

OCP NIC 3.0 Design Specification

Version 0.01

Author: OCP Server Workgroup, OCP NIC subgroup

Table of Contents

1	Overview						
	1.1 Li	cense	9				
	1.2 B	ackground	10				
	1.3 A	cknowledgements	11				
	1.4 Overview						
	1.4.1	Mechanical Form factor overview	11				
	1.4.2	Electrical overview	14				
	1.5 R	eferences	17				
2	Card Forn	n Factor	18				
	2.1 O	verview	18				
	2.2 Fo	orm Factor Options	18				
	2.3 I/	O bracket	20				
	2.4 Line Side I/O Implementations						
	2.5 LE	ED Implementations	21				
	2.5.1	Baseboard LEDs Configuration Over the Scan Chain	21				
	2.5.2	Add-in Card LED Configuration	23				
	2.5.3	Add-in Card LED Ordering	24				
	2.6 N	lechanical Keepout Zones	<u>26</u> 25				
	2.6.1	Baseboard Keep Out Zones	<u>2625</u>				
	2.6.2	Add-in Card Keep Out Zones	<u>26</u> 25				
	2.7 La	abeling Requirements	<u>26</u> 25				
	2.8 Insulation Requirements						
	2.9 N	IC Implementation Examples	26				
	<mark>2.10</mark> N	<mark>on-NIC Use Cases</mark>	<u>2726</u>				
	<mark>2.10.1</mark>	PCIe Retimer card	<u>2726</u>				
	<mark>2.10.2</mark>	Accelerator card	<u>2726</u>				
	<mark>2.10.3</mark>	Storage HBA / RAID card	<u>2726</u>				
3	Card Edge	e and Baseboard Connector Interface	<u>2726</u>				
	31 G	old Finger Requirements	2726				

Rev0.01

	3.1.1 Gold Finger Mating Sequence			
3.2	Ва	Baseboard Connector Requirements		
3.3	Pin definition		31	
3.4	Si	gnal Descriptions – Common	37	
	3.4.1	PCIe Interface Pins	37	
	3.4.2	PCIe Present and Bifurcation Control Pins	41	
	3.4.3	SMBus Interface Pins	43	
	3.4.4	Power Supply Pins	44	
	3.4.5	Miscellaneous Pins	46	
3.5	Si	gnal Descriptions – OCP Bay (Primary Connector)	47	
	3.5.1	PCIe Interface Pins – OCP Bay (Primary Connector)	47	
	3.5.2	NC-SI Over RBT Interface Pins – OCP Bay (Primary Connector)	49	
	3.5.3	Scan Chain Pins – OCP Bay (Primary Connector)	57	
	3.5.4	Primary Connector Miscellaneous Pins – OCP Bay (Primary Connector	or) 64	
3.6	PC	CIe Bifurcation Mechanism	65	
	3.6.1	PCIe Add-in Card to Baseboard Bifurcation Configuration (PRSNTA#	<u> </u>	
	PRSNT	TB[3:0]#)	66	
	3.6.2	PCIe Baseboard to Add-in Card Bifurcation Configuration (BIF[2:0]#)	<u>67</u> 6(
	3.6.3	PCIe Bifurcation Decoder	67	
	3.6.4	Bifurcation Detection Flow	69	
	3.6.5	PCIe Bifurcation Examples	70	
3.7	PC	CIe Clocking Topology	76	
3.8	PC	Cle Bifurcation Results and REFCLK Mapping	78	
3.9	Po	ower Capacity and Power Delivery	87	
	3.9.1	NIC Power Off	<u>88</u> 8	
	3.9.2	ID Mode	<u>88</u> 8	
	3.9.3	Aux Power Mode (S5)	88	
	3.9.4	Main Power Mode (S0)	88	
3.10 Power Supply R		ower Supply Rail Requirements and Slot Power Envelopes	88	
3.11 Hot Swap Considerations for 12V and 3.3V Rails		ot Swap Considerations for 12V and 3.3V Rails		
3.12	2 Po	ower Sequence Timing Requirements	<u>90</u> 89	
Ma	nagem	ent	<u>93</u> 91	
4.1	Si	deband Management Interface and Transport	<u>93</u> 91	

4.2		NC-SI Traffic939					
4.3		Management Controller (MC) MAC Address Provisioning					
4.4		Temperature Reporting					
4.5		Pow	er Consumption Reporting	<u>9593</u>			
4.6		Link	Status/Speed Reporting	<u>9593</u>			
4.7		Plug	ggable Module Status Reporting	<u>96</u> 94			
4.8		Out	-Of-Band Firmware Update	<u>9795</u>			
4.9		NC-	SI Over RBT Sideband Interface	<u>9795</u>			
	4.9.2	L	NC-SI Over RBT Addressing	<u>9795</u>			
	4.9.2	2	Arbitration Ring Connections	<u>98</u> 96			
4.1	0	SME	Bus 2.0 Interface	<u>98</u> 96			
	4.10	.1	SMBus Address Map	<u>98</u> 96			
4.1	1	FRU	EEPROM	<u>99</u> 97			
	4.11	.1	FRU EEPROM Address, Size and Availability	<u>99</u> 97			
	4.11	.2	FRU EEPROM Content Requirements	<u>100</u> 98			
4.1	2	FW	Requirements	<u>102</u> 100			
	4.12	.1	Firmware Update	<u>102</u> 100			
	4.12	.2	Secure Firmware	<u>102100</u>			
	4.12	.3	Firmware Queries	<u>102100</u>			
	4.12	.4	Multi-Host Firmware Queries	<u>102100</u>			
4.1	3	The	rmal Reporting Interface	<u>103</u> 100			
	4.13	.1	Emulated Thermal Reporting	<u>103</u> 101			
	4.13	.2	Remote on-die sensing	<u>107</u> 104			
	<mark>4.13</mark>	.3	PLDM Method	<u>109</u> 106			
	4.13	.4	Thermal reporting accuracy	<u>109</u> 106			
Da	ta Ne	two	rk Requirements	<u>110107</u>			
5.1		Net	work Boot	<u>110107</u>			
Ro	uting	Gui	delines and Signal Integrity Considerations	<u>111</u> 108			
6.1	6.1 NC-SI Over RBT <u>11</u>						
6.2	PCIe						
The	erma	and	d Environmental	<u>112109</u>			
7.1		Envi	ronmental Requirements	<u>112109</u>			
	7.1.3	L	Thermal Reporting interface	112 109			

Open Compute Project • NIC • 3.0

_	_	
$D \sim$	'n	П
nΗ	vu	

•		······································	<u></u>
8	Revision History		113 11
	7.3	Regulatory	<u>11210</u>
	1.2	SHOCK & VIDIATION	<u>11210</u>
	7.2	Shock & Vibration	11210
	/.	1.2 Memai Simulation Boundary Example	<u>112</u> 10
	7	1.2 Thermal Simulation Boundary Example	11210

List of Figures

Figure 1: Representative Small OCP NIC 3.0 Card with Quad SFP Ports	10
igure 2: Representative Large OCP NIC 3.0 Card with Dual QSFP Ports and on-board DRAM	11
Figure 3: Small and Large Card Form-Factors (not to scale)	12
igure 4: Example Small Card Form Factor	18
Figure 5: Example Large Card Form Factor	19
Figure 6: Primary Connector (4C + OCP Bay) with 4C and 2C Add-in Cards	20
igure 7: LED Ordering – Example Small Card Link/Activity and Speed LED Placement	25
igure 8: Small Card Bottom Side Insulator and Mechanical Envelope	26
Figure 9: Large Card Bottom Side Insulator and Mechanical Envelope	26
igure 10: Small Size Primary Connector Gold Finger Mating Card Dimensions – x16 – Top Side	27
igure 11: Small Size Primary Connector Gold Finger Mating Card Dimensions – x16 – Bottom Side	<u>2827</u>
igure 12: Large Size Card Gold Finger Mating Card Dimensions – x32 – Top Side	<u>2827</u>
Figure 13: Large Size Card Gold Finger Mating Card Dimensions – x32 – Bottom SideSide in the control of t	<u>28</u> 27
igure 14: 168-pin Base Board Primary Connector – Right Angle	30
Figure 15: 140-pin Base Board Secondary Connector – Right Angle	<u>31</u> 30
igure 16: 168-pin Base Board Primary Connector – Straddle Mount	<u>31</u> 30
Figure 17: 140-pin Base Board Secondary Connector – Straddle Mount	<u>31</u> 30
Figure 18: Primary and Secondary Connector Locations for Large Card Support	<u>31</u> 30
Figure 19: PCIe Present and Bifurcation Control Pins	43
Figure 20: Example Power Supply Topology	46
Figure 21: NC-SI Over RBT Connection Example – Single Primary Connector	55
Figure 22: NC-SI Over RBT Connection Example – Dual Primary Connector	55
igure 23: Scan Bus Connection Example	63
igure 24: PCIe Bifurcation Pin Connections Support	66
Figure 25: Single Host (1 x16) and 1 x16 Add-in Card (Single Controller)	70
Figure 26: Single Host (2 x8) and 2 x8 Add-in Card (Dual Controllers)	71
igure 27: Four Hosts (4 x4) and 4 x4 Add-in Card (Single Controller)	72
Figure 28: Four Hosts (4 x4) and 4 x4 Add-in Card (Four Controllers)	73
Figure 29: Single Host with no Bifurcation (1 x16) and 2 x8 Add-in Card (Two Controllers)	75
igure 30: PCIe Interface Connections for 1 x16 and 2 x8 Add-in Cards	76
igure 31: PCIe Interface Connections for a 4 x4 Add-in Card	77
Figure 32: Baseboard Power States	87
Figure 33: Power Sequencing	<u>90</u> 89
Figure 34: Block Diagram for Emulated Thermal Reporting	<u>104</u> 102
Figure 35: Block Diagram for Remote on-die Sensing	107 104

List of Tables

Table 1: OCP 3.0 Form Factor Dimensions	. <u>1312</u>
Table 2: Baseboard to OCP NIC Form factor Compatibility Chart	13
Table 3: OCP NIC 3.0 Card Definitions	20
Table 4: OCP 3.0 Line Side I/O Implementations	21
Table 5: Baseboard LED Configurations with Two Physical LEDs per Port	22
Table 6: Add-in Card LED Configuration with Two Physical LEDs per Port	23
Table 7: Contact Mating Positions for the Primary and Secondary Connectors	. <u>28</u> 27
Table 8: Primary Connector Pin Definition (x16) (4C + OCP Bay)	. <u>32</u> 31
Table 9: Secondary Connector Pin Definition (x16) (4C)	. <u>35</u> 34
Table 10: Pin Descriptions – PCIe 1	. <u>37</u> 36
Table 11: Pin Descriptions – PCIe Present and Bifurcation Control Pins	. <u>41</u> 40
Table 12: Pin Descriptions – SMBus	.4342
Table 13: Pin Descriptions – Power	.4543
Table 14: Pin Descriptions – Miscellaneous 1	. <u>4645</u>
Table 15: Pin Descriptions – PCIe 2	. <u>4746</u>
Table 16: Pin Descriptions – NC-SI Over RBT	. <u>4948</u>
Table 17: Pin Descriptions – Scan Chain	. <u>57</u> 55
Table 18: Pin Descriptions – Scan Chain DATA_OUT Bit Definition	. <u>59</u> 57
Table 19: Pin Descriptions – Scan Bus DATA_IN Bit Definition	. <u>60</u> 58
Table 20: Pin Descriptions – Miscellaneous 2	. <u>6462</u>
Table 21: PCIe Bifurcation Decoder for x16 and x8 Card Widths	. <u>68</u> 66
Table 22: PCIe Clock Associations	. <u>76</u> 74
Table 23: Bifurcation for Single Host, Single Socket and Single Upstream Link (BIF[2:0]#=0b000)	. 79 <mark>77</mark>
Table 24: Bifurcation for Single Host, Single Socket and Single/Dual Upstream Links (BIF[2:0]#=0b000)	. <u>80</u> 78
Table 25: Bifurcation for Single Host, Single Socket and Single/Dual/Quad Upstream Links (BIF[2:0]#=0b000)	. <u>81</u> 79
Table 26: Bifurcation for Single Host, Dual Sockets and Dual Upstream Links (BIF[2:0]#=0b001)	. <u>82</u> 80
Table 27: Bifurcation for Single Host, Four Sockets and Dual Upstream Links (BIF[2:0]#=0b010)	. <u>83</u> 81
Table 28: Bifurcation for Dual Host, Dual Sockets and Dual Upstream Links (BIF[2:0]#=0b101)	. <u>84</u> 82
Table 29: Bifurcation for Quad Host, Quad Sockets and Quad Upstream Links (BIF[2:0]#=0b110)	. <u>85</u> 83
Table 30: Bifurcation for Quad Host, Quad Sockets and Quad Upstream Links (BIF[2:0]#=0b110)	. <u>86</u> 84
Table 31: Power States	. <u>88</u> 85
Table 32: Baseboard Power Supply Rail Requirements – Slot Power Envelopes	. <u>88</u> 86
Table 33: Power Sequencing Parameters	. <u>91</u> 88
Table 34: Sideband Management Interface and Transport Requirements	. <u>93</u> 89
Table 35: NC-SI Traffic Requirements	. <u>93</u> 89
Table 36: MC MAC Address Provisioning Requirements	<u>9490</u>
Table 37: Temperature Reporting Requirements	. <u>94</u> 90
Table 38: Power Consumption Reporting Requirements	
Table 39: Link Status/Speed Reporting Requirements	. <u>96</u> 92

