

OCP NIC 3.0 Design Specification

Version 0.50

Author: OCP Server Workgroup, OCP NIC subgroup

Table of Contents

1	Ove	rview	8
	1.1	License	8
	1.2	Background	9
	1.3	Acknowledgements	11
	1.4	Overview	
		1.4.1 Mechanical Form factor overview	12
		1.4.2 Electrical overview	14
	1.5	References	
2	Car	d Form Factor	•
	2.1	Overview	•
	2.2	Form Factor Options	17
	2.3	I/O bracket	
		2.3.1 Small Form Factor Add-in Card I/O Bracket	
		2.3.2 Small Form Factor Add-in Card Critical-to-Function (CTF) Dimensions	
		2.3.3 Small Form Factor Baseboard Critical-to-Function (CTF) Dimensions	
		2.3.4 Large Form Factor Add-in Card I/O Bracket	
		2.3.5 Large Form Factor Add-in Card Critical-to-Function (CTF) Dimensions	_
		2.3.6 Large Form Factor Baseboard Critical-to-Function (CTF) Dimensions	_
	2.4	Line Side I/O Implementations	_
	2.5	LED Implementations	_
		2.5.1 Baseboard LEDs Configuration Over the Scan Chain	
		2.5.2 Add-in Card LED Configuration	
		2.5.3 Add-in Card LED Ordering	
	2.6	Mechanical Keepout Zones	
		2.6.1 Baseboard Keep Out Zones – Small Card Form Factor	
		2.6.2 Baseboard Keep Out Zones – Large Card Form Factor	
		2.6.3 Small Card Form Factor Keep Out Zones	
		2.6.4 Large Card Form Factor Keep Out Zones	_
	2.7	Labeling Requirements	_
	2.8	Insulation Requirements	_
	2.9	NIC Implementation Examples	
	<mark>2.10</mark>		
		2.10.1 PCIe Retimer card	
		2.10.2 Accelerator card	33
		2.10.3 Storage HBA / RAID card	
3	Car	d Edge and Baseboard Connector Interface	
	3.1	Gold Finger Requirements	
		3.1.1 Gold Finger Mating Sequence	
	3.2	Baseboard Connector Requirements	
		3.2.1 Straddle Mount Offset and PCB Thickness Options	
		3.2.2 Right Angle Offset	42
	2.2	Pin definition	4.2

3.4		
	3.4.1 PCle Interface Pins	
	3.4.2 PCIe Present and Bifurcation Control Pins	
	3.4.3 SMBus Interface Pins	_
	3.4.4 Power Supply Pins	_
	3.4.5 Miscellaneous Pins	-
3.5		
	3.5.1 PCle Interface Pins – OCP Bay (Primary Connector)	
	3.5.2 NC-SI Over RBT Interface Pins – OCP Bay (Primary Connector)	
	3.5.3 Scan Chain Pins – OCP Bay (Primary Connector)	
_	3.5.4 Primary Connector Miscellaneous Pins – OCP Bay (Primary Connector)	
3.6		,
	3.6.1 PCle Add-in Card to Baseboard Bifurcation Configuration (PRSNTA#, PRSNT 68	B[3:0]#)
	3.6.2 PCIe Baseboard to Add-in Card Bifurcation Configuration (BIF[2:0]#)	68
	3.6.3 PCIe Bifurcation Decoder	68
	3.6.4 Bifurcation Detection Flow	70
	3.6.5 PCIe Bifurcation Examples	71
3.7	PCIe Clocking Topology	76
3.8	PCIe Bifurcation Results and REFCLK Mapping	77
3.9		
	3.9.1 NIC Power Off	86
	3.9.2 ID Mode	86
	3.9.3 Aux Power Mode (S ₅)	
	3.9.4 Main Power Mode (So)	,
3.10		-
3.11	·	-
3.12	· · · · · · · · · · · · · · · · · · ·	-
Ma	inagement	_
4.1		_
4.2		_
4.3	3	_
4.4		_
4.5		_
4.6	·	
4.7		
4.8	· ·	
4.9		_
	4.9.1 NC-SI Over RBT Addressing	
	4.9.2 Arbitration Ring Connections	
4.10		
	4.10.1 SMBus Address Map	
4.13		
	4.11.1 FRU EEPROM Address, Size and Availability	
, 1.	4.11.2 FRU EEPROM Content Requirements	
4.1	4.12.1 Firmware Update	
	4.12.2 Secure Firmware	
	4.12.2 JCCUIC	4 5

4

		Firmware Queries	
	4.12.4	Multi-Host Firmware Queries	95
	4.13 The	ermal Reporting Interface	96
	4.13.1	Remote on-die sensing	96
5	Data Netwo	ork Requirements	98
_	5.1 Ne	twork Boot	98
6	Routing Gui	delines and Signal Integrity Considerations	99
	6.1 NC	-SI Over RBT	99
	6.2 PC	le	99
7	Thermal and	d Environmental	100
	7.1 En	vironmental Requirements	100
	7.1.1	Thermal Reporting interface	100
	7.1.2	Thermal Simulation Boundary Example	100
	7.2 Sho	ock & Vibration	
		qulatory	100
8		story	

List of Figures

Figure 1: Representative Small OCP NIC 3.0 Card with Quad SFP Ports	
Figure 2: Representative Large OCP NIC 3.0 Card with Dual QSFP Ports and on-board DRAM	
Figure 3: Small and Large Card Form-Factors (not to scale)	
Figure 4: Example Small Card Form Factor	
Figure 5: Example Large Card Form Factor	
Figure 6: Primary Connector (4C + OCP Bay) with 4C and 2C (Small) Add-in Cards	
Figure 7: Primary Connector (4C + OCP Bay) and Secondary Connector (4C) (Large) Add-in Cards	
Figure 8: Small Card Standard I/O Bracket	
Figure 9: Small Card Customized bracket for RJ45 Connector	
Figure 10: Small Card 3D Bracket Assembly (Standalone)	
Figure 11: Small Card 3D Bracket Assembly (Installed on Add-in Card)	
Figure 12: Small Form Factor Add-in Card Critical-to-Function (CTF) Dimensions (Top View)	
Figure 13: Small Form Factor Add-in Card Critical-to-Function (CTF) Dimensions (Front View) Figure 14: Small Form Factor Add-in Card Critical-to-Function (CTF) Dimensions (Side View – Left)	
Figure 15: Small Form Factor Add-in Card Critical-to-Function (CTF) Dimensions (Side View – Right)	
Figure 16: Small Form Factor Baseboard Chassis Critical-to-Function (CTF) Dimensions (Rear View)	
Figure 18: Small Form Factor Baseboard Chassis Critical-to-Function (CTF) Dimensions (Side View)	
Figure 19: Small Form Factor Baseboard Chassis Critical-to-Function (CTF) Dimensions (Rail Guide Detail)	
Figure 20: Baseboard and Rail Assembly Drawing for Small Card	
Figure 21: LED Ordering – Example Small Card Link/Activity and Speed LED Placement Figure 22: Small Form Factor Keep Out Zone – Top View	
Figure 23: Small Form Factor Keep Out Zone – Top View	
Figure 24: Small Form Factor Keep Out Zone – Bottom View	
Figure 25: Large Form Factor Keep Out Zone – Top View	
Figure 26: Large Form Factor Keep Out Zone – Pop View	
Figure 27: Large Form Factor Keep Out Zone – Bottom view	
Figure 28: Small Card Bottom Side Insulator (Top and 3/4 View)	
Figure 29: Small Card Bottom Side Insulator (Side View)	
Figure 30: Large Card Bottom Side Insulator (Top and 3/4 View)	
Figure 31: Large Card Bottom Side Insulator (Side View)	
Figure 32: Small Size Primary Connector Gold Finger Dimensions – x16 – Top Side ("B" Pins)	
Figure 33: Small Size Primary Connector Gold Finger Dimensions – x16 – Bottom Side ("A" Pins)	
Figure 34: Large Size Card Gold Finger Dimensions – x32 – Top Side ("B" Pins)	
Figure 35: Large Size Card Gold Finger Dimensions – x32 – Bottom Side ("A" Pins)	
Figure 36: 168-pin Base Board Primary Connector – Right Angle	
Figure 37: 140-pin Base Board Secondary Connector – Right Angle	
Figure 38: 168-pin Base Board Primary Connector – Straddle Mount	
Figure 39: 140-pin Base Board Secondary Connector – Straddle Mount	
Figure 40: Primary and Secondary Connector Locations for Large Card Support For Right Angle Connectors	
Figure 41: Primary and Secondary Connector Locations for Large Card Support For Straddle Mount Connectors	
Figure 42: Add-in Card and Host PCB Thickness Options for Straddle Mount Connectors	
Figure 43: omm Offset (Coplanar) for 0.062" Thick Baseboards	
Figure 44: 0.3mm Offset for 0.076" Thick Baseboards	
Figure 45: Add-in Card and Host Offset for Right Angle Connectors	
Figure 46: PCIe Present and Bifurcation Control Pins	
Figure 47: Example Power Supply Topology	
Figure 48: NC-SI Over RBT Connection Example – Single Primary Connector	
Figure 49: NC-SI Over RBT Connection Example – Dual Primary Connector	
Figure 50: Scan Bus Connection Example	
Figure 51: PCIe Bifurcation Pin Connections Support	
Figure 52: Single Host (1 x16) and 1 x16 Add-in Card (Single Controller)	
Figure 53: Single Host (2 x8) and 2 x8 Add-in Card (Dual Controllers)	
Figure 54: Four Hosts (4 x4) and 4 x4 Add-in Card (Single Controller)	
Figure 55: Four Hosts (4 x4) and 4 x4 Add-in Card (Four Controllers)	
Figure 56: Single Host with no Bifurcation (1 x16) and 2 x8 Add-in Card (Two Controllers)	
Figure 57: PCIe Interface Connections for 1 x16 and 2 x8 Add-in Cards	

Figure 58: PCIe Interface Connections for a 4 x4 Add-in Card	76
Figure 59: Baseboard Power States	•
Figure 6o: Power Sequencing	
Figure 61: Block Diagram for Remote on-die Sensing	. 96

List of Tables

Table 1: OCP 3.0 Form Factor Dimensions	
Table 2: Baseboard to OCP NIC Form factor Compatibility Chart	13
Table 3: OCP NIC 3.0 Card Definitions	
Table 4: Mechanical BOM for the Small Card Bracket	
Table 5: OCP 3.0 Line Side I/O Implementations	
Table 6: Baseboard LED Configurations with Two Physical LEDs per Port	
Table 7: Add-in Card LED Configuration with Two Physical LEDs per Port	26
Table 8: Contact Mating Positions for the Primary and Secondary Connectors	35
Table 9: Right Angle Connector Options	37
Table 10: Straddle Mount Connector Options	
Table 11: Primary Connector Pin Definition (x16) (4C + OCP Bay)	42
Table 12: Secondary Connector Pin Definition (x16) (4C)	45
Table 13: Pin Descriptions – PCle 1	
Table 14: Pin Descriptions – PCIe Present and Bifurcation Control Pins	49
Table 15: Pin Descriptions – SMBus	
Table 16: Pin Descriptions – Power	51
Table 17: Pin Descriptions – Miscellaneous 1	52
Table 18: Pin Descriptions – PCle 2	53
Table 19: Pin Descriptions – NC-SI Over RBT	
Table 20: Pin Descriptions – Scan Chain	
Table 21: Pin Descriptions — Scan Chain DATA_OUT Bit Definition	62
Table 22: Pin Descriptions – Scan Bus DATA_IN Bit Definition	
Table 23: Pin Descriptions – Miscellaneous 2	
Table 24: PCIe Bifurcation Decoder for x16 and x8 Card Widths	
Table 25: PCIe Clock Associations	_
Table 26: Bifurcation for Single Host, Single Socket and Single Upstream Link (BIF[2:0]#=obooo)	
Table 27: Bifurcation for Single Host, Single Socket and Single/Dual Upstream Links (BIF[2:0]#=obooo)	
Table 28: Bifurcation for Single Host, Single Socket and Single/Dual/Quad Upstream Links (BIF[2:0]#=obooo)	
Table 29: Bifurcation for Single Host, Dual Sockets and Dual Upstream Links (BIF[2:0]#=oboo1)	
Table 30: Bifurcation for Single Host, Four Sockets and Dual Upstream Links (BIF[2:0]#=obo10)	
Table 31: Bifurcation for Dual Host, Dual Sockets and Dual Upstream Links (BIF[2:0]#=0b101)	
Table 32: Bifurcation for Quad Host, Quad Sockets and Quad Upstream Links (BIF[2:0]#=0b110)	
Table 33: Bifurcation for Quad Host, Quad Sockets and Quad Upstream Links (BIF[2:0]#=0b110)	
Table 34: Power States	
Table 35: Baseboard Power Supply Rail Requirements – Slot Power Envelopes	
Table 36: Power Sequencing Parameters	
Table 37: Sideband Management Interface and Transport Requirements	
Table 38: NC-SI Traffic Requirements	
Table 39: MC MAC Address Provisioning Requirements	
Table 40: Temperature Reporting Requirements	
Table 41: Power Consumption Reporting Requirements	
Table 42: Link Status/Speed Reporting Requirements	
Table 43: Pluggable Module Status Reporting Requirements	
Table 44: Out-Of-Band Firmware Update Requirements	
Table 45: Power Sequencing Parameters	
Table 46: FRU EEPROM Record – OEM Record oxCo, Offset oxoo	93
Table 47: FRU EEPROM Record – OEM Record 0xCo, Offset 0x00	
Table 48: FRU EEPROM Record – OEM Record 0xCo, Offset 0x01 Table 48: FRU EEPROM Record – OEM Record 0xCo, Offset 0x02	
Table 49: FRU EEPROM Record – OEM Record oxCo, Offset oxo3	
Table 50: FRU EEPROM RECORD — OEM RECORD OXCO, Offset 0X04	
10UE 5 L 10U L L 10UV DECULU = CA IVEDECULU VACO. CALSEL UXUS	

1 Overview

1.1 License

As of July 26, 2016, the following persons or entities have made this Specification available under the Open Compute Project Hardware License (Permissive) Version 1.0 (OCPHL-P)

OCP NIC Subgroup

An electronic copy of the OCPHL-P is available at:

http://www.opencompute.org/assets/download/o1-Contribution-Licenses/OCPHL-Permissive-v1.o.pdf

Your use of this Specification may be subject to other third party rights. THIS SPECIFICATION IS PROVIDED "AS IS." The contributors expressly disclaim any warranties (express, implied, or otherwise), including implied warranties of merchantability, non-infringement, fitness for a particular purpose, or title, related to the Specification. The Specification implementer and user assume the entire risk as to implementing or otherwise using the Specification. IN NO EVENT WILL ANY PARTY BE LIABLE TO ANY OTHER PARTY FOR LOST PROFITS OR ANY FORM OF INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES OF ANY CHARACTER FROM ANY CAUSES OF ACTION OF ANY KIND WITH RESPECT TO THIS SPECIFICATION OR ITS GOVERNING AGREEMENT, WHETHER BASED ON BREACH OF CONTRACT, TORT (INCLUDING NEGLIGENCE), OR OTHERWISE, AND WHETHER OR NOT THE OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

1.2 Background

The OCP NIC 3.0 specification is a follow-on to the OCP 2.0 form-factor for PCIe add-in cards. The OCP NIC 3.0 specification supports two basic card sizes: Small Card, and Large Card. The Small Card allows for up to 16 PCIe lanes on the card edge while a Large Card supports up to 32 PCIe lanes. Compared to the OCP Mezz Card 2.0 Design Specification, the updated specification provides a broader solution space for NIC and system vendors to support the following use case scenarios:

- NICs with a higher TDP
- Support up to 8oW of power delivery to a single connector (Small) card; and 15oW to a dual connector (Large) card
- Support up to PCle Gen5 on the system and add-in card
- Support for up to 32 lanes of PCIe per add-in card
- Support for single host, multi-root complex and multi-host environments
- Support a greater board area for more complex add-in card designs
- Support for Smart NIC implementations with on-board DRAM and accelerators
- Simplification of FRU installation and removal while reducing overall down time

A representative Small Card OCP 3.0 NIC mezzanine card is shown in Figure 1 and a representative Large Card is shown in Figure 2.

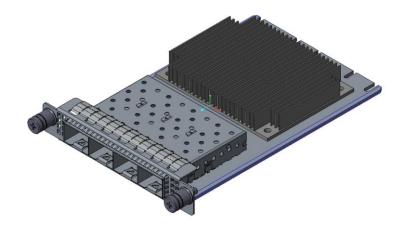
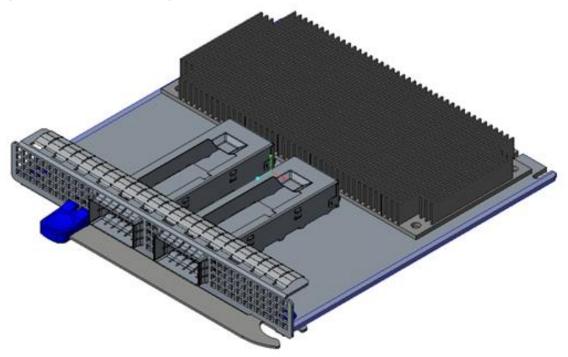



Figure 1: Representative Small OCP NIC 3.0 Card with Quad SFP Ports

Figure 2: Representative Large OCP NIC 3.0 Card with Dual QSFP Ports and on-board DRAM

In order to achieve the features outlined in this specification, OCP 3.0 compliant cards are not backwards compatible to OCP Mezz 2.0 cards.

This specification is created under OCP Server workgroup – OCP NIC subgroup. An electronic copy of this specification can be found on the Open Compute Project website:

http://www.opencompute.org/wiki/Server/Mezz#Specifications_and_Designs

1.3 Acknowledgements

The OCP NIC Subgroup would like to acknowledge the following member companies for their contributions to the OCP NIC 3.0 specification:

Table 1: Acknowledgements — By Company

Amphenol TCS	Intel Corporation	
Broadcom	Lenovo	
Dell	Mellanox	
Facebook	Netronome	
Hewlett Packard Enterprise	TE	

1.4 Overview

1.4.1 Mechanical Form factor overview

The OCP NIC 3.0 specification defines a third generation mechanical form factor that allows for interoperability between compliant baseboards and add-in cards.

OCP NIC 3.0 cards have two form factors – Small and Large. These cards are shown in Figure 3 below. The components shown in the figures are for illustrative purposes. The Small form factor card has one connector (Primary connector) on baseboard. The Large form factor card has one or two connectors (Primary Connector only and both the Primary and Secondary Connectors) on the baseboard.

Both the Primary and Secondary connectors are defined in and compliant to SFF-TA-1002. On the add-in card side, the card edge is implemented with gold fingers. The small card gold finger area only occupies the Primary Connector area for up to 16 PCle lanes. The large card gold finger area may occupy both the Primary and Secondary connectors for up to 32 PCle lanes, or optionally just the Primary connector for up to 16 PCle lane implementations. The gold finger design follows SFF-TA-1002 as well.

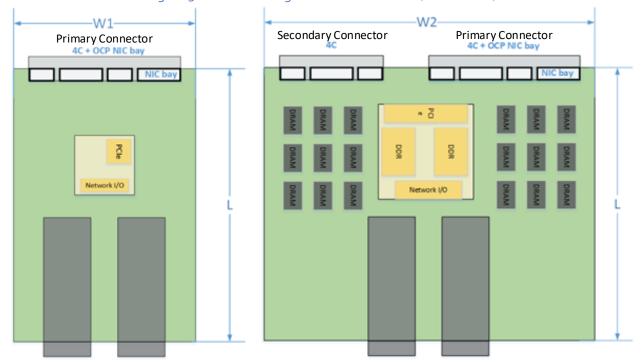


Figure 3: Small and Large Card Form-Factors (not to scale)

The two form factor dimensions are shown in Table 2.

Form Width Depth **Primary** Secondary **Typical Use Case** Factor Connector Connector Small W1 = 76 4C + OCP N/A Low profile and NIC with a L = 115 mm sideband similar profile as an OCP NIC mm 2.0 add-in card; up to 16 PCle 168 pins Large $W_2 = 139$ L = 115 4C + OCP 4C Larger PCB width to support sideband additional NICs; up to 32 PCle 140 pins mm mm 168 pins lanes.

Table 2: OCP 3.0 Form Factor Dimensions

The OCP NIC 3.0 design allows downward compatibility between the two card sizes. Table 3 shows the compatibility between the baseboard and NIC combinations. A small size baseboard slot may only accept a small sized NIC. A Large size baseboard slot may accept a small or large sized NIC.

Baseboard	NIC Size / Supported PCIe Width	
Slot Size	Small	Large
Small	Up to 16 PCIe lanes	Not Supported
Large	Up to 16 PCIe lanes	Up to 32 PCIe lanes

Table 3: Baseboard to OCP NIC Form factor Compatibility Chart

There are two baseboard connector options available for system designers: straddle mount and right angle (RA). The straddle mount connector option allows the OCP NIC and baseboard to exist in a coplaner position. To achieve this, a cutout exists on the baseboard and is defined in this specification. Alternatively, the right angle option allows the OCP NIC to be installed on top of the baseboard. A baseboard cutout is not required for the right angle connector. The right angle option allows the baseboard to use this area for additional routing or backside component placement. The straddle mount and right angle connectors are shown in Section 3.2.

For both the baseboard and OCP card, this specification defines the component and routing keep out areas. Refer to Section 2.6 for details.

Both the straddle mount and right angle implementations shall accept the same OCP add-in card and shall be supported in the baseboard chassis regardless of the baseboard connector selection (right angle or straddle mount) so long as the baseboard slot side and add-in card sizes are a supported combination as shown in Table 3.

This specification defines the form factor at the add-in card level, including the front panel, latching mechanism and card guide features.

More details about the card form-factor is shown in Section 2.

1.4.2 Electrical overview

This specification defines the electrical interface between baseboard and the add-in card. The electrical interface is implemented with a right angle or straddle mount connector on baseboard and gold finger on the add-in card. As previously noted in the mechanical overview, each card may implement a Primary Connector or Primary + Secondary Connector. Cards using only the Primary connector are suitable for both the Small and Large form-factors and may support up to 16 lanes of PCIe. The Secondary connector, when used in conjunction with the Primary connector, allows Large form-factor implementations and may support up to 32 lanes of PCIe.

1.4.2.1 Primary Connector

The Primary connector provides all OCP specific management functions as well as up to 16 lanes of PCIe between the OCP NIC and the system motherboard.

Management Function Overview (OCP Bay):

- DSPo222 1.1 compliant Network Controller Sideband Interface (NC-SI) RMII Based Transport (RBT) Physical Interface
- Power management and status reporting
 - Power disable
 - State change control
- SMBus 2.0
- Control / status serial bus
 - NIC-to-Host status
 - Port LED Link/Activity
 - Environmental Indicators
 - o Host-to-NIC configuration Information
- Multi-host PCIe support signals (2x PCIe resets, 2x reference clocks)
 - The OCP bay provides PERST2#, PERST3#, REFCLK2 and REFCLK3. This enables support for up to four hosts when used in conjunction with PERST0#, PERST1#, REFCLK0 and REFCLK1 in the Primary 4C region.
- PCle Wake signal

See Section 3.5 for a complete list of pin and function descriptions for the OCP Bay portion of the primary connector.

PCIe Interface Overview (4C Connector):

- 16x differential transmit/receive pairs
 - Up to PCle Gen 5 support
- 2x 100 MHz differential reference clocks
- Control signals
 - o 2x PCle Resets
 - Link Bifurcation Control
 - Card power disable/enable
- Power

- o 12V /12V AUX
- o 3.3V AUX

See Section 3.4 for a complete list of pin and function descriptions for the 4C connector.

1.4.2.2 Secondary Connector

The secondary connector provides an additional 16 lanes of PCIe and their respective control signals.

PCIe Interface Overview (4C Connector):

- 16x differential transmit/receive pairs
 - o Up to PCle Gen 5 support
- 2x 100 MHz differential reference clocks
- Control signals
 - o 2x PCle Resets
 - Link Bifurcation Control
 - o Card power disable/enable
- Power
 - o 12V /12V AUX
- 3.3V AUX

See Section 3.4 for a complete list of pin and function descriptions for the 4C connector.

1.5 References

- DMTF Standard. *DSPo222*, *Network Controller Sideband Interface (NC-SI) Specification*. Distributed Management Task Force, Rev 1.1.0, September 23rd, 2015.
- DMTF Standard. *DSPo222*, *Network Controller Sideband Interface (NC-SI) Specification*. Distributed Management Task Force, Rev 1.2.0, Work-in-progress.
- EDSFF. Enterprise and Datacenter SSD Form Factor Connector Specification. Enterprise and Datacenter SSD Form Factor Working Group, Rev 0.9 (draft), August 2nd 2017.
- IPMI Platform Management FRU Information Storage Definition, v1.2, February 28th, 2013.
- NXP Semiconductors. I²C-bus specification and user manual. NXP Semiconductors, Rev 6, April 4th, 2014.
- Open Compute Project. OCP NIC Subgroup. Online. http://www.opencompute.org/wiki/Server/Mezz
- PCle Base Specification. PCl Express Base Specification, Revision 4.0 (draft).
- PCIe CEM Specification. PCI Express Card Electromechanical Specification, Revision 4.0 (draft).
- SMBus Management Interface Forum. System Management Bus (SMBus) Specification. System Management Interface Forum, Inc, Version 2.0, August 3rd, 2000.
- SNIA. SFF-TA-1002, Specification for Protocol Agnostic Multi-Lane High Speed Connector. SNIA SFF TWG Technology Affiliate, Rev 1.0, December 12th, 2017.

2 Card Form Factor

2.1 Overview

2.2 Form Factor Options

OCP3.0 provides two fundamental form factor options: a small card (76mm x 115mm) and a large card (139mm x 115mm).

These form factors support a Primary Connector and optionally, a Secondary Connector. The Primary Connector is defined to be a SFF-TA-1002 compliant 4C connector plus a 28-pin bay for OCP 3.0 specific pins. The Secondary Connector is the 4C connector as defined in SFF-TA-1002. The 4C specification supports up to 32 differential pairs for a x16 PCIe connection per connector. For host platforms, the 28-pin OCP bay is required for the Primary connector. This is also mandatory for add-in cards.

