1, Lir Lane 2 Lai	Link 1, Lane 3							
		4 x2 (First 8 lanes), 4 x1	0b1001	1 Host	4 Upstream Sockets	4 Links		2×2	Link 0,	Link 0,		-	+		-								
2C	4 x2	2 x2, 2 x1 1 x2, 1 x1					0b010		Lane 0	Lane 1			Lane 0 L	Lane 1				_					
RSVD	RSVD	RSVD for future x8 encoding	0b1000	1 Host	4 Upstream Sockets	4 Links	0b010																
4C	1 x16 Option A	1 x16, 1 x8, 1 x4, 1 x2, 1 x1 A	060111	1 Host	4 Upstream Sockets	4 Links	0b010	1 x4 (Socket 0 only)	Link 0, Lane 0	Link 0, Lane 1	Link 0, Lane 2	Link 0, Lane 3											
4C	2 x8 Option A	2 x8, 2 x4, 2 x2, 2 x1	0b0110	1 Host	4 Upstream Sockets	4 Links	0b010	2 x4 (Socket 0 & 2 only)	Link 0, Lane 0	Link 0, Lane 1	Link 0, Lane 2	Link 0, Lane 3				i e	Link 2, Lin Lane 0 Lar	Link 2, Lin Lane 1 Lan	Link 2, Link 2, Lane 2 Lane 3	Link 2, Lane 3			
40	1 x16 Option B	1 x16, 1 x8, 1 x4, 1 x2, 1 x1 1 x16 Option B 2 x8, 2 x4, 2 x2, 2 x1	0b0 101	1 Host	4 Upstream Sockets	4 Links	0b010	2 x4 (Socket 0 & 2 only)	Link 0, Lane 0	Link 0, Lane 1	Link 0, Lane 2	Link 0, Lane 3				59	Link 2, Lin Lane 0 Lar	Link 2, Lin Lane 1 Lan	Link 2, Link 2, Lane 2 Lane 3	c 2, e 3			
4	1 x16 Option C	1 x16, 1 x8, 1 x4 2 x8, 2 x4, 2 x2, 2 x1 1 x16 Option C 4 x4, 4 x2, 4 x1	0b0100	1 Host	4 Upstream Sockets	4 Links	0b010	4 x4	Link 0, Lane 0	Link 0, Lane 1	Link 0, Lane 2	Link 0, 1 Lane 3 L	Link 1, L Lane 0 L	Link 1, Li Lane 1 La	Link 1, Lir Lane 2 Lai	Link 1, Li Lane 3 La	Link 2, Lin Lane 0 Lar	Link 2, Lini Lane 1 Lan	Link 2, Link 2, Lane 2 Lane 3	c 2, Link 3, e 3 Lane 0	3, Link 3, e 0 Lane 1	3, Link 3, 1 Lane 2	l, Link 3, 2 Lane 3
4C	4 x4	4 x4, 4 x2, 4 x1	000011	1 Host	4 Upstream Sockets	4 Links	0b010	4 x4	Link 0, Lane 0	Link 0, Lane 1	Link 0, Lane 2	Link 0, 1 Lane 3 L	Link 1, L Lane 0 L	Link 1, Li Lane 1 La	Link 1, Lir Lane 2 Lai	Link 1, Li Lane 3 La	Link 2, Lin Lane 0 Lar	Link 2, Lini Lane 1 Lan	Link 2, Lini Lane 2 Lan	Link 2, Link 3, Lane 3 Lane 0	3, Link 3, e 0 Lane 1	3, Link 3, 1 Lane 2	(, Link 3, 2 Lane 3
RSVD	RSVD	RSVD	0b0 010	1 Host	4 Upstream Sockets	4 Links	0b010																
	RSVD	RSVD	00001	1 Host	4 Upstream Sockets	4 Links	0b010																
RSVD	RSVD	RSVD	000000	1 Host	4 Upstream Sockets	4 links	01040		ĺ														

Table 32: Bifurcation for Single Host, Four Sockets and Four Upstream Links (BIF[2:0]#=0b010)

Rev 0.57

Table 33: Bifurcation for Single Host, Four Sockets and Four Upstream Links – First 8 PCIe Lanes

(BIF[2:0]#=0b011)

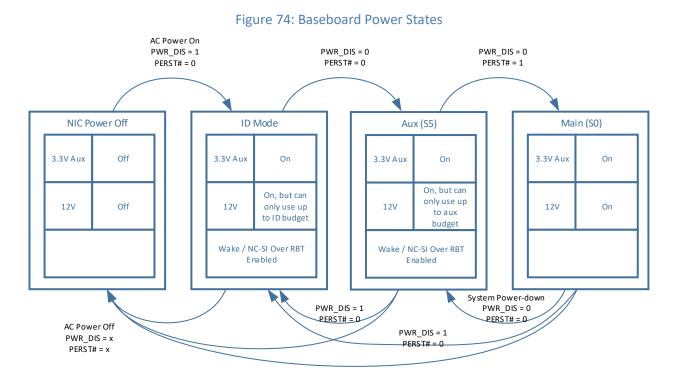
		Lane 15									J		-		+-				,											I
		Lane 14 La																							╞					I
		Lane 13 Lar																				+		-	╞					l
																		+				+		_	+					
		11 Lane 12																							+					
		10 Lane 11	_																						+					
		9 Lane 10																-							+					
		8 Lane 9																							+					
		/ Lane 8																												
		Lane 7									+	Link 3,			0 Lane 1			Link 3.												
		Lane 6									-	Link 3,		-	Lane 0			Link 3.												
		Lane 5							Link 1, lane 1	-	Lane 1	Link 2,		-	Lane 1		Link 1,					Link 1	Lane 1		Link 1.		Link 1, Lane 1			
		Lane 4							Link 1, Lane 0	Link 1,	Lane 0	Link 2,		_	Lane 0		Link 1,	Link 2.	Lane 0			Link 1	Lane 0		Link 1.	Lane 0	Link 1, Lane 0			
		Lane 3										Link 1,		Link 1,	Lane 1			Link 1.	Lane 1											
		Lane 2										Link 1,		Link 1,	Lane 0			Link 1.	Lane 0											
		Lane 1		Link 0, Lane 1	link	Lane 1	Link 0, Lane 1		Link 0, Lane 1	Link 0,	Lane 1	Link 0,		Link 0,	Lane 1		Link 0,	Link 0.	Lane 1		Link 0,	Lane I	Lane 1	Link 0,	Link 0.	Lane 1	Link 0, Lane 1			
		Lane 0		Link 0, Lane 0	link	Lane 0	Link 0, Lane 0	Link 0, Lane 0	Link 0, Lane 0	Link 0,	Lane 0	Link 0,		Link 0,	Lane 0		Link 0,	Link 0.	Lane 0		Link 0,	Lane U	Lane 0	Link 0,	Link 0.	Lane 0	Link 0, Lane 0			
		Resulting Link		1 x2 (Socket 0 only)	1 v2	(Socket 0 only)	1 x2 (Socket 0 only)	1x1 (Socket 0 only)	2 x2 (Socket 0 & 2 only)	2×2	(Socket 0 & 2 only)	4 x2		4 x2			2 x2	2 x2			1×2	(Socket U Only)	(Socket 0 & 2 only)	1 x2 (Contract O control	2 x2	(Socket 0 & 2 only)	4 x2 (Socket 0 & 2 only)			
	#ICC3-01#	#[0:7].10	0b011	0b011		0b011	06011	06011	06011	0H011	+	06011	TTOOD		0b011	0b011	0b011	-	0b011	06011	06011		0b011	06011		0b011 ()	06011	06011	0b011	
		Upstream Links	4 Links	4 Links	4 Links	4 CIII2	4 Links	4 Links	4 Links	4 Links		4 Links		4 Links		4 Links	4 Links	4 Links		4 Links	4 Links	4 links		4 Links	4 Links		4 Links	4 Links	4 Links	
4 x2, 4x1		Upstream Devices	4 Upstream Sockets	4 Upstream Sockets	4 Instream Sockets		4 Upstream Sockets	4 Upstream Sockets	4 Upstream Sockets	4 Upstream Sockets		4 Upstream Sockets		4 Upstream Sockets		4 Upstream Sockets	4 Upstream Sockets	4 Unstream Sockets		4 Upstream Sockets	4 Upstream Sockets	4 Unstream Sockets		4 Upstream Sockets	4 Upstream Sockets		4 Upstream Sockets	4 Upstream Sockets	4 Upstream Sockets	
		Host	1 Host	1 Host	1 Host		1 Host	1 Host	1 Host	1 Host		1 Host		1 Host		1 Host	1 Host	1 Host		1 Host	1 Host	1 Host		1 Host	1 Host		1 Host	1 Host	1 Host	
Links - First 8 lanes	Add-in-Card	PRSNTB[3:0]#	0b1111	0b1110	01110	ATTTO	0b1110	0b1110	0b1101	0b1101		0b1100		0b1100		0b1011	0b1010	0b1001		E 0b1000	0b0111	01010		0b0101	00100		0b0011	0b0010		
Single Host, Four Upstream Sockets, Four Upstream Links - First 8 lanes	Supported Bifurcation Modes		Card Not Present	1 x8, 1 x4, 1 x2, 1 x1	1 1 2 1 2 1 21	T X + 7 × 7 × 7 × T	1 x2, 1 x1	1x1	1 x8 Ontion B 2 x4 2 x2 2 x1	2 x8, 2 x4, 2 x2, 2 x1	4 x4, 4 x2, 4 x1	1 x8, 1 x4	1 x8 Option D 4 x2 (First 8 lanes), 4 x1	1 x16, 1 x8, 1 x4	2 x8, 2 x4, 1 x16 Option D 4 x4. 4 x2 (First 8 lanes). 4 x1	RSVD	2 x4, 2 x2, 2 x1	4 x2 (First 8 lanes) 4 x1	2x2, 2x1 1x2 1x1	RSVD for future x8 encoding	1 x16, 1 x8, 1 x4, 1 x2, 1 x1	2 x8 2 x4 2 x2 2 x1		1 x16, 1 x8, 1 x4, 1 x2, 1 x1 2 x16 Ontion B 2 x8 2 x6 2 x7 2 x1	2 X6, 2 X4, 2 X2, 2 X1 1 X16. 1 X8. 1 X4	2 x8, 2 x4, 2 x2, 2 x1 4 x4, 4 x2, 4 x1	4 x4, 4 x2, 4 x1	RSVD	RSVD	
ost, Four Upstre	Min Carel Carel Short	Name	Not Present	1 x8 Ontion A		1 x4	1×2	1x1	1 x8 Option B		2 x8 Option B 4 x4, 4 x2, 4 x1		1 x8 Option D		1 x16 Option D	RSVD	1		4 x0	RSVD		I XI5 Uption A	2 x8 Option A	a unit Constant B	T XTG ChICIN B	2 x8, 2 x4, 2 x2 1 x16 Option C 4 x4, 4 x2, 4 x1	4 x4			
ingle H _t	Min Card	Width Name	n/a	20		2C	2C	2C	20		4C		2C		40	9	ę	3	20	ę		2 2	4C	ų	_ ۲	4C	40	e		