Table 40: Pluggable Module Status Reporting Requirements	<u>96</u> 92
Table 41: Out-Of-Band Firmware Update Requirements	<u>9793</u>
Table 42: Power Sequencing Parameters	<u>98</u> 94
Table 43: FRU EEPROM Record – OEM Record 0xC0, Offset 0x00	<u>100</u> 96
Table 44: FRU EEPROM Record – OEM Record 0xC0, Offset 0x01	<u>100</u> 96
Table 45: FRU EEPROM Record – OEM Record 0xC0, Offset 0x02	<u>101</u> 96
Table 46: FRU EEPROM Record – OEM Record 0xC0, Offset 0x03	<u>101</u> 97
Table 47: FRU EEPROM Record – OEM Record 0xC0, Offset 0x04	<u>101</u> 97
Table 48: FRU EEPROM Record – OEM Record 0xC0, Offset 0x05	<u>102</u> 97
Table 49: Implementation Requirement for TMP421 Registers	105 101

1 Overview

1.1 License

As of April 7, 2011, the following persons or entities have made this Specification available under the Open Web Foundation Final Specification Agreement (OWFa 1.0), which is available at http://www.openwebfoundation.org/legal/the-owf-1-0-agreements/owfa-1-0: Facebook, Inc.

You can review the signed copies of the Open Web Foundation Agreement Version 1.0 for this Specification at http://opencompute.org/licensing/, which may also include additional parties to those listed above.

Your use of this Specification may be subject to other third party rights. THIS SPECIFICATION IS PROVIDED "AS IS." The contributors expressly disclaim any warranties (express, implied, or otherwise), including implied warranties of merchantability, non-infringement, fitness for a particular purpose, or title, related to the Specification. The entire risk as to implementing or otherwise using the Specification is assumed by the Specification implementer and user. IN NO EVENT WILL ANY PARTY BE LIABLE TO ANY OTHER PARTY FOR LOST PROFITS OR ANY FORM OF INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES OF ANY CHARACTER FROM ANY CAUSES OF ACTION OF ANY KIND WITH RESPECT TO THIS SPECIFICATION OR ITS GOVERNING AGREEMENT, WHETHER BASED ON BREACH OF CONTRACT, TORT (INCLUDING NEGLIGENCE), OR OTHERWISE, AND WHETHER OR NOT THE OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Commented [JN1]: May update lic to OCP hardware License (Permissive)

Reference:

http://www.opencompute.org/blog/request -for-comment-ocp-hardware-license-agreement/

1.2 Background

The OCP NIC 3.0 specification is a follow-on to the OCP 2.0 form-factor for PCIe add-in cards. The OCP NIC 3.0 specification supports two basic card sizes: Small Card, and Large Card. The Small Card allows for up to 16 PCIe lanes on the card edge while a Large Card supports up to 32 PCIe lanes. Compared to the OCP NIC-Mezz Card 2.0 releaseDesign Specification, the updated specification provides a broader solution space for NIC and system vendors to support the following use case scenarios:

- NICs with a higher TDP
- Support up to 80W of power delivery to a single connector (Small) card; and 150W to a dual connector (Large) card
- Support up to PCIe Gen5 on the system and add-in card
- Support for up to 32 lanes of PCIe per add-in card
- Support for single host, multi-root complex and multi-host environments
- Support a greater board area for more complex add-in card designs
- Support for Smart NIC implementations with on-board DRAM and accelerators
- Simplification of FRU installation and removal while reducing overall down time

A representative Small Card OCP 3.0 NIC mezzanine card is shown in Figure 1 and a representative Large Card is shown in Figure 2.

Figure 1: Representative Small OCP NIC 3.0 Card with Quad SFP Ports

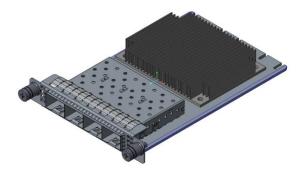
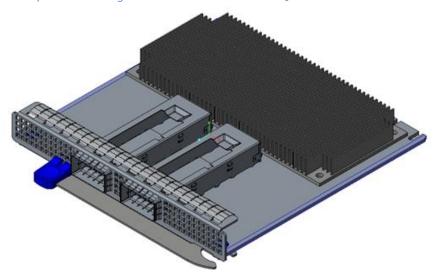



Figure 2: Representative Large OCP NIC 3.0 Card with Dual QSFP Ports and on-board DRAM

In order to achieve the features outlined in this specification, OCP 3.0 compliant cards are not backwards compatible to the OCP Mezz 2.0 cards.

This specification is created under OCP Server workgroup – OCP NIC subgroup. An electronic copy of this specification can be found on the Open Compute Project website:

http://www.opencompute.org/wiki/Server/Mezz#Specifications_and_Designs

1.3 Acknowledgements

Placeholder [Editor's note TN 20171219: I suggest adding a table of contributing companies and individuals to this section].

1.4 Overview

1.4.1 Mechanical Form factor overview

The OCP NIC 3.0 specification defines a third generation mechanical form factor that allows for interoperability between compliant baseboards and add-in cards.

OCP NIC 3.0 cards have two form factors – Small and Large. These cards are shown in Figure 3 below. The components shown in the figures are for illustrative purposes. The Small form factor card has one connector (Primary connector) on baseboard. The Large form factor card has one or two connectors (Primary Connector only and both the Primary Connector—and Secondary Connectors) on the baseboard.

Both the Primary and Secondary connectors are defined in and compliant to SFF-TA-1002. [Editor's note: plan to submit change back to SFF-TA-1002]. On the NIC-add-in card side, the card edge is implemented with gold fingers. The small card gold finger area only occupies the Primary Connector area for up to 16 PCIe lanes. The large card gold finger area may occupy both the Primary and Secondary connectors for up to 32 PCIe lanes, or optionally just the Primary connector for up to 16 PCIe lane implementations. The gold finger design follows SFF-TA-1002 as well.

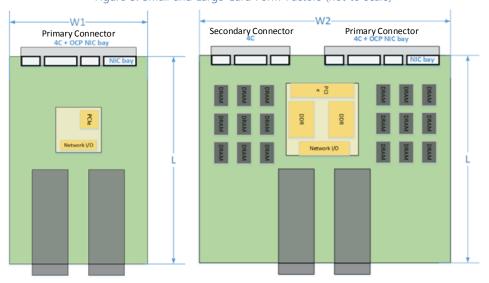


Figure 3: Small and Large Card Form-Factors (not to scale)

The two form factor dimensions are shown in Table 1.

Table 1: OCP 3.0 Form Factor Dimensions

Form	Width	Depth	Primary	Secondary	Typical Use Case
Factor			Connector	Connector	
Small	W1 = 76	L = 115	4C + OCP	N/A	Low profile and general-NIC
	mm	mm	sideband		with a similar profile as an
			168 pins		OCP NIC 2.0 add-in card;
					up to *16 PCIe lanes.
Large	W2 = 139	L = 115	4C + OCP	4C	Larger PCB width to
	mm	mm	sideband	140 pins	support feature
			168 pins		richadditional NICs; up to
					∗ 32 PCIe <u>lanes</u> .

The OCP NIC 3.0 design allows downward compatibility between the two card sizes. Table 2 shows the compatibility between the baseboard and NIC combinations. A small size baseboard slot may only accept a small sized NIC. A Large size baseboard slot may accept a small or large sized NIC.

Table 2: Baseboard to OCP NIC Form factor Compatibility Chart

Baseboard	NIC Size / Supported PCIe Width			
Slot Size	Small	Large		
Small	Up to *16 PCIe lanes	Not Supported		
Large	Up to *16 PCIe lanes	Up to *32 PCIe lanes		

There are two baseboard connector options available for system designers: straddle mount and right angle (RA). The straddle mount connector option allows the OCP NIC and baseboard to exist in a co-planer position. To achieve this, a cutout exists on the baseboard and is defined in this specification. Alternatively, the right angle option allows the OCP NIC to be installed on top of the baseboard. A baseboard cutout is not required for the right angle connector. The right angle option allows the baseboard to use this area for additional routing or backside component placement. The straddle mount and right angle connectors are shown in Section 3.2.

For both the baseboard and OCP card, this specification defines the component and routing keep out areas. Refer to Section 2.6 for details.

Both the straddle mount and right angle implementations shall accept the same OCP add-in card and shall be supported in the baseboard chassis regardless of the baseboard connector selection (right angle or straddle mount) so long as the baseboard slot side and add-in card sizes are a supported combination as shown in Table 2.

This specification defines the form factor at the add-in card level, including the front panel, latching mechanism and card guide features [TBD; pending on the Mechanical work across stakeholders].

More details about the card form-factor is shown in Section 2.

1.4.2 Electrical overview

This specification defines the electrical interface between baseboard and the add-in card.

The electrical interface is implemented with a right angle or straddle mount connector on baseboard and gold finger on the add-in card. As previously noted in the mechanical overview, each card may implement a Primary Connector or Primary + Secondary Connector. Cards using only the Primary connector are suitable for both the Small and Large form-factors and may support up to *16 lanes of PCIe. The Secondary connector, when used in conjunction with the Primary connector, allows Large form-factor implementations and may support up to 32 lanes of PCIe.

1.4.2.1 Primary Connector

The Primary connector provides all OCP specific management functions as well as up to 16 lanes of PCIe between the OCP NIC and the system motherboard.

Management Function Overview (OCP Bay):

<u>DSP0222 1.1 compliant Network Controller Sideband Interface (NC-SI) RMII Based</u>
 <u>Transport (RBT) Sideband Physical Interface</u>

Commented [JD2]: Should additional sub sections be added after 1.4.2.2 to provide a brief overview / description for each major functional interface defined in the specification? (PCIe, NC-SI, Power Control, etc). If so I'll be happy to work on that.

Would this section benefit from a few high level block diagrams showing all the functional interfaces provided in the specification? I'll put some figures together if it seems worth it?