The small card uses the Primary 4C connector to provide up to a x16 PCIe interface to the host. The additional 28-pin OCP bay carries sideband management interfaces as well as OCP NIC 3.0 specific control signals for multi-host PCIe support. The small size card provides sufficient faceplate area to accommodate up to 2x QSFP modules, 4x SFP modules, or 4x RJ-45 for BASE-T operation. The small card form factor supports up to 8oW of delivered power to the card edge.

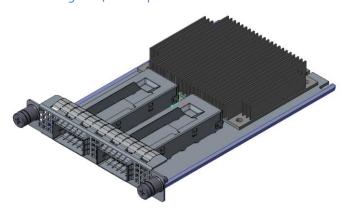
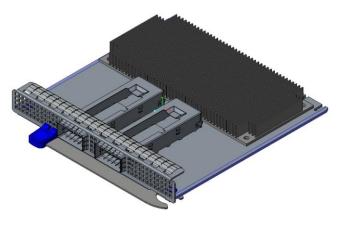



Figure 4: Example Small Card Form Factor

The large card uses the Primary 4C + OCP bay connector to provide the same functionality as the small card along with an additional Secondary 4C connector to provide up to a x32 PCle interface. The large card may utilize both the Primary and Secondary connectors, or just the Primary connector for lower PCle lane count applications. Table 4 summarizes the large card permutations. The large size card supports higher power envelopes and provides additional board area for more complex designs. The large card form factor supports up to 150W of delivered power to the card edge across the two connectors.

Figure 5: Example Large Card Form Factor

For both form-factors, an add-in card may optionally implement a subset of pins to support up to a x8 PCle connection. This is implemented using a 2C card edge per SFF-TA-1002. The Primary Connector may support a 2C sized add-in card along with the 28 pin OCP bay. The following diagram from the SFF-TA-1002 specification illustrates the supported host Primary and Secondary Connectors and add-in card configurations.

Figure 6: Primary Connector (4C + OCP Bay) with 4C and 2C (Small) Add-in Cards

Figure 7: Primary Connector (4C + OCP Bay) and Secondary Connector (4C) (Large) Add-in Cards

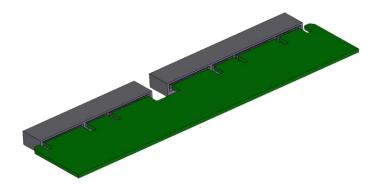


Table 4 summarizes the supported card form factors. Small form factors cards support the Primary Connector and up to 16 PCle lanes. Large form factor cards support implementations with both the Primary and Secondary Connectors and up to 32 PCle lanes, or a Primary Connector only implementation with up to 16 PCle lanes.

Table 4: OCP NIC 3.0 Card Definitions

Add in Card Size and max	Secondary Connector	Primary Connector
PCIe Lane Count	4C Connector, x16 PCle	4C Connector, x16 PCle OCP Bay
Small (x8)		2C OCP Bay
Small (x16)		4C OCP Bay
Large (x8)		2C OCP Bay
Large (x16)		4C OCP Bay
Large (x24)	2C	4C OCP Bay
Large (x32)	4C	4C OCP Bay

2.3 I/O bracket

The following section defines the standard I/O bracket and standard chassis opening required for both the Small and Large form-factor cards.

2.3.1 Small Form Factor Add-in Card I/O Bracket

Figure 8 defines the standard Small Card form factor I/O bracket.

14.99
5.01
8
35.8

10.08
29.55
11.82

*Connectors to be located in this opening. Faceplate cutouts to match specific connector drawing

Figure 8: Small Card Standard I/O Bracket

Note: The add-in card supplier shall add port identification on bracket that meet their manufacturing and customer requirements.

For RJ-45 implementations, a customized bracket must be created. Figure 9 shows an implementation example.

Figure 9: Small Card Customized bracket for RJ-45 Connector

Drawing to be inserted

Figure 10 shows the standalone bracket assembly and Figure 11 shows the bracket assembly on the add-in card.

Figure 10: Small Card 3D Bracket Assembly (Standalone)

TBD

Figure 11: Small Card 3D Bracket Assembly (Installed on Add-in Card)

In addition to the sheet metal, Table 5 lists the additional hardware components used for the Small Card bracket assembly.

Item description	Supplier Part Number
Top and bottom EMI fingers	TF187VE32F11
Screw / Rivet (part of bracket assy)?	TBD
Side EMI Finger	TBD
Thumb screw	TBD
Pull Tab	TBD
Latch	TBD
Screw (attaching Bracket & NIC)	TBD
SMT Nut (on NIC)	TBD

2.3.2 Small Form Factor Add-in Card Critical-to-Function (CTF) Dimensions

The following dimensions are considered critical-to-function (CTF) for each small form factor add-in card.

Figure 12: Small Form Factor Add-in Card Critical-to-Function (CTF) Dimensions (Top View)

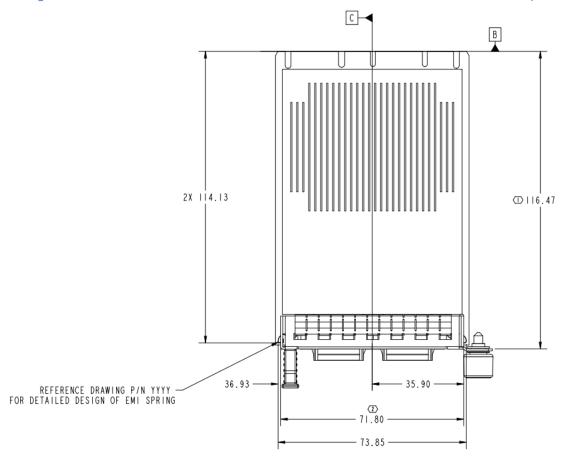


Figure 13: Small Form Factor Add-in Card Critical-to-Function (CTF) Dimensions (Front View)

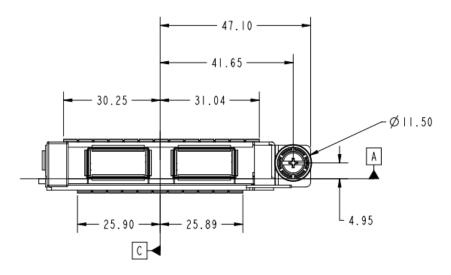
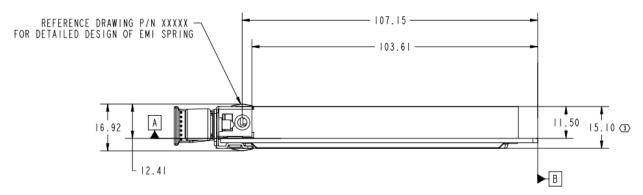



Figure 14: Small Form Factor Add-in Card Critical-to-Function (CTF) Dimensions (Side View – Left)

Figure 15: Small Form Factor Add-in Card Critical-to-Function (CTF) Dimensions (Side View – Right)

2.3.3 Small Form Factor Baseboard Critical-to-Function (CTF) Dimensions

The following dimensions are considered critical-to-function (CTF) for each small form factor baseboard chassis.

Figure 16: Small Form Factor Baseboard Chassis Critical-to-Function (CTF) Dimensions (Rear View)

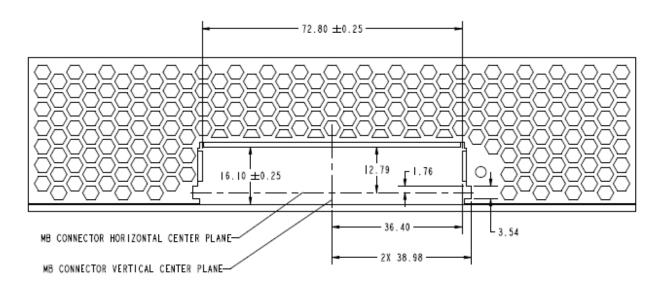


Figure 17: Small Form Factor Baseboard Chassis Critical-to-Function (CTF) Dimensions (Side View)

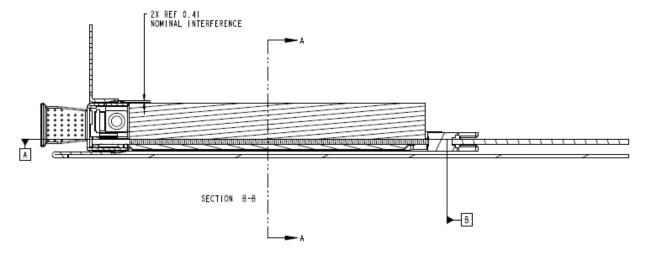


Figure 18: Small Form Factor Baseboard Chassis Critical-to-Function (CTF) Dimensions (Rear Rail Guide View)

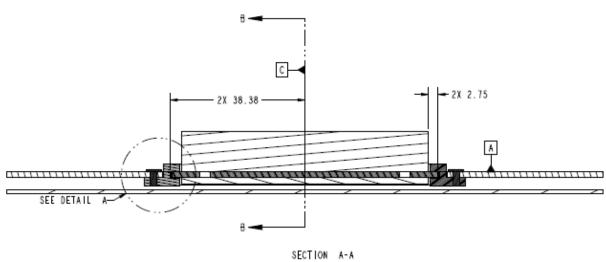
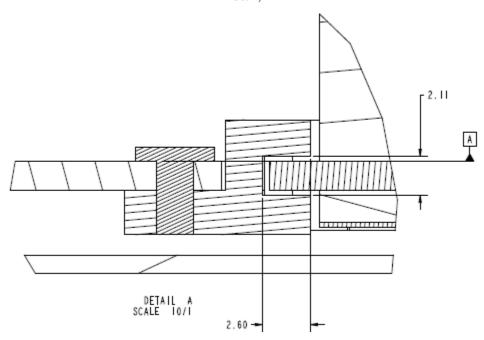



Figure 19: Small Form Factor Baseboard Chassis Critical-to-Function (CTF) Dimensions (Rail Guide Detail)

On the baseboard side, the following mechanical dimensions shall be met to support a small form factor add-in card:

Figure 20: Baseboard and Rail Assembly Drawing for Small Card TBD; need 3D baseboard and rail assembly drawing.

2.3.4 Large Form Factor Add-in Card I/O Bracket

TBD <need input from OCP mechanical groups>. All drawings from the Small Form-Factor implementation need to be replicated for the Large form-factor.

2.3.5 Large Form Factor Add-in Card Critical-to-Function (CTF) Dimensions

2.3.6 Large Form Factor Baseboard Critical-to-Function (CTF) Dimensions

2.4 Line Side I/O Implementations

At the time of this writing, the Small and Large form-factor implementations have been optimized to support the following standard line side I/O implementations:

Form Factor	Max Topology Connector Count	
Small	2x QSFP28	
Small	4x SFP28	
Small	4x RJ-45	
Large	2x QSFP28	
Large	4x SFP28	
Large	4x RJ-45	

Table 6: OCP 3.0 Line Side I/O Implementations

Additional combinations are permissible as I/O form-factor technologies and thermal capabilities evolve.

2.5 LED Implementations

LEDs may be implemented on the card Scan Chain (as defined in Section o) for remote link/activity indication on the baseboard or optionally be implemented on the OCP NIC 3.0 I/O bracket if there is sufficient space for local indication.. These two cases are described below. In both cases, the actual link rate may be directly queried through the management interface.

2.5.1 Baseboard LEDs Configuration Over the Scan Chain

A small form-factor OCP NIC 3.0 with a fully populated I/O bracket (2x QSFP28, 4x SFP28 or 4x RJ-45) has insufficient space for discrete on-board (faceplate) LED indicators. In this case, the line side link and activity LED indicators are implemented on the baseboard system via the Scan Chain. The Scan Chain bit stream is defined in Section o.

The baseboard LED implementation uses two discrete LEDs (Link/Activity and Speed indication). Table 7 describes the baseboard LED configuration for baseboard implementations.

This LED implementation is required for all add-in cards. The LED implementation is optional for baseboards.

Table 7: Baseboard LED Configurations with Two Physical LEDs per Port

LED Pin	LED Color	Description			
Link /	Green	Active low. Multifunction LED.			
Activity		This LED shall be used to indicate link and link activity.			
		,			
		When the link is up and no link activity is present, then this LED shall be lit and solid. This indicates that the link is established, there are no local or remote faults, and the link is ready for data packet transmission/reception.			
		When the link is up and there is link activity, then this LED should blink at the interval of 50-500ms during link activity.			
		The baseboard Link/Activity LED location is not mandated in this			
		specification and will be defined by the system vendor.			
Speed	Green	Active low. Multifunction LED.			
	Off				
		The LED is Green when the port is linked at its maximum speed.			
		The LED is off when the device is linked at a speed lower than the			
		highest capable speed, or no link is present.			
· ·		The baseboard bicolor speed LED location is not mandated in this specification and will be defined by the system vendor.			
	1	Specification and will be defined by the system vehicle.			

At the time of this writing, the Scan Chain definition allows for up to one link/activity and one speed LED per port. A total of up to 8 ports are supported in the Scan Chain. The bit stream defines the LEDs to be active low (on). The Scan Chain LED implementation allows the NIC LED indicators to be remotely located on the OCP 3.0 compliant chassis (e.g. front LED indicators with rear I/O cards).

2.5.2 Add-in Card LED Configuration

For low I/O count small form-factor cards without built in light pipes (such as 1x QSFP28, 2x SFP28, or 2x RJ-45), or a large form-factor OCP 3.0 NIC, where additional I/O bracket area is available, the card may optionally implement on-board link/activity indications in place of the Scan Chain LED stream. The recommended local (on-card) LED implementation uses two physical LEDs (a discrete Link/Activity LED and a bi-colored Speed A/Speed B LED). Table 8 describes the add-in card LED implementations.

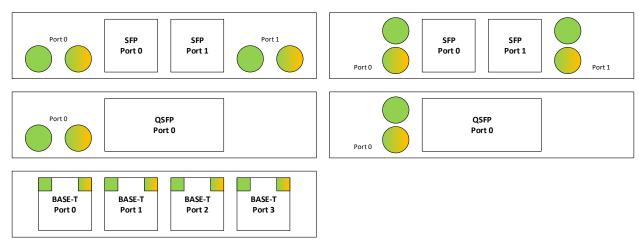
Table 8: Add-in Card LED Configuration with Two Physical LEDs per Port

LED Pin	LED Color	Description
	Green	Active low. Multifunction LED.

Link /		
Activity		This LED shall be used to indicate link and link activity.
		When the link is up and no link activity is present, then this LED shall be lit and solid. This indicates that the link is established, there are no local or remote faults, and the link is ready for data packet transmission/reception.
		When the link is up and there is link activity, then this LED should blink at the interval of 50-500ms during link activity.
		The Link/Activity LED shall be located on the left hand side or located on the top for each port when the add-in card is viewed in the horizontal plane.
Speed	Green	Active low. Bicolor multifunction LED.
	Amber Off	The LED is Green when the port is linked at its maximum speed. The LED is Amber when the port is linked at it second highest speed. The LED is off when the device is linked at a speed lower than the second highest capable speed, or no link is present.
		The Amber Speed LED indicator may be used for port identification through vendor specific link diagnostic software.
		The bicolor speed LED shall be located on the right hand side or located on the bottom for each port when the add-in card is viewed in the horizontal plane.

2.5.3 Add-in Card LED Ordering

For all add-in card use cases, each port shall implement the green Link/Activity LED and a bicolor green/amber speed A/B LED. For all baseboards, each port shall implement the green Link/Activity LED and a green speed A LED.


For horizontal LED positions, the Link/Activity LED shall be located on the left side for each port and the speed LED shall be located on the right side for each port.

For vertical LED positions, the Link/Activity LED shall be located on top and the speed LED shall be located on the bottom.

The placement of the LEDs on the faceplate may be left up to the discretion of the add-in card and baseboard designers. The LED port association shall be clearly labeled on the add-in card and on the baseboard.

Figure 21: LED Ordering – Example Small Card Link/Activity and Speed LED Placement

2.6 Mechanical Keepout Zones

2.6.1 Baseboard Keep Out Zones – Small Card Form Factor

TBD – Need keepout drawings and envelopes for small / large size baseboard including primary/secondary/rail keepouts/cutout for straddle mount/keepout for right angle.

2.6.2 Baseboard Keep Out Zones – Large Card Form Factor

TBD. – need input from mechanical engineering

2.6.3 Small Card Form Factor Keep Out Zones

Figure 22: Small Form Factor Keep Out Zone – Top View

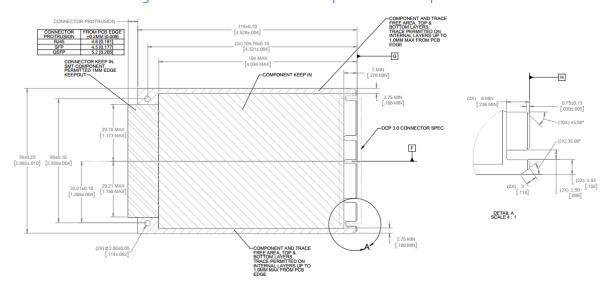


Figure 23: Small Form Factor Keep Out Zone – Bottom View

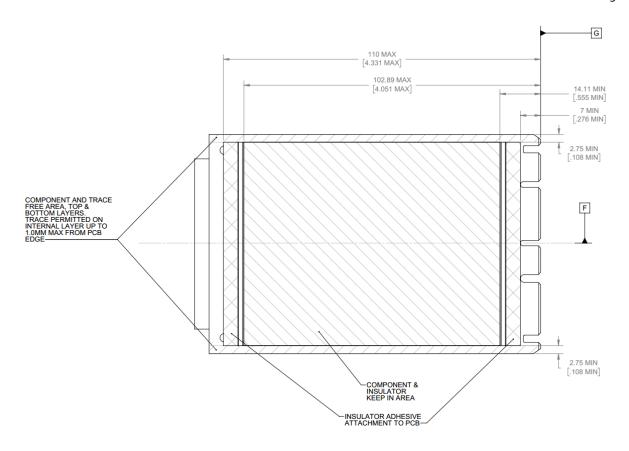
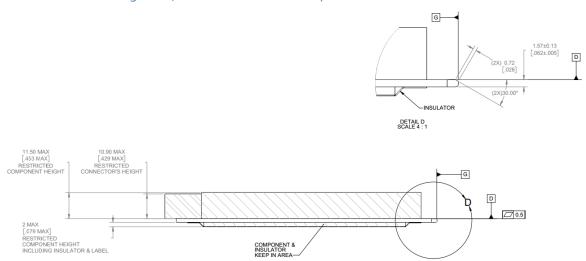



Figure 24: Small Form Factor Keep Out Zone - Side View

2.6.4 Large Card Form Factor Keep Out Zones

Figure 25: Large Form Factor Keep Out Zone – Top View

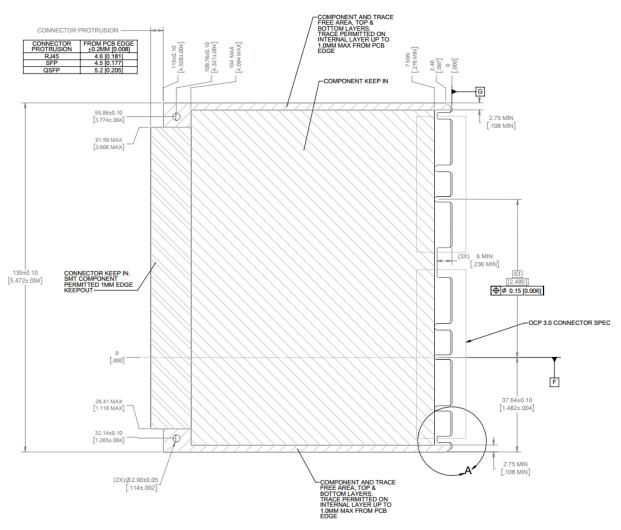


Figure 26: Large Form Factor Keep Out Zone – Bottom View

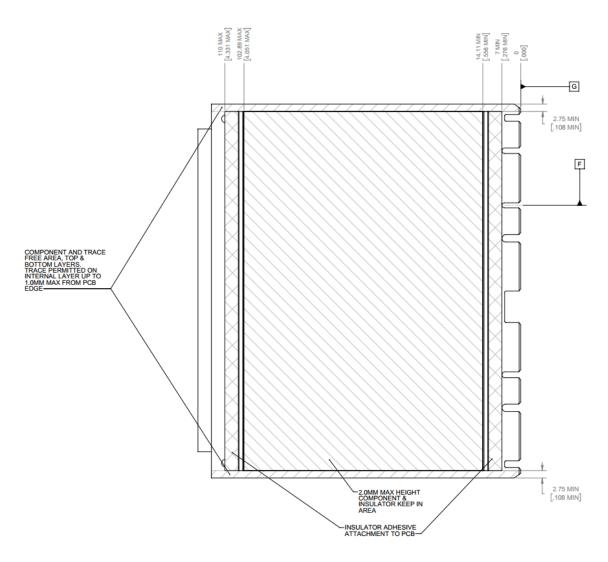
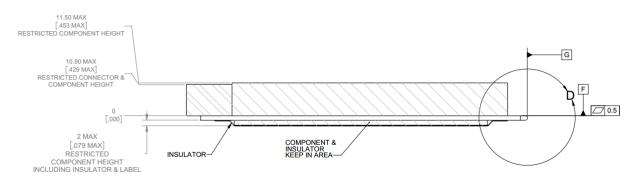



Figure 27: Large Form Factor Keep Out Zone – Side View

2.7 Labeling Requirements

TBD

Editor's note [TN 20171214]: Consider the following label attributes:

- Label attributes are human (e.g. ASCII) and machine readable (e.g. barcode)
- Add-in card MAC address shall be visible (used MAC address range, or base value)
- Board serial number

2.8 Insulation Requirements

All cards shall implement an insulator to prevent the bottom side card components from shorting out to the baseboard chassis. The recommended insulator thickness is 0.25mm and shall reside within the following mechanical envelope for the Small and Large size cards.

Figure 28: Small Card Bottom Side Insulator (Top and 3/4 View)

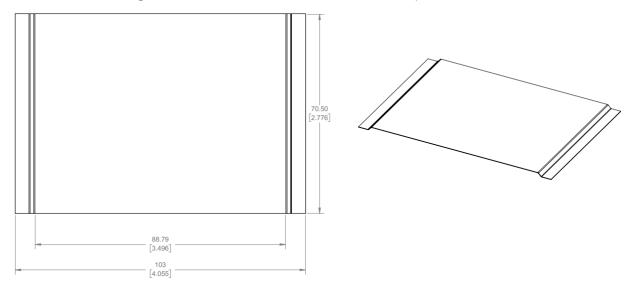


Figure 29: Small Card Bottom Side Insulator (Side View)

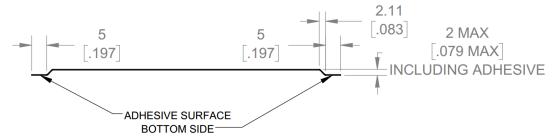


Figure 30: Large Card Bottom Side Insulator (Top and 3/4 View)

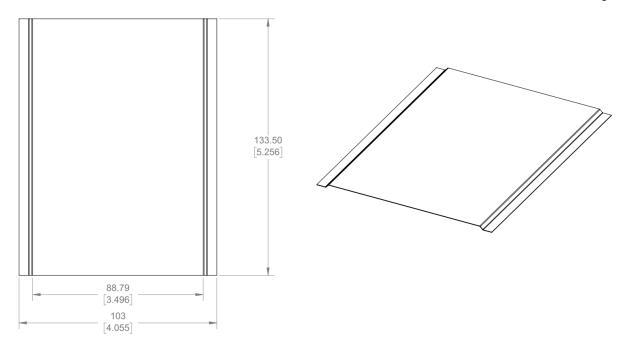
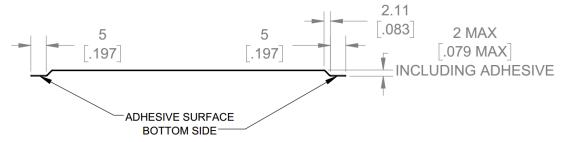



Figure 31: Large Card Bottom Side Insulator (Side View)

2.9 NIC Implementation Examples

TBD

2.10 Non-NIC Use Cases

"PCIe interface with extra management sideband"

2.10.1 PCIe Retimer card

TBD

2.10.2 Accelerator card

FBD

2.10.3 Storage HBA / RAID card

TBD

3 Card Edge and Baseboard Connector Interface

3.1 Gold Finger Requirements

The OCP NIC 3.0 add-in cards are compliant to the SFF-TA-1002 specification with respect to the gold fingers and connectors.

Small Size cards fit in the Primary Connector. Primary Connector compliant cards are 76mm x 115mm and may implement the full 168-pins. The Primary Connector cards may optionally implement a subset of gold finger pins if there is a reduced PCIe width requirement (such as 1 x8 and below). In this case, the card edge gold finger may implement a 2C design. The overall board thickness is 1.57mm. The gold finger dimensions for the Primary Connector compliant cards are shown below.

Large Size Cards support up to a x_{32} PCIe implementation and may use both the Primary and Secondary connectors. Large Size Cards may implement a reduced PCIe lane count and optionally implement only the Primary Connector 4C, or 2C plus OCP bay.

Note: The "B" pins on the connector are associated with the top side of the add-in card. The "A" pins on the connector are associated with the bottom side of the add-in card.