of double hume Supported function Modes Supported function Modes Supported function Modes Supported function Modes Support function Modes	Dual Host,	Two Upstream	Dual Host, Two Upstream Sockets, Two Upstream Links			2 x8, 2 x4, 2 x2, 2 x1																		
Wertherer Control freeder Ox111 2 Hor	Min Card C	ard Short	Supported Bifurcation Modes	Add-in-Card Encoding ppsNTR13-01#	Hoct	Instream Devices	Inctream Links	BIF[2:0]#	Reculting Link	0 and 1			ane 3	A lane 5	9 one 1	Tane 7	ane a	0 eue	ane 10	ane 11	ane 12	ane 13	lane 14	OT
		ot Present	Card Not Present	061111	2 Host	2 Upstream Sockets	2 Links	0b101	-				+			+								-
			1 x8, 1 x4, 1 x2, 1 x1	0b1110	2 Host	2 Upstream Sockets	2 Links		1 x8	Link 0,		⊢	Link 0, Link 0,	0, Link 0,	0, Link 0,	Link 0,								
		x8 Option A	_					0b101	(Host 0 only)	Lane 0	_	_	_	_	_	-							_	
			1 x4, 1 x2, 1 x1	0b1110	2 Host	2 Upstream Sockets	2 Links	0b101	1 x4	Link 0,			Link 0,											
	7	1 X4							(HOST U ONIV)	Lane U	÷	÷	Lane 3							Ī			╎	Τ
	2C	1×2	1 x2, 1 x1	0b1110	2 Host	2 Upstream Sockets	2 Links	06101	1 x2 (Host 0 only)	Link 0, Lane 0	Link 0, Lane 1													5
	2C	1x1	1 x1	0b1110	2 Host	2 Upstream Sockets	2 Links	0b101	1 x1 (Host 0 only)	Link 0, Lane 0														
			1 x8, 1 x4, 1 x2, 1 x1	0b1101	2 Host	2 Upstream Sockets	2 Links	06101	1 x8	Link 0,	-	-	Link 0, Link 0,	0, Link 0,	0, Link 0,	-	Host	Host	Host	Host	Host	Host H	Host H	Host
		x8 Option B	2 x4, 2 x2, 2 x1					TOTOO	(Host 0 only)	Lane 0	-	-	Lane 3 Lane 4	e 4 Lane 5	5 Lane 6	i Lane 7		Disabled	Disabled Disabled Disabled Disabled Disabled Disabled Disabled	Disabled D	Disabled	sabled Dis	abled Disa	_
		x8 Option B	2 x8, 2 x4, 2 x2, 2 x1 4 x4. 4 x2. 4 x1	0b1101	2 Host	2 Upstream Sockets	2 Links	0b101	2 x8	Link 0, Lane 0			Link 0, Link 0, Lane 3 Lane 4	0, Link 0,	0, Link 0, 5 Lane 6	Link 0, Lane 7	Link 1, Lane 0	Link 1, Lane 1	Link 1, Lane 2	Link 1, Lane 3	Link 1, Lane 4	Link 1, Li Lane 5 La	Link 1, Lir Lane 6 Lai	Link 1, Lane 7
			1 x8, 1 x4	0b1100	2 Host	2 Upstream Sockets	2 Links		1 x8	Link 0,	-	-	+	-	-	⊢								50
I = 0 Cluber 2 Note:		0 0 an	2 x4,					0b101	(Host 0 only)	Lane 0			Lane 3 Lane 4	e 4 Lane 5	5 Lane 6	lane 7								
			1 V16 1 V8 1 V/	Ch1100	2 Hort	3 Ilnetraam Sockate	2 Links		3 v 6	1 int 0	+	+	1ink 0	0 101	0 link 0	1 int 0	1 int 1	1 July 1	1 int 1	1 int 1	1 int 1	1 int 1	1 Int 1	1 int 1
			2 x8 2 x4	ANT AN	10011 7		2	06101	2	lane 0			_				Lane ()	ane 1	lane 2	ane 3			_	
		x16 Option D	4 x4, 4 x2 (First 8 lanes), 4 x1								_	_	_	_	_	_					_	_	_	S
			RSVD	0b1011	2 Host	2 Upstream Sockets	2 Links	0b101																
	,	hu C	2 x4, 2 x2, 2 x1	0b1010	2 Host	2 Upstream Sockets	2 Links	0b101	1 x4 (Horr 0 polity	Link 0,			Link 0,											
4.2 2.3.1. 0.001 2.401 0.001	74		A v2 (First & lange) A v1	001001	1 HOEF	3 Ilnetraam Corkate	2 Linke		1 20	Laiev		+						I						T
StOD StOD for future sterooldrer 0.0000 2 Hot 2 Upstream Socies 2 Linhs 0.011 0.110 <td>2C</td> <td>4 x2</td> <td>7 X2 (FIISE & IGHES), 7 X1 2 X2, 2 X1 1 X2, 1 X1</td> <td>TOOTOO</td> <td>15011 2</td> <td></td> <td>7</td> <td>0b101</td> <td>(Host 0 only)</td> <td>Lane 0</td> <td>Lane 1</td> <td></td> <td>Du</td>	2C	4 x2	7 X2 (FIISE & IGHES), 7 X1 2 X2, 2 X1 1 X2, 1 X1	TOOTOO	15011 2		7	0b101	(Host 0 only)	Lane 0	Lane 1													Du
		QNS	RSVD for future x8 encoding		2 Host	2 Upstream Sockets	2 Links	0b101																