• Arbitration Ring Control Bus

- · Power management and status reporting
 - o Power disable
 - o State change control
- SMBus <u>2.0</u>
- Control / status serial bus
 - o NIC-to-Host status
 - Port LED Link/Activity
 - Environmental Indicators
 - Host-to-NIC configuration Information
- Multi-host PCIe support signals (2x PCIe resets, 2x reference clocks).
 - The OCP bay provides PERST2#, PERST3#, REFCLK2 and REFCLK3. This enables support for up to four hosts when used in conjunction with PERST0#, PERST1#, REFCLK0 and REFCLK1 in the Primary 4C region.
- PCIe Wake signal

See Section 3.5 for a complete list of pin and function descriptions for the OCP Bay portion of the primary connector.

PCIe Interface Overview (4C Connector):

- 16x differential transmit/receive pairs
 - o Up to PCIe Gen 5 support
- 2x 100 MHz differential reference clocks
- Control signals
 - o 2x PCIe Resets
 - o Link Bifurcation Control
 - o Card power disable/enable
- Power
 - o 12V /12V AUX
 - o 3.3V AUX

See Section 3.4 for a complete list of pin and function descriptions for the 4C connector.

1.4.2.2 Secondary Connector

The secondary connector provides an additional 16 lanes of PCIe and their respective control signals.

PCIe Interface Overview (4C Connector):

- 16x differential transmit/receive pairs
 - o Up to PCIe Gen 5 support
- 2x 100 MHz differential reference clocks
- Control signals
 - o 2x PCIe Resets
 - o Link Bifurcation Control
 - o Card power disable/enable
- Power
 - o 12V /12V AUX
- 3.3V AUX

See Section 3.4 for a complete list of pin and function descriptions for the 4C connector.

1.5 References

- ___DMTF Standard. DSP0222, Network Controller Sideband Interface (NC-SI) Specification.
 Distributed Management Task Force, Inc, Rev 1.1.0.1, January September 24th23rd, 2013.2015.
- DMTF Standard. DSP0222, Network Controller Sideband Interface (NC-SI) Specification.
 Distributed Management Task Force, Rev 1.2.0, Work-in-progress.
- EDSFF. Enterprise and Datacenter SSD Form Factor Connector Specification. Enterprise and Datacenter SSD Form Factor Working Group, Rev 0.9 (draft), August 2nd 2017.
- IPMI Platform Management FRU Information Storage Definition, v1.2, February 28th, 2013.
- NXP Semiconductors. PC-bus specification and user manual. NXP Semiconductors, Rev 6, April 4th, 2014.
- Open Compute Project. OCP NIC Subgroup. Online. http://www.opencompute.org/wiki/Server/Mezz
- PCIe Base Specification. PCI Express Base Specification, Revision 4.0 (draft).
- PCIe CEM Specification. PCI Express Card Electromechanical Specification, Revision 4.0 (draft).
- SMBus Management Interface Forum. System Management Bus (SMBus) Specification.
 System Management Interface Forum, Inc, Version 32.0, December 20th, 2014 August 3rd, 2000.
- SNIA. SFF-TA-1002, Specification for Protocol Agnostic Multi-Lane High Speed Connector. SNIA SFF TWG Technology Affiliate, Rev 1.0, December 12th, 2017.

2 Card Form Factor

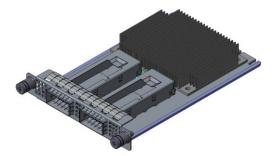
2.1 Overview

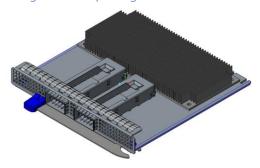
2.2 Form Factor Options

OCP3.0 provides two fundamental form factor options: a small card (76mm \times 115mm) and a large card (139mm \times 115mm).

These form factors support a Primary Connector and optionally, a Secondary Connector. The Primary Connector is defined to be a SFF-TA-1002 compliant 4C connector plus a 28-pin bay for OCP 3.0 specific pins. The Secondary Connector is the 4C connector as defined in SFF-TA-1002. The 4C specification supports up to 32 differential pairs for a x16 PCIe connection per connector. For host platforms, the 28-pin OCP bay is required for the Primary connector. This is also mandatory for add-in cards.

The small card uses the Primary 4C connector to provide up to a x16 PCIe interface to the host. The additional 28-pin OCP bay carries sideband management interfaces as well as OCP NIC 3.0 specific control signals for multi-host PCIe support. The small size card provides sufficient faceplate area to accommodate up to 2x QSFP modules, 4x SFP modules, or 4x RJ-45 for BASE-T operation. The small card form factor supports up to 80W of delivered power to the card edge.




Figure 4: Example Small Card Form Factor

Open Compute Project • NIC • 3.0

Rev0.01

The large card uses the Primary 4C + OCP bay connector to provide the same functionality as the small card along with an additional Secondary 4C connector to provide up to a x32 PCIe -interface. The large card may utilizes both the Primary and Secondary connectors, or just the Primary connector for lower PCIe lane count applications. Table 3 summarizes the large card permutations. The large size card supports higher power envelopes and provides additional board area for more complex designs. The large card form factor supports up to 150W of delivered power to the card edge across the two connectors.

Figure 5: Example Large Card Form Factor

For both form-factors, an add-in card may optionally implement a subset of pins to support up to a x8 PCIe connection. This is implemented using a 2C card edge per SFF-TA-1002. The Primary Connector may support a 2C sized add-in card along with the 28 pin OCP bay. The following diagram from the SFF-TA-1002 specification illustrates the supported host Primary and Secondary Connectors and add-in card configurations.

Commented [HS3]: For some use cases, secondary connector is not required to be used for large card size. We need to discuss and clarify it.

Figure 6: Primary Connector (4C + OCP Bay) with 4C and 2C Add-in Cards

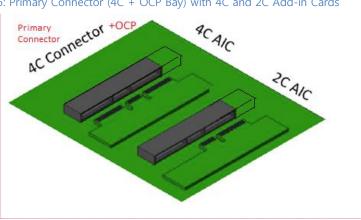


Table 3

Table 3 summarizes the supported card form factors. Small form factors cards support the Primary Connector and up to 16 PCIe lanes. Large form factor cards support implementations with both the Primary and Secondary Connectors and up to 32 PCIe lanes, or a Primary Connector only implementation with up to 16 PCIe lanes.

Table 3: OCP NIC 3.0 Card Definitions

Add in Card Size and	Secondary Connector		Prin	nary Connector	
max PCIe Lane Count	4C Connector, x16 PCIe		4C Connect	or, x16 PCIe	OCP Bay
Small (x8)				2C	OCP Bay
Small (x16)			4	C	OCP Bay
Large (x8)				<u>2C</u>	OCP Bay
Large (x16)			<u>4</u>	<u>C</u>	OCP Bay
Large (x24)		2C	4	C	OCP Bay
Large (x32)	4	C	4	C	OCP Bay

2.3 I/O bracket

TBD < need input from OCP mechanical groups>

Commented [TN4]: This needs to be updated to show the OCP bay along with the secondary connector location..

Commented [JD5]: Will this section include details on any mechanical parts (modified faceplates, card blanks, etc) required to install a small card in a large slot? Or should another section call out any specific requirements?

2.4 Line Side I/O Implementations

At the time of this writing, the Small and Large form-factor implementations have been optimized to support the following standard line side I/O implementations:

 Form Factor
 Max Topology Connector Count

 Small
 2x QSFP28

 Small
 4x SFP28

 Small
 4x RJ-45

 Large
 2x QSFP28TBD

 Large
 4x SFP28TBD

Table 4: OCP 3.0 Line Side I/O Implementations

Additional combinations are permissible as I/O form-factor technologies and thermal capabilities evolve.

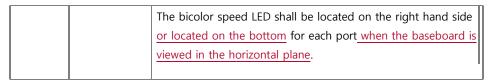
4x RJ-45TBD

2.5 LED Implementations

Large

LEDs <u>must_may</u> be implemented on the card Scan Chain (as defined in Section 3.5.3) for remote link/activity indication on the baseboard <u>and mayor</u> optionally be implemented on the OCP NIC 3.0 I/O bracket if there is sufficient space for local indication. These two cases are described below. In both cases, the actual link rate may be directly queried through the management interface.

2.5.1 Baseboard LEDs Configuration Over the Scan Chain


A small form-factor OCP NIC 3.0 with a fully populated I/O bracket (2x QSFP28, 4x SFP28; of 4x RJ-45) has insufficient space for discrete on-board (faceplate) LED indicators. In this case, the line side link and activity LED indicators are implemented on the baseboard system via the Scan Chain. The Scan Chain bit stream is defined in Section 3.5.3. This LED implementation is required for all add-in cards. The baseboard LED implementation uses two discrete LEDs (Link/Activity and Speed indication). Table 5 describes the baseboard LED configuration for baseboard implementations.

Commented [JD6]: Maybe use a different name for the serial bus? Seeing the Scan Chain usually refers to JTAG? (Pretty minor comment though)

Table 5: Baseboard LED Configurations with Two Physical LEDs per Port

LED Pin	LED Color	Description
Link /	Green	Active low. Multifunction LED.
Activity		
		This LED shall be used to indicate link and link activity.
		When the link is up and no link activity is present, then this
		LED shall be lit and solid. This indicates that the link is
		established, there are no local or remote faults, and the link is
		ready for data packet transmission/reception.
		When the link is up and there is link activity, then this LED
		should blink at the interval of 50-500ms during link activity.
		When lit and solid, this LED is used to indicate the link is up
		at the MAC level. Local and Remote Faults are clear and the
		link is ready for data transmission.
		When the LED is off, the physical link is down or disabled.
		The LED should blink low for 50-500 ms during Packet
		Activity.
		The Link/Activity LED shall be located on the left hand side or
		located on top for each port when the baseboard is viewed in
		the horizontal plane.
Speed	Green	Active low. Multifunction LED.
	Off	
		The LED is Green when the port is linked at its maximum
		speed.
		The LED is off when the device is linked at a speed lower than
		the highest capable speed, or no link is present.

At the time of this writing, the Scan Chain definition allows for up to one link/activity and one speed LED per port. A total of up to 8 ports are supported in the Scan Chain. The bit stream defines the LEDs to be active low (ONON). The Scan Chain LED implementation allows the NIC LED indicators to be remotely located on the OCP 3.0 compliant chassis (e.g. front LED indicators with rear I/O cards).

2.5.2 Add-in Card LED Configuration

For low I/O count small form-factor cards without built in light pipes (such as 1x QSFP28, 2x SFP28, or 2x RJ-45), or a large form-factor OCP 3.0 NIC, where additional I/O bracket area is available, the card may optionally implement on-board link/activity indications in addition to place of the Scan Chain LED stream. The recommended local (on-card) LED implementation uses two physical LEDs (a discrete Link/Activity LED and a bi-colored Speed A/Speed B LED). Table 6 describes the add-in card LED implementations.

Table 6: Add-in Card LED Configuration with Two Physical LEDs per Port

LED Pin	LED Color	Description
Link /	Green	Active low. Multifunction LED.
Activity		
		This LED shall be used to indicate link and link activity.
		When the link is up and no link activity is present, then this
		LED shall be lit and solid. This indicates that the link is
		established, there are no local or remote faults, and the link is
		ready for data packet transmission/reception.
		When the link is up and there is link activity, then this LED
		should blink at the interval of 50-500ms during link activity.