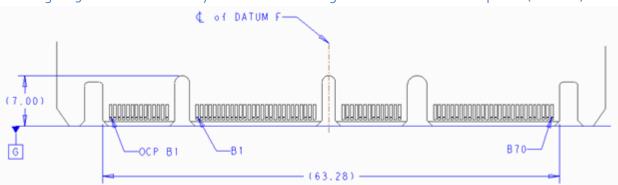


Figure 32: Small Size Primary Connector Gold Finger Dimensions – x16 – Top Side ("B" Pins)

Figure 33: Small Size Primary Connector Gold Finger Dimensions – x16 – Bottom Side ("A" Pins)

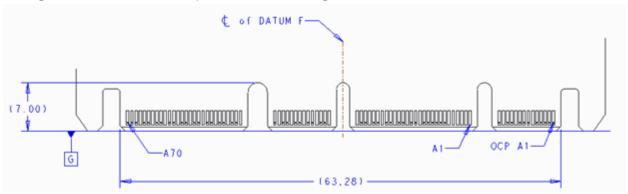


Figure 34: Large Size Card Gold Finger Dimensions – x32 – Top Side ("B" Pins)

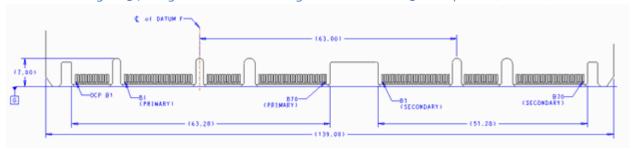
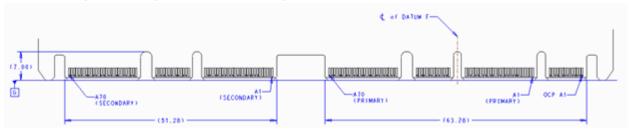
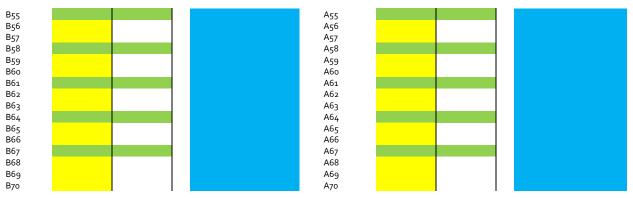



Figure 35: Large Size Card Gold Finger Dimensions – x32 – Bottom Side ("A" Pins)

3.1.1 Gold Finger Mating Sequence

Per the SFF-TA-1002 specification, the Primary and Secondary connectors are protocol agnostic and are optimized for high speed differential pairs. For use in the OCP NIC 3.0 application, some pin locations are used for single ended control nets or power and would benefit from a shorter pin length for staggering. As such, the recommended add-in card gold finger staging is shown in Table 9 for a two stage, first-mate, last-break functionality. The host connectors have a single stage mating and do not implement different pin lengths.

The AIC Plug (Free) side refers to the add-in card gold fingers; the receptacle (Fixed) side refers to the physical connector on the host platform. This table is based on the SFF-TA-1002 Table A-1 with modifications for OCP NIC 3.0. Refer to the mechanical drawings for pin the first-mate and second-mate lengths.


Table 9: Contact Mating Positions for the Primary and Secondary Connectors

3	,
Side B	Side A

OCP 81 OCP 82 OCP 82 OCP 83 OCP 84 OCP 86 OCP 86 OCP 86 OCP 86 OCP 87 OCP 88 OCP 84 OC		AIC Plug (Free) 2 nd Mate 1 st Mate	Receptacle (Fixed)		AIC Plug (Free) 2 nd Mate 1 st Mate	Receptacle (Fixed)
OCP B3 OCP A3 OCP A3 OCP A4 OCP A4 OCP A4 OCP A5 OCP A5 OCP A5 OCP A6 OCP B5 OCP A7 OCP B6 OCP B9 OCP A9 OCP A1 OC	OCP B1			OCP A1		
OCP 84,						
OCP 85 OCP 85 OCP 86 OCP 89 OCP 80 OC						
OCP 86 OCP A6 OCP A6 OCP B7 OCP A8 OCP A1 OCP A11 OCP A11 OCP A12 OCP A12 OCP A13 OCP A13 OCP A13 OCP A13 OCP A13 OCP A14 OCP A15 OCP A15 OCP A16 OCP A16 OCP A16 OCP A16 OCP A17 OCP A17 OCP A17 OCP A17 OCP A17 OCP A18 OCP A18 OCP A18 OCP A18 OCP A19 OCP						
OCP 87 OCP 89 OCP 89 OCP 89 OCP 80 OC						
OCP 88 OCP A8 OCP A9 OCP B10 OCP A10 OCP A10 OCP A11 OCP A11 OCP A11 OCP A11 OCP A12 OCP A13 OCP A13 OCP A14 OCP A13 OCP A14 OCP A15 OCP A15 OCP A16 OCP A17 O				OCP A6		
OCP By OCP As OC						
OCP 810 OCP 811 OCP 822 OCP 823 OCP 823 OCP 824 OCP 823 OCP 824 OCP 824 OCP 825 OCP 826 OCP 826 OCP 826 OCP 827 OCP 827 OCP 827 OCP 828 OCP 82						
OCF B11 OCF A12 OCF B22 OCF B33 OCF B43 OCF B44 OCF B44 OCF B45 OCF B45 OCF B45 OCF B46 OCF B47 OCF B4	OCP B9					
OCP B13 OCP B14 OCP B15 OCP B15 OCP B14 OCP B14 OCP B14 OCP B14 OCP B14 OCP B14 OCP B15 OCP B15 OCP B16 OCP B16 OCP B17 OCP B17 OCP B18 B2 A2 A2 B3 A3 A3 A4 A4 A6 B6 B6 B6 B6 B6 B7 A8 B8						
OCP B33 OCP A14 OCP A25 OCP A14 OCP A26 OCP A14 OCP A27 OCP A2						
CCP Right Mechanical Key						
B1	OCP B14			OCP A14		
B1	·		Mechan	nical Key		
B3	B1			A ₁		
Bi, Ac Ac Bis Bis Bis Ac Ac Bis	B ₂			A ₂		
BS						
86						
87						
B8						
Bg				A7		
Bio Aii Aii Biz Aii Biz Aii Biz Aii Aii Biz Aii						
B11						
B12						
Bi3 Bi4 Ai4 Ai5 Bi5 Bi6 Ai7 Ai8 Bi7 Ai8 Ai9 Bi9 Ai9 Ai9 Ai9 Ai9 Ai8 Ai7 Ai8 Ai9 Ai8 Ai8 Ai9 Ai8						
B14						
Ba5 A15 A15 B17 B18 B19 A19 B20 B20 B21 B22 B22 B24 B25 B26 B27 B28 B29						
Baf6 Baf7 Bas8 Bag9						
Bas AaB Bay						
Bag Aag Aag Bag	B17					
B20						
B21	B19					
B22						
B23						
B24 A24 B25 A26 B27 A27 B28 A28 Mechanical Key B29 A29 B30 A30 B31 A31 B32 A32 B33 A33 B34 A34 B35 A35 B36 A36 B37 A37 B38 A38 B39 A39 B40 A40 B41 A41 B42 A42 Mechanical Key B43 A44 B44 A44 B45 A43 B46 A46 B47 A46 B47 A48 B49 A49 B50 A50 B51 A52 B53 A53						
B25 B26 B26 A26 A27 A27 B28 B29 A28 B29 B29 A29 B30 B31 A30 B31 B32 A31 B33 A33 B34 A33 B34 A36 B37 A37 B38 B39 B39 A39 B39 A39 B39 B40 B44 B41 B42 B42 B44 B44 B45 B44 B45 B46 B46 B47 B47 B47 B48 B46 B47 B47 B48 B49 B49 B49 B49 B49 B50 B51 B52 B53 A55 B55 B52 B53 A55 B55 B52 B53 A55 B55 B55 B55 B55 B55 B55 B55 B55 B55						
B26 A27 B28 A28 Mechanical Key B29 A29 B30 A30 B31 A31 B32 A32 B33 A34 B34 A34 B35 A35 B36 A36 B37 A37 B38 A39 B40 A40 B41 A41 B42 A44 B44 A44 B45 A45 B46 A46 B47 A46 B47 A48 B49 A49 B50 A50 B51 A52 B53 A53						
B27 B28 A27 B28 A28						
B28						
Mechanical Key				A28		
B29 A29 B30 A31 B31 A31 B32 A32 B33 A34 B34 A34 B35 A36 B36 A37 B37 A37 B38 A39 B40 A40 B41 A41 B42 A42 Mechanical Key B43 A43 B44 A44 B45 A46 B46 A46 B47 A48 B48 A49 B50 A50 B51 A50 B52 A53			Mechan	nical Key		
B31 A31 B32 A32 B33 A33 B34 A34 B35 A36 B36 A36 B37 A36 B38 A39 B40 A40 B41 A41 B42 A42 B43 A44 B44 A44 B45 A46 B46 A47 B48 A49 B49 A49 B50 A50 B51 A51 B52 A52 B53 A53						
B32 A32 B33 A34 B34 A34 B35 A35 B36 A36 B37 A37 B38 A39 B40 A40 B41 A41 B42 A42 B43 A44 B44 A44 B45 A46 B47 A46 B48 A49 B50 A50 B51 A52 B52 B53						
B33 A34 B35 A35 B36 A36 B37 A37 B38 A39 B40 A40 B41 A41 B42 A41 B43 A43 B44 A44 B45 A45 B46 A47 B48 A48 B49 A49 B50 A50 B51 A52 B53 A53	B31					
B34 A34 A35 B36 A36 A36 B37 A37 A38 B39 A39 A39 B40 A40 A41 B41 A42 A42 Mechanical Key B43 A43 A44 B44 A45 A45 B46 A46 A47 B48 A48 A48 B49 A49 A49 B50 A50 A51 B52 A52 A53						
B35 A35 B36 A36 B37 A37 B38 A38 B39 A39 B40 A40 B41 A41 B42 A42 B43 A43 B44 A44 B45 A46 B46 A46 B47 A47 B48 A48 B49 A49 B50 A51 B51 A52 B52 A52 B53 A53	B33					
B36 A36 B37 A37 B38 A38 B39 A39 B40 A40 B41 A41 B42 A42 Mechanical Key B43 A44 B44 A45 B46 A45 B47 A46 B47 A48 B48 A49 B50 A50 B51 A51 B52 A52 B53 A53	Р34 Вэг			^34 ∆25		
B37 A37 B38 A38 B39 A39 B40 A40 B41 A41 B42 A41 B43 A43 B44 A44 B45 A45 B46 A46 B47 A46 B48 A49 B50 A50 B51 A51 B52 A52 B53 A53	P35 B26			735 A26		
B38 A38 B39 A40 B41 A41 B42 A42 Mechanical Key B43 A43 B44 A45 B45 A45 B46 A46 B47 A47 B48 A49 B50 A50 B51 A51 B52 A52 B53 A53	B37			A37		
B39 A39 B40 A40 B41 A41 B42 A42 Mechanical Key Mechanical Key Mechanical Key A43 A44 A45 A44 A45 A46 B47 A46 B47 A46 A47 B48 B49 B49 B50 A50 A51 B52 B53 A51 A52 B53	B ₃ 8			A ₃ 8		
B40 A40 B41 A41 B42 A42 Mechanical Key B43 A43 B44 A44 B45 A44 B46 A45 B47 A46 B47 A47 B48 A49 B50 A50 B51 A51 B52 A53 B53 A53	B39			A39		
B41 A41 B42 Mechanical Key B43 A43 B44 A44 B45 A45 B46 A46 B47 A47 B48 A48 B49 A49 B50 A50 B51 A51 B52 A53	B40			A40		
B42 Mechanical Key B43 A43 B44 A44 B45 A45 B46 A46 B47 A47 B48 A49 B49 A50 B51 A51 B52 A53	B41			A41		
B43 A43 B44 A45 B45 A45 B46 A46 B47 A48 B48 A49 B50 A50 B51 A51 B52 A52 B53 A53	B42			A42		
B44 B45 B46 A46 B47 A47 B48 A48 B49 A49 B50 A50 B51 A51 B52 A53			Mechan	nical Key		
B45 B46 B46 A46 B47 A47 B48 A48 B49 A50 B50 A50 B51 A51 B52 A52 B53 A53	B43			A43		
B46 B47 B48 B49 B50 B51 B52 B53 B53 B46 B47 A46 A47 A48 A49 A50 A51 B52 A52 A53	B44			A44		
B47 B48 B49 B50 B51 B52 B53	B45			A45		
B48 B49 B50 B51 B52 B53 B53 B53				A40 A47		
B49 B50 B51 B52 B53 B53 B49 A49 A50 A51 A52 A53	P4/ R/8			M4/ A/2		
B50 B51 B52 B53 B53	B40			Λ40 Δ40		
B ₅₁ B ₅₂ B ₅₃ A ₅₁ A ₅₂ A ₅₃	B50			A50		
B ₅₂ B ₅₃ A ₅₂ A ₅₃	B51			A51		
B ₅₃ A ₅₃ A ₅₃	-5- B52			A52		
B54 A54	B ₅₃			A ₅₃		
	B ₅₄			A54		

Rev 0.50

3.2 Baseboard Connector Requirements

The OCP NIC 3.0 connectors are compliant to the "4C connector" as defined in the SFF-TA-1002 specification for a right angle or straddle mount form-factor. The 4C connector is 140-pins in width and includes support for up to 32 differential pairs to support a x16 PCle connection. The connector also provides 6 pins of 12V for payload power. This implementation is common between both the Primary and Secondary Connectors. In addition, the Primary Connector has a 28-pin OCP Bay to the right of pin 1. These pins are used for management and support for up to a 4 x2 and 4 x4 multi-host configuration on the Primary Connector. The Primary and Secondary Connector drawings are shown in Figure 36, Figure 37, Figure 38 and Figure 39 below.

All diagram units are in mm unless otherwise noted.

The following offset and height options are available for the right angle Primary and Secondary Connectors.

Table 10: Right Angle Connector Options

Name	Pins	Style and Baseboard Thickness	Offset (mm)
Primary Connector – 4C + OCP	168 pins	Right Angle	4mm
Secondary Connector – 4C	140 pins	Right Angle"	4mm

Figure 36: 168-pin Base Board Primary Connector – Right Angle

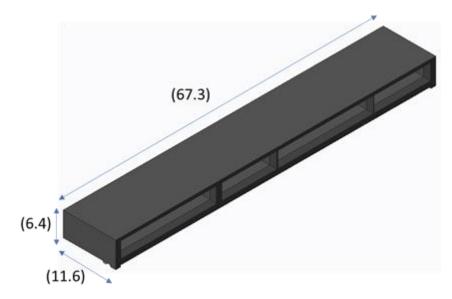
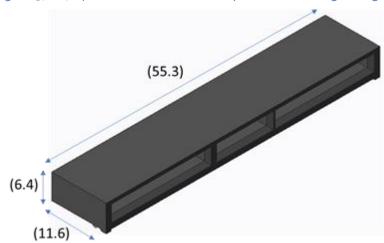



Figure 37: 140-pin Base Board Secondary Connector – Right Angle

The following offset and height options are available for the straddle mount Primary and Secondary Connectors.

Table 11: Straddle Mount Connector Options

Name	Pins	Style and Baseboard Thickness	Offset (mm)
Primary Connector – 4C + OCP	168 pins	Straddle Mount for 0.062"	Coplanar (omm)
Primary Connector – 4C + OCP	168 pins	Straddle Mount for 0.076"	-0.3mm
Primary Connector – 4C + OCP	168 pins	Straddle Mount for 0.093"	Coplanar (omm)
Secondary Connector – 4C	140 pins	Straddle Mount for 0.062"	Coplanar (omm)
Secondary Connector – 4C	140 pins	Straddle Mount for 0.076"	-0.3mm
Secondary Connector – 4C	140 pins	Straddle Mount for 0.093"	Coplanar (omm)

Figure 38: 168-pin Base Board Primary Connector – Straddle Mount

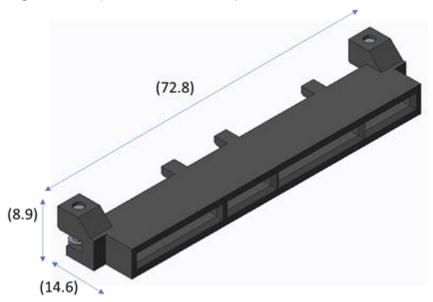
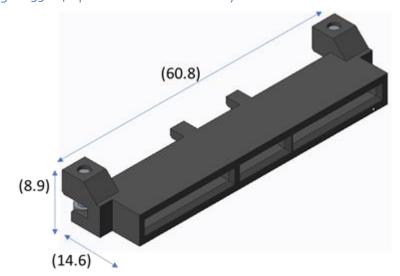



Figure 39: 140-pin Base Board Secondary Connector – Straddle Mount

In order to the support the large form factor, systems must locate the Primary and Secondary Connectors per the mechanical drawing shown in Figure 40 and Figure 41.

Figure 40: Primary and Secondary Connector Locations for Large Card Support For Right Angle

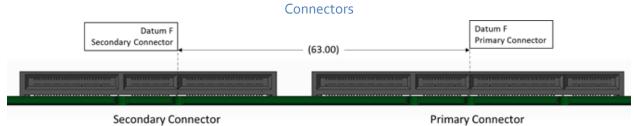
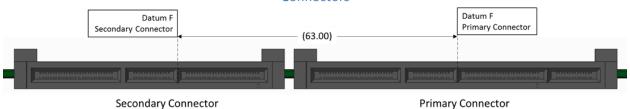



Figure 41: Primary and Secondary Connector Locations for Large Card Support For Straddle Mount Connectors

3.2.1 Straddle Mount Offset and PCB Thickness Options

The OCP NIC 3.0 straddle mount connectors have four PCB thicknesses they can accept. The available options are shown in Figure 42. The thicknesses are 0.062'', 0.076'', 0.093'', and 0.105''. These PCBs must be controlled to a thickness of $\pm 8\%$. These are available for both the Primary and Secondary connector locations. At the time of this writing, the most commonly used part is expected to be the 0.076'' host board thickness.

Connector Mating PCB Host PCB **Mating PCB** Connector **Host PCB Thickness Thickness** .062" (1.57mm) Α .076" (1.93mm) В .062" (1.57mm) C .093" (2.36mm) .105" (2.67mm) D

Figure 42: Add-in Card and Host PCB Thickness Options for Straddle Mount Connectors

The connectors are capable of being used coplanar as shown in Figure 43. Additionally, the connectors are also capable of having a 0.3mm offset from the centerline of the host board as shown in Figure 44.

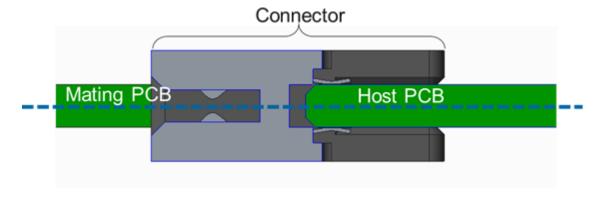
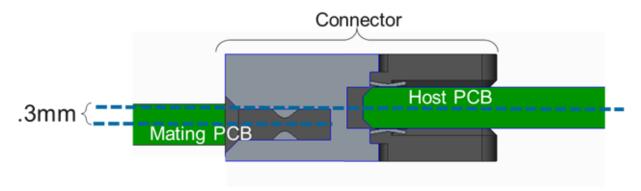



Figure 43: omm Offset (Coplanar) for 0.062" Thick Baseboards

Figure 44: 0.3mm Offset for 0.076" Thick Baseboards

3.2.2 Right Angle Offset

The OCP NIC 3.0 right angle connectors have a 4.0mm offset from the baseboard (pending SI simulation results). This is shown in Figure 45.

Figure 45: Add-in Card and Host Offset for Right Angle Connectors

3.3 Pin definition

The pin definitions of an OCP NIC 3.0 card with up to a x_{32} PCIe interface are shown in Table 12 and Table 13. All signal directions are shown from the perspective of the baseboard.

A baseboard system may provide a combination of Primary Connectors only, or Primary and Secondary Connectors to support multiple sizes of add-in cards. Both connectors share common functionality with power, SMBus 2.0, x16 PCle and bifurcation control. The Primary Connector has an additional OCP Bay (pins OCP_A[1:14], OCP_B[1:14]) with additional REFCLKs for supporting up to four PCle hosts, NC-SI connectivity and a Scan Chain for information exchange between the host and card. The NIC is required to implement the Scan Chain, while the baseboard may choose to optionally implement it. Depending on the baseboard form-factor, multiple OCP NIC 3.0 compliant cards may be designed into the system.

The pins common to the Primary and Secondary Connectors are shown in Section 3.4. The OCP Bay pins on the Primary Connector only are shown in Section 3.5.

Cards or systems that do not require the use of a PCIe x16 connection may optionally implement a subset electrical connections as applicable to the design. For example, a x8 (or smaller) card using the first 8 PCIe lanes that is compliant with the Primary Connector pinout. Refer to Sections 3.1 and 3.2 for mechanical details. For these cases, the Primary Connector matches the 2C dimensions as defined in SFF-TA-1002.

In all cases, the physical baseboard connectors shall support x_16 PCIe widths and must be implemented with the Primary (4C + OCP Bay) and Secondary (4C) connectors.

Table 12: Primary Connector Pin Definition (x16) (4C + OCP Bay)

Side B Side A

					1100 0.50
OCP_B1	NIC_PWR_GOOD	PERST2#	OCP_A1	_	₽
OCP_B2	PWRBRK#	PERST ₃ #	OCP_A2	II.	3. 3.
OCP_B ₃	LD#	WAKE_N#	OCP_A ₃	ar)	ar)
OCP_B4	DATA_IN	RBT_ARB_IN	OCP_A4	, C	, C
OCP_B ₅	DATA_OUT	RBT_ARB_OUT	OCP_A ₅	onr) in
OCP_B6	CLK	GND	OCP_A6	lec.	lec:
OCP_B ₇	SLOT_ID	RBT_TX_EN	OCP_A ₇	ţ	tor
OCP_B8	RBT_RXD1	RBT_TXD1	OCP_A8	X	XX
OCP_B9	RBT_RXDo	RBT_TXDo	OCP_A ₉	٠6,	3, 1
OCP_B10	GND	GND	OCP_A ₁₀	168	12.
OCP_B ₁₁	REFCLKn2	REFCLKn3	OCP_A ₁₁	8-p	Þ.
OCP_B ₁₂	REFCLKp2	REFCLKp3	OCP_A ₁₂	j.	าลด
OCP_B ₁₃	GND	GND	OCP_A ₁₃	adc	ġ.
OCP_B14	RBT_CRS_DV	RBT_CLK_IN	OCP_A14	<u></u> :	⊒
0 d. <u>_</u>		ical Key	0 0	Primary Connector (x16, 168-pin add-in card with OCP Bay)	Primary Connector (x8, 112-pin add-in card with OCP bay)
B1	+12V/+12V_AUX	GND	A ₁	<u>a</u>	₹
B ₂	+12V/+12V_AUX	GND	A ₂	₹	Ė
B ₃	+12V/+12V_AUX	GND	A ₃	ήC	Q
B4	+12V/+12V_AUX +12V/+12V_AUX	GND	A ₄	Ç	P
		GND		Θ	ba)
B5	+12V/+12V_AUX	GND	A5	ay)	>
B6	+12V/+12V_AUX		A6		
B7	BIFo#	SMCLK	A7		
B8	BIF1#	SMDAT	A8		
B9	BIF2#	SMRST#	A9		
B10	PERSTo#	PRSNTA#	A10		
B11	+3.3V/+3.3V_AUX	PERST1#	A11		
B12	PWRDIS	PRSNTB2#	A12		
B13	GND	GND	A13		
B14	REFCLKno	REFCLKn1	A14		
B15	REFCLKpo	REFCLKp1	A15		
B16	GND	GND	A16		
B17	PETno	PERno	A17		
B18	PETpo	PERpo	A18		
B19	GND	GND	A19		
B20	PETn1	PERn1	A20		
B21	PETp1	PERp1	A21		
B22	GND	GND	A22		
B23	PETn2	PERn2	A23		
B24	PETp2	PERp2	A24		
B25	GND	GND	A25		
B26	PETn ₃	PERn3	A26		
B27	PETp3	PERp3	A27		
B ₂ 8	GND	GND	A28		
		ical Key			
B29	GND	GND	A29		
B30	PETn4	PERn4	A30		
B ₃ 1	PETp4	PERp4	A ₃ 1		
B32	GND	GND	A32		
B ₃₃	PETn ₅	PERn ₅	A32		
B34	PETp5	PERp5	A33 A34		
B35	GND DETag	GND	A35		
B36	PETn6	PERn6	A36		
B ₃₇	PETp6	PERp6	A ₃₇		
B38	GND	GND	A ₃ 8		
B39	PETn7	PERn7	A39		
B40	РЕТр7	PERp7	A40		

B41	GND	GND	A41	
B42	PRSNTBo#	PRSNTB1#	A42	
	Mechan	ical Key		
B43	GND	GND	A43	
B44	PETn8	PERn8	A44	
B45	PETp8	PERp8	A45	
B46	GND	GND	A46	
B47	PETn9	PERn9	A47	
B48	PETp9	PERp9	A48	
B49	GND	GND	A49	
B50	PETn10	PERn10	A50	
B51	PETp10	PERp10	A51	
B52	GND	GND	A52	
B ₅₃	PETn11	PERn11	A53	
B54	PETp11	PERp11	A54	
B55	GND	GND	A55	
B56	PETn12	PERn12	A56	
B ₅₇	PETp12	PERp12	A57	
B ₅ 8	GND	GND	A58	
B59	PETn13	PERn13	A59	
B6o	PETp13	PERp13	A6o	
B61	GND	GND	A61	
B62	PETn14	PERn14	A62	
B63	PETp14	PERp14	A63	
B64	GND	GND	A64	
B65	PETn15	PERn15	A65	
B66	PETp15	PERp15	A66	
B67	GND	GND	A67	
B68	RFU, N/C	RFU, N/C	A68	
B69	RFU, N/C	RFU, N/C	A69	
B70	PRSNTB ₃ #	RFU, N/C	A70	

Table 13: Secondary Connector Pin Definition (x16) (4C)

	Side B	Side A		Ī	
B1	+12V/+12V_AUX	GND	A ₁	10	10
B ₂	+12V/+12V_AUX	GND	A ₂	Secondary Connector (x16, 140-pin add-in card)	Secondary Connector (x8, 84-pin add-in card)
B ₃	+12V/+12V_AUX	GND	A ₃	9	one
B4	+12V/+12V_AUX	GND	A ₄	dar	dar
B ₅	+12V/+12V_AUX	GND	A ₅	y C	ус
B6	+12V/+12V_AUX	GND	A6	on on	oni
B ₇	BIFo#	SMCLK	A ₇	nec	nec
B8	BIF1#	SMDAT	A8	ξ	tor
B ₉	BIF2#	SMRST#	A9	X	(X)
B10	PERSTo#	PRSNTA#	A10	· 6,	3, 8
B11	+3.3V/+3.3V_AUX	PERST1#	A11	140	4-6
B12	PWRDIS	PRSNTB2#	A12	₽.	ž.
B13	GND	GND	A13	n	ado
B14	REFCLKno	REFCLKn1	A14	фd	÷
B15	REFCLKpo	REFCLKp1	A15	≒ .	ı ca
B16	GND	GND	A16	car	rd)
B17	PETno	PERno	A17	Ģ	
B18	PETpo	PERpo	A18		
B19	GND	GND	A19		
B20	PETn1	PERn1	A20		
B21	PETp1	PERp1	A21		
B22	GND	GND	A22		
B23	PETn ₂	PERn2	A23		
B24	PETp2	PERp2	A24		
B25	GND	GND	A25		
B26	PETn ₃	PERn ₃	A26		
B27	PETp3	PERp3	A27		
B28	GND	GND	A28		
		ical Key			
B29	GND	GND	A29		
B30	PETn4	PERn4	A30		
B31	PETp4	PERp4	A ₃ 1		
B ₃₂	GND	GND	A ₃₂		
B33	PETn ₅	PERn5	A ₃₃		
B ₃₄	PETp ₅	PERp5	A34		
B ₃₅	GND	GND	A ₃₅		
B ₃ 6	PETn6	PERn6	A ₃ 6		
B ₃₇	PETp6	PERp6	A ₃₇		
B ₃ 8	GND	GND	A ₃ 8		
B39	PETn ₇	PERn7	A ₃₉		
B40	PETp ₇	PER _{P7}	A40		
B41	GND	GND	A41		
B42	PRSNTBo#	PRSNTB1#	A42		
		ical Key			
B43	GND	GND	A43		
B44	PETn8	PERn8	A44		
B45	PETp8	PERp8	A45		
B46	GND	GND	A46		
B47	PETn9	PERn9	A47		
B48	PETp9	PERp9	A48		
B49	GND	GND	A49		
B50	PETn10	PERn10	A50		
B ₅ 1	PETp10	PERp10	A51		

B52	GND	GND	A52	
B ₅₃	PETn11	PERn11	A53	
B54	PETp11	PERp11	A54	
B55	GND	GND	A55	
B56	PETn ₁₂	PERn12	A56	
B ₅₇	PETp12	PERp12	A57	
B ₅ 8	GND	GND	A58	
B59	PETn13	PERn13	A59	
B6o	PETp13	PERp13	A6o	
B61	GND	GND	A61	
B62	PETn14	PERn14	A62	
B63	PETp14	PERp14	A63	
B64	GND	GND	A64	
B65	PETn15	PERn15	A65	
B66	PETp15	PERp15	A66	
B67	GND	GND	A67	
B68	RFU, N/C	RFU, N/C	A68	
B69	RFU, N/C	RFU, N/C	A69	
В70	PRSNTB ₃ #	RFU, N/C	A70	

3.4 Signal Descriptions – Common

The pins shown in this section are common to both the Primary and Secondary Connectors. All pin directions are from the perspective of the baseboard.