		x16 Option A		060111	2 Host	2 Upstream Sockets	2 Links	0b101	1 x8 (Host 0 only)	Link 0, Lane 0			Link 0, Link 0, Lane 3 Lane 4	0, Link 0, e 4 Lane 5	0, Link 0, 5 Lane 6	Link 0, Lane 7								
14.6 14.6 <th< td=""><td></td><td>x8 Option A</td><td>2 x8, 2 x4, 2 x2, 2 x1</td><td>000110</td><td>2 Host</td><td>2 Upstream Sockets</td><td>2 Links</td><td>0b101</td><td>2 x8</td><td>Link 0, Lane 0</td><td></td><td></td><td>Link 0, Link 0, Lane 3 Lane 4</td><td>0, Link 0, s 4 Lane 5</td><td>0, Link 0, 5 Lane 6</td><td>Link 0, Lane 7</td><td>Link 1, Lane 0</td><td>Link 1, Lane 1</td><td>Link 1, Lane 2</td><td>Link 1, Lane 3</td><td>Link 1, Lane 4</td><td>Link 1, Li Lane 5 La</td><td>Link 1, Lir Lane 6 Lai</td><td>Link 1, Lane 7</td></th<>		x8 Option A	2 x8, 2 x4, 2 x2, 2 x1	000110	2 Host	2 Upstream Sockets	2 Links	0b101	2 x8	Link 0, Lane 0			Link 0, Link 0, Lane 3 Lane 4	0, Link 0, s 4 Lane 5	0, Link 0, 5 Lane 6	Link 0, Lane 7	Link 1, Lane 0	Link 1, Lane 1	Link 1, Lane 2	Link 1, Lane 3	Link 1, Lane 4	Link 1, Li Lane 5 La	Link 1, Lir Lane 6 Lai	Link 1, Lane 7
1 x16, 1x6, 1x6, 1x6, 1x6, 1x6 0x0100 2 Hors 2 Upstream Societs 2 Links 2 x16 Linh, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,		x16 Option B	1 ×16, 1 ×8, 1 ×4, 1 ×2, 1 ×1 2 ×8, 2 ×4, 2 ×2, 2 ×1	000101	2 Host	2 Upstream Sockets	2 Links	0b101	2 x8	Link 0, Lane 0			Link 0, Link 0, Lane 3 Lane 4	0, Link 0, e 4 Lane 5	0, Link 0, 5 Lane 6	Link 0, Lane 7	Link 1, Lane 0	Link 1, Lane 1	Link 1, Lane 2	Link 1, Lane 3	Link 1, Lane 4	Link 1, Li Lane 5 La	Link 1, Lir Lane 6 Lai	Link 1, Lane 7
4 M, 42,2 4.1 00011 2 Hort 2 Upstream Societs 2 Links 0 big10 2 mm 0 Link 1 Link 0 Link 1 Link 0 Link 1 Link 0 Link 1 Link 1 Link 1 Link 0 Link 1 Link 1 <thlink 1<="" thr=""> Link 1<td></td><td>x16 Option C</td><td>1 x16, 1 x8, 1 x4 2 x8, 2 x4, 2 x2, 2 x1 4 x4, 4 x2, 4 x1</td><td>000100</td><td>2 Host</td><td>2 Upstream Sockets</td><td>2 Links</td><td>0b101</td><td>2 ×8</td><td>Link 0, Lane 0</td><td></td><td></td><td>Link 0, Link 0, Lane 3 Lane 4</td><td>0, Link 0, e 4 Lane 5</td><td>0, Link 0, 5 Lane 6</td><td>Link 0, Lane 7</td><td>Link 1, Lane 0</td><td>Link 1, Lane 1</td><td>Link 1, Lane 2</td><td>Link 1, Lane 3</td><td>Link 1, Lane 4</td><td>Link 1, Li Lane 5 La</td><td>Link 1, Lir Lane 6 Lai</td><td>Link 1, Lane 7</td></thlink>		x16 Option C	1 x16, 1 x8, 1 x4 2 x8, 2 x4, 2 x2, 2 x1 4 x4, 4 x2, 4 x1	000100	2 Host	2 Upstream Sockets	2 Links	0b101	2 ×8	Link 0, Lane 0			Link 0, Link 0, Lane 3 Lane 4	0, Link 0, e 4 Lane 5	0, Link 0, 5 Lane 6	Link 0, Lane 7	Link 1, Lane 0	Link 1, Lane 1	Link 1, Lane 2	Link 1, Lane 3	Link 1, Lane 4	Link 1, Li Lane 5 La	Link 1, Lir Lane 6 Lai	Link 1, Lane 7
RSVD RSVD RSVD De0010 2.Host 2.Upstream Societs 2.Units Db101 - RSVD RSVD RSVD De0000 2.Host 2.Upstream Societs 2.Units Db101 - RSVD RSVD De0000 2.Host 2.Upstream Societs 2.Units Db101 - RSVD RSVD De0000 2.Host 2.Upstream Societs 2.Units Db101 -	40	4 x4	4 x4, 4 x2, 4 x1	060011	2 Host	2 Upstream Sockets	2 Links	0b101	2 x4 (EP 0 and 2 only)	Link 0, Lane 0		-	Link 0, Lane 3				Link 1, Lane 0	Link 1, Lane 1	Link 1, Lane 2	Link 1, Lane 3				
RSVD RSVD Cb0001 2 Host 2 Upstream Sockets 2 Links 0b101 RSVD RSVD 0b0000 2 Host 2 Upstream Sockets 2 Links 0b101			RSVD	0b0010	2 Host	2 Upstream Sockets	2 Links	0b101																
RSVD RSVD 2 Host 2 Upstream Sockets 2 Links 0b101			RSVD	0b0001	2 Host	2 Upstream Sockets	2 Links	0b101																K
			RSVD	000000	2 Host	2 Upstream Sockets	2 Links	0b101																