	When lit and solid, this LED is used to indicate the link is up
	at the MAC level. Local and Remote Faults are clear and the
	link is ready for data transmission.
	When the LED is off, the physical link is down or disabled.
	The LED should blink low for 50-500 ms during Packet
	Activity.
	The Link/Activity LED shall be located on the left hand side or
	located on the top for each port when the add-in card is
	viewed in the horizontal plane.
-	`
	Active low. Bicolor multifunction LED.
Amber	
Off	The LED is Green when the port is linked at its maximum
	speed.
	The LED is Amber when the port is linked at it second highest
	speed.
	The LED is off when the device is linked at a speed lower than
	the second highest capable speed, or no link is present.
	The Amber Speed LED indicator may be used for port
	identification through vendor specific link diagnostic software.
	The bicolor speed LED shall be located on the right hand side
	or located on the bottom for each port when the add-in card
	is viewed in the horizontal plane.
	Green Amber Off

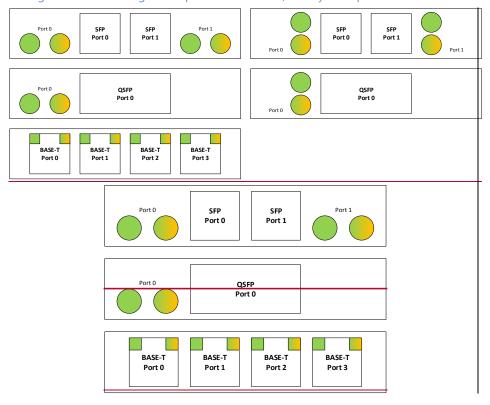
indicate fault across all their platforms moving forward. Facebook will publish a new color schema specification.

Commented [TN7]: Mike@FB – amber will be used to

The OCP NIC 3.0 group shall consider adopting the new color spec as appropriate.

Commented [NT8R7]: No change for now.

2.5.3 Add-in Card LED Ordering


For all <u>add-in card LED-</u>use cases, <u>each port shall implement</u> the green Link/Activity LED <u>and a -shall be located on the left side for each port. The-</u>bicolor green/amber speed A/B LED. <u>For all baseboards</u>, each port shall implement the green Link/Activity LED and a green speed A LED.

For horizontal LED positions, the Link/Activity LED shall be located on the left side for each port and the speed LED shall be located on the right side for each port.

For vertical LED positions, the Link/Activity LED shall be located on top and the speed LED shall be located on the bottom.(Note Speed B is only available for local (on card) LEDs.

The placement of the LEDs on the faceplate may be left up to the discretion of the add-in card and baseboard designers to the side of the physical port for the case with add-in cards. The LED port association shall be clearly labeled on the add-in card and on the baseboard.

Figure 7: LED Ordering – Example Small Card Link/Activity and Speed LED Placement

2.6 Mechanical Keepout Zones

2.6.1 Baseboard Keep Out Zones

TBD – Need keepout drawings and envelopes for small / large size baseboard including primary/secondary/rail keepouts/cutout for straddle mount/keepout for right angle.

2.6.2 Add-in Card Keep Out Zones

TBD – need keepout drawings and envelopes for small / large size NIC including primary/secondary/rail keepouts.

2.7 Labeling Requirements

TBD

Editor's note [TN 20171214]: Consider the following label attributes:

- Label attributes are human (e.g. ASCII) and machine readable (e.g. barcode)
- Add-in card MAC address shall be visible (used MAC address range, or base value)
- Board serial number

2.8 Insulation Requirements

All cards <u>must-shall</u> implement an insulator to prevent the bottom side card components from shorting out to the <u>baseboard</u> chassis. The recommended insulator thickness is 0.25mm and <u>must-shall</u> reside within the following mechanical envelope for the Small and Large size cards.

Figure 8: Small Card Bottom Side Insulator and Mechanical Envelope

TBD < need 2D drawings>

Figure 9: Large Card Bottom Side Insulator and Mechanical Envelope

TBD < need 2D drawings>

2.9 NIC Implementation Examples

<mark>TBD</mark>

2.10 Non-NIC Use Cases

"PCIe interface with extra management sideband"

2.10.1 PCIe Retimer card

2.10.2 Accelerator card

2.10.3 Storage HBA / RAID card

3 Card Edge and Baseboard Connector Interface

3.1 Gold Finger Requirements

The OCP NIC 3.0 add-in cards are compliant to the SFF-TA-1002 specification with respect to the gold fingers and connectors.

Small Size cards fit in the Primary Connector. Primary Connector compliant cards are 76mm x 115mm and may implement the full 168-pins. The Primary Connector cards may optionally implement a subset of gold finger pins if there is a reduced PCIe width requirement (such as 1 x8 and below). In this case, the card edge gold finger may implement a 2C design. The overall board thickness is 1.60mm. The gold finger dimensions for the Primary Connector compliant cards are shown below.

Large Size Cards support up to a x32 PCIe implementation and <u>may</u> uses both the Primary and Secondary connectors. <u>Large Size Cards may implement a reduced PCIe lane count and optionally implement only the Primary Connector 4C, or 2C plus OCP bay.</u>

For additional details, refer to the card and connector mechanical drawings located in XXX.

Note: The "B" pins on the connector are associated with the top side of the add-in card. The "A" pins on the connector are associated with the bottom side of the add-in card.

Figure $\underline{109}$: Small Size Primary Connector Gold Finger Mating Card Dimensions – x16 – Top

Side

<mark>TBD</mark>

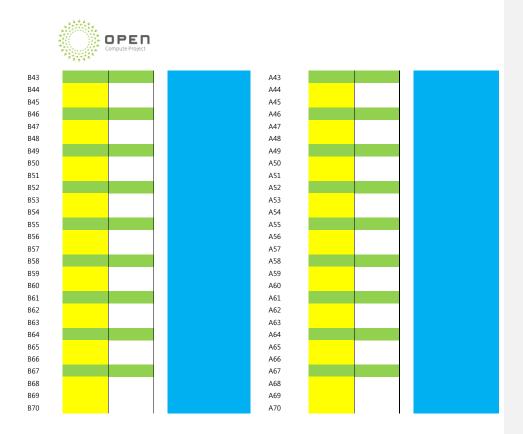
Figure $\underline{1110}$: Small Size Primary Connector Gold Finger Mating Card Dimensions – x16 – Bottom Side

<mark>TBD</mark>

Figure <u>12</u>1: Large Size Card Gold Finger Mating Card Dimensions – x32 – Top Side TBD

Figure <u>1312</u>: Large Size Card Gold Finger Mating Card Dimensions – x32 – Bottom Side TBD

3.1.1 Gold Finger Mating Sequence


Per the SFF-TA-1002 specification, the Primary and Secondary connectors are protocol agnostic and are optimized for high speed differential pairs. For use in the OCP NIC 3.0 application, some pin locations are used for single ended control nets or power and would benefit from a shorter pin length for staggering. As such, the recommended add-in card gold finger staging is shown in Table 7 for a two stage, first-mate, last-break functionality. The host connectors have a single stage mating and do not implement different pin lengths.

The AIC Plug (Free) side refers to the add-in card gold fingers; the receptacle (Fixed) side refers to the physical connector on the host platform. This table is based on the SFF-TA-1002 Table A-1 with modifications for OCP NIC 3.0. Refer to the mechanical drawings for pin the first-mate and second-mate lengths.

Side A Side B AIC Plug (Free) AIC Plug (Free) Receptacle (Fixed) Receptacle (Fixed) 2nd Mate 1st Mate 2nd Mate 1st Mate OCP B1 OCP A1 OCP B2 OCP A2 OCP B3 OCP A3 OCP B4 OCP A4 OCP B5 OCP A5 OCP B6 OCP A6 OCP A7

Table 7: Contact Mating Positions for the Primary and Secondary Connectors

		Kevu.u1
OCP B8	OCP A8	
OCP B9	OCP A9	
OCP B10	OCP A10	
OCP B11	OCP A11	
OCP B12	OCP A12	
OCP B13	OCP A13	
OCP B14	OCP A14	
	Mechanical Key	
B1	A1	
B2	A2	
В3	A3	
B4	A4	
B5	A5	
В6	A6	
В7	A7	
B8	A8	
В9	A9	
B10	A10	
B11	A11	
B12	A12	
B13	A13	
B14	A14	
B15	A15	
B16	A16	
B17	A17	
B18	A18	
B19	A19	
B20	A20	
B21	A21	
B22	A22	
B23	A23	
B24	A24	
B25	A25	
B26	A26	
B27	A27	
B28	A28	
	Mechanical Key	
B29	A29	
B30	A30	
B31	A31	
B32	A32	
B33	A33	
B34	A34	
B35	A35	
B36	A36	
B37	A37	
B38	A38	
B39	A39	
B40	A40	
B41	A41	
B42	A42	
	Mechanical Key	

3.2 Baseboard Connector Requirements

The OCP NIC 3.0 connectors are compliant to the "4C connector" as defined in the SFF-TA-1002 specification for a right angle or straddle mount form-factor. The 4C connector is 140-pins in width and includes support for up to 32 differential pairs to support a x16 PCIe connection. The connector also provides 6 pins of 12V for payload power. This implementation is common between both the Primary and Secondary Connectors. In addition, the Primary Connector has a 28-pin OCP Bay to the right of pin 1. These pins are used for management and support for up to a 4 x2 and 4 x4 multi-host configuration on the Primary Connector. The Primary and Secondary Connector drawings are shown in Figure 14Figure 13, Figure 15Figure 14, Figure 16Figure 15 and Figure 17Figure 16 below.

Figure <u>1413</u>: 168-pin Base Board Primary Connector – Right Angle

Open Compute Project • NIC • 3.0

Rev0.01

Figure <u>1514</u>: 140-pin Base Board Secondary Connector – Right Angle TBD

Figure <u>1615</u>: 168-pin Base Board Primary Connector – Straddle Mount TBD

Figure <u>1716</u>: 140-pin Base Board Secondary Connector – Straddle Mount

TBD

In order to the support the large form factor, systems must locate the Primary and Secondary Connectors per the mechanical drawing shown in Figure 18Figure 17.

Figure <u>18</u>17: Primary and Secondary Connector Locations for Large Card Support

3.3 Pin definition

The pin definitions of an OCP NIC 3.0 card with up to a x32 PCIe interface are shown in Table 8 and Table 9. All signal directions are shown from the perspective of the baseboard.

A baseboard system may provide a combination of Primary Connectors only, or Primary and Secondary Connectors to support multiple sizes of add-in cards. Both connectors share common functionality with power, SMBus 2.0, x16 PCIe and bifurcation control. The Primary Connector has an additional OCP Bay (pins OCP_A[1:14], OCP_B[1:14]) with additional REFCLKs for supporting up to four PCIe hosts, NC-SI connectivity and a Scan Chain for information exchange between the host and card. The NIC is required to implement the Scan Chain, while the baseboard may choose to optionally implement it. Depending on the baseboard form-factor, multiple OCP NIC 3.0 compliant cards may be designed into the system.

The pins common to the Primary and Secondary Connectors are shown in Section 3.4. The OCP Bay pins on the Primary Connector only are shown in Section 3.5.

Commented [HS9]: We should not require scan chain support for all NICs.

Cards or systems that do not require the use of a PCIe x16 connection may optionally implement a subset electrical connections as applicable to the design. For example, a x8 (or smaller) card using the first 8 PCIe lanes that is compliant with the Primary Connector pinout. Refer to Sections 3.1 and 3.2 for mechanical details. For these cases, the Primary Connector matches the 2C dimensions as defined in SFF-TA-1002.

In all cases, the physical baseboard connectors shall support x16 PCIe widths and must be implemented with the Primary (4C + OCP Bay) and Secondary (4C) connectors.