The add-in card shall implement protection methods to prevent leakage paths between the Vaux and Vmain power domains in the event that a NIC is powered down in a powered up baseboard.

Note: Pins that are only used on Primary Connector 28-pin OCP bay are defined in Section 3.5.

3.4.1 PCle Interface Pins

This section provides the pin assignments for the PCIe interface signals. The AC/DC specifications are defined in the PCIe CEM Specification, Rev 4.o. Example connection diagrams for are shown in Figure 58.

Table 14: Pin Descriptions – PCle 1

Signal Name	Pin #	Baseboard	Signal Description
		Direction	
REFCLKno	B14	Output	PCIe compliant differential reference clock #o, and
REFCLKpo	B15		#1. 100MHz reference clocks are used for the add-in
REFCLKn1	A14	Output	card PCle core logic.
REFCLKp1	A15		
			For baseboards, the REFCLKo and REFCLK1 signals shall be available at the connector.
			For add-in cards, the required REFCLKs shall be connected per the endpoint datasheet.

			Note: For cards that only support 1 x16, REFCLKo is used. For cards that support 2 x8, REFCLKo is used for the first eight PCle lanes, and REFCLK1 is used for the second eight PCle lanes.
			the second eight F Cie lanes.
			Refer to Section 2.1 in the PCIe CEM Specification,
			Rev 4.0 for electrical details.
PETno	B17	Output	Transmitter differential pairs [0:15]. These pins are
PETpo	B18		connected from the baseboard transmitter
PETn1	B20	Output	differential pairs to the receiver differential pairs on
PETp1	B21		the add-in card.
PETn2	B23	Output	The DCI of the control of the life of AC and all the life of
PETp2	B24		The PCIe transmit pins shall be AC coupled on the
PETn ₃	B26	Output	baseboard with capacitors. The capacitors shall be
PETp ₃	B27		placed next to the baseboard transmitters. The AC
PETn ₄	B30	Output	coupling capacitor value shall be between 176nF
PETp4	B31		(min) and 265nF (max).
PETn ₅	B33	Output	E I I I I DETE 1: I I I I I
PETp ₅	B34		For baseboards, the PET[0:15] signals are required at
PETn6	B ₃ 6	Output	the connector.
PETp6	B ₃₇		
PETn ₇	B39	Output	For add-in cards, the required PET[0:15] signals shall
РЕТр7	B40		be connected to the endpoint silicon. For silicon that
PETn8	B44	Output	uses less than a x16 connection, the appropriate
PETp8	B45		PET[0:15] signals shall be connected per the
PETn ₉	B47	Output	endpoint datasheet.
РЕТр9	B48		D.C. I. C. I. I. DCI CEMC. IC. II
PETn10	B50	Output	Refer to Section 6.1 in the PCIe CEM Specification,
PETp10	B51		Rev 4.0 for details.
PETn ₁ 1	B ₅₃	Output	
PETp11	B54		
PETn ₁₂	B56	Output	
PETp12	B ₅₇		
PETn ₁₃	B59	Output	
PETp13	B60		
PETn14	B62	Output	
PETp14	B63	·	
PETn ₁₅	B65	Output	
PETp15	B66	,	
PERno	A17	Input	Receiver differential pairs [0:15]. These pins are
PERpo	A18		connected from the add-in card transmitter
PERn1	A20	Input	differential pairs to the receiver differential pairs on
PERp1	A21		the baseboard.
PERn2	A23	Input	
PERp2	A24	'	The PCIe receive pins shall be AC coupled on the
PERn ₃	A26	Input	add-in card with capacitors. The capacitors shall be
PERp3	A27	'	placed next to the add-in card transmitters. The AC
г⊑кр3	H27		praced field to the add-in card transmitters. The AC

PERn ₄	A30	Input	coupling capacitor value shall be between 176nF
PERp4	A31		(min) and 265nF (max).
PERn ₅	A33	Input	
PERp5	A34		For baseboards, the PER[0:15] signals are required at
PERn6	A ₃ 6	Input	the connector.
PERp6	A ₃₇		
PERn ₇	A39	Input	For add-in cards, the required PER[0:15] signals shall
PERp7	A40		be connected to the endpoint silicon. For silicon that
PERn8	A44	Input	uses less than a x16 connection, the appropriate
PERp8	A45		PER[0:15] signals shall be connected per the
PERn9	A47	Input	endpoint datasheet.
PERp9	A48		
PERn10	A50	Input	Refer to Section 6.1 in the PCIe CEM Specification,
PERp10	A51		Rev 4.0 for details.
PERn11	A53	Input	
PERp11	A54		
PERn ₁₂	A56	Input	
PERp12	A57		
PERn13	A59	Input	
PERp13	A60		
PERn14	A62	Input	
PERp14	A63		
PERn15	A65	Input	
PERp15	A66		
PERSTo#	B10	Output	PCIe Reset #o, #1. Active low.
PERST1#	A11		
			When PERSTn# is deasserted, the signal shall
			indicate the applied power is within tolerance and
			stable for the add-in card.
			PERST# shall be deasserted at least 100ms after the
			power rails are within the operating limits per the
			PCIe CEM Specification. The PCIe REFCLKs shall also
			become stable within this period of time.
			DEDGT I III II III II II II II II II II II I
			PERST shall be pulled high to 3.3Vaux on the
			baseboard.
			For OCP NIC 3.0, PERST deassertion shall also
			indicate the full card power envelope is available to
			the add-in card.
			the dad in card.
			For baseboards, the PERST[o:1]# signals are
			required at the connector.
		ı	1

For add-in cards, the required PERST[o:1]# signals shall be connected to the endpoint silicon.
Note: For cards that only support 1 x16, PERSTo# is used. For cards that support 2 x8, PERSTo# is used for the first eight PCle lanes, and PERST1# is used for the second eight PCle lanes.
Refer to Section 2.2 in the PCIe CEM Specification, Rev 4.0 for details.

3.4.2 PCIe Present and Bifurcation Control Pins

This section provides the pin assignments for the PCIe present and bifurcation control signals. The AC/DC specifications are defined in Section XXX. An example connection diagram is shown in Figure 46.

The PRSNTA#/PRSNTB[0:3]# state shall be used to determine if a card has been physically plugged in. The BIF[0:2]# pins shall be latched before PWRDIS deassertion to ensure the correct values are detected by the system. Changing the pin states after this timing window is not allowed. Refer to the AC timing diagram in Section XXX for details.

Table 15: Pin Descriptions – PCIe Present and Bifurcation Control Pins

Signal Name	Pin #	Baseboard Direction	Signal Description
PRSNTA#	A12	Output	Present A is used for add-in card presence and PCIe capabilities detection.
			For baseboards, this pin shall be directly connected to GND.
			For add-in cards, this pin shall be directly connected to the PRSNTB[3:0]# pins.
PRSNTBo# PRSNTB1# PRSNTB2#	B42 A42 A10	Input	Present B [0:3]# are used for add-in card presence and PCIe capabilities detection.
PRSNTB ₃ #	B ₇ 0		For baseboards, these pins shall be connected to the I/O hub and pulled up to +3.3Vaux using 1kOhm resistors.
			For add-in cards, these pins shall be strapped to PRSNTA# per the encoding definitions described in Section 3.6.
			Note: PRSNTB3# is located at the bottom of the 4C connector and is only applicable for add-in cards with a PCIe width of x16 (or greater). Add-in cards that

			implement a 2C card edge do not use the PRSNTB3#
			pin for capabilities or present detection.
BIFo#	A ₇	Output	Bifurcation [0:2]# pins allow the baseboard to force
BIF1#	A8		configure the add-in card bifurcation.
BIF2#	A9		
			For baseboards, these pins shall be outputs driven from the baseboard I/O hub and allow the system to force configure the add-in card bifurcation. The baseboard may optionally tie the BIF[o:2]# signals to 3.3Vaux or to ground per the definitions are described in Section 3.6 if no dynamic bifurcation configuration is required.
			For add-in cards, these signals shall connect to the endpoint bifurcation pins if it is supported.
			Note: the required combinatorial logic output for endpoint bifurcation is dependent on the specific silicon and is not defined in this specification.

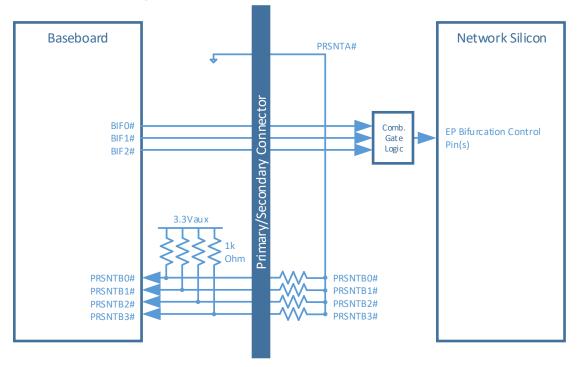


Figure 46: PCIe Present and Bifurcation Control Pins

3.4.3 SMBus Interface Pins

This section provides the pin assignments for the SMBus interface signals. The AC/DC specifications are defined in the SMBus 2.0 and I^2C bus specifications. An example connection diagram is shown in Figure XXX.

Table 16: Pin Descriptions – SMBus

Signal Name	Pin#	Baseboard	Signal Description
		Direction	3 · · · · · · · · · · · · · · · · · · ·
SMCLK	A ₇	Output, OD	SMBus clock. Open drain, pulled up to 3.3Vaux on the baseboard.
			For baseboards, the SMCLK from the platform SMBus master shall be connected to the connector.
			For add-in cards, the SMCLK from the endpoint silicon shall be connected to the card edge gold fingers.
SMDAT	A8	Input / Output, OD	SMBus Data. Open drain, pulled up to 3.3Vaux on the baseboard.
			For baseboards, the SMDAT from the platform SMBus master shall be connected to the connector. For add-in cards, the SMDAT from the endpoint
			silicon shall be connected to the card edge gold fingers.
SMRST#	A9	Output, OD	SMBus reset. Open drain.
			For baseboards, this pin shall be pulled up to 3.3Vaux. The SMRST pin may be used to reset optional downstream SMBus devices (such as temperature sensors). The SMRST# implementation shall be mandatory for baseboard implementations.
			For add-in cards, SMRST# is optional and is dependent on the add-in card implementation.

3.4.4 Power Supply Pins

This section provides the pin assignments for the power supply interface signals. The AC/DC specifications are defined in the PCIe CEM Specification, Rev 4.0 and amended in Section 3.10. An example connection diagram is shown in Figure 47.

Table 17: Pin Descriptions – Power

Signal Name	Pin #	Baseboard Direction	Signal Description
GND	Various	GND	Ground return; a total of 46 ground pins are on the main 140-pin connector area.
+12V/+12V_AUX	B1, B2, B3, B4, B5, B6	Power	12V main or 12V Aux power; total of 6 pins per connector. The 12V pins shall be rated to 1.1A per pin with a maximum derated power delivery of 8oW.

			The +12V power pins shall be within the rail tolerances as defined in Section 3.10 when the PWRDIS pin is driven low by the baseboard.
+3.3V/3.3V_AUX	B11	Power	3.3V main or 3.3V Aux power; total of 1 pin per connector. The 3.3V pin shall be rated to 1.1A for a maximum derated power delivery of 3.63W.
			The 3.3Vaux/main power pin shall be within the rail tolerances as defined in Section 3.10 when the PWRDIS pin is driven low by the baseboard.
PWRDIS	B12	Output, O/D	Power disable. Active high. Open-drain This signal shall be pulled up to 3.3V through a 10kOhm resistor on the baseboard.
			When high, all add-in card supplies shall be disabled. When low, add-in card supplies shall be enabled.

PWRDIS
12V

SVR #1

SVR #2

PG

SVR #3

SVR #3

SVR #3

NIC_PWR_GOOD

Figure 47: Example Power Supply Topology

3.4.5 Miscellaneous Pins

This section provides the pin assignments for the miscellaneous interface signals.

Table 18: Pin Descriptions – Miscellaneous 1

Signal Name	Pin #	Baseboard	Signal Description
		Direction	

RFU, N/C	B68,	Input /	Reserved future use pins. These pins shall be left as
	B69,	Output	no connect.
	A68,		
	A69, A70		

3.5 Signal Descriptions – OCP Bay (Primary Connector)

The following section describes the functions in the Primary Connector 28-pin OCP bay. This 28-pin bay is shown in Section o and have pin numbers designated as OCP_B[1:14], and OCP_A[1:14]. All pin directions on this OCP bay are from the perspective of the baseboard.

The add-in card shall implement protection methods to prevent leakage paths between the Vaux and Vmain power domains in the event that a NIC is powered down in a powered up baseboard.

Note: The pins that are common to both the Primary and Secondary Connectors are defined in Section 3.4.

3.5.1 PCIe Interface Pins – OCP Bay (Primary Connector)

This section provides the pin assignments for the PCIe interface signals on the Primary Connector OCP bay. The AC/DC specifications are defined in Section XXX. An example connection diagram that shows REFCLK2, REFCLK3, PERST2# and PERST3# is shown in Section o.

Table 19: Pin Descriptions – PCle 2

Signal Name	Pin #	Baseboard	Signal Description
Signal Name	Ι ΙΙΙ Π	Direction	Signal Description
REFCLKn2	OCP_B ₁₁	Output	PCIe compliant differential reference clock #2, and
REFCLKp2	OCP_B ₁₂		#3. 100MHz reference clocks are used for the add-in
REFCLKn ₃	OCP_A11	Output	card PCIe core logic.
REFCLKp ₃	OCP_A ₁₂		
			For baseboards, the REFCLK2 and REFCLK3 signals
			are required at the Primary connector.
			For add-in cards, the required REFCLKs shall be
			connected per the endpoint datasheet.
			connected per the enaponic dutusneet.
			Note: REFCLK2 and REFCLK3 are not used for cards
			that only support a 1 x16, 1 x8 or 2 x8 connection.
			Refer to Section 2.1 in the PCIe CEM Specification,
			Rev 4.0 for details.
PERST2#	OCP_A1	Output	PCIe Reset #2, #3. Active low.
PERST ₃ #	OCP_A2		
			When PERSTn# is deasserted, the signal shall
			indicate the applied power is within tolerance and
			stable for the add-in card.
			PERST# shall be deasserted at least 100ms after the
			power rails are within the operating limits per the

			PCIe CEM Specification. The PCIe REFCLKs shall also become stable within this period of time.
			PERST shall be pulled high to 3.3Vaux on the baseboard.
			For OCP NIC 3.0, PERST deassertion shall also indicate the full card power envelope is available to the add-in card.
			For baseboards, the PERST[o:1]# signals are required at the connector.
			For add-in cards, the required PERST[0:1]# signals shall be connected to the endpoint silicon.
			Note: PERST ₂ # and PERST ₃ # are not used for cards that only support a 1 x16 or 2 x8 connection.
			Refer to Section 2.2 in the PCIe CEM Specification, Rev 4.0 for details.
WAKE#	OCP_A ₃	Input, OD	WAKE#. Open drain. Active low.
			This signal shall be driven by the add-in card to notify the baseboard to restore PCIe link. For add-in cards that support multiple WAKE# signals, their respective WAKE# pins may be tied together as the signal is open-drain to form a wired-OR.
			For baseboards, this signal shall be pulled up to +3.3V on the baseboard with a 10kOhm resistor. This signals shall be connected to the system WAKE# signal.
			For add-in cards, this signal shall be directly connected to the endpoint silicon WAKE# pin(s).
			Refer to Section 2.3 in the PCIe CEM Specification, Rev 4.0 for details.

3.5.2 NC-SI Over RBT Interface Pins – OCP Bay (Primary Connector)

This section provides the pin assignments for the NC-SI over RBT interface signals on the Primary Connector OCP bay. The AC/DC specifications are defined in the NC-SI specification. An example connection diagram is shown in Figure 48.

Table 20: Pin Descriptions – NC-SI Over RBT

Signal Name	Pin#	Baseboard	Signal Description
RBT_CLK_IN	OCP_A14	Output	Reference clock input. Synchronous clock reference for receive, transmit and control interface. The clock shall have a nominal frequency of 50MHz ±100ppm. For baseboards, this pin shall be connected between the baseboard NC-SI over RBT PHY and the Primary connector OCP bay. This signal requires a 100kOhm pull down resistor on the baseboard. If the baseboard does not support NC-SI over RBT, then this signal shall be terminated to ground through a 100kOhm pull down resistor. For add-in cards, this pin shall be connected between the gold finger to the endpoint silicon. This pin shall be left as a no connect if NC-SI is not supported.
RBT_CRS_DV	OCP_B14	Input	Carrier sense/receive data valid. This signal is used to indicate to the baseboard that the carrier sense/receive data is valid. For baseboards, this pin shall be connected between the baseboard NC-SI over RBT PHY and the connector. This signal requires a 100kOhm pull down resistor on the baseboard. If the baseboard does not support NC-SI over RBT, then this signal shall be terminated to ground through a 100kOhm pull down resistor. For add-in cards, this pin shall be connected between the gold finger to the endpoint silicon. This pin shall be left as a no connect if NC-SI is not supported.
RBT_RXD0 RBT_RXD1	OCP_B9 OCP_B8	Input	Receive data. Data signals from the network controller to the BMC. For baseboards, this pin shall be connected between the baseboard NC-SI over RBT PHY and the connector. This signal requires a 100kOhm pull-up resistor to 3.3Vaux on the baseboard. If the

			baseboard does not support NC-SI over RBT, then this signal shall be terminated to 3.3Vaux through a 100kOhm pull-up. For add-in cards, this pin shall be connected between the gold finger and the RBT_RXD[0:1] pins on endpoint silicon. This pin shall be left as a no connect if NC-SI is not supported.
RBT_TX_EN	OCP_A ₇	Output	Transmit enable.
			For baseboards, this pin shall be connected between the baseboard NC-SI over RBT PHY and the connector. This signal requires a 100kOhm pull down resistor to ground on the baseboard. If the baseboard does not support NC-SI over RBT, then this signal shall be terminated to ground through a 100kOhm pull down.
			For add-in cards, this pin shall be connected between the gold finger to the endpoint silicon. This pin shall be left as a no connect if NC-SI is not supported.
RBT_TXDo RBT_TXD1	OCP_A ₉ OCP_A ₈	Output	Transmit data. Data signals from the BMC to the network controller.
			For baseboards, this pin shall be connected between the baseboard NC-SI over RBT PHY and the connector. This signal requires a 100kOhm pull-up resistor to 3.3Vaux on the baseboard. If the baseboard does not support NC-SI over RBT, then this signal shall be terminated to 3.3Vaux through a 100kOhm pull-up.
			For add-in cards, this pin shall be connected between the gold finger to the RBT_TXD[o:1] pins on the endpoint silicon. This pin shall be left as a no connect if NC-SI is not supported.
RBT_ARB_OUT	OCP_A ₅	Output	NC-SI hardware arbitration output. This pin shall only be used if the endpoint silicon supports hardware arbitration. This pin shall be connected to the RBT_ARB_IN signal of an adjacent device in the hardware arbitration ring.
			The baseboard shall implement a multiplexing implementation that directs the RBT_ARB_OUT to the RBT_ARB_IN pin of the next NC-SI capable

			device in the ring, or back to the RBT_ARB_IN pin of the source device if there is a single device on the ring. For baseboards, this pin shall be connected between the baseboard OCP connector(s) to complete the hardware arbitration ring. If the baseboard does not support NC-SI over RBT, this signal shall be directly connected to the RBT_ARB_IN pin. For add-in cards, this pin shall be connected from the
			gold finger to the RBT_ARB_IN pin on the endpoint silicon. This pin shall be left as a no connect if NC-SI is not supported.
RBT_ARB_IN	OCP_A4	Input	NC-SI hardware arbitration input. This pin shall only be used if the endpoint silicon supports hardware arbitration. This pin shall be connected to the RBT_ARB_OUT signal of an adjacent device in the hardware arbitration ring.
			The baseboard shall implement a multiplexing implementation that directs the RBT_ARB_IN to the RBT_ARB_OUT pin of the next NC-SI capable device in the ring, or back to the RBT_ARB_OUT pin of the source device if there is a single device on the ring.
			For baseboards, this pin shall be connected between the baseboard OCP connector(s) to complete the hardware arbitration ring. If the baseboard does not support NC-SI over RBT, this signal shall be directly connected to the RBT_ARB_OUT pin.
			For add-in cards, this pin shall be connected between the gold finger to the RBT_ARB_OUT pin on the endpoint silicon. Leave this pin as a no connect if NC-SI is not supported.
SLOT_ID	OCP_B ₇	Output	NC-SI Address pin. This pin shall only be used if the end point silicon supports package identification.
			For baseboards, this pin shall be used to identify the slot ID value. This pin shall be directly to GND for SlotID = 0. This pin shall be pulled up to 3.3 Vaux for SlotID = 1.
			For add-in cards, this pin shall be connected to the endpoint device GPIO associated with the Package ID[1] field. Refer to Section 4.9.1 and the device datasheet for details.

For add-in cards with multiple endpoint devices, the SLOT_ID pin may be used to configure a different Package ID value so long as the resulting combination does not cause addressing interferences.

For endpoint devices without NC-SI support, this pin shall be left as a no connect on the add-in card.

50MHz 1:2 Network Silicon #0 Network Silicon #1 Baseboard Clock Buffer Management Optional Controller CLK_IN CRS_DV CLK_IN CRS_DV Connector Boundary RXD[0:1] RXD[0:1] RXD[0:1] TX EN TX EN TX EN TXD[0:1] TXD[0:1] TXD[0:1] ARB_OUT ARB OUT ARB OUT ARB IN ARB IN PACKAGE_ID[0] = **0b0**PACKAGE_ID[1] = SLOT_ID
PACKAGE_ID[2] = 0b0 PACKAGE_ID[0] = **0b1**PACKAGE_ID[1] = SLOT_ID
PACKAGE_ID[2] = 0b0 Primary SLOT_ID ARB_IN

Figure 48: NC-SI Over RBT Connection Example – Single Primary Connector

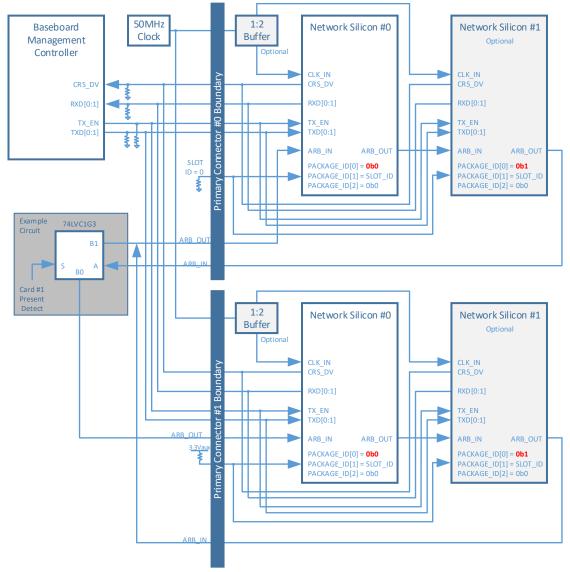


Figure 49: NC-SI Over RBT Connection Example – Dual Primary Connector

Note 1: For baseboard designs with a single Primary Connector, connect ARB_IN to ARB_OUT to complete the NC-SI hardware arbitration ring. For designs with multiple Primary Connectors, connect ARB_IN and ARB_OUT to an analog mux to complete the NC-SI arbitration ring based on the number of cards installed in the system. An example dual Primary Connector implementation is shown in

Figure 49.