Table 34: Bifurcation for Dual Host, Dual Sockets and Dual Upstream Links (BIF[2:0]#=0b101)

Rev 0.57

	our Upstream	Quad Host, Four Upstream Sockets, Four Upstream Links Supported Bifurcation Modes /	Add-in-Card		4 x4, 4 x2, 4 x1								\vdash	$\left \right $			╞	\mid	-				
Win Card Card Short Width Name	d Short ne		Encoding PRSNTB[3:0]#	Host	Upstream Devices	Upstream Links	BIF[2:0]#	Resulting Link	Lane 0	Lane 1	Lane 2	Lane 3 La	Lane 4 La	Lane 5 La	Lane 6 Lan	Lane 7 Lan	Lane 8 Lan	Lane 9 Lane 10	10 Lane 11	11 Lane 12	12 Lane 13	3 Lane 14	4 Lane 15
n/a Not	Not Present 0	Card Not Present	0b1111	4 Host	4 Upstream Sockets	4 Links	0b110																
1 x6		1 x8, 1 x4, 1 x2, 1 x1	0b1110	4 Host	4 Upstream Sockets	4 Links	0b110	1 x4 (Host 0 only)	Link 0, Lane 0	Link 0, Lane 1	Link 0, 1 Lane 2 L	Link 0, Lane 3											
	1 x4	1 x4, 1 x2, 1 x1	0b1110	4 Host	4 Upstream Sockets	4 Links	0b110	1 x4 (Host 0 only)	Link 0, Lane 0	Link 0, Lane 1	Link 0, 1 Lane 2 1	Link 0, Lane 3											
	1×2	1 x2, 1 x1	0b1110	4 Host	4 Upstream Sockets	4 Links	0b110	1 x2 (Host 0 only)	Link 0, Lane 0	Link 0, Lane 1													
	1x1	1 x1	0b1110	4 Host	4 Upstream Sockets	4 Links	0b110	1 x1 (Host 0 only)	Link 0, Lane 0														
1 x(8 Option B	1 x8 Option B 2 x4, 2 x2, 2 x1	0b1101	4 Host	4 Upstream Sockets	4 Links	0b110	2 x4	Link 0, Lane 0	Link 0, Lane 1	Link 0, 1 Lane 2 1		Link 1, Li Lane 0 La	Link 1, Lir Lane 1 Lar		Link 1, Ho Lane 3 Disal	Host Ho isabled Disat	Host Host Host Host Host Host Host Nost Disabled D	st Host led Disable	t Host led Disable	t Host ed Disable	Host Disable	Host Disable
2 ×6	8 Option B	2 x8, 2 x4, 2 x2, 2 x1 2 x8 Option B 4 x4, 4 x2, 4 x1	0b1101	4 Host	4 Upstream Sockets	4 Links	0b110	4 x4	Link 0, Lane 0	Link 0, Lane 1	Link 0, 1 Lane 2 1	Link 0, Lir Lane 3 Lai	Link 1, Li Lane 0 La	Link 1, Lir Lane 1 Lar	Link 1, Lin Lane 2 Lan	Link 1, Linl Lane 3 Lan	Link 2, Link Lane 0 Lan	Link 2, Link 2, Lane 1 Lane 2	2, Link 2, e 2 Lane 3	2, Link 3,	3, Link 3, 0 Lane 1	, Link 3, Lane 2	Link 3, Lane 3
1 x6	8 Option D	1 x8, 1 x4 2 x4, 1 x8 Option D 4 x2 (First 8 lanes), 4 x1	0b1100	4 Host	4 Upstream Sockets	4 Links	0b110	2 x4	Link 0, Lane 0	Link 0, Lane 1	Link 0, 1 Lane 2 1	Link 0, Lir Lane 3 Lai	Lane 0 La	Link 1, Lir Lane 1 Lar	Link 1, Lin Lane 2 Lan	Link 1, Lane 3							
		1 x16, 1 x8, 1 x4	0b1100	4 Host	4 Upstream Sockets	4 Links		4 x4	Link 0,	Link 0,													
1×1	16 Option D	2 x8, 2 x4, 1 x16 Option D 4 x4, 4 x2 (First 8 lanes), 4 x1					OFTOD		Lane U	T aue 1	raue 7	rane 3 Lai	rane u La	raue 1 rau	rane z Lan	rane s lan	rane v Lan	rane 1 Lane 2	s ane 3	rane u	n raue 1	r rane z	c ane 3
RSVD RSVD		RSVD	0b1011	4 Host	4 Upstream Sockets	4 Links	0b110																
	2 x4	2 ×4, 2 ×2, 2 ×1 1 ×4, 1 ×2, 1 ×1	0b1010	4 Host	4 Upstream Sockets	4 Links	0b110	2 x4	Link 0, Lane 0	Link 0, Lane 1	Link 0, 1 Lane 2 1	Link 0, Lir Lane 3 Lai	Link 1, Li Lane 0 La	Link 1, Lir Lane 1 Lar	Link 1, Linl Lane 2 Lan	Link 1, Lane 3							
	4 X2	4 x2 (First 8 lanes), 4 x1 2 x2, 2 x1 1 x2, 1 x1	0b1001	4 Host	4 Upstream Sockets	4 Links	0b110	2×2	Link 0, Lane 0	Link 0, Lane 1		3	Link 1, Li Lane 0 La	Link 1, Lane 1									
RSVD RSVD		RSVD for future x8 encoding	0b1000	4 Host	4 Upstream Sockets	4 Links	0b110																
1 x1	1 x16 Option A		060111	4 Host	4 Upstream Sockets	4 Links	0b110	1 x4 (Host 0 only)	Link 0, Lane 0			Link 0, Lane 3											
2 x	2 x8 Option A	2 x8, 2 x4, 2 x2, 2 x1	0b0110	4 Host	4 Upstream Sockets	4 Links	0b110	2 x4 (Host 0 & 2 only)	Link 0, Lane 0	Link 0, Lane 1	Link 0, 1 Lane 2 1	Link 0, Lane 3				Lin	Link 2, Link 2, Lane 0 Lane 1	Link 2, Link 2, Lane 1 Lane 2	2, Link 2, e 2 Lane 3	2,			
1×1	16 Option B	1 x16, 1 x8, 1 x4, 1 x2, 1 x1 1 x16 Option B 2 x8, 2 x4, 2 x2, 2 x1	060101	4 Host	4 Upstream Sockets	4 Links	0b110	2 x4 (Host 0 & 2 only)	Link 0, Lane 0	Link 0, Lane 1	Link 0, 1 Lane 2 1	Link 0, Lane 3				Lin Lan	Link 2, Link 2, Lane 0 Lane 1	k 2, Link 2, e 1 Lane 2	2, Link 2, 2 Lane 3	2,			
1×1	16 Option C	1 x16, 1 x8, 1 x4 2 x8, 2 x4, 2 x2, 2 x1 1 x16 Option C 4 x4, 4 x2, 4 x1	0b0 100	4 Host	4 Upstream Sockets	4 Links	0b110	4 x4	Link 0, Lane 0	Link 0, Lane 1	Link 0, 1 Lane 2 L	Link 0, Lir Lane 3 Lai	Link 1, Li Lane 0 La	Link 1, Lir Lane 1 Lar	Link 1, Linl Lane 2 Lan	Link 1, Linl Lane 3 Lan	Link 2, Link Lane 0 Lan	Link 2, Link 2, Lane 1 Lane 2	2, Link 2, 22 Lane 3	2, Link 3, 3 Lane 0	3, Link 3, 0 Lane 1	, Link 3, Lane 2	Link 3, Lane 3
	4 ×4	4 x4, 4 x2, 4 x1	060011	4 Host	4 Upstream Sockets	4 Links	0b110	4 x4	Link 0, Lane 0	Link 0, Lane 1	Link 0, 1 Lane 2 1	Link 0, Lir Lane 3 Lai	Link 1, Li Lane 0 La	Link 1, Lir Lane 1 Lar	Link 1, Linl Lane 2 Lan	Link 1, Linl Lane 3 Lan	Link 2, Link 2, Lane 0 Lane 1	Link 2, Link 2, Lane 1 Lane 2	2, Link 2, e 2 Lane 3	2, Link 3, 3 Lane 0	3, Link 3, 0 Lane 1	, Link 3, Lane 2	Link 3, Lane 3
			0b0010	4 Host	4 Upstream Sockets	4 Links	0b110																
RSVD RSVD		RSVD	0b0001	4 Host	4 Upstream Sockets	4 Links	0b110																
			000000	4 Host	4 Upstream Sockets	4 Links	0b110																