Table 8: Primary Connector Pin Definition (x16) (4C + OCP Bay)

	Side B	Side A			
OCP_B1	NIC_PWR_GOOD	PERST2#	OCP_A1	Pr	Pr
OCP_B2	PWRBRK#	PERST3#	OCP_A2	Primary Connector (x16, 168-pin add-in card with OCP Bay)	Primary Connector (x8, 112-pin add-in card with OCP bay)
OCP_B3	LD#	WAKE_N#	OCP_A3	Ŋ C	ry c
OCP_B4	DATA_IN	RBT_ARB_IN	OCP_A4	onn	onn
OCP_B5	DATA_OUT	RBT_ARB_OUT	OCP_A5	ecto	ecto
OCP_B6	CLK	GND	OCP_A6	¥ ×	or (x
OCP_B7	SLOT_ID0	RBT_TX_EN	OCP_A7	16,	8, 1
OCP_B8	RBT_RXD1	RBT_TXD1	OCP_A8	168	12-
OCP_B9	RBT_RXD0	RBT_TXD0	OCP_A9	늍.	pin
OCP_B10	GND	GND	OCP_A10	ı ad	add
OCP_B11	REFCLKn2	REFCLKn3	OCP_A11	d-in	-in o
OCP_B12	REFCLKp2	REFCLKp3	OCP_A12	a	card
OCP_B13	GND	GND	OCP_A13	δ.	wit
OCP_B14	RBT_CRS_DV	RBT_CLK_IN	OCP_A14	₹	ήO
	Mechan	ical Key		Q Q	Ф.
B1	+12V/+12V_AUX	GND	A1	Ва	оау)
B2	+12V/+12V_AUX	GND	A2	S	
В3	+12V/+12V_AUX	GND	A3		
B4	+12V/+12V_AUX	GND	A4		
B5	+12V/+12V_AUX	GND	A5		
В6	+12V/+12V_AUX	GND	A6		
В7	BIFO#	SMCLK	A7		
B8	BIF1#	SMDAT	A8		
В9	BIF2#	SMRST#	A9		
B10	PERSTO#	PRSNTA#	A10		
B11	+3.3V/+3.3V_AUX	PERST1#	A11		

Rev0.01

B12	PWRDIS	PRSNTB2#	A12	
B13	GND	GND	A13	
B14	REFCLKn0	REFCLKn1	A14	
B15	REFCLKp0	REFCLKp1	A15	
B16	GND	GND	A16	
B17	PETn0	PERn0	A17	
B18	РЕТр0	PERp0	A18	
B19	GND	GND	A19	
B20	PETn1	PERn1	A20	
B21	PETp1	PERp1	A21	
B22	GND	GND	A22	
B23	PETn2	PERn2	A23	
B24	PETp2	PERp2	A24	
B25	GND	GND	A25	
B26	PETn3	PERn3	A26	
B27	PETp3	PERp3	A27	
B28	GND	GND	A28	
	Mechan	ical Key		
B29	GND	GND	A29	
B30	PETn4	PERn4	A30	
B31	PETp4	PERp4	A31	
B32	GND	GND	A32	
B33	PETn5	PERn5	A33	
B34	PETp5	PERp5	A34	
B35	GND	GND	A35	
B36	PETn6	PERn6	A36	
B37	PETp6	PERp6	A37	
B38	GND	GND	A38	
B39	PETn7	PERn7	A39	
B40	PETp7	PERp7	A40	
B41	GND	GND	A41	
B42	PRSNTB0#	PRSNTB1#	A42	
	Mechan	ical Key		
B43	GND	GND	A43	
B44	PETn8	PERn8	A44	
B45	PETp8	PERp8	A45	
B46	GND	GND	A46	
B47	PETn9	PERn9	A47	
B48	PETp9	PERp9	A48	

B49	GND	GND	A49	
B50	PETn10	PERn10	A50	
B51	PETp10	PERp10	A51	
B52	GND	GND	A52	
B53	PETn11	PERn11	A53	
B54	PETp11	PERp11	A54	
B55	GND	GND	A55	
B56	PETn12	PERn12	A56	
B57	PETp12	PERp12	A57	
B58	GND	GND	A58	
B59	PETn13	PERn13	A59	
B60	PETp13	PERp13	A60	
B61	GND	GND	A61	
B62	PETn14	PERn14	A62	
B63	PETp14	PERp14	A63	
B64	GND	GND	A64	
B65	PETn15	PERn15	A65	
B66	PETp15	PERp15	A66	
B67	GND	GND	A67	
B68	RFU, N/C	RFU, N/C	A68	
B69	RFU, N/C	RFU, N/C	A69	
B70	PRSNTB3#	RFU, N/C	A70	

Table 9: Secondary Connector Pin Definition (x16) (4C)

	Side B	Side A			
B1	+12V/+12V_AUX	GND	A1	Se	Se
B2	+12V/+12V_AUX	GND	A2	con	con
В3	+12V/+12V_AUX	GND	A3	dary	dary
B4	+12V/+12V_AUX	GND	A4	/ Co	/ Co
B5	+12V/+12V_AUX	GND	A5	nne	nne
В6	+12V/+12V_AUX	GND	A6	Secondary Connector (x16, 140-pin add-in card)	Secondary Connector (x8, 84-pin add-in card)
В7	BIFO#	SMCLK	A7	r (x)	r (x8
B8	BIF1#	SMDAT	A8	l6, 1	, 8,
В9	BIF2#	SMRST#	A9	L40-	1-pi
B10	PERSTO#	PRSNTA#	A10	pin	า ad
B11	+3.3V/+3.3V_AUX	PERST1#	A11	add	ld-ir
B12	PWRDIS	PRSNTB2#	A12	ä	ı ca
B13	GND	GND	A13	carc	rd)
B14	REFCLKn0	REFCLKn1	A14)	
B15	REFCLKp0	REFCLKp1	A15		
B16	GND	GND	A16		
B17	PETn0	PERn0	A17		
B18	PETp0	PERp0	A18		
B19	GND	GND	A19		
B20	PETn1	PERn1	A20		
B21	PETp1	PERp1	A21		
B22	GND	GND	A22		
B23	PETn2	PERn2	A23		
B24	PETp2	PERp2	A24		
B25	GND	GND	A25		
B26	PETn3	PERn3	A26		
B27	PETp3	PERp3	A27		
B28	GND	GND	A28		
	Mechan	ical Key			
B29	GND	GND	A29		
B30	PETn4	PERn4	A30		
B31	PETp4	PERp4	A31		
B32	GND	GND	A32		
B33	PETn5	PERn5	A33		
B34	PETp5	PERp5	A34		
B35	GND	GND	A35		
B36	PETn6	PERn6	A36		

B37 PETp6 PERp6 B38 GND GND B39 PETn7 PERn7 B40 PETp7 PERp7	A37 A38
B39 PETn7 PERn7	A38
B40 PETp7 PERp7	A39
	A40
B41 GND GND	A41
B42 PRSNTB0# PRSNTB1#	A42
Mechanical Key	
B43 GND GND	A43
B44 PETn8 PERn8	A44
B45 PETp8 PERp8	A45
B46 GND GND	A46
B47 PETn9 PERn9	A47
B48 PETp9 PERp9	A48
B49 GND GND	A49
B50 PETn10 PERn10	A50
B51 PETp10 PERp10	A51
B52 GND GND	A52
B53 PETn11 PERn11	A53
B54 PETp11 PERp11	A54
B55 GND GND	A55
B56 PETn12 PERn12	A56
B57 PETp12 PERp12	A57
B58 GND GND	A58
B59 PETn13 PERn13	A59
B60 PETp13 PERp13	A60
B61 GND GND	A61
B62 PETn14 PERn14	A62
B63 PETp14 PERp14	A63
B64 GND GND	A64
B65 PETn15 PERn15	A65
B66 PETp15 PERp15	A66
B67 GND GND	A67
B68 RFU, N/C RFU, N/C	A68
B69 RFU, N/C RFU, N/C	A69
B70 PRSNTB3# RFU, N/C	A70

3.4 Signal Descriptions – Common

The pins shown in this section are common to both the Primary and Secondary Connectors. All pin directions are from the perspective of the baseboard.

The add-in card shall implement protection methods to prevent leakage paths between the Vaux and Vmain power domains in the event that a NIC is powered down in a powered up baseboard.

Note: Pins that are only used on Primary Connector 28-pin OCP bay are defined in Section 3.5.

3.4.1 PCIe Interface Pins

This section provides the pin assignments for the PCIe interface signals. The AC/DC specifications are defined in the PCIe CEM Specification, Rev 4.0. Example connection diagrams for are shown in Figure 31Figure 30.

Table 10: Pin Descriptions – PCIe 1

Signal Name	Pin #	Baseboard	Signal Description
		Direction	
REFCLKn0	B14	Output	PCIe compliant differential reference clock #0,
REFCLKp0	B15		and #1. 100MHz reference clocks are used for
REFCLKn1	A14	Output	the add-in card PCIe core logic.
REFCLKp1	A15		
			For baseboards, the REFCLK0 and REFCLK1
			signals are required shall be available at the
			connector.
			For add-in cards, the required REFCLKs shall be
			connected per the endpoint datasheet.
			Note: For cards that only support 1 x16,
			REFCLK0 is used. For cards that support 2 x8,
			REFCLK0 is used for the first eight PCIe lanes,

			and REFCLK1 is used for the second eight PCIe
			lanes.
			Refer to Section 2.1 in the PCIe CEM
			Specification, Rev 4.0 for electrical details.
PETn0	B17	Output	Transmitter differential pairs [0:15]. These pins
РЕТр0	B18		are connected from the baseboard transmitter
PETn1	B20	Output	differential pairs to the receiver differential
PETp1	B21		pairs on the add-in card.
PETn2	B23	Output	
PETp2	B24		The PCIe transmit pins are shall be AC coupled
PETn3	B26	Output	on the baseboard with capacitors - and . <u>The</u>
PETp3	B27		capacitors shall be are placed next to the
PETn4	B30	Output	baseboard transmitters. The AC coupling
PETp4	B31		capacitor <u>value shall must</u> be between 176nF
PETn5	B33	Output	(min) and 265nF (max).
PETp5	B34		
PETn6	B36	Output	For baseboards, the PET[0:15] signals are
PETp6	B37		required at the connector.
PETn7	B39	Output	
PETp7	B40		For add-in cards, the required PET[0:15] signals
PETn8	B44	Output	shall be connected to the endpoint silicon. For
PETp8	B45		silicon that uses less than a x16 connection, the
PETn9	B47	Output	appropriate PET[0:15] signals shall be
PETp9	B48		connected per the endpoint datasheet.
PETn10	B50	Output	
PETp10	B51		Refer to Section 6.1 in the PCIe CEM
PETn11	B53	Output	Specification, Rev 4.0 for details.
PETp11	B54		
PETn12	B56	Output	
PETp12	B57		
PETn13	B59	Output	

			Revu.u1
PETp13	B60		
PETn14	B62	Output	
PETp14	B63		
PETn15	B65	Output	
PETp15	B66		
PERn0	A17	Input	Receiver differential pairs [0:15]. These pins are
PERp0	A18		connected from the add-in card transmitter
PERn1	A20	Input	differential pairs to the receiver differential
PERp1	A21		pairs on the baseboard.
PERn2	A23	Input	
PERp2	A24		The PCIe receive pins are shall be AC coupled
PERn3	A26	Input	on the add-in card with capacitors—and. The
PERp3	A27		capacitors shall be are-placed next to the add-
PERn4	A30	Input	in card transmitters. The AC coupling capacitor
PERp4	A31		value shall must be between 176nF (min) and
PERn5	A33	Input	265nF (max).
PERp5	A34		
PERn6	A36	Input	For baseboards, the PER[0:15] signals are
PERp6	A37		required at the connector.
PERn7	A39	Input	
PERp7	A40		For add-in cards, the required PER[0:15] signals
PERn8	A44	Input	shall be connected to the endpoint silicon. For
PERp8	A45		silicon that uses less than a x16 connection, the
PERn9	A47	Input	appropriate PER[0:15] signals shall be
PERp9	A48		connected per the endpoint datasheet.
PERn10	A50	Input	
PERp10	A51		Refer to Section 6.1 in the PCIe CEM
PERn11	A53	Input	Specification, Rev 4.0 for details.
PERp11	A54		
PERn12	A56	Input	
PERp12	A57		
PERn13	A59	Input	
PERp13	A60		