Note 2: For add-in cards with two discrete endpoint silicon, the Package ID[o] bit shall be statically set based on its silicon instance. For example, the figure above shows Network Silicon #0 and Network Silicon #1. Network Silicon #0 has Package ID[o] = obo, Network Silicon #1 has Package ID[o] = ob1.

3.5.3 Scan Chain Pins – OCP Bay (Primary Connector)

This section provides the pin assignments for the Scan Bus interface signals on the Primary Connector OCP Bay. The AC/DC specifications are defined in Section XXX. An example connection diagram is shown in Figure 50.

Table 21: Pin Descriptions – Scan Chain

Signal Name	Pin #	Baseboard Direction	Signal Description
CLK	OCP_B6	Output	Scan clock. The CLK is an output pin from the baseboard to the add-in card. The CLK may run up to 12.5MHz.
			For baseboard implementations, the CLK pin shall be connected to the Primary Connector. The CLK pin shall be tied directly to GND if the scan chain is not used.
			For NIC implementations, the CLK pin shall be connected to Shift Registers o & 1, and optionally connected to Shift Registers 2 & 3 (if implemented) as defined in the text and Figure 50, below. The CLK pin shall be pulled up to 3.3 Vaux through a 1kOhm resistor.
DATA_OUT	OCP_B5	Output	Scan clock data output from the baseboard to the add-in card. This bit stream is used to shift in NIC configuration data.
			For baseboard implementations, the DATA_OUT pin shall be connected to the Primary Connector. The DATA_OUT pin shall be tied directly to GND if the scan chain is not used.
			For NIC implementations, the DATA_OUT pin may be left floating if it is not used for add-in card configuration. The DATA_OUT pin shall be pulled up to 3.3 Vaux through a 1kOhm resistor.
DATA_IN	OCP_B4	Input	Scan clock data input to the baseboard. This bit stream is used to shift out NIC status bits.
			For baseboard implementations, the DATA_IN pin shall be pulled up to 3.3Vaux through a 10kOhm resistor to prevent the input signal from floating if a card is not installed. This pin may be left as a no connect if the scan chain is not used.
			For NIC implementations, the DATA_IN scan chain is required. The DATA_IN pin shall be connected to

			Shift Registers o & 1, as defined in the text and
			Figure 50.
LD#	OCP_B ₃	Output	Scan clock shift register load. Used to latch configuration data on the add-in card.
			For baseboard implementations, the LD# pin shall be pulled up to 3.3Vaux through a 1kOhm resistor if the scan chain is not used to prevent the add-in card from erroneous data latching.
			For NIC implementations, the LD# pin implementation is required. The LD# pin shall be connected to Shift Registers o & 1 as defined in the text and Figure 50. The LD# pin shall be pulled up to 3.3Vaux through a 1kOhm resistor.

The scan chain provides side band status indication between the add-in card and the baseboard. The scan chain bit definition is defined in the two tables below. The scan chain data stream is 32-bits in length for both the DATA_OUT and the DATA_IN streams. The scan chain implementation is optional on the host, but is mandatory on all OCP NIC 3.0 cards. The scan chain components operates on the 3.3 Vaux power domain.

The DATA_OUT bus is an output from the host. The DATA_OUT bus provides initial configuration options to the add-in card. At the time of this writing, the default implementation does not use the DATA_OUT stream and is not implemented on the NIC. However, all baseboard systems that implement the Scan Chain shall connect DATA_OUT between the platform and the Primary Connector for future-proofing NIC implementations and subsequent revisions of this specification.

Byte.bit	DATA_OUT Field	Default	Description
	Name	Value	
0.[07]	RSVD	oboooooo	Reserved. Byte o value is ohoo.
1.[07]	RSVD	ohoo	Reserved. Byte 1 value is ohoo.
2.[07]	RSVD	ohoo	Reserved. Byte 2 value is ohoo.
3.[07]	RSVD	ohoo	Reserved. Byte 3 value is ohoo.

The DATA_IN bus is an input to the host and provides NIC status indication. The default implementation is completed with two 8-bit 74LV165 parallel in to serial out shift registers in a cascaded implementation. Up to four shift registers may be implemented to provide additional NIC status indication to the host platform.

DATA_IN shift registers o & 1 shall be mandatory for scan chain implementations. DATA_IN shift registers 2 & 3 are optional depending on the card type and fields being reported to the host. DATA_IN shift register 2 may be used to indicate future definitions of the scan chain bit stream. DATA_IN shift registers 3 (in conjunction with shift register 2) are required for reporting link/activity indication on card implementations with 5-8 ports.

The host should read the DATA_IN bus multiple (TBD) times to qualify the incoming data stream.

A 1kOhm pull up resistor shall be implemented on the NIC to the SER input of the last shift register on the DATA_IN scan chain to maintain a default bit value of ob1 for unused bits for implementations using less than four shift registers.

Table 23: Pin Descriptions – Scan Bus DATA_IN Bit Definition

Byte.bit	DATA_OUT Field	Default	Description
	Name	Value	
0.0	PRSNTB[o]#	obX	PRSNTB[3:0]# bits shall reflect the same state as
0.1	PRSNTB[1]#	obX	the signals on the Primary Connector.
0.2	PRSNTB[2]#	obX	
0.3	PRSNTB[3]#	obX	
0.4	WAKE_N	obX	PCIe WAKE_N signal shall reflect the same state as the signal on the Primary Connector.
0.5	TEMP_WARN	obo	Temperature monitoring pin from the on-card thermal solution. This pin shall be asserted high when temperature sensor exceeds the temperature warning threshold.
0.6	TEMP_CRIT	obo	Temperature monitoring pin from the on-card thermal solution. This pin shall be asserted high when temperature sensor exceeds the temperature critical threshold.
0.7	FAN_ON_AUX	obo	When high, FAN_ON_AUX shall request the system fan to be enabled for extra cooling in the S5 state.
1.0	LINK_ACTo	ob1	Port o3 link/activity indication. Active low.
1.1	LINK_ACT1	ob1	
1.2	LINK_ACT2	ob1	obo – Link LED is illuminated on the host platform.
1.3	LINK_ACT3	ob1	ob1 – Link LED is not illuminated on the host platform.
			Steady = link is detected on the port. Blinking = activity is detected on the port. The blink rate should blink low for 50-500ms during activity periods. Off = the physical link is down or disabled
1.4	SPEED_Ao	ob1	Port o3 speed A (max rate) indication. Active low.
1.5	SPEED_A1	ob1	
1.6	SPEED_A2	ob1	obo – Port is linked at maximum speed.
1.7	SPEED_A ₃	ob1	ob1 – Port is not linked at the maximum speed or no link is present.
2.0	ScanChainVer[o]	ob1	ScanChainVer[1:0] shall be used to indicate the
2.1	ScanChainVer[1]	ob1	scan chain bit definition version. The encoding shall be as follows:

			ob11 — Scan chain bit definition version 1
			corresponding to OCP NIC 3.0 version 1.0.
			All other and discussives shall be recoved
			All other encoding values shall be reserved.
2.2	RSVD	ob1	Byte 2 bits [2:7] are reserved. These bits shall
2.3	RSVD	ob1	default to the value of ob1. These bits may be used
2.4	RSVD	ob1	in future versions of the scan chain.
2.5	RSVD	ob1	
2.6	RSVD	ob1	
2.7	RSVD	ob1	
3.0	LINK_ACT4	ob1	Port 47 link/activity indication. Active low.
3.1	LINK_ACT5	ob1	
3.2	LINK_ACT6	ob1	obo – Link LED is illuminated on the host platform.
3.3	LINK_ACT ₇	ob1	ob1 – Link LED is not illuminated on the host
			platform.
			Steady = link is detected on the port.
			Blinking = activity is detected on the port. The
			blink rate should blink low for 50-500ms during
			activity periods.
			Off = the physical link is down or disabled
3.4	SPEED_A4	ob1	Port 47 speed A (max rate) indication. Active low.
3.5	SPEED_A ₅	ob1	
3.6	SPEED_A6	ob1	obo – Port is linked at maximum speed.
3.7	SPEED_A ₇	ob1	ob1 – Port is not linked at the maximum speed or
			no link is present.

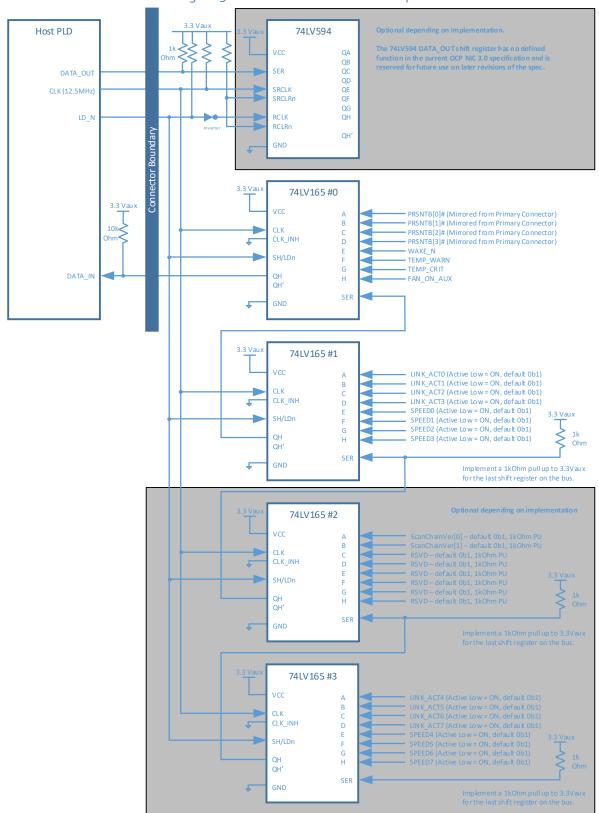


Figure 50: Scan Bus Connection Example

3.5.4 Primary Connector Miscellaneous Pins – OCP Bay (Primary Connector)

This section provides the miscellaneous pin assignments for the pins on the Primary Connector OCP Bay. The AC/DC specifications are defined in the PCle CEM Specification, Rev 4.0 and Section 3.12. An example connection diagram is shown in Figure XXX.

Table 24: Pin Descriptions – Miscellaneous 2

Signal Name	Pin#	Baseboard Direction	Signal Description
PWRBRK#	OCP_B2	Output, OD	Power break. Active low, open drain.
			This signal shall be pulled up to 3.3Vaux on the add-in card with a minimum of 95kOhm. The pull up on the baseboard shall be a stiffer resistance inorder to meet the timing specs as shown in the PCIe CEM Specification.
			When this signal is driven low by the baseboard, the Emergency Power Reduction State is requested. The add-in card shall move to a lower power consumption state.
NIC_PWR_GOOD	OCP_B1	Input	NIC Power Good. Active high. This signal is driven by the add-in card.
			When high, this signal shall indicate that all of the add-in card power rails are operating within nominal tolerances.
			When low, this signal shall indicate that the add-in card power supplies are not yet within nominal tolerances or are in a fault condition.
			For baseboards, this pin may be connected to the platform I/O hub as a NIC power health status indication. This signal shall be pulled down to ground with a 100kOhm resistor on the baseboard to prevent a false power good indication if no addin card is present.
			For add-in cards this signal shall indicate the add-in card power is "good". This signal may be implemented by a cascaded power good or a discrete power good monitor output.
GND	OCP_A6 OCP_A10 OCP_A13 OCP B10 OCP_B13	GND	Ground return; a total of 5 ground pins are on the OCP bay area.

3.6 PCIe Bifurcation Mechanism

OCP₃.o baseboards and add-in cards support multiple bifurcation combinations. Single socket baseboards with a single or multiple root ports, as well as a multi-socket baseboards with a single or multiple root ports are supported. The bifurcation mechanism also supports add-in cards with a single or multiple end points. These features are accomplished via I/O pins on the Primary and Secondary connector:

- PRSNTA#, PRSNTB[3:0]#. The PRSNTA# pin shall connect to the PRSNTB# pins as a hard coded value on the add-in card. The encoding of the PRSNTB[3:0]# pins allows the baseboard to determine the PCle Links available on the add-in card.
- BIF[3:0]#. The BIF# pin states shall be controlled by the baseboard to allow the baseboard to override the default end point bifurcation for silicon that support bifurcation. Additional combinatorial logic is required and is specific to the card silicon. The combinatorial logic is not covered in this specification. The BIF[3:0]# pins may optionally be hardcoded for baseboards that do not require a dynamic bifurcation override.

A high level bifurcation connection diagram is shown in Figure 51.

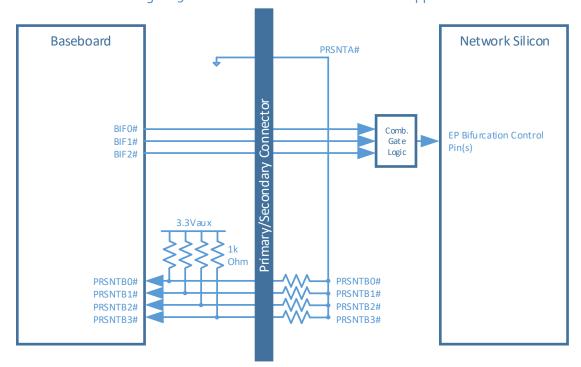


Figure 51: PCIe Bifurcation Pin Connections Support

3.6.1 PCIe Add-in Card to Baseboard Bifurcation Configuration (PRSNTA#, PRSNTB[3:0]#)

The add-in card to baseboard configuration mechanism consists of four dual use pins (PRSNTB[3:0]#) on the add-in card and a grounded PRSNTA# pin on the baseboard. These pins provide card presence detection as well as mechanism to notify the baseboard of the pre-defined PCle lane width capabilities. The PRSNTB[3:0]# pins are pulled up to 3.3Vaux on the baseboard and are active low signals. A state of obili indicates that no card is present in the system. Depending on the capabilities of the add-in card, a selection of PRSNTB[3:0]# signals may be strapped to the PRSNTA# signal and is pulled low by the baseboard. The encoding of the PRSTNB[3:0]# bits is shown in Table 25 for x16 and x8 PCle cards.

3.6.2 PCIe Baseboard to Add-in Card Bifurcation Configuration (BIF[2:0]#)

Three signals (BIF[2:0]#) are driven by the baseboard to notify requested bifurcation on the add-in card silicon. This allows the baseboard to set the lane configuration on the add-in card that supports multiple bifurcation options.

For example, a baseboard that has four separate hosts that support a 4 x4 connection, should appropriately drive the BIF[2:0]# pins per Table 25 and indicate to the add-in card silicon to setup a 4 x4 configuration.

As previously noted, the BIF[2:0]# signals require additional combinatorial logic to decode the BIF[2:0]# value and appropriately apply it to the end-point silicon. The combinatorial logic is not covered in the specification as its implementation is specific to the vendor silicon used.

3.6.3 PCIe Bifurcation Decoder

The combination of the PRSNTB[3:0]# and BIF[2:0]# pins deterministically sets the PCIe lane width for a given combination of baseboard and add-in cards. Table 25 shows the resulting number of PCIe links and its width for known combinations of baseboards and add-in cards.

*Note: The baseboard must disable PCIe lanes during the initialization phase if the number of detected PCIe links are greater than what is supported on the baseboard to prevent a nondeterministic solution. For example, if the baseboard only supports a 1 x16 connection, and the add-in card only supports a 2 x8 connection, the baseboard must disable PCIe lanes 8-15 to prevent any potential LTSSM issues during the discovery phase.

Table 25: PCle Bifurcation Decoder for x16 and x8 Card Widths

		Host		1 Host			1 Host	RSVD		2 Hosts		4 or 8 Hosts
		Host CPU Sockets	1Upstream Socket	1Upstream Socket	1 Upstream Socket		2 Upstream Sockets 4 Upstream Sockets	RSVD	BSVD	2 Upstream Sockets (1 Socket per Host)	4 Upstream Sockets (1 Socket per Host)	418 Upstream Sockets (1 Socket per Host)
Network Card - Supported PCk	Network Card - Supported PCle Configurations	Total PCle Links	1 Link (No Bifurcation)	1 or 2 Links	1, 2, or 4 Links	2 Links	4 Links	RSVD	RSVD	2 Links	4 Links	4 or 8 x2 links
		System Support	1x16, 1x8, 1x4, 1x2, 1x1	1x16, 1x8, 1x4, 1x2, 1x1	1x16,1x8,1x4,1x2,1x1	188, 184, 182, 181		RSVD	BSVD			
				2x8,2x4,2x2,2x1	2x8,2x4,2x2,2x1	2x8,2x4,2x2,2x1				2x8,2x4,2x2,2x1		
Minimum					4×4,4×2,4×1		4 x4, 4 x2, 4x1				4×4,4×2,4×1	4×2,4×1
Required		System Encoding	00090	00090	00090	00001	01090	00011	0P100	05101	05110	0b111
Card Short	x16 Cards	Add-in-Card Encoding			-		-					
. agille	0.00	-foroin	0 0 0]								
Not Present	Card Not Present	UBILITI	HOVU - Lard not present in the system	n the system	0,1	1.0	PF			1.0	P	4.0
98	180, 184, 182, 181	9	2	2	2	(Socket Donly)	(Socket 0 only)			(Host Donly)	(Host Donly)	(Host Donly)
	1x4,1x2,1x1	0b1 110	1,4	1×4	1,4	1,4	184	-	1	184	1,4	182
184						(Socket 0 only)	(Socket 0 only)			(Host 0 only)	(Host 0 only)	(Host 0 only)
501	182, 181	0b1 110	1,42	182	1×2	1x2 (Sooker Donly)	1x2 (Sooker Books)			1x2 (Hest Coole)	1x2 (Host Ooolu)	1x2 (Host 0 only)
30	<u> </u>	061110	12	×		1x1	181			181	181	181
Ξ						(Socket 0 only)	(Socket 0 only)			(Host 0 only)	(Host 0 only)	(Host 0 only)
1×8 Option B	1x8,1x4,1x2,1x1 1x8 Option B 2x4,2x2,2x1	0b1 101	1×8	1x8	1×8	1x8 (Socket 0 only)	2×4	ı	1	1x8 (Host 0 only)	2×4	2 x2 (Host 0 & 1 only)
2 x8 Option B	2x8,2x4,2x2,2x1 2x8 Dption B 4x4,4x2,4x1	0b1 101	1×8*	2 x8	2×8	2 x8	4×4		ı	2×8	4 84	2x2 (Host 0& 1only)
	lx4	0P1100	1x8	2×4	2×4	1x8	2×4		ı	188	2 ×4	4×2
1x8 Option D	2 x4, 1x8 Option D 4 x2 (First 8 lanes), 4 x1					(Socket 0 only)				(Host 0 only)		
1x16 Option D	1x16,1x8,1x4 2x8,2x4, 1x16 Option D 4x4,4x2 (First 8 lanes), 4x1	0b1 100	1x16	1×16	1816	2 48	4 84		1	2 %8	4×4	4 82
RSVD	RSVD	0b1 011	RSVD - The encoding of 0	b1011 is reserved due to in	RSVD - The encoding of 0b1011 is reserved due to insufficient spacing between PRSNTA and PRSNTB2 pin to provide positive card identification.	n PRSNTA and PRSNTB2	pin to provide positive card	Identifica	tion.			
2×4	2x4,2x2,2x1 1x4,1x2,1x1	051 010	1×4	284	2×4	1x4 (Socket 0 only)	2×4			1x4 (Host 0 only)	284	2×2 (Host 0& 1 only)
BSVD	RSVD for future x8 encoding 0b1001	051 001										
RSVD	ding	0P1 000										
1x16	1x16,1x8,1x4,1x2,1x1	050111	1×16	1×16	1×16	1x8 (Socket 0 only)	1x4 (Sooket 0 only)	1		1x8 (Host 0 only)	1x4 (Host 0 only)	1x2 (Host 0 only)
2 ×8 Option A		0b0 110	1×8.	2x8	2×8	2 x8	2x4 (Socket 0 & 2 only)		ı	2.48	2x4 (Host 0 & 2 only)	1x2 (Host 0 & 1only)
1×16 Option B	1x16,1x8,1x4,1x2,1x1 1x16 Dption B 2x8,2x4,2x2,2x1	0b0 101	1x16	1×16	1x16	2×8	2 x4 (Socket 0 & 2 only)	ı		2×8	2 x4 (Host 0 & 2 only)	2 x2 (Host 0 & 1 only)
1×16 Option C	1x16,1x8,1x4 2x8,2x4,2x2,2x1 1x16 Detion C. 4x4, 4x2, 4x1	0b0 100	1816	1×16	1816	2 n8	4×4	1	1	2.48	484	2x2 (Host 0 & Tonly)
. p. p	4×4,4×2,4×1	050 011	1×4*	2×4*	4×4	2x4 (FD 0 and 2 only)	4×4			2x4 (FD 0 and 2 colu)	4×4	4×2 (Host 0.8 Looki)
Г	RSVD	000010				1				(6)	,	-
		00001			1		1			1		
I												

3.6.4 Bifurcation Detection Flow

[Need input and clarification from system vendors]

The following detection flow shall be used to determine the resulting link count and lane width based on the baseboard and add-in card configurations.

- 1. The baseboard shall read the state of the PRSNTB[3:0]# pins. An add-in card is present in the system if the resulting value is not ob1111.
- 2. Firmware determines the add-in card PCIe lane width capabilities per Table 25 by reading the PRSNTB[3:0]# pins.
- 3. The baseboard reconfigures the PCIe bifurcation on its ports to match the highest common lane width and lowest common link count on the card.
- 4. For cases where the baseboard request a link count override (such as requesting a 4-host baseboard requesting 4 x4 operation on a supported card that would otherwise default to a 2 x8 case), the BIF[0:2]# pins shall be asserted as appropriate. Asserting the BIF[0:2]# pins assumes the add-in card supports the requested link override.
- 5. PERST# shall be deasserted after the >100ms window as defined by the PCIe specification. Refer to Section 3.12 for timing details.

3.6.5 PCIe Bifurcation Examples

For illustrative purposes, the following figures show several common bifurcation permutations.

Figure 52 illustrates a single host baseboard that supports x_16 with a single controller add-in card that also supports x_16 . The PRSTNB[3:0]# state is obo111. The BIF[2:0]# state is obo00 as there is no need to instruct the end-point network controller to a specific bifurcation. The PRSNTB encoding notifies the baseboard that this card is only capable of 1 x_16 . The single host baseboard determines that it is also capable of supporting 1 x_16 . The resulting link width is 1 x_16 .

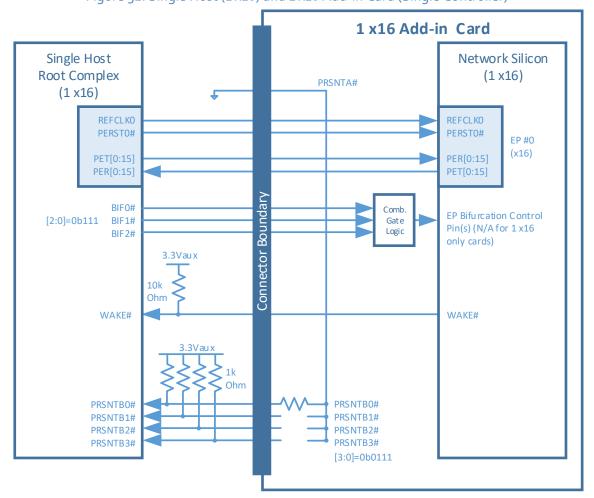


Figure 52: Single Host (1 x16) and 1 x16 Add-in Card (Single Controller)

Figure 53 illustrates a single host baseboard that supports 2 x8 with a single controller add-in card that also supports 2 x8. The PRSTNB[3:0]# state is obo110. The BIF[2:0]# state is ob111 as there is no need to instruct the end-point network controllers to a specific bifurcation. The PRSNTB encoding notifies the baseboard that this card is only capable of 2 x8. The single host baseboard determines that it is also capable of supporting 2 x8. The resulting link width is 2 x8.

Figure 53: Single Host (2 x8) and 2 x8 Add-in Card (Dual Controllers)

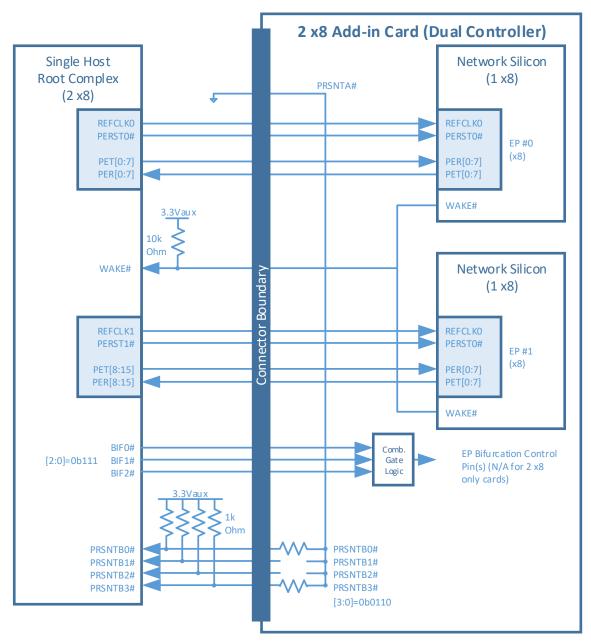


Figure 54 illustrates a four host baseboard that supports 4×4 with a single controller add-in card that supports 1×16 , 2×8 and 4×4 . The PRSTNB[3:0]# state is oboo11. The BIF[2:0]# state is ob101 as the end point network controller is forced to bifurcate to 4×4 . The PRSNTB encoding notifies the baseboard that this card is only capable of 1×16 , 2×8 and 4×4 . The four host baseboard determines that it is also capable of supporting 4×4 . The resulting link width is 4×4 .