	11 Inne 15							Host Host Host Host Host Host Host Host	Host Host Host Host Host Host Host Host																			
+	12 mm							st Host led Disable	st Host led Disable													_		_				
-	11 12 12 12	-12						t Host led Disable	t Host led Disable																			
	1	- 100	+					Host ed Disable	ed Disable														-			_	_	
								Host ed Disable	Host ed Disable														-			_		
	1000							Host ed Disable	Host ed Disable																	_		
								Host Bisable	Host ed Disable																	_		
								Host Bisable	Host ed Disable																			
								Host Bisable	Host Bisable		0 Lane 1		0 Lane 1) Lane 1											
											Lane 0		Lane 0				Lane 0									-		
								, Link 2, 1 Lane 1	, Link 2, 1 Lane 1	<u> </u>) Lane 1) Lane 1				lane 1						Link 2.		+	1 Lane 1		
								Link 2, d Lane 0	Link 2, d Lane 0		Lane 0		Lane 0			_	Lane 0						Link 2.	Lane 0	Link 2,	Lane 0		
								Host Host Disabled Disabled	Host Host Disabled Disabled	-	Lane 1	_	Lane 1		Link 1, Lane 1	_	Lane 1											
											Lane 0		Lane 0		Link 1, Lane 0		Lane 0											
			ł	Link 0, Lane 1	Link 0, Lane 1	-		Link 0, Lane 1	Link 0, Lane 1	<u> </u>	Lane 1	<u> </u>	Lane 1		Link 0, Lane 1	_	Lane 1		Link 0, Lane 1	-	-	Link 0,	+		-	Lane 1		
	0000		-	Link 0, Lane 0	Link 0, Lane 0	Link 0, Lane 0	Link 0, Lane 0	Link 0, Lane 0	Link 0, Lane 0	Link 0,	Lane 0	Link 0,	Lane 0		Link 0, Lane 0	Link 0,	Lane 0		Link 0, Lane 0	Link 0,	Lane 0	Link 0,	Link 0.	Lane 0	Link 0,	Lane 0		
	Docutation 1 into	-		1 x2 (Host 0 only)	1 x2 (Host 0 only)	1 x2 (Host 0 only)	1x1 (Host 0 only)	2 x2 (Host 0 & 2 only)	2 x2 (Host 0 & 2 only)	4 x2		4 x2			2 x2 (Host 0 & 1 only)	4 x2			1 x2 (Host 0 onlv)	1×2	(Host 0 only)	1 x2 react 0 colut	2 x2	(Host 0 & 2 only)	2 x2	(Host 0 & 2 only)		
	BIF[2:0]#	0h111		0b111	0b111	0b111	0b111	0b111	0b111		0b111		0b111	0b111	0b111		0b111	0b111	0b111	06111	TITOO	0b111		0b111	0h111	1111	0b111	
	Instanta Links	4 v2 Links		4 x2 Links	4 x2 Links	4 x2 Links	4 x2 Links	4 x2 Links	4 x2 Links	4 x2 Links		4 x2 Links		4 x2 Links	4 x2 Links	4 x2 Links		4 x2 Links	4 x2 Links	4 x2 Links		4 x2 Links	4 x2 Links		4 x2 Links		4 x2 Links	
4 x2, 4 x1	I Instrument Davidour	4 Instream Sockets		4 Upstream Sockets	4 Upstream Sockets	4 Upstream Sockets	4 Upstream Sockets	4 Upstream Sockets	4 Upstream Sockets	4 Upstream Sockets		4 Upstream Sockets		4 Upstream Sockets	4 Upstream Sockets	4 Upstream Sockets		4 Upstream Sockets	4 Upstream Sockets	4 Upstream Sockets		4 Upstream Sockets	4 Upstream Sockets		4 Upstream Sockets		4 Upstream Sockets	
	t oct	4 Host		4 Host	4 Host	4 Host	4 Host	4 Host	4 Host	4 Host		4 Host		4 Host	4 Host	4 Host		4 Host	4 Host	4 Host		4 Host	4 Host		4 Host		4 Host	
s, First 8 PCIe lanes	Add-in-Card Encoding ppcNTEr2-01#	PRSIVID[5.U]#		001110	0b1110	0b1110	0b1110	0b1101	0b1101	0b1100		0b1100		0b1011	0b1010	0b1001		001000	060111	0b0110		000101	000100		0b0011		000010	
퐌	Supported Bifurcation Modes	Card Not Present		1 X8, 1 X4, 1 X2, 1 X1	1 x4, 1 x2, 1 x1	1 x2, 1 x1	1×1	1 x8, 1 x4, 1 x2, 1 x1 1 x8 Option B 2 x4, 2 x2, 2 x1	2 x8, 2 x4, 2 x2, 2 x1 2 x8 Option B 4 x4, 4 x2, 4 x1	1 x4	2 x4, 1 x8 Option D 4 x2 (First 8 lanes), 4 x1	1 x16, 1 x8, 1 x4	2 x8, 2 x4, 1 x16 Option D 4 x4, 4 x2 (First 8 lanes), 4 x1	RSVD	2 x4, 2 x2, 2 x1 1 x4, 1 x2, 1 x1	: 8 Ianes), 4 x1	2 x2, 2 x1 1 x2, 1 x1	RSVD for future x8 encoding	1 ×16, 1 ×8, 1 ×4, 1 ×2, 1 ×1	2 x8, 2 x4, 2 x2, 2 x1		1 x16, 1 x8, 1 x4, 1 x2, 1 x1 1 v16 Ontion B 2 vB 2 v4 2 v2 2 v4	1 x16. 1 x8. 1 x4	2 x8, 2 x4, 2 x2, 2 x1 1 x16 Option C 4 x4 4 x2 4 x1			RSVD	
ost, Four Upstre.	Min Card Short			1 x8 Option A	1 x4	10	1x1	1 x8 Option B	2 x8 Option B		1 x8 Option D		1 x16 Option D	RSVD	2 x4		4 x2	RSVD	1 x16 Option A		2 x8 Option A	1 v16 Ontion B		1 x16 Option C		4 x4	RSVD	
Quad H	Min Card	mpin		2C	20	20	x I	2C	4C		2C		40	RSVD	2C		20	RSVD	4C		4C	ų	ł	40		ç	RSVD	

Table 36: Bifurcation for Quad Host, Quad Sockets and Quad Upstream Links – First 8 lanes

3.9 Power Capacity and Power Delivery

There are four permissible power states: NIC Power Off, ID Mode, Aux Power Mode (S5), and Main Power Mode (S0). The transition of these states is shown in Figure 74. The max available power envelopes for each of these states are defined in Table 37.

Table 37: Power States

Power State	PWRDIS	PERSTn	FRU	Scan Chain	RBT Link	3.3V	12V
NIC Power Off	Low	Low					
ID Mode	High	Low	Х	Х		Х	Х
Aux Power Mode (S5)	Low	Low	Х	Х	Х	Х	Х
Main Power Mode (S0)	Low	High	Х	Х	Х	Х	Х

3.9.1 NIC Power Off

In NIC power off mode, all power delivery has been turned off or disconnected from the baseboard. Transition to this state can be from any other state.

3.9.2 ID Mode

In the ID Mode, only 3.3V Aux is available for powering up management only functions. FRU accesses are only allowed in this mode. An add-in card shall transition to this mode when PWRDIS=1 and PERST#=0.

3.9.3 Aux Power Mode (S5)

In Aux Power Mode provides both 3.3V Aux as well as 12V Aux is available. 12V Aux may be used to deliver power to the add-in card, but only up to the Aux budget of 35W. An add-in card shall transition to this mode when PWRDIS=0 and PERST#=0.

3.9.4 Main Power Mode (S0)

In Main Power Mode provides both 3.3V and 12V (Main) across the OCP connector. The add-in card operates in full capacity. Up to 80W may be delivered on 12V, and 3.63W on the 3.3V pins. An add-in card shall transition to this mode when PWRDIS=0 and PERST#=1.

3.10 Power Supply Rail Requirements and Slot Power Envelopes

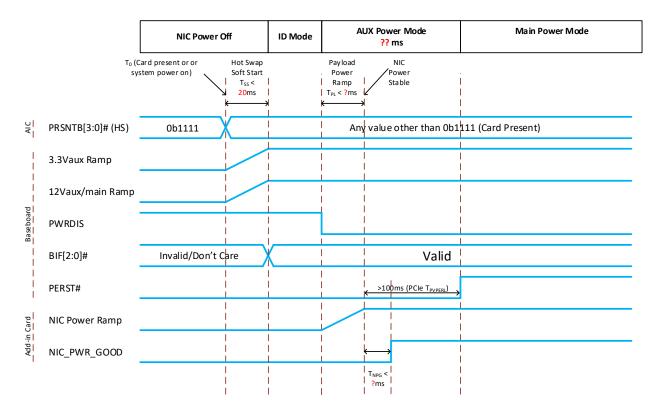
The baseboard provides 3.3Vaux and 12Vaux/main to both the Primary and Secondary connectors. The rail requirements are leveraged from the PCIe CEM 4.0 specification. For OCP NIC 3.0 cards, the requirements are as follows:

Power Rail	15W Slot	25W Slot	35W Slot	80W Slot	150W
	Small Card	Small Card	Small Card	Small Card	Large Card
	Hot Aisle	Hot Aisle	Hot Aisle	Cold Aisle	Cold Aisle
3.3V					
Voltage Tolerance	±9% (max)	±9% (max)	±9% (max)	±9% (max)	±9% (max)
Supply Current					
ID Mode	375mA (max)	375mA (max)	375mA (max)	375mA (max)	375mA (max)
Aux Mode	1.1A (max)	1.1A (max)	1.1A (max)	1.1A (max)	2.2A (max)
Main Mode	1.1A (max)	1.1A (max)	1.1A (max)	1.1A (max)	2.2A (max)
Capacitive Load	150µF (max)	150µF (max)	150µF (max)	150µF (max)	300µF (max)
12V					
Voltage Tolerance	±8% (max)	±8% (max)	±8% (max)	±8% (max)	±8% (max)
Supply Current					
ID Mode	100mA (max)	100mA (max)	100mA (max)	100mA (max)	100mA (max)
Aux Mode	0.7A (max)	1.1A (max)	1.5A (max)	3.3A (max)	6.3A (max)
Main Mode	1.25A (max)	2.1A (max)	2.9A (max)	6.6A (max)	12.5A (max)
Capacitive Load	500μF (max)	500µF (max)	1000µF (max)	1000µF (max)	2000µF (max)

Table 38: Baseboard Power Supply Rail Requirements – Slot Power Envelopes

Note: While cards may draw up to the published power ratings, the baseboard vendor shall evaluate its cooling capacity for each slot power envelope.