PERn14	A62	Input	
PERp14	A63		
PERn15	A65	Input	
PERp15	A66		
PERSTO#	B10	Output	PCIe Reset #0, #1. Active low.
PERST1#	A11		
			When PERSTn# is deasserted, the signal shall
			<u>I</u> Indicates when the applied power is within
			tolerance and stable for the add-in card.
			PERST# goes - <u>shall be deasserted</u> <u>high</u> -at least
			100ms after the power rails are within the
			operating limits per the PCIe CEM Specification.
			The PCIe REFCLKs also shall also become stable
			within this period of time.
			PERST is shall be pulled high to 3.3Vaux on the
			baseboard.
			For OCP NIC 3.0, PERST deassertion shall also
			indicates the full card power envelope is
			available to the add-in card.
			For baseboards, the PERST[0:1]# signals are
			required at the connector.
			For add-in cards, the required PERST[0:1]#
			signals shall be connected to the endpoint
			silicon.
			Note: For cards that only support 1 x16,
			PERSTO# is used. For cards that support 2 x8,
			PERSTO# is used for the first eight PCIe lanes,

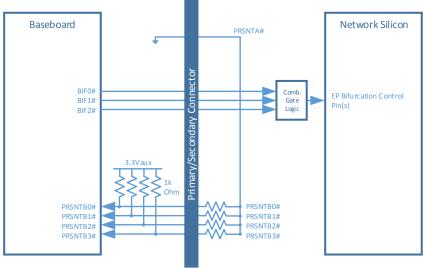
	and PERST1# is used for the second eight PCIe lanes.
	Refer to Section 2.2 in the PCIe CEM
	Specification, Rev 4.0 for details.

3.4.2 PCIe Present and Bifurcation Control Pins

This section provides the pin assignments for the PCIe present and bifurcation control signals. The AC/DC specifications are defined in Section XXX. An example connection diagram is shown in Figure 19Figure 18.

The PRSNTA#/PRSNTB[0:3]# state may shall be used to determine if a card has been physically plugged in. The BIF[0:2]# pins much shall be latched at least 1 ms before PWRDIS deassertion to ensure the correct values are detected by the system. Changing the pin states after this timing window is not allowed. Refer to the AC timing diagram in Section XXX for details.

Table 11: Pin Descriptions – PCIe Present and Bifurcation Control Pins


Signal Name	Pin #	Baseboard	Signal Description
		Direction	
PRSNTA#	A12	Output	Present A is used for add-in card presence and
			PCIe capabilities detection.
			For baseboards, this pin is shall be directly
			connected to GND.
			For add-in cards, this pin is shall be directly
			connected to the PRSNTB[3:0]# pins.
PRSNTB0#	B42	Input	Present B [0:3]# are used for add-in card
PRSNTB1#	A42		presence and PCIe capabilities detection.
PRSNTB2#	A10		
PRSNTB3#	B70		

			For baseboards, these pins are-shall be
			connected to the I/O hub and are pulled up to
			+3.3Vaux using 1kOhm resistors.
			For add-in cards, these pins are shall be
			strapped to PRSNTA# <u>per the</u> . The encoding
			definitions are described in Section 3.6.
			Note: PRSNTB3# is located at the bottom of
			the 4C connector and is only applicable for
			add-in cards with a PCIe width of x16 (or
			greater). Add-in cards that implement a 2C
			card edge do not use the PRSNTB3# pin for
			capabilities or present detection.
BIFO#	A7	Output	Bifurcation [0:2]# pins allow the baseboard to
BIF1#	A8		force configure the add-in card bifurcation.
BIF2#	A9		
			For baseboards, these pins shall be are outputs
			driven from the baseboard I/O hub and allows
			the system to force configure the add-in card
			bifurcation. The baseboard may optionally tie
			the BIF[0:2]# signals to 3.3Vaux or to ground
			per the definitions are described in Section 3.6
			if no dynamic bifurcation configuration is
			required.
			For add-in cards, these signals shall connect to
			the endpoint bifurcation pins if it is supported.
			The BIF[0:2]# encoding definitions are
			described in Section 3.6.

	Note: the required combinatorial logic output
	for endpoint bifurcation is dependent on the
	specific silicon and is not defined in this
	specification.

Figure 1918: PCIe Present and Bifurcation Control Pins

3.4.3 SMBus Interface Pins

This section provides the pin assignments for the SMBus interface signals. The AC/DC specifications are defined in the SMBus $\underline{2.0}$ and I^2C bus specifications. An example connection diagram is shown in Figure XXX.

Table 12: Pin Descriptions – SMBus

Signal Name	Pin #	Baseboard	Signal Description
		Direction	
SMCLK	A7	Output,	SMBus clock. Open drain, pulled up to 3.3Vaux
		OD	on the baseboard.

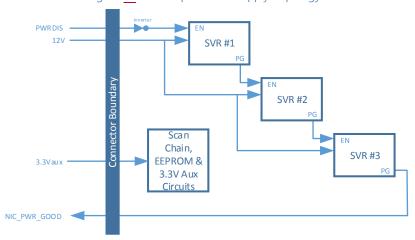
		4	
			For baseboards, connect the SMCLK from the
			platform SMBus master shall be connected to
			the connector.
			For add-in cards, connect the SMCLK from the
			endpoint silicon shall be connected to the card
			edge gold fingers.
SMDAT	A8	Input /	SMBus Data. Open drain, pulled up to 3.3Vaux
		Output,	on the baseboard.
		OD	
			For baseboards, connect the SMDAT from the
			platform SMBus master shall be connected to
			the connector.
			For add-in cards, connect-the SMDAT from the
			endpoint silicon shall be connected to the card
			edge gold fingers.
SMRST#	A9	Output,	SMBus reset. Open drain.
		OD	
			For baseboards, this pin is shall be pulled up to
			3.3Vaux. The SMRST pin may and is be used to
			reset optional downstream SMBus devices
			(such as temperature sensors). The SMRST#
			implementation shall be is a mandatory signal
			for baseboard implementations.
			For add-in cards, SMRST# is optional and is
			dependent on the add-in card implementation.

Commented [TN10]: Comment from Hemal Shah:

We should not mandate SMRST# for baseboard implementations as downstream devices are optional and SMBus 2.0 does not require this signal.

3.4.4 Power Supply Pins

This section provides the pin assignments for the power supply interface signals. The AC/DC specifications are defined in the PCIe CEM Specification, Rev 4.0 and amended in Section 3.10. An example connection diagram is shown in Figure 20Figure 19.


Table 13: Pin Descriptions – Power

Signal Name	Pin #	Baseboard	Signal Description
		Direction	
GND	Various	GND	Ground return; a total of 46 ground pins are
			on the main 140-pin connector area.
+12V/+12V_AUX	B1, B2,	Power	12V main or 12V Aux power; total of 6 pins per
	B3, B4,		connector. The 12V pins are shall be rated to
	B5, B6		1.1A per pin with a maximum derated power
			delivery of 80W.
			The +12V power pins must shall be within the
			rail tolerances (TBD tolerance for Aux) as
			defined in Section 3.10 when the PWRDIS pin
			is driven low by the baseboard.
+3.3V/3.3V_AUX	B11	Power	3.3V main or 3.3V Aux power; total of 1 pin per
			connector. The 3.3V pin is shall be rated to
			1.1A for a maximum derated power delivery of
			3.63W.
			The 3.3Vaux/main power pin must-shall be
			within the rail tolerances as defined in Section
			3.10 when the PWRDIS pin is driven low by the
			baseboard.
PWRDIS	B12	Output,	Power disable. Active high. Open-drain
		O/D	
			This signal is shall be pulled up to 3.3V
			through a 10kOhm resistor on the baseboard.

	When high, all add-in card supplies are-shall be disabled.
	When low, add-in card supplies are-shall be enabled.

Figure <u>2019</u>: Example Power Supply Topology

3.4.5 Miscellaneous Pins

This section provides the pin assignments for the miscellaneous interface signals.

Table 14: Pin Descriptions – Miscellaneous 1

Signal Name	Pin #	Baseboard	Signal Description
		Direction	
RFU, N/C	B68,	Input /	Reserved future use pins. Leave t These pins
	В69,	Output	shall be left as no connect.
	A68,		
	A69,		
	A70		

3.5 Signal Descriptions – OCP Bay (Primary Connector)

The following section describes the functions in the Primary Connector 28-pin OCP bay. This 28-pin bay is shown in Section 3.3 and have pin numbers designated as OCP_B[1:14], and OCP_A[1:14]. All pin directions on this OCP bay are from the perspective of the baseboard.

The add-in card shall implement protection methods to prevent leakage paths between the Vaux and Vmain power domains in the event that a NIC is powered down in a powered up baseboard.

Note: The pins that are common to both the Primary and Secondary Connectors are defined in Section 3.4.

3.5.1 PCIe Interface Pins – OCP Bay (Primary Connector)

This section provides the pin assignments for the PCIe interface signals on the Primary Connector OCP bay. The AC/DC specifications are defined in Section XXX. An example connection diagram that shows REFCLK2, REFCLK3, PERST2# and PERST3# is shown in Section 3.7.

Table 15: Pin Descriptions - PCIe 2

Signal Name	Pin #	Baseboard	Signal Description
		Direction	
REFCLKn2	OCP_B11	Output	PCIe compliant differential reference clock #2,
REFCLKp2	OCP_B12		and #3. 100MHz reference clocks are used for
REFCLKn3	OCP_A11	Output	the add-in card PCIe core logic.
REFCLKp3	OCP_A12		
			For baseboards, the REFCLK2 and REFCLK3
			signals are required at the Primary connector.
			For add-in cards, the required REFCLKs shall be connected per the endpoint datasheet.

			Note: REFCLK2 and REFCLK3 are not used for cards that only support a 1 x16, 1 x8 or 2 x8 connection. Refer to Section 2.1 in the PCIe CEM Specification, Rev 4.0 for details.
PERST2# PERST3#	OCP_A1 OCP_A2	Output	Specification, Rev 4.0 for details. PCIe Reset #2, #3. Active low. When PERSTn# is deasserted, the signal shall indicates when the applied power is within tolerance and stable for the add-in card. PERST# goes-shall be deasserted high at least 100ms after the power rails are within the operating limits per the PCIe CEM Specification. The PCIe REFCLKs also-shall also become stable within this period of time. PERST is-shall be pulled high to 3.3Vaux on the baseboard. For OCP NIC 3.0, PERST deassertion shall also indicates the full card power envelope is available to the add-in card. For baseboards, the PERST[0:1]# signals are
			required at the connector. For add-in cards, the required PERST[0:1]# signals shall be connected to the endpoint silicon.

			Note: PERST2# and PERST3# are not used for
			cards that only support a 1 x16 or 2 x8
			connection.
			Refer to Section 2.2 in the PCIe CEM
			Specification, Rev 4.0 for details.
WAKE#	OCP_A3	Input, OD	WAKE#. Open drain. Active low.
			This signal is shall be driven by the add-in
			card to notify the baseboard to restore the
			PCIe link. For add-in cards that support
			multiple WAKE# signals, their respective
			WAKE# pins may be tied together as the
			signal is open-drain to form a wired-OR.
			signal is open drain to form a wired on.
			For baseboards, this signal shall be is-pulled
			up to +3.3V on the baseboard with a 10kOhm
			resistor <u>. This signals shall be</u> and is connected
			to the system WAKE# signal.
			,
			For add-in cards, this signal is shall be directly
			connected directly to the endpoint silicon
			WAKE# pin(s).
			Refer to Section 2.3 in the PCIe CEM
			Specification, Rev 4.0 for details.