Figure 54: Four Hosts (4 x4) and 4 x4 Add-in Card (Single Controller)

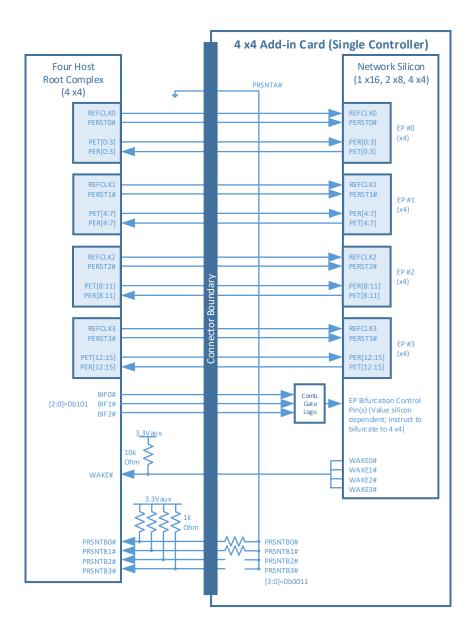


Figure 55 illustrates a four host baseboard that supports 4 x4 with a four controller add-in card that supports 4 x4. The PRSTNB[3:0]# state is oboo11. The BIF[2:0]# state is ob111 as there is no need to instruct the end-point network controllers to a specific bifurcation. The PRSNTB encoding notifies the baseboard that this card is only capable of 4 x4. The four host baseboard determines that it is also capable of supporting 4 x4. The resulting link width is 4 x4.

Figure 55: Four Hosts (4 x4) and 4 x4 Add-in Card (Four Controllers)

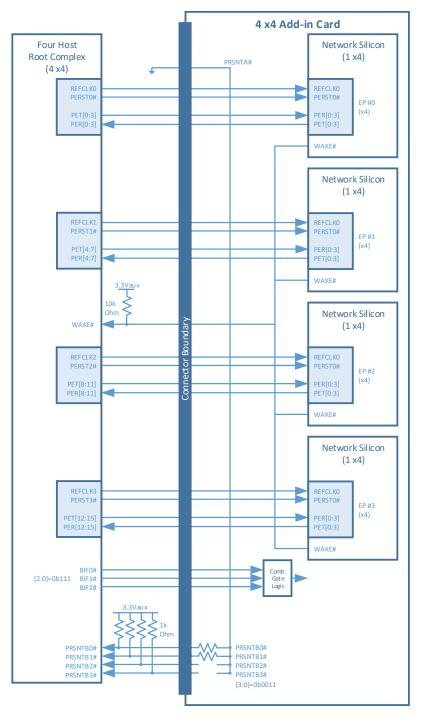


Figure 56 illustrates a single host baseboard that supports 1×16 with a dual controller add-in card that supports 2×8 . The PRSTNB[3:0]# state is obo110. The BIF[2:0]# state is ob111 as there is no need to instruct the end-point network controllers to a specific bifurcation. The PRSNTB encoding notifies the baseboard that this card is only capable of 2×8 . The four host baseboard determines that it is capable of 1x 16, but down shifts to 1 x8. The resulting link width is 1 x8 and only on endpoint o.

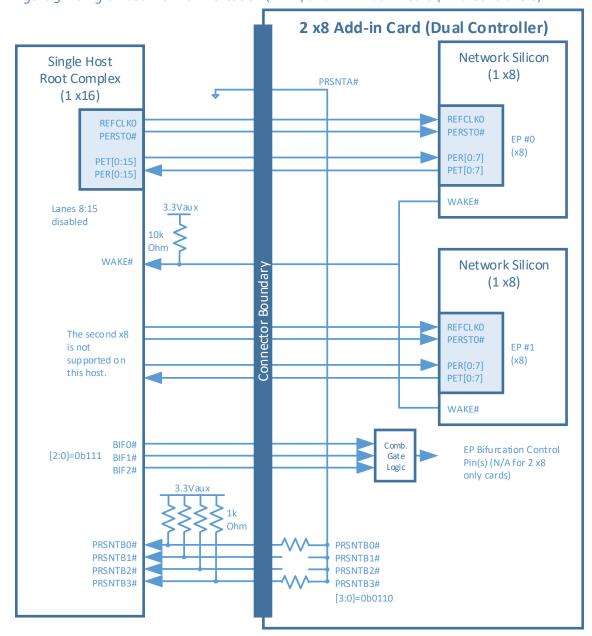


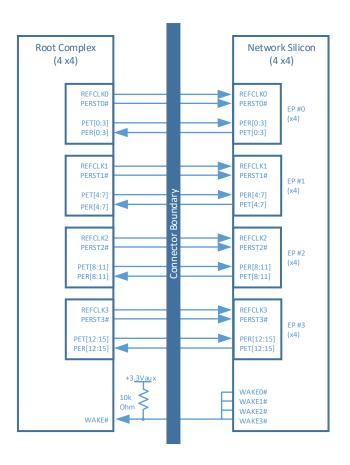
Figure 56: Single Host with no Bifurcation (1 x16) and 2 x8 Add-in Card (Two Controllers)

3.7 PCIe Clocking Topology

The OCP NIC 3.0 specification allows for up to four PCle REFCLKs on the Primary Connector and up to two PCle REFCLKs on the Secondary Connector. In general, the association of each REFCLK is based on the PCle Link number on a per connector basis and is shown in Table 26. Cards that implement both the Primary and Secondary connectors have a total of up to 6 REFCLKs.

REFCLK #	Description	Availability (Connector)
REFCLKo	REFCLK associated with Link o.	Primary and Secondary Connectors.
REFCLK1	REFCLK associated with Link 1.	Primary and Secondary Connectors.
REFCLK ₂	REFCLK associated with Link 2.	Primary Connector only.
REFCLK ₃	REFCLK associated with Link 3.	Primary Connector only.

Table 26: PCIe Clock Associations


For each add-in card, the following REFCLK connection rules must be followed:

- For a 1 x16 capable add-in card, REFCLKo shall be used for lanes [0:15].
- For a 2 x8 capable add-in card, REFCLKo shall be used for lanes [0:7] and REFCLK1 shall be used for lanes [8:15].
- For a 4 x4 capable add-in card, REFCLKo shall be used for lanes [0:3], REFCLK1 shall be used for lanes [4:7], REFCLK2 shall be used for lanes [8:11] and REFCLK3 shall be used for lanes [12:15]. Pins for REFCLK2 and REFCLK3 are described in Section 3.5.1 and are located on the 28-pin OCP bay.

Root Complex Network Silicon **Root Complex** Network Silicon (1 x16) (1 x16) (2 x8)(2 x8) REFCLKO REFCLKO REFCLKO Connector Boundar√ PERSTO# PERSTO# PERSTO# **Boundar**√ PER[0:15] PER[0:15] PET[0:15] PER[0:7 PET[0:7] REFCLK: REFCLK1 PERST1# PERST1# FP #1 PET[8:15] PER[8:15] PER[8:15] PET[8:15] WAKE# WAKEO# WAKE# WAKE1#

Figure 57: PCIe Interface Connections for 1 x16 and 2 x8 Add-in Cards

Figure 58: PCIe Interface Connections for a 4 x4 Add-in Card

3.8 PCIe Bifurcation Results and REFCLK Mapping

For the cases where the baseboard and add-in card bifurcation are permissible, this section enumerates all of the supported PCIe link, lane and REFCLK mappings for each supported configuration. The bifurcation decoder is shown in Section 3.6.3.

Table 27: Bifurcation for Single Host, Single Socket and Single Upstream Link (BIF[2:0]#=obooo)

홟	ot, Single upor	Single Host, Single Upstream Socket, One Upstream Link, no bifurcation	no bifurcation		1x16, 1x8, 1x4, 1x2, 1				ľ		-	}	ŀ	-		-							
Sard in	Min Suppor Card Card Short Modes Width Name	Supported Bifurcation Add-in-Card Modes Encoding PRSMTBI3:01#	Add-in-Card Encoding PRSNTB[3:0]#	Host	Upstream Devices	Upstream	BIF[2:0]	Resulting Link Lanc Lanc 2 Lanc 3 Lanc 5 Lanc 6 Lanc 7 Lanc 8 Lanc 19 Lanc 19	0	Lane 1	386.2		- 1	2	- F	<u>-</u>	8 Lane	6	10	<u> </u>	2 Lane 1	Lane 14	12
cla	Not Present	Card Not Present	0b1111		1 Upstream Socket	1Link	00000																
Г		1x8,1x4,1x2,1x1	0b1 110	1 Host	1 Upstream Socket	1Link	00000	1x8	Link 0,	⊢	—	⊢	⊢	⊢	Link O, Link O,	.0.							
	1×8								Lane 0	-	-	-	Lane 4 L	Lane 5 La	Lane 6 Lane								
	1×4	1x4,1x2,1x1	0P1 110	1 Host	1 Upstream Socket	1 Link	00090	1×4	Link 0. Lane 0	Link 0, L	Linko, Lane 2	Link 0, Lane 3						_					
	3	1x2,1x1	0P1 110	1 Host	1 Upstream Socket	1Link	00090	1x2	Link 0,	Link 0,													
	Ξ	1x1	0b1 110	1Host	1 Upstream Socket	1Link	00000	1x1	Link 0,														
, a	1x8 Option B	1x8,1x4,1x2,1x1	0b1 101	1 Host	1 Upstream Socket	1Link	00090	9x.	Link 0,	Link 0, L	Link 0, L	Link O, Li	Link O, Li	Link 0, Lir Lanc 5 La	Link O, Link O, Lane 6 Lane 7	0, 50							
	2 x8 Option B	2 x8,2 x4,2 x2,2 x1 2 x8 Detion B 4 x4,4 x2,4 x1	0b1 101	1 Host	1 Upstream Socket	1 Link	00000	1x8"	Link 0,	-	-	-	-	-	-	0, [0							
		1x8,1x4	061100	1 Host	1 Upstream Socket	1 Link		1x8	Link 0,	⊢	-	-	\vdash	-	\vdash	.0.							
og S	1x8 Option D	2 x4, 1x8 Option D 4 x2 (First 8 lanes), 4 x1					00000		Lane 0	Lane 1	Lane 2	Lane 3	Lane 4 L	lane 5	lane 6 Lane 7	- e		_	_				
		1x16,1x8,1x4	0P1100	1 Host	1 Upstream Socket	1Link		1×16	Link 0,	⊢	⊢	⊢	⊢	⊢	⊢	-	-	-	⊢	-	Link 0,		Link 0,
9	1x16 Option D	1x16 Option D 4 x4, 4 x2 (First 8 lance), 4 x1					00090		Lane 0	Lane 1	Lane 2	Lane 3	Lane 4	lane 5	Lane 6 Lane 7	e 7 Lane 8	E Pue 3	9 Lane 10	IO Lane 11	H Lane 12		Lane 14	
ĺ.	RSVD RSVD	RSVD	0b1 011	1 Host	1 Upstream Socket	1Link	00090																
	2 ×4	2 x4, 2 x2, 2 x1 1 x4, 1 x2, 1 x1	0b1 010	1 Host	1 Upstream Socket	1 Link	00090	1x4	Link 0, Lane 0	Link O, L	Link O, L Lane 2	Link 0, Lane 3											
RSVD	RSVD	RSVD for future x8 encoding	0b1 001	1 Host	1 Upstream Socket	1Link	00090																
٥	RSVD RSVD	RSVD for future x8 encoding	0b1 000	1 Host	1 Upstream Socket	1Link	00090																
	1×16	1x16,1x8,1x4,1x2,1x1	060111	1 Host	1 Upstream Socket	1 Link	00090	1×16	Link 0, Lane 0	Link 0, L		Link O, Li Lane 3 L	Link O, Li Lane 4 L		Link O, Link O, Lane 6 Lane 7		Link O, Link O, Lane 8 Lane 9	0, Link 0, 9 Lane 10	D, Link O, 10 Lane 11), Link 0, 11 Lane 12	Link 0, 2 Lane 13	Link 0, Lane 14	Link 0, Lane 15
	2 x8 Option A	2x8,2x4,2x2,2x1	000110	1 Host	1 Upstream Socket	1 Link	00090	1x8*	Link 0, Lane 0	Link 0, L	Link O, L	Link O, Li Lane 3 L	Link O, Li Lane 4 L	Link O, Lir Lane 5 La	Link O, Link O, Lane 6 Lane 7	 							
ů	1x16 Option B	1x16,1x8,1x4,1x2,1x1 1x16 Option B 2x8,2x4,2x2,2x1	060101	1 Host	1 Upstream Socket	1 Link	00090	1x16	Link 0, Lane 0	Link O, L	Link 0, L	Link O, Li Lane 3	Link O, Li Lane 4 L	Link O, Lin Lanc 5 La	Link 0, Link 0, Lane 6 Lane 7	r O, Link O, le 7	co, Linko,	O, Link O, 9 Lane 10	D, Link O, 10 Lane 11	o, Linko, 11 Lane 12	Linko, Lane 13	Link 0, Lane 14	Link 0, Lane 15
û	1x16 Option C	1x16,1x8,1x4 2x8,2x4,2x2,2x1 1x16 Option C 4x4,4x2,4x1	000 100	1 Host	1 Upstream Socket	1Link	00090	1×16	Link 0, Lane 0		_			_		_	_						
- Q	4×4	4x4,4x2,4x1	060 011	1 Host	1 Upstream Socket	1 Link	00090	1×4*	Link 0, Lane 0	Link O, L	Link 0, L Lane 2 L	Link 0, Lane 3											
ę	RSVD RSVD	RSVD		1 Host	1 Upstream Socket	1 Link	00090																
ę	RSVD RSVD	RSVD		1 Host	1 Upstream Socket	1 Link	00000																
RSVD RSVD	RSVD	RSVD	000000	1 Host	1 Upstream Socket	1Link	00090												_		_		

Table 28: Bifurcation for Single Host, Single Socket and Single/Dual Upstream Links (BIF[2:0]#=obooo)

		2	I								- r-			0	\$			I	T	ō	٠ پ		ō	5	0 ¥	2		Ī	
			1							+	LINK I.			O, Link O,				1		⊢	_	Link 1.	\vdash	=	0, Link 0,				-
		2								+	Lane 6			-	Lane 14			1		Link 0,	_	Lane 6		Lane 14	Link 0,				
											Lane 5				Lane 13					Link 0,	Lane 13	Lane 5	_	Lane 13	Link 0,				
		2	l							1	Lane 4			Link 0,	Lane 12					Link O,	Lane 12	Lane 4	Link 0,	Lane 12	Link 0, Land 15	1		ı	
	-		Ī							1	Lane 3			Link 0,	Lane #			T		Link O,	Lane 11	Lane 3	Link 0,	Lane 11	Link 0,		Link 2,	o anno	
			t							1	Lane 2			Link O,		ı		t		Link 0,	Lane 10	Lane 2	Link 0,	Lane 10	Link 0,		Link 2,	1	Ī
		2	t							+	Lane 1			-	Lane 9	l				⊢	+	Lane 1	H	Lane 9	Link 0,	_	Link 2, Lone 1	+	t
		0	l							+	Lane 0			-	Lane 8	l		+		-	+	Lane 0	\vdash	Lane 8 1	Link O, I		Link 2, L	+	t
	-	Lane 3 Lane 6 Lane 1 Lane 6 Lane 10 Lane 11 Lane 12 Lane 15 Lane 14	:	Link 0, Lane 7					Link 0,	+	Lane 7 L	Link 0,	Lane 7	⊢	Lane 7	l		\dagger		⊢	+	Lane 7	\vdash	Lane 7 L	Link O, L	_		H	H
	-		٠	Link O, Li Lanc 6 Li					⊢	+	Lane 6 Li	⊢	Lane 6 Li	⊢	Lane 6	l		+		⊢	+	Lanc 6 Li	⊢	Lane 6 Li	Link 0, Li			H	H
	-		٠	Link O, Lin Lane 5 La					⊢	+	Lane 5 La	Н	Lane 5 La	⊢	Lane 5 La	H		+	t	⊢	Lane 5 La		⊢	Lane 5 La	Link O, Li			H	H
		:	٠	Link O, Lin Lanc 4 La					⊢	+	Link U, Lin	⊢		⊢	Lane 4 La	H		+	+	⊢	+		⊢	Lane 4 La	Link O, Lin	_		H	H
		2	H		ő	00			⊢	+		⊢	.3 Lane 4	⊢		ŀ	6 9	2	+	⊢	+		⊢				0 9		H
		2	H	0, Link 0, 2 Lane 3	-	2 Lane 3			⊢	+	2 Lane 3	O, Link O,	2 Lane 3	⊢	2 Lane 3	H	o, Linko,	+	+	⊢	+	C Lane 3	⊢	=	0, Link 0,	_	0, Link 0,	+	
	!		H), Link 0,	1 Lane 2			\vdash	+	Lane 2	, Link 0,	1 Lane 2	⊢	1 Lane 2	L	\vdash	Lanca), Link 0,	+	Lane 2	⊢	1 Lane 2), Link 0,), Link O,	۰	H
			H	Lane 1	Link 0,	Lane	Link 0,		⊢	+	Lane 1	Link 0,	Lane 1	⊢	Lane 1	Ļ	Link 0,	+	-	Link 0,	+	Lane	⊢	Lane 1	Link 0,		Link 0,	+	
			1	Lane 0	Link 0,	Lone 0	Link 0, Lane 0	Link 0, Lane 0	Link 0,	Lane 0	Lane 0	Link O,	Lane 0	Link O,	Lane		Linko,	rane		Link 0,	Lane 0	Lanco	Link 0,	Lane 0	Link 0,	, , , ,	Link 0,	-	
		Resulting Link Lane U Lane 2 Lane 3 Lane 4		1x8	1×4		1x2	<u>*</u>	0 × L	0	o N	1x8		1×16			1×4			1×16		o N	1x16		1x16		2×4.		
	BIF[2:0]	OPOU		00090	00000	00000	00090	00090	00090		00090		00090		00000	00090	00090	000 10	00090	00000	2000	00090	00000	nnan	00000	00000	00090	00000	00090
	Upstream	1 or 2 links		1 or 2 Links	1 or 2 Links		1 or 2 Links	1 or 2 Links	1 or 2 Links		l of & Links	1 or 2 Links		1 or 2 Links		1 or 2 Links	1 or 2 Links		1 or 2 Links	1 or 2 Links		1 or 2 Links	1 or 2 Links		1 or 2 Links		1 or 2 Links	1 or 2 Links	1 or 2 Links
4, 1×2, 1 ×2, 2×1		Socket		Socket	Socket		Socket	Socket	Socket		20 CKet	Socket		Socket		Socket	Socket		Socket	Socket	:	Socket	Socket		Socket		Socket	Socket	Socket
1x16, 1x8, 1x4, 1x2, 1 2x8, 2x4, 2x2, 2x1		Upstream Devices		1 Upstream Socket	1 Upstream Socket		1 Upstream Socket	1 Upstream Socket	1 Upstream Socket		I Uporream socker	1 Upstream Socket		1 Upstream Socket		1 Upstream Socket	1 Upstream Socket		1 Upstream socket	1 Upstream Socket		1 Upotresm socket	1 Upstream Socket		1 Upstream Socket		1 Upstream Socket	1 Upstream Socket	1 Upstream Socket
* «		1 Hoet	H	1 Host	1 Host 1		1 Host 1	1 Host	1 Host 1	+	1000	1 Host 1		Host		1 Host 1	_	4	1 Host	L	4	10021	1 Host 1		1 Host 1		1 Host 1	1 Host 1	╄
		+		=	÷		÷	÷	÷		=	÷		Ξ		=	∓		= =	Ξ	,	=	Ξ		=		=	=	Ξ
m Links	Add-in-Card Encoding	PHONI DIO		0P1110	0P1110		0P1 110	0P1 110	0b1101	2000	1	0P1100		0P1100		0b1 011	0b1 010	1000	000100	000111	0.000	01 000	000101		001090		000011	000000	00000
Single Host, Single Upstream Socket, One or Two Upstream Links	ted Bifurcation	Card Not Procest		1x8,1x4,1x2,1x1	1x4,1x2,1x1		1x2,1x1	1x1	Ξ		- X		2 x4, 1x8 Option D 4 x2 (First 8 lanes), 4 x1	1×4	2x8,2x4, 1x16 Option D 4x4,4x2 (First 8 lance),4x1		2 x4, 2 x2, 2 x1	1.X4, 1.X2, 1.X1	BSVD for future x8 encoding 0b1001			6 X0, 6 X4, 6 X5, 6 X1	1×1	1x16 Option B 2x8, 2x4, 2x2, 2x1	1x16,1x8,1x4		4 x4, 4 x2, 4 x1	RSVD	
ingle Upstr	Min Suppor	cont	ш	1x8		1×4	1x2	14		1x8 Option B 2x4, 2x2, 2x1	2 x8 Option B 4 x4, 4 x2, 4 x1		1x8 Option D		1x16 Option D	RSVD RSVD	Ι,	200 00 00 00	Ī		1×16	2 x8 Option A		1x16 Option B		1x16 Option C 4x4, 4x2, 4x1	y^ y		
ij																						_							1

Table 29: Bifurcation for Single Host, Single Socket and Single/Dual/Quad Upstream Links (BIF[2:0]#=obooo)

			Lane 9 Lane 10 Lane 11 Lane 12 Lane 13 Lane 14 Lane 15										T, Link T, Link T,				Link 0,	13 Lane 14 Lane 15						0, Link 0, Link 0,	Link 1,	5 Lane 6 Lane 7	Link 0,	Lane 14	U, Link U, Link U, 13 Lane 14 Lane 15	3, Link3, Link3,	Lane 2			
			Lane 12 Lane									+	Link 1, Link 1,	+		\dashv		Lane 12 Lane 13						Link O, Link O,	-	Lane 4 Lane 5		+	Lane 12 Lane 13	Link 3, Link 3,	_			
			t 10 Lane 11									+	Link 1, Link 1,	+		_	Link O, Link O,	e 10 Lane 11						Link O, Link O,	_	Lane 2 Lane 3		4	Lane 10 Lane 11	+	Lane 2 Lane 3			
			Lane 9 Lan									+	Link 1, Lin	+	_	\dashv	_	Lane 9 Lan						Link 0, Lin	+	Lane 1 Lan		+	Lane 9	Link 2, Link				
			Lane 7 Lane 8			7					· 0	+	Link)	۰	-	\dashv		7 Lane 8		1	0			0, Linko,	+			+	U. Link U.	Н	3 Lane 0			
			Lane 6 Lane		Link 0, Link 0.	_					_	+	Link O, Link O,	F		\dashv		Lane 6 Lane 7	l	Link 1, Link 1,				Link O, Link O,	╀	_	-	+	Lanc 6 Lane 7	Link 1, Link 1,	Lane 2 Lane 3			
			Lane 5		Link O. L	_					_	+	Link U.	+	-	\dashv		Lane 5		Link 1, L	-			Linko, L	╀	_	H	+	Lane 5	Link 1,				
			3 Lane 4		O, Link O,	_	of S	20	_			+	J. Link U.	+		\dashv		3 Lane 4	ļ	D, Link 1,				o, Linko,	+	3 Lane 4	-	+	C Link C	D, Link 1,	_			
			ne 2 Lane		Link 0, Link 0,	_	Link O, Link O,	Lane Z Lane			_	+	Link U, Link U,	+		\dashv	_	Lane 2 Lane 3		Link O, Link O,	=			Link O, Link O,	+	Lane 2 Lane 3	⊢	+	Lane 2 Lane 3	Link O, Link O,	_			
			Lane 1		Link O.	-		+	Link 0, Lane 1		_	+	Link U.	٠	-	\dashv		Lane 1		Link O, L	=			Linko,	+	_	\vdash	+	Lane 1	Link 0, L	_			
			k Lane 0		Link 0.	Lane 0	Link 0,	Lane U	Link 0, Lane 0	Link 0, Lane 0	Link O,	Lane U	Link U.	Link 0,	Lane 0		Link O,	Lane 0		Link 0,	Lane 0			Link 0,	Link 0,	Lane 0	Link 0,	Lane 0	Lane 0	Link 0,	Lane 0			
			Resulting Link Lane 0 Lane 1 Lane 2 Lane 3 Lane 4		1x8		1×4		dx.	1×1	1x8		10 × N	1x8			1×16			2 x4				1×16	2 x8		1×16		Ě	4 x 4				
			BIF[2:0]	000000	L	00000	00000		00000	00090	00090		00000		00090			0000	00000	╙			00090 2	00000	┸	00090	00000	4	00000	00000			00000 s	ı
			Upstream	1, 2, or 4 Links	1, 2, or 4 Links		1, 2, or 4 Links		1, 2, or 4 Links	1, 2, or 4 Links	1, 2, or 4 Links		1, 2, or 4 Links	1, 2, or 4 Links			1, 2, or 4 Links		1.2. or 4 Links	1, 2, or 4 Links		1, 2, or 4 Links	1, 2, or 4 Links	1, 2, or 4 Links	1, 2, or 4 Links		1, 2, or 4 Links		1, 2, or 4 Links	1, 2, or 4 Links		1, 2, or 4 Links	1, 2, or 4 Links	
1x16,1x8,1x4,1x2,1	4 x4, 4 x2, 4 x1		Upstream Devices	1 Upstream Socket	1 Upstream Socket		1 Upstream Socket		1 Upstream Socket	1 Upstream Socket	1 Upstream Socket		1 Upstream Socket	1 Upstream Socket			1 Upstream Socket		1 Upstream Socket	1 Upstream Socket		1 Upstream Socket	1 Upstream Socket	1 Upstream Socket	1 Upstream Socket		1 Upstream Socket		1 Upstream Socket	1 Upstream Socket		1 Upstream Socket	1 Upstream Socket	
			Host	Н	1 Hoot		1 Host		1Host	1Host	1 Host		14051	1Host			1Host		1 Host	1Host		1 Host	1 Host	1 Host	1 Host		1 Host		THOSE	1Host		1Host	1 Host	
	Jpetream Links	Add-in-Care	Escoding PRSNTB[3:0]#	061111	0b1110		0P1 110		0P1110	0b1 110	0b1 101		10E1101	001100			0P1100		061011	061010		0b1 001	0b1 000	050111	00110		000101		9	000011		000000	0P0 001	
	Single Host, Single Upstream Socket, One, Two or Four Upstream Links	Supported Bifurcation Add-in-Card	Modes	Card Not Present	1x8,1x4,1x2,1x1		1x4,1x2,1x1		1x2,1x1	1x1	1x8,1x4,1x2,1x1	1x8 Uption B 2 x4, 2 x2, 2 x1	2 XX 2 XX, 2 XX, 2 XI	1x8,1x4	2×4,	1x8 Option D 4x2 (First 8 lanes), 4x1	1x16,1x8,1x4	2 x 8, 2 x 4, 1 x 16 Option D 4 x 4, 4 x 2 (First 8 lance) 4 x 1	BSVD	2 x4, 2 x2, 2 x1	1x4,1x2,1x1	RSVD for future x8 encoding 0b1001	RSVD for future x8 encoding	1x16,1x8,1x4,1x2,1x1	2x8,2x4,2x2,2x1		1x16,1x8,1x4,1x2,1x1	1x16 Option B 2x8, 2x4, 2x2, 2x1	1x1b, 1x6, 1x4 2x6, 2x4, 2x2, 2x1 1x15 Option C 4x4, 4x2, 4x1	4 x4, 4 x2, 4 x1		RSVD	RSVD	
	tost, Single Upsti		Card Card Short Modes	Not Present		1x8	,	1×4	1x2	1×1		1x8 Uption B	2 v8 Option B	2 0000		1x8 Option D		1 v16 Option D			2 ×4	RSVD RSVD	RSVD RSVD	ap t	2	2 x8 Option A		1x16 Option B	1x16 Option C		4 ×4		RSVD RSVD	l
	Single L	ź	Card	ç _a		20	8	S.	ပ္လ	8	8	S	Ş	2		80		Q P	BSVD		2	BSVD	BSVD	ç	2	ş		ပ္	ĝ		ş	RSVD	RSVD	