3.11 Hot Swap Considerations for 12V and 3.3V Rails


For baseboards that support system hot (powered on) add-in card insertions and extractions, the system implementer shall consider the use of hotswap controllers on both the 12Vmain/aux and 3.3Vaux pins to prevent damage to the baseboard or the add-in card. Hotswap controllers help with in-rush current limiting while also providing overcurrent protection, undervoltage and overvoltage protection capabilities.

The hotswap controller may gate the 12Vmain/aux and 3.3Vmain/aux based on the PRSNTB[3:0]# value. Per Section 3.6.3, a card is present in the system when the encoded value is not 0b1111. The PRSNTB[3:0]# may be AND'ed together and connected to the hotswap controller to accomplish this result. Per the OCP NIC 3.0 mechanical definition (3.1.1), the present pins are short pins and engage only when the card is positively seated.

Baseboards that do not support hot insertion, or hot extractions may opt to not implement these features.

3.12 Power Sequence Timing Requirements

The following figure shows the power sequence of PRSNTB[3:0]#, 3.3Vaux, 12Vaux/12Vmain relative to PWRDIS, BIF[2:0]#, PERSTn*, the add-in card power ramp and NIC_PWR_GOOD.

Figure 75: Power Sequencing

Table 39:	Power	Sequencing	Parameters
10010 001		bequeitonig	i arannetero

Parameter	Value	Units	Description
T _{ss}	20	ms	Max time between system 3.3Vaux and 12Vaux/main ramp to power
			stable.
T _{PL}	<mark><?</mark></mark>	ms	Max time between the NIC payload power ramp to NIC_PWR_GOOD
			assertion
T _{NPG}	<mark><?</mark></mark>	ms	Max time between NIC power stable and NIC_PWR_GOOD assertion.
T _{PVPERL}	>100	ms	Max time between PWRDIS deassertion and PERST# deassertion.
			This value is from the PCIe CEM Specification, Rev 4.0.

4 Management

OCP NIC 3.0 card management is an important aspect to overall system management. This section specifies a common set of management requirements for OCP NIC 3.0 implementations. There are three types of implementations (RBT+MCTP Type, RBT Type, and MCTP Type) depending on the physical sideband management interfaces, transports, and traffic supported over different transports. An OCP NIC 3.0 implementation shall support at least one type of implementation for card management. A No Management implementation should not be used for an Ethernet add-in card.

4.1 Sideband Management Interface and Transport

OCP NIC 3.0 sideband management interfaces are used by a Management Controller (MC) or Baseboard Management Controller (BMC) to communicate with the NIC. Table 40 summarizes the sideband management interface and transport requirements.

Table 40: Sideband Management Interface and Transport Requirements

Requirement	RBT+MCTP	RBT Type	МСТР
	Туре		Туре
NC-SI 1.1 compliant RMII Based Transport (RBT) including	Required	Required	N/A
physical interface defined in Section 10 of DSP0222			
I ² C compliant physical interface for FRU EEPROM	Required	Required	Required
SMBus 2.0 compliant physical interface	Required	N/A	Required
Management Component Transport Protocol (MCTP) Base	Required	N/A	Required
1.3 (DSP0236 1.3 compliant) over MCTP/SMBus Binding			
(DSP0237 1.1 compliant)			
PCIe VDM compliant physical interface	Optional	Optional	Optional
Management Component Transport Protocol (MCTP) Base	Optional	Optional	Optional
1.3 (DSP0236 1.3 compliant) over MCTP/PCIe VDM Binding			
(DSP0238 1.0 compliant)			

4.2 NC-SI Traffic

DSP0222 defines two types of NC-SI traffic: Pass-Through and Control. Table 41 summarizes the NC-SI traffic requirements.

Requirement	RBT+MCTP	RBT Type	МСТР
	Туре		Туре
NC-SI Control over RBT (DSP0222 1.1 or later compliant)	Required	Required	N/A
NC-SI Control over MCTP (DSP0261 1.2 compliant)	Required	N/A	Required
NC-SI Pass-Through over RBT (DSP0222 1.1 compliant)	Required	Required	N/A
NC-SI Pass-Through over MCTP (DSP0261 1.2 compliant)	Optional	N/A	Optional

Table 41: NC-SI Traffic Requirements

Note: A Management Controller (MC) is allowed to use the RBT interface on an RBT+MCTP Type or RBT Type card for NC-SI Control traffic without enabling NC-SI pass-through.

4.3 Management Controller (MC) MAC Address Provisioning

An OCP NIC 3.0 compliant card that supports NC-SI pass-through shall provision one or more MAC addresses for Out-Of-Band (OOB) management traffic. The number of MC MAC addresses provisioned is

implementation dependent. These MAC addresses are not exposed to the host(s) as available MAC addresses. The MC is not required to use these provisioned MAC addresses. Table 42 summarizes the MC MAC address provisioning requirements.

Requirement	RBT+MCTP Type	RBT Type	MCTP Type
One or more MAC Addresses shall be provisioned for the MC.	Required	Required	Optional
The OCP platform may use the NIC vendor allocated MAC addresses for the BMC. Each management channel requires a dedicated MAC address. Some platforms may employ multiple BMCs (or virtual BMCs) each with a dedicated MAC address. The NIC may also support multiple partitions on a physical port.			
The recommended MAC address allocation scheme is stated below.			
 Assumptions: 1. The number of BMCs or virtual BMCs is the same as the number of hosts (1:1 relationship between each host and the BMC). 2. The maximum number of partitions on each port is the same. 			
Variables:			
 num_ports - Number of Ports on the OCP NIC max_parts - Maximum number of partitions on a port num_hosts - Number of hosts supported by the NIC 			
 NIC first_addr - The MAC address of the first port on the first host for the first partition on that port host_addr[i] - base MAC address of ith host (0 ≤ i ≤ num_hosts-1) bmc_addr[i] - base MAC address of ith BMC (0 ≤ i ≤ num_hosts-1) 			
Formulae:			
 host_addr[i] = first_addr + i*num_ports*(max_parts+1) 			

Table 42: MC MAC Address Provisioning Requirements

2. 3. 4.	The MAC address used by i th host on port j for the partition k, where $0 \le i \le num_hosts-1, 0 \le j$ $\le num_ports-1$, and $0 \le k \le max_parts-1$ is host_addr[i] + j*max_parts + k bmc_addr[i] = host_addr[i] + num_ports*max_parts The MAC address used by i th BMC on port j, where $0 \le i \le num_hosts-1$ and $0 \le j \le num_ports$ -1 is bmc_addr[i] + j			
 provisione NC-SI Note: 1.2 of 	t least one of the following mechanism for ed MC MAC Address retrieval: Control/RBT (DSP0222 1.1 or later compliant) This capability is planned to be included in revision the NC-SI specification. Control/MCTP (DSP0261 1.2 compliant)	Required	Required	Optional

4.4 Temperature Reporting

An OCP NIC 3.0 implementation can have several silicon components including one or more ASICs implementing NIC functions and one or more transceiver modules providing physical network media connectivity. For the system management, it is important that temperatures of these components can be retrieved over sideband interfaces.