3.5.2 NC-SI Over RBT Interface Pins – OCP Bay (Primary Connector)

This section provides the pin assignments for the NC-SI over RBT interface signals on the Primary Connector OCP bay. The AC/DC specifications are defined in the NC-SI specification. An example connection diagram is shown in Figure 21Figure 20.

Table 16: Pin Descriptions – NC-SI Over RBT

Signal Name	Pin #	Baseboard	Signal Description
		Direction	
RBT_CLK_IN	OCP_A14	Output	Reference clock input. Synchronous clock
			reference for receive, transmit and control
			interface. The clock has-shall have a nominal
			frequency of 50MHz ±100ppm.
			For baseboards, connect -this pin <u>shall be</u>
			connected between the baseboard NC-SI over
			RBT PHY and the <u>Primary</u> connector <u>OCP bay</u> .
			This signal requires a 100kOhm pull down
			resistor on the baseboard. If the baseboard
			does not support NC-SI over RBT, then this
			signal shall be terminated this signal to ground
			through a 100kOhm pull down resistor.
			For add-in cards, connect- this pin <u>shall be</u>
			connected from between the gold finger to
			the endpoint silicon. Leave tThis pin shall be
			left as a no connect if NC-SI is not supported.
RBT_CRS_DV	OCP_B14	Input	Carrier sense/receive data valid. This signal is
			used to indicate to the baseboard that the
			carrier sense/receive data is valid.
			For baseboards, connect -this pin <u>shall be</u>
			connected between the baseboard NC-SI over
			RBT PHY and the connector. This signal
			requires a 100kOhm pull down resistor on the
			baseboard. If the baseboard does not support
			NC-SI over RBT, then this signal shall be
			terminate <u>d</u> this signal to ground through a
			100kOhm pull down resistor.

	,		
			For add-in cards, connect- this pin <u>shall be</u>
			connected from between the gold finger to
			the endpoint silicon. Leave tThis pin shall be
			left as a no connect if NC-SI is not supported.
RBT_RXD0	OCP_B9	Input	Receive data. Data signals from the network
RBT_RXD1	OCP_B8		controller to the BMC.
			For baseboards, connect this pin shall be
			connected between the baseboard NC-SI over
			RBT PHY and the connector. This signal
			requires a 100kOhm pull-up resistor to 3.3Vaux
			on the baseboard. If the baseboard does not
			support NC-SI over RBT, then this signal shall
			be terminated this signal to 3.3 Vaux through a
			100kOhm pull-up.
			For add-in cards, connect- this pin shall be
			connected from -between the gold finger to
			and the RBT_RXD[0:1] pins on endpoint silicon.
			Leave this pin shall be left as a no connect if
			NC-SI is not supported.
RBT_TX_EN	OCP_A7	Output	Transmit enable.
			For baseboards, connect this pin shall be
			connected between the baseboard NC-SI over
			RBT PHY and the connector. This signal
			requires a 100kOhm pull down resistor to
			ground on the baseboard. If the baseboard
			does not support NC-SI over RBT, then this
			signal shall be terminated this signal to ground
			through a 100kOhm pull down.

			For add-in cards, connect- this pin <u>shall be</u> connected from- between the gold finger to
			the endpoint silicon. Leave tThis pin shall be
	0.00 1.0		left as a no connect if NC-SI is not supported.
RBT_TXD0	OCP_A9	Output	Transmit data. Data signals from the BMC to
RBT_TXD1	OCP_A8		the network controller.
			For baseboards, connect -this pin <u>shall be</u>
			connected between the baseboard NC-SI over
			RBT PHY and the connector. This signal
			requires a 100kOhm pull-up resistor to 3.3Vaux
			on the baseboard. If the baseboard does not
			support NC-SI over RBT, then this signal shall
			be terminated this signal to 3.3 Vaux through a
			100kOhm pull-up.
			For add-in cards, connect -this pin <u>shall be</u>
			connected from between the gold finger to
			the RBT_TXD[0:1] pins on the endpoint silicon.
			Leave tThis pin shall be left as a no connect if
			NC-SI is not supported.
RBT_ARB_OUT	OCP_A5	Output	NC-SI hardware arbitration output. This pin
			shall only be used Used only-if the end-point
			silicon supports hardware arbitration. This pin
			shall be Connects connected to the
			RBT_ARB_IN signal of an adjacent device in the
			hardware arbitration ring.
			The baseboard shall implement a multiplexing
			implementation that directs the RBT_ARB_OUT
			to the RBT_ARB_IN pin of the next NC-SI
			capable device in the ring, or back to the

	I		,
			RBT_ARB_IN pin of the source device if there is
			a single device on the ring.
			For baseboards, connect -this pin <u>shall be</u>
			connected between the baseboard OCP
			connector(s) to complete the hardware
			arbitration ring. If the baseboard does not
			support NC-SI over RBT, connect this signal
			shall be directly connected to the RBT_ARB_IN
			pin.
			For add-in cards, connect- this pin <u>shall be</u>
			connected from the gold finger to the
			RBT_ARB_IN pin on the endpoint silicon. Leave
			<u>tThis</u> pin <u>shall be left</u> as a no connect if NC-SI
			is not supported.
RBT_ARB_IN	OCP_A4	Input	NC-SI hardware arbitration input. Used- <u>This</u>
			pin shall only be used if the end-point silicon
			supports hardware arbitration. This pin shall be
			Connects-connected to the RBT_ARB_OUT
			signal of an adjacent device in the hardware
			arbitration ring.
			The baseboard shall implement a multiplexing
			implementation that directs the RBT_ARB_IN to
			the RBT_ARB_OUT pin of the next NC-SI
			capable device in the ring, or back to the
			RBT_ARB_OUT pin of the source device if there
			is a single device on the ring.
			For baseboards, connect this pin shall be
			connected between the baseboard OCP
			connector(s) to complete the hardware

			arbitration ring. If the baseboard does not support NC-SI over RBT, connect-this signal shall be directly connected to the RBT_ARB_OUT pin. For add-in cards, connect-this pin shall be connected from-between the gold finger to the RBT_ARB_OUT pin on the endpoint silicon. Leave this pin as a no connect if NC-SI is not supported.
SLOT_ID	OCP_B7	Output	NC-SI Address pin. This pin shall only be used Used only if the end point silicon supports package identification. For baseboards, this pin is shall be used to identify the slot ID value. Connect this pin shall be directly to GND for SlotID = 0.; This pin shall be or pulled this pin up to 3.3 Vaux for SlotID = 1. For add-in cards, connect this pin shall be connected to the endpoint device GPIO associated with the Package ID[1] field. Refer to Section 4.9.14.1.1 and the device datasheet
			For add-in cards with multiple endpoint devices, the SLOT_ID pin may be used to configure a different Package ID value so long as the resulting combination does not cause addressing interferences.

Commented [TN11]: Address configuration text has been moved to Section 4.1.1

Rev0.01

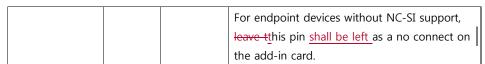


Figure 2120: NC-SI Over RBT Connection Example – Single Primary Connector

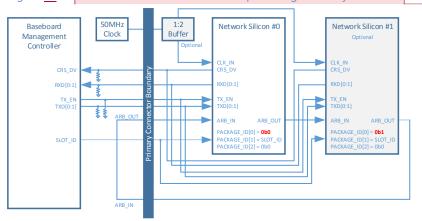
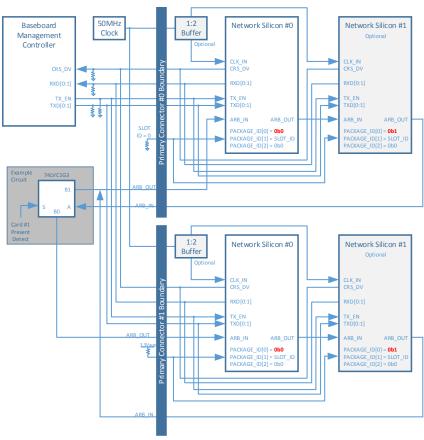



Figure 2221: NC-SI Over RBT Connection Example – Dual Primary Connector

Commented [HS12]: We should delete this table and just reference DSP0222 Section 10 to avoid any inconsistencies.

Commented [TN13R12]: Do you mean Table 16, above?

Note 1: For baseboard designs with a single Primary Connector, connect ARB_IN to ARB_OUT to complete the NC-SI hardware arbitration ring. For designs with multiple Primary Connectors, connect ARB_IN and ARB_OUT to an analog mux to complete the NC-SI arbitration ring based on the number of cards installed in the system. An example dual Primary Connector implementation is shown in Figure 22Figure 21.

Note 2: For add-in cards with two discrete endpoint silicon, the Package ID[0] bit shall be statically set based on its silicon instance. For example, the figure above shows Network Silicon #0 and Network Silicon #1. Network Silicon #0 has Package ID[0] = 0b0, Network Silicon #1 has Package ID[0] = 0b1.

3.5.3 Scan Chain Pins – OCP Bay (Primary Connector)

This section provides the pin assignments for the Scan Bus interface signals on the Primary Connector OCP Bay. The AC/DC specifications are defined in Section XXX. An example connection diagram is shown in Figure 23Figure 22.

Table 17: Pin Descriptions – Scan Chain

Signal Name	Pin #	Baseboard	Signal Description
		Direction	
CLK	OCP_B6	Output	Scan clock. The CLK is an output pin from the
			baseboard to the add-in card. The CLK may run
			up to 12.5MHz.
			For baseboard implementations, connect the
			CLK pin shall be connected to the Primary
			Connector. Tie t The CLK pin shall be tied
			directly to GND if the scan chain is not used.
			For NIC implementations, the CLK pin must
			shall be connected to Shift Registers 0 & 1,
			and optionally <u>connected</u> to Shift Registers 2 &
			3 (if implemented) as defined in the text and
			Figure 23Figure 22, below. Pull the The CLK pin
			shall be pulled up to 3.3Vaux through a 1kOhm
			resistor.
DATA_OUT	OCP_B5	Output	Scan clock data output from the baseboard to
			the add-in card. This bit stream is used to shift
			in NIC configuration data.
			For baseboard implementations, connect the
			DATA_OUT pin shall be connected to the
			Primary Connector. T ie t he DATA_OUT pin <u>shall</u>
			be tied directly to GND if the scan chain is not
			used.

	1	1	
			For NIC implementations, the DATA_OUT pin may be left floating if it is not used for add-in card configuration. Pull tThe DATA_OUT pin shall be pulled up to 3.3Vaux through a 1kOhm resistor.
DATA_IN	OCP_B4	Input	Scan clock data input to the baseboard. This bit stream is used to shift out NIC status bits. For baseboard implementations, the DATA_IN pin shall be pulled up to 3.3Vaux through a 10kOhm resistor to prevent the input signal from floating if a card is not installed. This pin may be left as a no connect if the scan chain is
			For NIC implementations, the DATA_IN scan chain is required. The DATA_IN pin shall be connection connected to Shift Registers 0 & 1, as defined in the text and Figure 23Figure 22, are required.
LD#	OCP_B3	Output	Scan clock shift register load. Used to latch configuration data on the add-in card. For baseboard implementations, the LD# pin shall be pulled up to 3.3Vaux through a 1kOhm resistor if the scan chain is not used to prevent the add-in card from erroneous data latching. For NIC implementations, the LD# pin
			implementation is required. The LD# pin must shall be connected to Shift Registers 0 & 1 as defined in the text and Figure 23Figure 22. Pull

Rev0.01

	tThe LD# pin shall be pulled up to 3.3Vaux
	through a 1kOhm resistor.