Table 30: Bifurcation for Single Host, Dual Sockets and Dual Upstream Links (BIF[2:0]#=oboo1)

Single	Host, Two Upstro	Single Host, Two Upstream Sockets, Two Upstream Links	,,		1x8,1x4,1x2,1x1 2x8,2x4,2x2,2x1																		
i S	Min Suppor Card Card Short Modes Vidth Name	ted Bifurcation	Add-in-Card Encoding PRSNTB[3:0]#	Host	Upstream Devices	Upstream	BIF[2:0]	Resulting Link	1386 0	Lane	Lane 2	Lane 0 Lane 1 Lane 2 Lane 3 Lane 4		2	ت و		2	6 9	Lane 5 Lane 6 Lane 7 Lane 8 Lane 10 Lane 11 Lane 12 Lane 13 Lane 14 Lane 15	± 5	2 Lane 1	Lage	-
eļa	Not Present	Card Not Present	0b1 111	1 Host	2 Upstream Sockets	2 Links	00001																
ပ္လ		1x8,1x4,1x2,1x1	0P1110	1 Host	2 Upstream Sockets	2 Links	10090	1x8 (Socket 0 only)	Link 0, Lane 0	Link 0, Lane 1	Link 0,	Link 0,	Link 0,	Link O, L	Link O, Li	Link 0, Lane 7							
S	1×4	1x4,1x2,1x1	061110	1 Host	2 Upstream Sockets	2 Links	00001	1x4 (Socket 0 only)	Link 0, Lane 0	Link 0, Lane 1	_												
S	1×2	1x2,1x1	061110	1Host	2 Upstream Sockets	2 Links	00001	1x2 (Socket 0 only)	Link 0, Lane 0	Link 0, Lane 1													
S	1×1	1x1	0b1 110	1 Host	2 Upstream Sockets	2 Links	00001	1x1 (Socket 0 only)	Link 0, Lane 0														
S	1x8 Option B	1x8,1x4,1x2,1x1 1x8 Option B 2x4,2x2,2x1	0b1 101	1Host	2 Upstream Sockets	2 Links	00001	1x8 (Socket 0 only)	Link 0, Lane 0	Link 0, Lane 1	Link 0, Lane 2	Link 0, Lane 3	Link 0, Lane 4	Link O, L Lane 5 L	Link O, Li Lane 6 L	Link 0, Lane 7							
ĝ	2 x8 Option B	2x8,2x4,2x2,2x1 2x8 Option B 4x4,4x2,4x1	0b1 101	1 Host	2 Upstream Sockets	2 Links	00001	2 x8	Link 0, Lane 0	Link 0, Lane 1	Link 0, Lane 2	Link 0, Lane 3	Link 0, Lane 4	Link O, L	Link O, Li Lanc 6 L	Link O, Li Lane 7 Ls	Link 1, Li Lane 0 Ls	Link 1, Lir Lane 1 La	Link 1, Link 1, Lane 2 Lane 3	1, Link 1,	Link 1,	Link 1, Lane 6	Link 1, Lane 7
S	1x8 Option D	1x8,1x4 2x4, 1x8 Option D 4x2 (First 8 lance), 4x1	0b1100	1Host	2 Upotream Sockets	2 Links	10090	1x8 (Socket 0 only)	Link 0, Lane 0	Link 0, Lane 1	Link 0, Lane 2	Link 0, Lane 3		Link O, L Lane 5 L		Link 0, Lane 7							
5		1x16,1x8,1x4 2x8,2x4, 1x16 Option D 4x4,4x2 (First 8 lancs),4x1	0b1 100	1Host	2 Upstream Sockets	2 Links	10090	2 x8	Link 0, Lane 0	Link 0, Lane 1	Link 0, Lane 2	Link 0, Lane 3	Link 0, Lane 4	Link O, L Lane 5 L	Link O, Li Lanc 6 L	Link O, Li Lane 7 La	Link 1, Li Lane 0 La	Link 1, Lir Lane 1 La	Link1, Link1, Lane 2 Lane 3	1, Link 1,	Link 1,	Link 1, Lane 6	Link 1, Lane 7
RSVD	Ι_	RSVD	0b1 011	1 Host	2 Upstream Sockets	2 Links	00001																
S	2 x4	2 x4, 2 x2, 2 x1 1 x4, 1 x2, 1 x1	061 010	1 Host	2 Upstream Sockets	2 Links	00001	1x4 (Socket 0 only)	Link 0, Lane 0	Link 0, Lane 1	Link 0, Lane 2	Link 0, Lane 3											
BSVD BSVD	RSVD RSVD	RSVD for future x8 encoding 0b1001	061 001	1 Host	2 Upotream Sockets	2 Links	00001								$^{+}$		+			\parallel	1		
ą	1x16	1x16,1x8,1x4,1x2,1x1	060111	1 Host	2 Upstream Sockets	2 Links	009001	1x8 (Socket 0 only)	Link O, Lane O	Link 0, Lane 1	Link 0, Lane 2	Link 0, Lane 3	Link 0,	Link O, L	Link O, Li Lanc 6 L	Link 0, Lane 7							
ą	2 x8 Option A	2 x8, 2 x4, 2 x2, 2 x1	0F0 110	1 Host	2 Upstream Sockets	2 Links	00001	2 x8	Link 0, Lane 0	Link 0, Lane 1	Link 0, Lane 2	Link 0, Lane 3	Link 0, Lane 4	Link O, L Lane 5 L	Link O, Li Lane 6 L	Link O, Li Lane 7 Le	Link 1, Li Lane 0 La	Link 1, Lir Lane 1 Lar	Link 1, Link 1, Lane 2 Lane 3	1, Link1,	Link 1,	Link 1, Lane 6	Link 1, Lane 7
ą	1x16 Option E	1x16,1x8,1x4,1x2,1x1 1x16 Option B 2x8,2x4,2x2,2x1	050 101	1 Host	2 Upstream Sockets	2 Links	00001	2 x8	Link 0, Lane 0	Link 0, Lane 1	Link 0, Lane 2	Link 0, Lane 3	Link 0, Lane 4	Link O, L Lane 5 L	Link O, Li Lane 6 L	Link O, Li Lane 7 Le	Link 1, Li Lane 0 La	Link 1, Lir Lane 1 Lar	Link 1, Link 1, Lane 2 Lane 3	1, Link 1,	Link1,	Link 1, Lane 6	Link 1, Lane 7
Ů,	1x16 Option C	1xf6,1x8,1x4 2x8,2x4,2x2,2x1 1xf6 Option C 4x4,4x2,4x1	0b0 100	1 Host	2 Upstream Sockets	2 Links	00001	2 x8	Link 0, Lane 0	Link 0, Lane 1	Link 0, Lane 2	Link 0, Lane 3	Link 0, Lane 4	Link O, L	Link O, Li Lanc 6 L	Link O, Li Lane 7 Le	Link 1, Li Lane 0 La	Link 1, Lir Lane 1 Lar	Link 1, Link 1, Lanc 2 Lane 3	1, Link 1, 3 Lane 4	Link 1,	Link 1, Lane 6	Link 1, Lane 7
4	4 ×4	4 x 4, 4 x 2, 4 x 1	050 011	1 Host	2 Upotream Sockets	2 Links	00001	2 x4 (EP 0 and 2 only)	Link O, Lane O	Link 0, Lane 1	Link 0, Lane 2	Link 0, Lane 3				i i	Link 2, Lin Lane 0 La	Link 2, Lin Lane 1 Lar	Link 2, Link 2, Lane 2 Lane 3	9 °			
RSVD	RSVD RSVD	RSVD	000000	1 Host	2 Upotream Sockets	2 Links	0P001																
BSVD	RSVD RSVD	Rsvo	00001	1 Host	2 Upotream Sockets	2 Links	00001		Ì				1	1		+	+	1	+	+	1		
Hove	HSVD HSVD	HSVD	nennen	1 Host	2 Upstream Sockets	ZLINKS	nppoi																

Table 31: Bifurcation for Single Host, Four Sockets and Dual Upstream Links (BIF[2:0]#=obo10)

Table 32: Bifurcation for Dual Host, Dual Sockets and Dual Upstream Links (BIF[2:0]#=ob101)

	휣	et, Two Upstre	Dual Host, Two Upstream Sockets, Two Upstream Links			2x8,2x4,2x2,2x1																		
15. 14. 14. 11.	4 2 8	Card Short	ted Bifurcation		Host			BIF[2:0]	Resulting Link	0 200	1365	2 346 2	Lane 3	7	200			8 2	- Fa	5 5 5	-	Lane 13	Lage 14	
14.1.1.2.1.11 10.1110 28-04 24-parcena Societa 21-bias 19-05 19-		Not Present			2 Host		2 Links	0b101																
141-12-11 Ortino 2000		- 1 - 0 - 1		0b1 110	2 Host		2 Links	10140	1x8 (Host 0 only)	Link 0, Lane 0	-	-	_	\vdash	_	-	k 0.							
121 131		1×4	1x4,1x2,1x1	061110	2 Host	2 Upstream Sockets	2 Links	05101	1x4 (Host 0 only)	Link 0, Lane 0	-	\vdash			-									
147 147		1x2	1x2,1x1	061110	2 Host	2 Upstream Sockets	2 Links	05101	1x2 (Host 0 only)	Link 0, Lane 0	Link 0, Lane 1													
1.00 2.4.5.2.2.2.2 2.10		1×1	121	061110	2 Host	2 Upstream Sockets	2 Links	05101		Link 0, Lane 0														
2.65.24.22.2.1		1x8 Option B	1x8,1x4,1x2,1x1 3 2x4,2x2,2x1	0b1 101	2 Host	2 Upstream Sockets	2 Links	06101		Link 0, Lane 0			_	_			.k 0, ne 7							
1.45, 1.44 1.46 1		2 x8 Option E	2x6,2x4,2x2,2x1 5 4x4,4x2,4x1	0b1 101	2 Host	2 Upstream Sockets	2 Links	05101	2 x8	Link 0, Lane 0		_	_	_		_					_	_	Link 1, Lane 6	Link 1, Lane 7
165 102 103 104 105 10		1x8 Option D	1x8,1x4 2x4, 3x4, 4x2 (First 8 lanes), 4x1	0b1100	2 Host	2 Upstream Sockets	2 Links	05101	1x8 (Host 0 only)	Link 0, Lane 0	Link 0, Lane 1						ne 7							
R5570 Part 2 Part 3 Part 2 Part 3 Pa		1x16 Option D	1x16,1x8,1x4 2x8,2x4, 0 4x4,4x2 (First 8 lancs),4x1	0b1100	2 Host	2 Upstream Sockets	2 Links	05101	2 x 8	Link 0, Lane 0													Link 1, Lane 6	Link 1, Lane 7
2.45.12.141 2.45.12.244 2.45.12.444	0	RSVD	RSVD	0b1 011	2 Host	2 Upstream Sockets	2 Links	06101							H									
RSYOTO for theure & second Dotto 2 Hours 2 Hours	l		2x4, 2x2, 2x1 1x4, 1x2, 1x1	0b1 010	2 Host	2 Upstream Sockets	2 Links	05101	1x4 (Host 0 only)	Link 0, Lane 0	_	_	Link 0, Lane 3											
Second Company	00		BSVD for future x8 encoding	061 001	2 Host	2 Upstream Sockets	2 Links	05101																
2.02 2.42 2.2.2.2.1 Obtion 2 Feet 2 Upstream Socket 2 Links Obtion 2 Feet 2 Upstream Socket 2 Feet 2 Upstream Sock		95.4	1x16, 1x8, 1x4, 1x2, 1x1		2 Host	2 Upstream Sockets	2 Links	06101	1x8	Link 0,	Link 0,	-	-	-	-	-	0 %							
1451 1454 1451 1451 1451 1451	1	2 x8 Option A		000110	2 Host	2 Upstream Sockets	2 Links	05101	2x8	Link 0,	Link 0, Lane 1	+	-	+-	-	-		-	-	-	-	Link 1, Lane 5	Link 1, Lane 6	Link 1, Lane 7
165,1544 20,000 2 Heat 2 Upstream Sockete		1x16 Option E		060101	2 Host	2 Upstream Sockets	2 Links	05101	2 x8	Link 0, Lane 0	\vdash	_	-		-	_			\vdash	-	\vdash		Link 1, Lane 6	Link 1, Lane 7
4 4.54,472,41 0b0011 2 Heat 2 Upstream Sockets 2 Links 0b101 Link 0, L		1x16 Option C	1x16,1x8,1x4 2x8,2x4,2x2,2x1 C 4x4,4x2,4x1	000100	2 Host	2 Upstream Sockets	2 Links	05101	2 x 8	Link 0, Lane 0	Link 0, Lane 1	Link 0, Lane 2											Link 1, Lane 6	Link 1, Lane 7
RSVD 0b.0010 2 Host 2 Upstream Sockets 2 Links RSVD 0b.0001 2 Host 2 Upstream Sockets 2 Links RSVD 0b.0001 2 Host 2 Upstream Sockets 2 Links RSVD 0b.0001 2 Host 2 Upstream Sockets 2 Links RSVD 0b.0001 2 Host 2 Upstream Sockets 2 Links RSVD 0b.0001 2 Host 2 Upstream Sockets 2 Links RSVD 0b.0001 2 Host 2 Upstream Sockets 2 Ups	ı	4×4	4 x4, 4 x2, 4 x1	060 011	2 Host	2 Upstream Sockets	2 Links	05101		Link 0, Lane 0			Link 0, Lane 3				La Li							
RSVD 0b0001 2 Host 2 Upstream Sockets 2 Links	9	RSVD		050 010	2 Host		2 Links	0b101																
	9	RSVD		00000	2 Host		2 Links	0b101							+	+	+	+	+	+	+			

Table 33: Bifurcation for Quad Host, Quad Sockets and Quad Upstream Links (BIF[2:0]#=ob110)

. T 1			4 X4, 4 X2, 4 XI				-	ŀ						ŀ							
240 Control Mark 1-22, 1-11 (4 144, 1-22, 1-11 (2 152, 1-12 (3 152, 1-12 (4 152, 1-12 (5 152,	ing ing sr3:01# Host		Upstream Devices	Upstream	BIF[2:0]	Resulting link Jane 0 Jane 2 Jane 3 Jane 4 Jane 5 Jane 6	10000	-	2 200	9		- 5	100	2		-	1967	1386 12	130	130	130
156 156, 154, 152, 171 154 152, 171 152 152, 172, 171 151 150 Delice B 2.42, 2.22 21 2.80 Delice B 2.44, 4.2, 4.1 1.80 Delice B 2.44, 4.2, 2.1 2.80 Delice B 4.44, 4.2, 4.1 1.80 Delice B 4.44, 4.2, 4.1 1.80 Delice B 4.44, 4.2, 2.1 1.80 Delice B 4.44, 4.2, 2.1 1.80 Delice B 4.44, 2.2, 2.1 1.80 Delice B 4.44, 2.2, 2.1 1.80 Delice B 4.44, 2.2, 2.2 1.80 Delice B 4.44, 2.4, 2.2, 2.2 1.80 Delice B 4.44, 2.4, 2.2 1.80 Delice B 4.44, 2.4, 2.2 1.80 Delice B 4.44, 2.4, 2.4 1.80 Delice B 4.44, 2.4 1.	۰	-	4 Upstream Sockets	4 Links	0b110																
1146 1142,111 112 1141 1142,111 1141 1140 poison B 124,212,211 1140 poison B 124,112,111	4 Host	_	4 Upstream Sockets	4 Links	01110	1x4 (Host 0 only)	Link 0, L	Link O, L	Link O, Lin	Link 0, Lane 3											
11.2 1.2. 1.2. 1.1.1 1.1.1 1.1.5 Option B 12.4.2.2.2.1.1 2.1.5 Option B 12.4.2.2.2.1.1 2.1.5 Option B 12.4.4.4.2.2.1.1 1.1.5 Option B 12.4.4.4.2.2.1.1 1.1.5 Option B 12.4.4.2.2.1.1 1.1.5 Option B 12.4.2.2.2.1 1.1.5 Option B 14.4.2.2.2.1.1 1.1.5 Option B 14.4.2.2.2.1.1 2.2.4 1.2.2.2.1.1 2.2.4 1.2.2.2.1.1 2.2.5 2.4.1.2.2.2.1 2.2.5 2.4.2.2.2.2.1	4 Host	-	4 Upstream Sockets	4 Links	0110		\vdash		_	Link 0, Lane 3											
14 140 141 141 141 140 140	4 Host	-	4 Upstream Sockets	4 Links	06110	1x2 (Host 0 only)	\vdash														
146 Delicon B 244, 222, 214 2 246 Delicon B 244, 222, 214 2 246 Delicon B 444, 42, 42, 42, 42, 42, 43, 42, 43, 42, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43	4 Host		4 Upstream Sockets	4 Links	01110	1x1 (Host 0 only)	Link 0, Lane 0														
2.00 Option B 43.0.2 4.4 2.2 2.1 110 Option D 4.2 (First Bisse), 4:1 110 Option D 4.0.2 2.1 110 ESVD FRYID ONTOWER 6 monday D 52.0 The 1.2. 1.1 110 ESVD FRYID ONTOWER 6 monday D 52.0 Option A 10.0.2 4.1 110 1.00 1.00 1.00 1.00 1.00 1.00 1.0	4 Host		4 Upstream Sockets	4 Links	05110	2 x4	Linko, L Lane 0	Link O, L	Link O, Lin Lane 2 La	Link O, Lin Lane 3 La	Link 1, Lin Lane 0 Lan	Link 1, Link 1, Lane 1 Lane 2	Link 1, Link 1, Lane 2 Lane 3	<u>- 0</u>							
146 Option D 43.2 (File 8 bines), 43.1 146 Option D 43.2 (File 8 bines), 43.1 146 Option D 43.4 (a.2 File 8 bines), 43.1 147 O REVID OF TAIL 22.2 (a.1 File 8 bines), 43.1 147 O REVID OF TAIL 23.1 147 O REVID OF TAIL 23.2 (a.1 File 8 bines), 43.1 147 O REVID OF TAIL 23.1 147 O Option A 10.5 (a.4 a.2.2 (a.1 file 1.0.1 file	4 Host	_	4 Upstream Sockets	4 Links	05110	4 × 4	Linko, L Lane O	Link O, L	Link O, Lin Lane 2 La	Link O, Lin Lane 3 La	Link 1, Lin Lane 0 Lan	Link 1, Link 1, Lane 1 Lane 2	Link 1, Link 1, Lane 2 Lane 3	t, Link2, 3 Lane 0	Link 2,	Link 2, Lane 2	Link 2, Lane 3	Link 3, Lane 0	Link 3, Lane 1	Link 3, Lane 2	Link 3, Lane 3
1156 Option D 414 4 12 [First 6 Innes], 431	4 Host		4 Upotresm Sockets	4 Links	06110	2 x4	Link 0, Lane 0	Link 0, L	Link O, Lin Lane 2 La	Link O, Lin Lane 3 La	Link 1, Lin Lane 0 Lan	Link 1, Link 1, Lane 1 Lane 2	Link 1, Link 1, Lane 2 Lane 3	±0							
RSYO	4 Host	_	4 Upstream Sockets	4 Links	06110	4 x 4	Link O, L	Link O, L Lane 1	Link O, Lane 2 La	Link O, Lin Lane 3 La	Link 1, Lin Lane 0 Lan	Link 1, Link 1, Lane 1 Lane 2	Link 1, Link 1, Lane 2 Lane 3	1, Link 2, 3 Lane 0	Link 2,	Link 2, Lane 2	Link 2, Lane 3	Link 3,	Link 3, Lane 1	Link 3, Lane 2	Link 3. Lane 3
2.44 14.4.1.02.1.11 D RSVD RSVD crivine u8 ancoding 15.50 To 18.4.1.02.1.11 1.516 1.516.1.14.1.12.1.11 1.516 1.516.1.14.1.12.1.1.11 1.516 1.516.1.14.1.2.2.2.1 1.516 0.516.1.14.1.2.2.2.1 1.516 0.516.1.14.1.2.2.2.1 1.516 0.516.1.14.1.2.2.2.1 1.516 0.516.1.14.1.2.2.2.1 1.516 0.516.1.14.1.2.2.2.1	4 Host	+	4 Upstream Sockets	4 Links	06110			t					-	L				L	L		
D RSVD RSVD for future 26 encoding 1750 MeV and 1751 MeV	4 Host		4 Upstream Sockets	4 Links	05110	2 x4	Linko, L Lane O	Link O, L Lane 1 L	Link O, Lin Lane 2 La	Link O, Lin Lane 3 La	Link 1, Lin Lane 0 Lan	Link 1, Link 1, Lane 1 Lane 2	1, Link1,	- e							
U 155VU RAYU DE INJUNES SERCOMING 156 156 156 154 152 151 2:00 Option A 156 156 152 152 151 156 156 156 152 152 151 156 156 156 156 152 151 156 156 156 156 156 156 156 156 156 156		ш	4 Upstream Sockets	4 Links	06110																
2.86 Option A 2.86, 2.84, 2.82, 2.81 2.86 Option B 2.86, 2.84, 2.82, 2.81 1.86 Option B 2.86, 2.84, 2.82, 2.81 2.86, 2.84, 2.82, 2.81	4 Host	-	4 Upstream Sockets	4 Links	06110		-	-	-	Link 0,		+		_							
1x16.0ption B 2x6,2x4,2x2,2x1 1x16.0ption B 1x6,2x4,2x2,2x1 1x16,1x6,1x4 2x6,2x4,2x2,2x1	4 Host	_	4 Upstream Sockets	4 Links	01140	(Host Conly) 2 x4 (Host C & 2 only)	Link 0, L	Link O, L	Link O, Lin Lanc 2	Link 0, Lane 3			-	Link 1,	Link 1,	Link 1,	Link 1,				
1x16,1x8,1x4 2x8,2x4,2x2,2x1	4 Host	-	4 Upstream Sockets	4 Links	06110	2 x4 (Host 0 & 2 only)	-	-	-	Link 0, Lane 3				Link 1, Lane 0	-	-	-				
	4 Host		4 Upstream Sockets	4 Links	05110	4 x 4	Link O, L	Link O, L			Link 1, Lin Lanc 0 Lan	Link 1, Lin Lane 1 Lan	Link 1, Link 1, Lane 2 Lane 3	t, Link 2, 3 Lane 0	Link 2,	Link 2, Lane 2	Link 2, Lane 3		Link 3, Lane 1	Link 3, Lane 2	Link 3, Lane 3
4 x4, 4 x2, 4 x1 x4			4 Upstream Sockets	4 Links	05110	4 x 4	Link O, L Lane O L	Link O, L	Link O, Lin Lane 2 La	Link O, Lin Lane 3 La	Link 1, Lin Lane 0 Lan	Link 1, Lin Lane 1 Lan	Link 1, Link 1, Lane 2 Lane 3	t, Link 2, 3 Lane 0	Link 2,	Link 2, Lane 2	Link 2, Lane 3	Link 3, Lane 0	Link 3, Lane 1	Link 3, Lane 2	Link 3, Lane 3
RSVD RSVD RSVD 060010	Ì	-	4 Upstream Sockets	4 Links	0640							+	+		4		1				
BSVD	T.	-	4 Upstream Sockets	4 Links	00110			t				ł	+	+				ļ			

Table 34: Bifurcation for Quad Host, Quad Sockets and Quad Upstream Links (BIF[2:0]#=ob110)

3.9 Power Capacity and Power Delivery

There are four permissible power states: NIC Power Off, ID Mode, Aux Power Mode (S₅), and Main Power Mode (S₀). The transition of these states is shown in Figure 59. The max available power envelopes for each of these states are defined in Table 35.

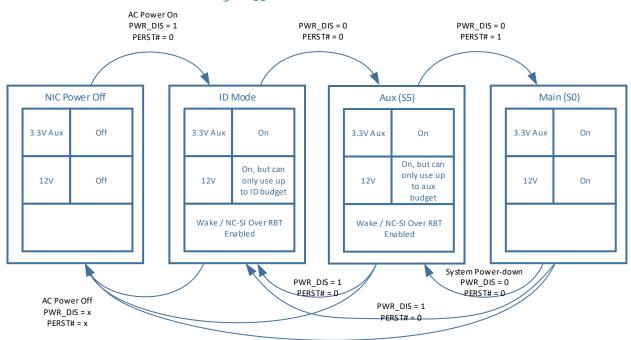


Figure 59: Baseboard Power States

Table 35: Power States

Power State	PWRDIS	PERSTn	FRU	Scan Chain	RBT Link	3.3V	12V
NIC Power Off	Low	Low					
ID Mode	High	Low	Х	Х		Х	Х
Aux Power Mode (S ₅)	Low	Low	Χ	Х	Х	Χ	Х
Main Power Mode (So)	Low	High	Χ	Х	Х	Х	Х

3.9.1 NIC Power Off

In NIC power off mode, all power delivery has been turned off or disconnected from the baseboard. Transition to this state can be from any other state.

3.9.2 ID Mode

In the ID Mode, only 3.3V Aux is available for powering up management only functions. FRU accesses are only allowed in this mode. An add-in card shall transition to this mode when PWRDIS=1 and PERST#=0.