The temperature reporting interface shall be accessible in Aux Power Mode (S5), and Main Power Mode (S0). Table 43 summarizes temperature reporting requirements. These requirements improve the system thermal management and allow the baseboard management device to access key component temperatures on an OCP NIC 3.0 card.

Requirement	RBT+MCTP	RBT Type	МСТР
	Туре		Туре
ASIC Temperature Reporting	Required	Required	Required
	for ASIC	for ASIC	for ASIC
	with TDP >	with TDP >	with TDP >
	10W	10W	10W
Transceiver Modules Temperature Reporting	Required	Required	Required
 Support the following mechanism for temperature reporting: PLDM for Platform Monitoring and Control (DSP0248 1.1 compliant) 	Required	Required	Required

Table 43: Temperature Reporting Requirements

When the temperature sensor reporting function is implemented, the temperature reporting accuracy on the card shall be within ±3°C	Required	Required	Required
Support for NIC self-shutdown.	Required	Required	Required
The purpose of this feature is to "self-protect" the NIC from permanent damage due to high operating temperature experienced by the NIC.			
The NIC shall monitor its temperature and shut-down itself as soon as the threshold value is reached. The value of the self-shutdown threshold is implementation specific. It is recommended that the self-shutdown threshold value is higher than the maximum junction temperature of the ASIC implementing the NIC function.			
The NIC does not need to know the reason for the self- shutdown threshold crossing (e.g. fan failure). After entering the self-shutdown state, the NIC is not required to be operational. This might cause the system with the OCP NIC to become unreachable via OCP NIC. A power cycle of the system may bring the NIC back to an operational state.			
Report self-shutdown temperature threshold using PLDM for platform monitoring and control (DSP0248 1.1 compliant)	Required	Required	Required

4.5 Power Consumption Reporting

An OCP NIC 3.0 implementation may be able to report the power consumed by ASICs implementing NIC functions. It is important for the system management that the information about the power consumption can be retrieved over sideband interfaces. Table 44 summarizes power consumption reporting requirements.

Requirement	RBT+MCTP	RBT Type	МСТР
	Туре		Туре
ASIC Power Consumption Reporting	Optional	Optional	Optional
Support the following mechanism for power consumption reporting:	Optional	Optional	Optional
 PLDM for Platform Monitoring and Control (DSP0248 1.1 compliant) 			

Table 44: Power Consumption Reporting Requirements

4.6 Pluggable Module Status Reporting

Pluggable modules like an optical module or a direct attached copper cable is used to connect an OCP NIC to a physical medium. It is important to know the presence of pluggable modules and information about insertion/deletion of pluggable modules. Table 45 summarizes pluggable module status reporting requirements.

Requirement	RBT+MCTP	RBT Type	МСТР
	Туре		Туре
Pluggable Module Presence Reporting	Optional	Optional	Optional
 Support the following mechanism for reporting the pluggable module presence status: PLDM for Platform Monitoring and Control (DSP0248 1.1 compliant) 	Optional	Optional	Optional
Pluggable Module Insertions/Deletions Reporting	Optional	Optional	Optional
 Support the following mechanism for reporting the pluggable module insertions/deletions: PLDM for Platform Monitoring and Control (DSP0248 1.1 compliant) 	Optional	Optional	Optional

Table 45: Pluggable Module Status Reporting Requirements

4.7 Firmware Inventory and Update

An OCP implementation can have different types of firmware components for data path, control path, and management path operations. It is desirable that OCP NIC 3.0 implementations support an OS-independent Out-Of-Band mechanism for the firmware update. It is desirable that the firmware update does not require a system reboot for the new firmware image to become active. Table 46 summarizes the firmware inventory and update requirements.

Table 46: Firmware Update Requirements

Requirement	RBT+MCTP	RBT Type	МСТР
	Туре		Туре
Support UEFI secure boot for UEFI drivers	Required	Required	Required
Support UEFI secure firmware update	Required	Required	Required
Support PLDM for Firmware Update (DSP0267 1.0 compliant)	Required	Recommended	Required

4.7.1 Secure Firmware

The OCP NIC 3.0 add-in card should support a secure firmware feature. When the secure firmware feature is enabled, the OCP NIC 3.0 add-in card shall verify firmware components prior to the execution, execute only signed and verified firmware components and only allow authenticated firmware updates. Where applicable, an OCP NIC 3.0 implementation shall use the guidelines provided in NIST SP 800-147 BIOS Protection Guidelines for the secure firmware.

4.7.2 Firmware Inventory

The OCP NIC 3.0 add-in card shall allow queries to obtain the firmware component versions, device model, and device ID via in-band and out-of-band interfaces without impacting NIC function and performance of said paths.

4.7.3 Firmware Inventory and Update in Multi-Host Environments

A multi-host capable OCP NIC 3.0 add-in card shall gracefully handle concurrent in-band queries from multiple hosts and out-of-band access from the BMC for firmware component versions, device model, and device ID information.

A multi-host capable OCP NIC 3.0 add-in card shall only permit one entity to perform write accesses to NIC firmware at a time, without creating contention.

A multi-host capable OCP NIC 3.0 add-in card shall gracefully handle exceptions when more than one entity attempts to perform concurrent NIC firmware writes.

4.8 NC-SI Package Addressing and Hardware Arbitration Requirements

NC-SI over RBT is implemented via RMII pins between the MC and the OCP NIC 3.0 card. Protocol and implementation details of NC-SI over RBT can be found in the DMTF DSP0222 standard.

4.8.1 NC-SI over RBT Package Addressing

NC-SI over RBT capable OCP NIC 3.0 cards shall use a unique Package ID per ASIC when multiple ASICs share the single NC-SI physical interconnect to ensure there are no addressing conflicts.

Baseboards use the Slot_ID pin on the Primary Connector for this identification. The Slot_ID value may be directly connected to GND (Slot ID = 0), or pulled up to 3.3Vaux (Slot ID = 1).

Package ID[2:0] is a 3-bit field and is encoded in the NC-SI Channel ID as bits [7:5]. Package ID[2] defaults to 0b0 in the NC-SI specification, but is optionally configurable if the target silicon supports configuring this bit. Package ID[1] is directly connected to the SLOT_ID pin. Package ID[0] is set to 0b0 for Network Controller ASIC #0. For an OCP NIC 3.0 add-in card with two discrete silicon instances, Package ID[0] shall be set to 0b1 for Network Controller ASIC #1. Refer to the specific endpoint device datasheet for details on the Package ID configuration options.

Up to four silicon devices are supported on the bus if only Package ID[1:0] is configurable (e.g. Package ID[2] is statically set to 0b0). Up to eight silicon devices are supported on the NC-SI bus if Package ID[2:0] are all configurable.

Refer to the DMTF DSP0222 standard for more information on package addressing, Slot ID and Package ID.

4.8.2 Arbitration Ring Connections

For baseboards that implement two or more Primary Connectors, the NC-SI over RBT arbitration ring may be connected to each other. The arbitration ring shall support operation with a one card, or both cards installed. Figure 64 shows an example connection with dual Primary Connectors.

4.9 SMBus 2.0 Addressing Requirements

The SMBus provides a low speed management bus for the OCP NIC 3.0 card. The FRU EEPROM and onboard temperature sensors are connected on this bus. Additionally, network controllers may utilize the SMBus interface for MCTP communications. Proper power domain isolation shall be implemented on the NIC.

4.9.1 SMBus Address Map

OCP NIC 3.0 cards shall support SMBus ARP (be ARP-capable) to allow the cards to be dynamically assigned addresses for MCTP communications to avoid address conflicts and eliminate the need for manual configuration of addresses. Refer to Section 6.11 of DSP0237 1.1 for details on SMBus address assignment.

Note: A system implementation may choose to only use fixed addresses for an OCP NIC 3.0 card on the system. The assignment of these fixed addresses is system dependent and outside the scope of this specification.

All predefined SMBus addresses for OCP NIC 3.0 are shown in Table 47. Baseboard and add-in card designers must ensure additional devices do not conflict. The addresses shown are in 8-bit format and represent the read/write address pair.

Address (8-bit)	Device	Notes
0xA0 / 0xA1 – SLOT0	EEPROM	On-board FRU EEPROM.
0xA2 / 0xA3 – SLOT1		
		Mandatory. Powered from Aux power domain.
		The EEPROM ADDR0 pin shall be connected to the SLOT_ID
		pin on the add-in card gold finger to allow two NIC add-in
		cards to exist on the same I ² C bus.

Table 47: SMBus Address Map

4.10 FRU EEPROM

4.10.1 FRU EEPROM Address, Size and Availability

The FRU EEPROM provided for the baseboard to determine the card type and is directly connected to the SMBus on the card edge. Only one EEPROM is required for a single physical add-in card regardless of the PCIe width or number of physical card edge connectors it occupies. The FRU EEPROM shall be connected to the Primary connector SMBus.

The EEPROM is addressable at 0xA2/0xA3 for the write/read pair in 8-bit format. The size of EEPROM shall be at least 4Kbits for the base EEPROM map. Add-in card suppliers may use a larger size EEPROM if needed to store vendor specific information.

The FRU EEPROM is readable in all three power states (ID mode, AUX(S5) mode, and MAIN(S0) mode.

4.10.2 FRU EEPROM Content Requirements

The FRU EEPROM shall follow the data format specified in the IPMI Platform Management FRU Information Storage Definition v1.2. Use OEM record 0xC0, offset 0x01 through 0x05 to store specific records for the OCP NIC.

Table 48: FRU EEPROM Record – OEM Record 0xC0, Offset 0x00

Offset 0	Description		
	Manufacturer ID, LS Byte first (3 bytes total)		

Offset 1	Primary Connector PRSNTB [3:0]#
0b1110 (0x0E)	Follows Pinout; to be filled after the pinout table is fixed
0b1101 (0x0D)	
0b1100 (0x0C)	
0b1010 (0x0A)	
0b0111 (0x07)	
0b0110 (0x06)	
0b0101 (0x05)	
0b0100 (0x04)	
0b0011 (0x03)	
Ob1011 (0x0B)	Not a valid reading – Wrong EEPROM programming
Ob1111 (0x0F)	Not a valid reading – Wrong EEPROM programming
All others	RFU
No FRU device detected	No NIC connected / bad connection

Table 49: FRU EEPROM Record – OEM Record 0xC0, Offset 0x01

Table 50: FRU EEPROM Record – OEM Record 0xC0, Offset 0x02

Offset 2	Secondary Connector PRSNTB [3:0]#
0b1110 (0x0E)	Follows Pinout; to be filled after the pinout table is fixed
0b1101 (0x0D)	
0b1100 (0x0C)	
0b1010 (0x0A)	
0b0111 (0x07)	
0b0110 (0x06)	
0b0101 (0x05)	
0b0100 (0x04)	
0b0011 (0x03)	
0b1011 (0x0B)	Not a valid reading – Wrong EEPROM programming
Ob1111 (0x0F)	Not a valid reading – Wrong EEPROM programming
All others	RFU
No FRU device detected	No NIC connected / bad connection

Table 51: FRU EEPROM Record – OEM Record 0xC0, Offset 0x03

Offset 3	Card max power in Aux(S5)
0x01 - 0xFE	Hex format in Watts when NIC is in AUX(S5) mode; LSB = 1x Watt; roundup to the nearest Watt for fractional values.
0xFF	Invalid entry
0x00	Invalid entry

Table 52: FRU EEPROM Record – OEM Record 0xC0, Offset 0x04

Offset 4	Card max power in Main(S0)
0x01 - 0xFE	Hex format in Watts when NIC is in Main (S0) mode; LSB = 1x Watt; roundup to the nearest Watt for fractional values.
0xFF	Invalid entry
0x00	Invalid entry

5 Data Network Requirements

5.1 Network Boot

OCP NIC 3.0 shall support network booting in uEFI system environment with both IPv4 and IPv6 network booting.

For UEFI booting, below features are required (tentative list; collecting feedback)

- EFI_DRIVER_BINDING_PROTOCOL (for starting and stopping the driver)
- EFI_DEVICE_PATH_PROTOCOL (provides location of the device)
- EFI_MANAGED_NETWORK_SERVICE_BINDING_PROTOCOL (asynchronous network packet I/O services)
- EFI_DRIVER_DIAGNOSTICS2_PROTOCOL & EFI_DRIVER_DIAGNOSTICS_PROTOCOL (driver will allow the UEFI shell command *drvdiag* to perform a cursory check of the connections managed by the driver)
- Human Interface Infrastructure (HII) protocols
- EFI_DRIVER_HEALTH_PROTOCOL
- EFI_FIRMWARE_UPDATE_PROTOCOL

6 Routing Guidelines and Signal Integrity Considerations

6.1 NC-SI Over RBT

For the purposes of this specification, the min and max electrical trace length of the NC-SI signals shall be between 2 inches and 4 inches. The traces shall be implemented as 50 Ohm impedance controlled nets.

6.2 PCle

This section is a placeholder for the PCIe routing guidelines and SI considerations.

Add-in card suppliers shall follow the PCIe routing specifications. At this time, the OCP NIC subgroup is working to identify and agree to the channel budget for an add-in card and leave sufficient margin for the baseboard. Refer to the PCIe CEM and PCIe Base specifications for end-to-end channel signal integrity considerations.

7 Thermal and Environmental

7.1 Environmental Requirements

Specifics are not included to permit adoption of OCP 3.0 NIC in systems with varying thermal requirements and boundary conditions. The system adopting OCP NIC should define air flow direction, local approach air temperature and speed to the NIC, operational altitude and relative humidity.

For example, a system configured with I/O facing the cold aisle, can specify approach air temperature and speed of 35°C and 200 LFM respectively, with airflow impinging on the I/O modules first and an operational altitude of 6000 feet.

7.1.1 Thermal Simulation Boundary Example

Placeholder for the link to upcoming test fixture documentation (under development).

7.2 Shock & Vibration

This specification does not cover the shock and vibration testing requirements for an OCP NIC 3.0 add in card or its associated baseboard systems. OCP NIC 3.0 components are deployed in various environments. It is up to each add-in card and baseboard vendor to decide how the shock and vibration tests shall be done.

7.3 Regulatory

An OCP NIC 3.0 add-in card shall meet the following compliance requirements:

- **RoHS 2 Directive (2011/65/EU)** aims to reduce the environmental impact of electronic and electrical equipment (EEE) by restricting the use of certain hazardous materials. The substances banned under RoHS are lead, mercury, cadmium, hexavalent chromium, polybrominated biphenyls, polybrominated diphenyl ether, and four phthalates.
- **REACH Regulation (EC) No 1907/2006** addresses the production and use of chemical substances and their potential impact on human health and the environment.
- Waste Electrical and Electronic Equipment ("WEEE") Directive (2012/19/EU) mandates the treatment, recovery and recycling of EEE.
- **The Persistent Organic Pollutants Regulation (EC) No. 850/2004** bans production, placing on the market and use of certain persistent organic pollutants.
- The California Safe Drinking Water and Toxic Enforcement Act of 1986 ("Prop 65") sets forth a list of regulated chemicals that require warnings in the State of California.
- The Packaging and Packaging Waste Directive 94/62/EC limits certain hazardous substances in the packaging materials
- **Batteries Directive 2006/66/EC** regulates the manufacture and disposal of all batteries and accumulators, including those included in appliances.
- CE
- FCC Class A

An OCP NIC 3.0 add-in card is recommended to meet below compliance requirements:

- Halogen Free: IEC 61249-2-21 Definition of halogen free: 900ppm for Br or Cl, or 1500ppm combined.
- Arsenic: 1000 ppm (or 0.1% by weight)
- Emerging: US Conflict Minerals law: section 1502 of the Dodd-Frank Act requires companies using tin, tantalum, tungsten, and gold ("3TG") in their products to verify and disclose the mineral source. While this does not apply to products that are used to provide services, such as Infrastructure hardware products, the OCP NIC Subgroup is considering voluntarily reporting of this information.

8 Revision History

Author	Description	Revision	Date
Thomas Ng	Initial draft	0.57	01/09/2018
Intel Corporation			