3.9.3 Aux Power Mode (S5)

In Aux Power Mode provides both 3.3V Aux as well as 12V Aux is available. 12V Aux may be used to deliver power to the add-in card, but only up to the Aux budget of 35W. An add-in card shall transition to this mode when PWRDIS=0 and PERST#=0.

3.9.4 Main Power Mode (S0)

In Main Power Mode provides both 3.3V and 12V (Main) across the OCP connector. The add-in card operates in full capacity. Up to 8oW may be delivered on 12V, and 3.63W on the 3.3V pins. An add-in card shall transition to this mode when PWRDIS=0 and PERST#=1.

3.10 Power Supply Rail Requirements and Slot Power Envelopes

The baseboard provides 3.3 Vaux and 12 Vaux/main to both the Primary and Secondary connectors. The rail requirements are leveraged from the PCIe CEM 4.0 specification. For OCP NIC 3.0 cards, the requirements are as follows:

Power Rail	15W Slot	25W Slot	35W Slot	8oW Slot	150W
	Small Card	Small Card	Small Card	Small Card	Large Card
	Hot Aisle	Hot Aisle	Hot Aisle	Cold Aisle	Cold Aisle
3.3V					
Voltage Tolerance	±9% (max)	±9% (max)	±9% (max)	±9% (max)	±9% (max)
Supply Current					
ID Mode	375mA (max)	375mA (max)	375mA (max)	375mA (max)	375mA (max)
Aux Mode	1.1A (max)	1.1A (max)	1.1A (max)	1.1A (max)	2.2A (max)
Main Mode	1.1A (max)	1.1A (max)	1.1A (max)	1.1A (max)	2.2A (max)
Capacitive Load	150μF (max)	150µF (max)	150μF (max)	150μF (max)	300μF (max)
12V					
Voltage Tolerance	±8% (max)	±8% (max)	±8% (max)	±8% (max)	±8% (max)
Supply Current					
ID Mode	100mA (max)	100mA (max)	100mA (max)	100mA (max)	100mA (max)
Aux Mode	o.7A (max)	1.1A (max)	1.5A (max)	3.3A (max)	6.3A (max)
Main Mode	1.25A (max)	2.1A (max)	2.9A (max)	6.6A (max)	12.5A (max)
Capacitive Load	500μF (max)	500μF (max)	1000μF (max)	1000μF (max)	2000μF (max)

Table 36: Baseboard Power Supply Rail Requirements – Slot Power Envelopes

Note: While cards may draw up to the published power ratings, the baseboard vendor shall evaluate its cooling capacity for each slot power envelope.

3.11 Hot Swap Considerations for 12V and 3.3V Rails

For baseboards that support system hot (powered on) add-in card insertions and extractions, the system implementer shall consider the use of hotswap controllers on both the 12Vmain/aux and 3.3Vaux pins to prevent damage to the baseboard or the add-in card. Hotswap controllers help with inrush current limiting while also providing overcurrent protection, undervoltage and overvoltage protection capabilities.

The hotswap controller may gate the 12Vmain/aux and 3.3Vmain/aux based on the PRSNTB[3:0]# value. Per Section 3.6.3, a card is present in the system when the encoded value is not ob1111. The PRSNTB[3:0]# may be AND'ed together and connected to the hotswap controller to accomplish this result. Per the OCP NIC 3.0 mechanical definition (Section XXX), the present pins are short pins and engage only when the card is positively seated.

Baseboards that do not support hot insertion, or hot extractions may opt to not implement these features.

3.12 Power Sequence Timing Requirements

The following figure shows the power sequence of PRSNTB[3:0]#, 3.3Vaux, 12Vaux/12Vmain relative to PWRDIS, BIF[2:0]#, PERSTn*, the add-in card power ramp and NIC_PWR_GOOD.

Figure 6o: Power Sequencing

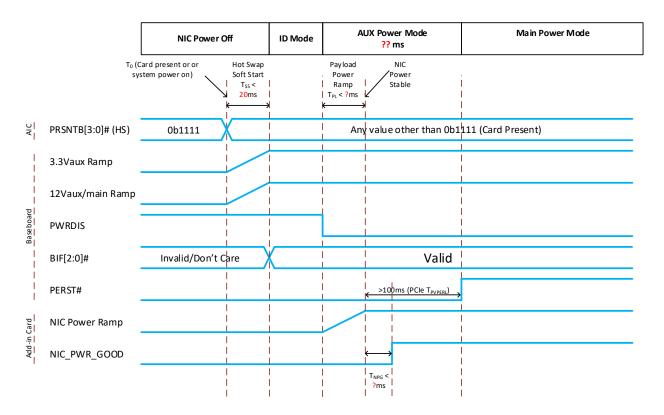


Table 37: Power Sequencing Parameters

Parameter	Value	Units	Description
T _{ss}	20	ms	Max time between system 3.3 Vaux and 12 Vaux/main ramp to power
			stable.
T _{PL}	</td <td>ms</td> <td>Max time between the NIC payload power ramp to</td>	ms	Max time between the NIC payload power ramp to
			NIC_PWR_GOOD assertion
T_{NPG}	</td <td>ms</td> <td>Max time between NIC power stable and NIC_PWR_GOOD</td>	ms	Max time between NIC power stable and NIC_PWR_GOOD
			assertion.
T _{PVPERL}	>100	ms	Max time between PWRDIS deassertion and PERST# deassertion.
			This value is from the PCIe CEM Specification, Rev 4.o.

4 Management

OCP NIC 3.0 card management is an important aspect to overall system management. This section specifies a common set of management requirements for OCP NIC 3.0 implementations. There are three types of implementations (No Management Type, RBT Type, and MCTP Type) depending on the physical sideband management interfaces, transports, and traffic supported over different transports. An OCP NIC 3.0 implementation shall support at least one type of implementation for card management. A No Management implementation should not be used for an Ethernet add-in card

4.1 Sideband Management Interface and Transport

OCP NIC 3.0 sideband management interfaces are used by a Management Controller (MC) or Baseboard Management Controller (BMC) to communicate with the NIC. Table 38 summarizes the sideband management interface and transport requirements.

Requirement	RBT Type	MCTP Type
NC-SI 1.1 or later compliant RMII Based Transport (RBT)	Required	
including physical interface defined in Section 10 of DSP0222.		
Both of the following physical sideband interfaces:		Required
SMBus 2.0		
PCle VDM		
Management Component Transport Protocol (MCTP) Base 1.3 on both of the following physical bindings: • MCTP/SMBus (DSPo237 1.1) • MCTP/PCle VDM (DSPo238 1.1)		Required

Table 38: Sideband Management Interface and Transport Requirements

4.2 NC-SI Traffic

DSPo222 defines two types of NC-SI traffic: Pass-Through and Control. Table 39 summarizes the NC-SI traffic requirements.

Requirement	RBT Type	MCTP Type
NC-SI Control over RBT (DSP0222 1.1 or later compliant)	Required	
NC-SI Control over MCTP (DSP0261 1.2 or later compliant)		Required
NC-SI Pass-Through over RBT (DSP0222 1.1 or later compliant)	Required	
NC-SI Pass-Through over MCTP (DSP0261 1.2 or later		Recommended
compliant)		

Table 39: NC-SI Traffic Requirements

4.3 Management Controller (MC) MAC Address Provisioning

An OCP NIC 3.0 add-in card shall provision one or more MAC addresses for Out-Of-Band (OOB) management traffic. The number of MC MAC addresses provisioned is implementation dependent. These MAC addresses are not exposed to the host(s) as available MAC addresses. The MC is not required to use these provisioned MAC addresses. Table 40 summarizes MC MAC address provisioning requirements.

Table 40: MC MAC Address Provisioning Requirements

Requirement	RBT Type	MCTP Type
One or more MAC Addresses shall be provisioned for the MC.	Required	
Support at least one of the following mechanism for provisioned	Required	
MC MAC Address retrieval:		
NC-SI Control/RBT (DSP0222 1.1 or later compliant)		
NC-SI Control/MCTP (DSPo261 1.2 or later compliant)		

4.4 Temperature Reporting

An OCP NIC 3.0 implementation can have several silicon components including one or more ASICs implementing NIC functions and one or more optical modules providing physical network media connectivity. It is important for the system management that temperatures of these components can be retrieved over sideband interfaces. Table 41 summarizes temperature reporting requirements.

Table 41: Temperature Reporting Requirements

Requirement	RBT Type	MCTP Type
ASIC Temperature Reporting	Recommended	Recommended
Optical Modules Temperature Reporting	Recommended	Recommended
Support at least one of the following mechanisms for ASIC temperature reporting: NC-SI Control (DSP0222 1.1 or later compliant) PLDM for Platform Monitoring and Control (DSP0248 1.1 compliant)	Recommended	Recommended
Support at least one of the following mechanisms for optical modules temperature reporting: NC-SI Control (DSP0222 1.1 or later compliant) PLDM for Platform Monitoring and Control (DSP0248 1.1 compliant)	Recommended	Recommended
Where the temperature sensor reporting function is implemented, the temperature reporting accuracy on the card shall be within ±3°C	Required	Required

4.5 Power Consumption Reporting

An OCP NIC 3.0 implementation may be able to report the power consumed by ASICs implementing NIC functions. It is important for the system management that the information about the power consumption can be retrieved over sideband interfaces. Table 42 summarizes power consumption reporting requirements.

Table 42: Power Consumption Reporting Requirements

Requirement	RBT Type	MCTP Type
ASIC Power Consumption Reporting	Optional	Optional

Support at least one of the following mechanisms for ASIC power Optional Option			
consumption reporting:			
NC-SI Control (DSP0222 1.1 or later compliant)			
PLDM for Platform Monitoring and Control (DSP0248 1.1			
compliant)			

4.6 Link Status/Speed Reporting

Link status/speed reporting is important for network operations and link management. Table 43 summarizes link status and speed reporting requirements.

Table 43: Link Status/Speed Reporting Requirements

Requirement	RBT Type	MCTP Type
Link Status Reporting	Required	Required
Support at least one of the following mechanisms for reporting the link status: NC-SI Control (DSP0222 1.1 compliant) PLDM for Platform Monitoring and Control (DSP0248 1.1 compliant)	Required	Required
Link Speed Reporting	Required	Required
Support at least one of the following mechanisms for reporting the link speed: NC-SI Control (DSP0222 1.1 compliant) PLDM for Platform Monitoring and Control (DSP0248 1.1 compliant)		Required

4.7 Pluggable Module Status Reporting

Pluggable modules like optical modules or direct attach cables are used to connect OCP NIC to physical media. It is important to know the presence of pluggable modules and information about insertion/deletion of pluggable modules. Table 44 summarizes pluggable module status reporting requirements.

Table 44: Pluggable Module Status Reporting Requirements

Requirement	RBT Type	MCTP Type
Pluggable Module Presence Reporting	Recommended	Recommended
 Support at least one of the following mechanisms for reporting the pluggable module presence status: NC-SI Control (DSP0222 1.1 or later compliant) PLDM for Platform Monitoring and Control (DSP0248 1.1 compliant) 	Recommended	Recommended
Pluggable Module Insertions/Deletions Reporting	Recommended	Recommended
Support at least one of the following mechanisms for reporting	Recommended	Recommended
the pluggable module insertions/deletions:		

•	NC-SI Control (DSP0222 1.1 or later compliant)	
•	PLDM for Platform Monitoring and Control (DSP0248 1.1	
	compliant)	

4.8 Out-Of-Band Firmware Update

An OCP implementation can have different types of firmware components for data path, control path, and management path operations. It is desirable that OCP NIC 3.0 implementations support an OS-independent Out-Of-Band mechanism for the firmware update. Table 45 summarizes out-of-band firmware update requirements.

Table 45: Out-Of-Band Firmware Update Requirements

Requirement	RBT Type	MCTP Type
Support PLDM for Firmware Update (DSPo267 1.0 compliant)	Optional	Optional

4.9 NC-SI Over RBT Sideband Interface

NC-SI Over RBT provides a low speed management path for the add-in card. This is implemented via RMII pins between the BMC and the add-in card. NC-SI Over RBT is the recommended management method for OCP NIC 3.0 cards. Protocol and implementation details can be found in the DMTF DSP0222 standard.

4.9.1 NC-SI Over RBT Addressing

NC-SI Over RBT capable devices must use a unique Package ID to ensure there are no addressing conflicts.

Baseboards use the Slot_ID pin on the Primary Connector for this identification. The Slot_ID value may be directly connected to GND (Slot ID = 0), or pulled up to 3.3Vaux (Slot ID = 1).

For add-in cards, Package ID[2:0] is a 3-bit field and is encoded in the NC-SI Channel ID as bits [7:5]. Package ID[2] is defaults to obo in the NC-SI specification, but is optionally configurable if the target silicon supports configuring this bit. Package ID[1] is connected to the SLOT_ID pin and is directly connected to the Slot_ID pin. Package ID[0] is set to obo for Network Silicon #0. For OCP NIC 3.0 add-in cards with two discrete silicon instances, Package ID[1] is set to ob1. Refer to the endpoint device datasheet for details on the Package ID configuration options.

Up to four silicon devices are supported on the bus if only Package ID[1:0] is configurable (e.g. Package ID[2] is statically set to obo). Up to eight silicon devices are supported on the NC-SI bus if Package ID[2:0] are all configurable. Refer to the DMTF DSP0222 standard for more information.

4.9.2 Arbitration Ring Connections

For baseboards that implement two or more Primary Connectors, the NC-SI Over RBT arbitration ring may be connected to each other. The arbitration ring must support operation with a one card, or both cards installed.

Figure 49 shows an example connection with dual Primary Connectors.

4.10 SMBus 2.0 Interface

The SMBus provides a low speed management bus for the add-in card. The FRU EEPROM and on-board temperature sensors are connected on this bus. Additionally, network controllers may utilize the SMBus interface for NC-SI over MCTP. Proper power domain isolation shall be implemented on the NIC.

Note: The preferred network controller management path is NC-SI Over RBT, as described in Section 4.9. Silicon devices may offer both a SMBus and NC-SI Over RBT interface. In such instances, the add-in card developer shall choose NC-SI Over RBT.

4.10.1 SMBus Address Map

All predefined SMBus addresses for OCP NIC 3.0 are shown in Table 46. Baseboard and add-in card designers must ensure additional devices do not conflict. The addresses shown are in 8-bit format and represent the read/write address pair.

Address (8-bit)	Device	Notes
oxTBD	Network	Value dependent on NIC vendors.
	Controller IC	
ox98 / ox99	Temperature	TMP422/423 Temperature sensor
	Sensor	
		Optional. Used for remote on-die thermal sensing.
		Optional. Powered from Aux power domain.
ox9E/ox9F	Temperature	TMP421 Temperature sensor.
	Sensor	
		Optional. Used for remote on-die thermal sensing.
		Optional. Powered from Aux power domain.
oxAo/oxA1-SLOTo	EEPROM	On-board FRU EEPROM.
oxA2/oxA3-SLOT1		
		Mandatory. Powered from Aux power domain.
		The EEPROM ADDRo pin shall be connected to the
		SLOT_ID pin on the add-in card gold finger to allow two NIC
		add-in cards to exist on the same I ² C bus.

Table 46: Power Sequencing Parameters

4.11 FRU EEPROM

4.11.1 FRU EEPROM Address, Size and Availability

The FRU EEPROM provided for the baseboard to determine the card type and is directly connected to the SMBus on the card edge. Only one EEPROM is required for a single physical add-in card regardless of the PCIe width or number of physical card edge connectors it occupies. The FRU EEPROM shall be connected to the Primary connector SMBus.

The EEPROM is addressable at oxA2/oxA3 for the write/read pair in 8-bit format. The size of EEPROM is 4Kbits for the base EEPROM map. Add-in card suppliers may use a larger size EEPROM if needed to store vendor specific information.

The FRU EEPROM is readable in all three power states (ID mode, AUX(S₅) mode, and MAIN(S₀) mode.

4.11.2 FRU EEPROM Content Requirements

The FRU EEPROM shall follow the data format specified in the IPMI Platform Management FRU Information Storage Definition v1.2. Use OEM record oxCo, offset oxo1 through oxo5 to store specific records for the OCP NIC.

Table 47: FRU EEPROM Record – OEM Record oxCo, Offset oxoo

Offset o	Description
	Manufacturer ID, LS Byte first (3 bytes total)

Table 48: FRU EEPROM Record – OEM Record oxCo, Offset oxo1

Offset 1	Primary Connector PRSNTB [3:0]#
ob1110 (oxoE)	Follows Pinout; to be filled after the pinout table is fixed
ob1101 (0xoD)	
ob1100 (0xoC)	
ob1010 (0x0A)	
obo111 (0x07)	
obo110 (0x06)	
obo101 (0x05)	
obo100 (0x04)	
oboo11 (0x03)	
ob1011 (0x0B)	Not a valid reading – Wrong EEPROM programming
ob1111 (oxoF)	Not a valid reading – Wrong EEPROM programming
All others	RFU
No FRU device detected	No NIC connected / bad connection

Table 49: FRU EEPROM Record – OEM Record oxCo, Offset oxo2

Offset 2	Secondary Connector PRSNTB [3:0]#
ob1110 (oxoE)	Follows Pinout; to be filled after the pinout table is fixed
ob1101 (oxoD)	
ob1100 (oxoC)	
ob1010 (0x0A)	
obo111 (0x07)	
obo110 (0x06)	
obo101 (0x05)	
obo100 (0x04)	
oboo11 (0x03)	
ob1011 (0x0B)	Not a valid reading – Wrong EEPROM programming

ob1111 (oxoF)	Not a valid reading – Wrong EEPROM programming
All others	RFU
No FRU device detected	No NIC connected / bad connection

Table 50: FRU EEPROM Record – OEM Record oxCo, Offset oxo3

Offset 3	Card max power in Aux(S ₅)
0x01 - 0xFE	Hex format in Watts when NIC is in AUX(S ₅) mode; LSB = 1x Watt; roundup to the nearest Watt for fractional values.
oxFF	Invalid entry
0X00	Invalid entry

Table 51: FRU EEPROM Record - OEM Record oxCo, Offset oxo4

Offset 4	Card max power in Main(So)
0x01 - 0xFE	Hex format in Watts when NIC is in Main (So) mode; LSB = 1x Watt; roundup to the nearest Watt for fractional values.
oxFF	Invalid entry
0X00	Invalid entry

Table 52: FRU EEPROM Record – OEM Record oxCo, Offset oxo5

Offset 5	Thermal Reporting Interface
0X01	Emulated thermal reporting on SMBus
0X02	Remote on-die sensor with TMP421 on SMBus
0X04	PLDM thermal reporting via NC-SI over RBT

4.12 FW Requirements

(Editors note (Jia): Tentative list; collecting feedback)

4.12.1 Firmware Update

• The OCP NIC 3.0 add-in card shall support device firmware upgrades from the BMC controller.

4.12.2 Secure Firmware

- The OCP NIC 3.0 add-in card shall support secured firmware.
- Where the secured firmware feature is enabled, the OCP NIC 3.0 add-in card shall allow only update and execute signed firmware.

4.12.3 Firmware Queries

 The OCP NIC 3.0 add-in card shall allow queries to obtain the firmware version, device model, and device ID via in-band and out-of-band interfaces without impacting NIC function and performance of said paths.

4.12.4 Multi-Host Firmware Queries

- A multi-host capable OCP NIC 3.0 add-in card shall gracefully handle concurrent in-band queries from multiple hosts and out-of-band access from the BMC the management status and firmware, device model, and device ID information.
- A multi-host capable OCP NIC 3.0 add-in card shall only permit one entity to perform write accesses to NIC firmware at a time, without creating contention.
- A multi-host capable OCP NIC 3.0 add-in card shall gracefully handle exceptions when more than one entity attempts to perform concurrent NIC firmware writes.

4.13 Thermal Reporting Interface

The OCP NIC 3.0 thermal reporting interface is defined on the primary connector SMBus or via NC-SI over RBT depending on the implementation method described in this section.

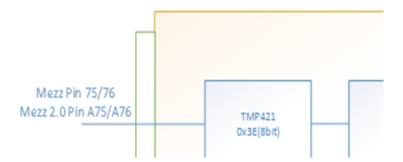
This requirement improves the system thermal management and allows the baseboard management device to access key component temperatures on an OCP NIC.

There are three defined methods to implement thermal reporting described in this section: emulated thermal reporting, remote on-die sensing and via Platform Level Data Model (PLDM).

Emulated thermal reporting and remote on-die sensing the two methods defined in OCP NIC 2.0 and is used in the current 3.0 spec release. In both cases, the BMC treats the temperature sensors as a TI/TMP421 (or equivalent) device. The emulated temperature sensor is accessible at slave address ox3E/ox3F as the read/write pair in 8-bit format over the SMBus.

The third reporting method is using PLDM. This is the recommend implementation for OCP NIC 3.o. PLDM uses the NC-SI over RBT as the underlying protocol.

A thermal reporting interface is required for all OCP NIC 3.0 complaint cards with a TDP > 10W.


Thermal reporting interface shall be accessible in AUX(S₅) mode, and MAIN(S₀) mode.

4.13.1 Remote on-die sensing

Alternatively, one TMP421 sensor can be used to do on die temperature sensing for IC with thermal diode interface with TMP421 remote sensing channel; Connection diagram is shown in Figure 61. For add-in cards that require more than one remote on-die sense point, a TMP422/TMP423 can be used and slave address is ox98/ox99 (8-bit).

Figure 61: Block Diagram for Remote on-die Sensing

Rev 0.50

5 Data Network Requirements

5.1 Network Boot

OCP NIC 3.0 shall support network booting in uEFI system environment with both IPv4 and IPv6 network booting.

For UEFI booting, below features are required (tentative list; collecting feedback)

- EFI_DRIVER_BINDING_PROTOCOL (for starting and stopping the driver)
- EFI_DEVICE_PATH_PROTOCOL (provides location of the device)
- EFI_MANAGED_NETWORK_SERVICE_BINDING_PROTOCOL (asynchronous network packet I/O services)
- EFI_DRIVER_DIAGNOSTICS2_PROTOCOL & EFI_DRIVER_DIAGNOSTICS_PROTOCOL (driver will allow the UEFI shell command *drvdiag* to perform a cursory check of the connections managed by the driver)
- Human Interface Infrastructure (HII) protocols
- EFI_DRIVER_HEALTH_PROTOCOL
- EFI_FIRMWARE_UPDATE_PROTOCOL

6 Routing Guidelines and Signal Integrity Considerations

6.1 NC-SI Over RBT

For the purposes of this specification, the min and max electrical trace length of the NC-SI signals shall be between 2 inches and 4 inches. The traces shall be implemented as 50 Ohm impedance controlled nets.

6.2 PCle

This section is a placeholder for the PCIe routing guidelines and SI considerations.

Add-in card suppliers shall follow the PCIe routing specifications. At this time, the OCP NIC subgroup is working to identify and agree to the channel budget for an add-in card and leave sufficient margin for the baseboard. Refer to the PCIe CEM and PCIe Base specifications for end-to-end channel signal integrity considerations.

7 Thermal and Environmental

7.1 Environmental Requirements

Specifics are not included to permit adoption of OCP 3.0 NIC in systems with varying thermal requirements and boundary conditions. The system adopting OCP NIC should define air flow direction, local approach air temperature and speed to the NIC, operational altitude and relative humidity.

For example, a system configured with I/O facing the cold aisle, can specify approach air temperature and speed of 35°C and 200 LFM respectively, with airflow impinging on the I/O modules first and an operational altitude of 6000 feet.

7.1.1 Thermal Reporting interface

[Link to 4.6; this session can be incorporated into Chapter 4.6] The NIC should support temperature reporting for key components on the card (including readings from active I/O modules). To improve thermal efficiency, the recommended accuracy for temperature sensors on the card is $\pm 3^{\circ}$ C. A power reporting interface is optional for low-power NICs (less than 10W), but strongly recommended for higher-powered NICs.

7.1.2 Thermal Simulation Boundary Example

Placeholder for the link to upcoming test fixture documentation (under development).

7.2 Shock & Vibration

This specification does not cover the shock and vibration testing requirements for an OCP NIC 3.0 add in card or its associated baseboard systems. OCP NIC 3.0 components are deployed in various environments. It is up to each add-in card and baseboard vendor to decide how the shock and vibration tests shall be done.

7.3 Regulatory

An OCP NIC 3.0 add-in card shall meet the following compliance requirements:

- RoHS 2 Directive (2011/65/EU) aims to reduce the environmental impact of electronic and electrical equipment (EEE) by restricting the use of certain hazardous materials. the substances banned under RoHS are lead, mercury, cadmium, hexavalent chromium, polybrominated biphenyls, polybrominated diphenyl ether, and four phthalates.
- **REACH Regulation (EC) No 1907/2006** addresses the production and use of chemical substances and their potential impact on human health and the environment.
- Waste Electrical and Electronic Equipment ("WEEE") Directive (2012/19/EU) mandates the treatment, recovery and recycling of EEE.
- The Persistent Organic Pollutants Regulation (EC) No. 850/2004 bans production, placing on the market and use of certain persistent organic pollutants.
- The California Safe Drinking Water and Toxic Enforcement Act of 1986 ("Prop 65") sets forth a list of regulated chemicals that require warnings in the State of California.

- The Packaging and Packaging Waste Directive 94/62/EC limits certain hazardous substances in the packaging materials
- **Batteries Directive 2006/66/EC** regulates the manufacture and disposal of all batteries and accumulators, including those included in appliances.
- CE
- FCC Class A

An OCP NIC 3.0 add-in card is recommended to meet below compliance requirements:

- **Halogen Free:** IEC 61249-2-21 Definition of halogen free: 900ppm for Br or Cl, or 1500ppm combined.
- Arsenic: 1000 ppm (or 0.1% by weight)
- Emerging: US Conflict Minerals law: section 1502 of the Dodd-Frank Act requires companies using tin, tantalum, tungsten, and gold ("3TG") in their products to verify and disclose the mineral source. While this does not apply to products that are used to provide services, such as Infrastructure hardware products, the OCP NIC Subgroup is considering voluntarily reporting of this information.

8 Revision History

Author	Description	Revision	Date
Thomas Ng Intel Corporation	Initial draft	0.5	12/22/2017