The scan chain provides side band status indication between the add-in card and the baseboard. The scan chain bit definition is defined in the two tables below. The scan chain data stream is 32-bits in length for both the DATA_OUT and the DATA_IN streams. The scan chain implementation is optional on the host, but is mandatory on all OCP NIC 3.0 cards. The scan chain components operates on the 3.3Vaux power domain.

The DATA_OUT bus is an output from the host. The DATA_OUT bus provides initial configuration options to the add-in card. At the time of this writing, the default implementation does not use the DATA_OUT stream and is not implemented on the NIC. However, all baseboard systems that implement the Scan Chain shall connect DATA_OUT between the platform and the Primary Connector for future-proofing NIC implementations and subsequent revisions of this specification.

Table 18: Pin Descriptions – Scan Chain DATA_OUT Bit Definition

Byte.bit	DATA_OUT Field	Default	Description
	Name	Value	
0.[07]	RSVD	0b000000	Reserved. Byte 0 value is 0h00.
1.[07]	RSVD	0h00	Reserved. Byte 1 value is 0h00.
2.[07]	RSVD	0h00	Reserved. Byte 2 value is 0h00.
3.[07]	RSVD	0h00	Reserved. Byte 3 value is 0h00.

The DATA_IN bus is an input to the host and provides NIC status indication. The default implementation is completed with two 8-bit 74LV165 parallel in to serial out shift registers in a cascaded implementation. Up to four shift registers may be implemented to provide additional NIC status indication to the host platform.

DATA_IN shift registers 0 & 1 are shall be mandatory for all cardsscan chain implementations. DATA_IN shift registers 2 & 3 are optional depending on the card type and fields being reported to the host. DATA_IN shift register 2 may be used to indicate future definitions of the scan chain bit stream. DATA_IN shift registers 3 (in conjunction with

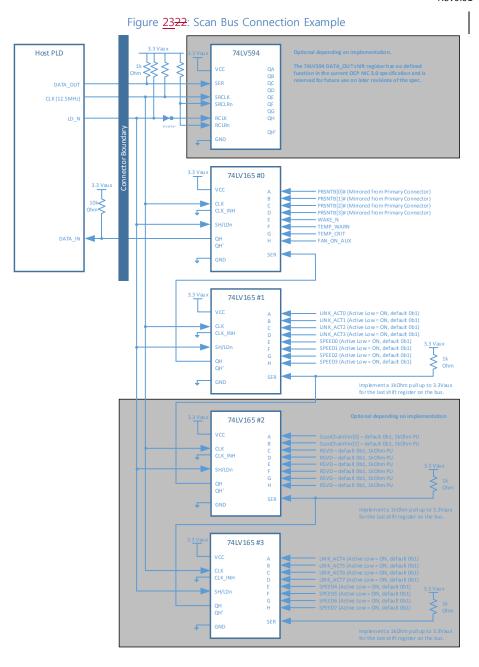
Commented [TN14]: Need to discuss this (see Hamel's comment in prior sections regarding making the scan chain mandatory on the AIC)

shift register 2) are required for reporting link/activity indication on card implementations with 5-8 ports.

The host should read the DATA_IN bus multiple (TBD) times to qualify the incoming data stream.

A 1kOhm pull up resistor shall be implemented on the NIC to the SER input of the last shift register on the DATA_IN scan chain to maintain a default bit value of 0b1 for unused bits for implementations using less than four shift registers.

Table 19: Pin Descriptions – Scan Bus DATA_IN Bit Definition


Byte.bit	DATA_OUT Field	Default	Description
	Name	Value	
0.0	PRSNTB[0]#	0bX	PRSNTB[3:0]# bits shall reflect the same state
0.1	PRSNTB[1]#	0bX	as the signals on value is mirrored from the
0.2	PRSNTB[2]#	0bX	Primary Connector.
0.3	PRSNTB[3]#	0bX	
0.4	WAKE_N	0bX	PCIe WAKE_N signal shall reflect the same
			state as the signal is mirrored from on the
			Primary Connector.
0.5	TEMP_WARN	0b0	Temperature monitoring pin from the on-
			card thermal solution. This pin is shall be
			asserted high when temperature sensor
			exceeds the temperature warning threshold.
0.6	TEMP_CRIT	0b0	Temperature monitoring pin from the on-
			card thermal solution. This pin is shall be
			asserted high when temperature sensor
			exceeds the temperature critical threshold.
0.7	FAN_ON_AUX	0b0	When high, FAN_ON_AUX shall_requests the
			system fan to be enabled for extra cooling in
			the S5 state.
1.0	LINK ACTO	0b1	Port 03 link/activity indication. Active low.

1.1	LINK_ACT1	0b1	
1.2	LINK_ACT2	0b1	0b0 – Link LED is illuminated on the host
1.3	LINK_ACT3	0b1	platform.
			0b1 – Link LED is not illuminated on the host
			platform.
			Steady = link is detected on the port.
			Blinking = activity is detected on the port.
			The blink rate should blink low for 50-500ms
			during activity periods.
			Off = the physical link is down or disabled
1.4	SPEED_A0	0b1	Port 03 speed A (max rate) indication. Active
1.5	SPEED_A1	0b1	low.
1.6	SPEED_A2	0b1	
1.7	SPEED_A3	0b1	0b0 – Port is linked at maximum speed.
			0b1 – Port is not linked at the maximum
			speed or no link is present.
2.0	ScanChainVer[0]	0b1	ScanChainVer[1:0] is shall be used to indicate
2.1	ScanChainVer[1]	0b1	the scan chain bit definitions version. The
			encoding is shall be as follows:
			0b11 – Scan chain bit definitions version 1
			corresponding to OCP <u>NIC</u> 3.0 spec version
			1.0.
			All other encoding values shall be are
			reserved.
2.2	RSVD	0b1	Byte 2 bits [2:7] are reserved. These bits shall
2.3	RSVD	0b1	default to the value of 0b1. These bits may
2.4	RSVD	0b1	be used in future versions of the scan chain.
2.5	RSVD	0b1	
2.6	RSVD	0b1	
2.7	RSVD	0b1	

3.0	LINK_ACT4	0b1	Port 47 link/activity indication. Active low.
3.1	LINK_ACT5	0b1	
3.2	LINK_ACT6	0b1	0b0 – Link LED is illuminated on the host
3.3	LINK_ACT7	0b1	platform.
			0b1 – Link LED is not illuminated on the host
			platform.
			Steady = link is detected on the port.
			Blinking = activity is detected on the port.
			The blink rate should blink low for 50-500ms
			during activity periods.
			Off = the physical link is down or disabled
3.4	SPEED_A4	0b1	Port 47 speed A (max rate) indication. Active
3.5	SPEED_A5	0b1	low.
3.6	SPEED_A6	0b1	
3.7	SPEED_A7	0b1	0b0 – Port is linked at maximum speed.
			0b1 – Port is not linked at the maximum
			speed or no link is present.

Rev0.01

3.5.4 Primary Connector Miscellaneous Pins – OCP Bay (Primary Connector)

This section provides the miscellaneous pin assignments for the pins on the Primary Connector OCP Bay. The AC/DC specifications are defined in the PCIe CEM Specification, Rev 4.0 and Section 3.12. An example connection diagram is shown in Figure XXX.

Table 20: Pin Descriptions – Miscellaneous 2

Signal Name	Pin #	Baseboard	Signal Description
		Direction	
PWRBRK#	OCP_B2	Output,	Power break. Active low, open drain.
		OD	
			This signal shall be is pulled up to 3.3 Vaux on
			the add-in card with a minimum of 95kOhm.
			The pull up on and the baseboard with shall
			be a stiffer resistance in-order to meet the
			timing specs as shown in the PCIe CEM
			Specification.
			When This this signal is driven low by the
			baseboard, the and is used to notify that an
			Emergency Power Reduction State is
			requested. The add-in card shall move to a
			lower power consumption state.
NIC_PWR_GOOD	OCP_B1	Input	NIC Power Good. Active high. This signal is
			driven by the add-in card.
			When high, this signal shall indicates that all
			of the add-in card power rails are operating
			within nominal tolerances.
			When low, this signal shall indicate that the
			add-in card power supplies are not yet ready
			within nominal tolerances or are in a fault
			condition.

			For baseboards, this pin may be connected to the platform I/O hub as a NIC power health status indication. This signal shall is-be pulled down to ground with a 100kOhm resistor on the baseboard to prevent a false power good indication if no add-in card is present.
			For add-in cards this signal shall indicate the add-in card power is "good". This signal may be implemented by a cascaded power good or a discrete power good monitor output.
GND	OCP_A6 OCP_A10 OCP_A13 OCP_B10 OCP_B13	GND	Ground return; a total of 5 ground pins are on the OCP bay area.

3.6 PCIe Bifurcation Mechanism

OCP3.0 baseboards and add-in cards support multiple bifurcation combinations. Single socket baseboards with a single or multiple root ports, as well as a multi-socket baseboards with a single or multiple root ports are supported. The bifurcation mechanism also supports add-in cards with a single or multiple end points. These features are accomplished via I/O pins on the Primary and Secondary connector:

- PRSNTA#, PRSNTB[3:0]#. The PRSNTA# pin shall connects to the PRSNTB# pins as a hard coded value on the add-in card. The encoding of the PRSNTB[3:0]# pins allows the baseboard to determine the PCIe Links available on the add-in card.
- BIF[3:0]#. The BIF# pin states are shall be controlled by the baseboard and to allows
 the baseboard to override the default end point bifurcation for silicon that support
 bifurcation. Additional combinatorial logic is required and is specific to the card

silicon. The combinatorial logic is not covered in this specification. The BIF[3:0]# pins may optionally be hardcoded for baseboards that do not require a dynamic bifurcation override.

The A high level bifurcation connections are diagram is shown in Figure 24 Figure 23.

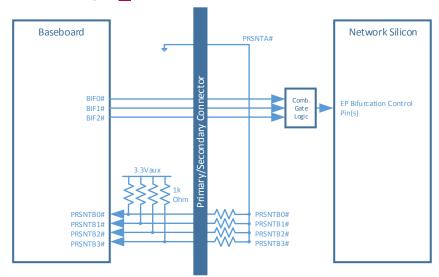


Figure 2423: PCIe Bifurcation Pin Connections Support

3.6.1 PCIe Add-in Card to Baseboard Bifurcation Configuration (PRSNTA#, PRSNTB[3:0]#)

The add-in card to baseboard configuration mechanism consists of four dual use pins (PRSNTB[3:0]#) on the add-in card and a grounded PRSNTA# pin on the baseboard. These pins provide card presence detection as well as mechanism to notify the baseboard of the pre-defined PCIe lane width capabilities. The PRSNTB[3:0]# pins are pulled up to 3.3Vaux on the baseboard and are active low signals. A state of 0b1111 indicates that no card is present in the system. Depending on the capabilities of the add-in card, a selection of PRSNTB[3:0]# signals may be strapped to the PRSNTA# signal and is pulled low by the baseboard. The encoding of the PRSTNB[3:0]# bits is shown in Table 21 for x16 and x8 PCIe cards.

3.6.2 PCIe Baseboard to Add-in Card Bifurcation Configuration (BIF[2:0]#)

Three signals (BIF[2:0]#) are driven by the baseboard to notify requested bifurcation on the add-in card silicon. This allows the baseboard to set the lane configuration on the add-in card that supports multiple bifurcation options.

For example, a baseboard that has four separate hosts that support a 4 x4 connection, should appropriately drive the BIF[2:0]# pins per Table 21 and indicate to the add-in card silicon to setup a 4 x4 configuration.

As previously noted, the BIF[2:0]# signals require additional combinatorial logic to decode the BIF[2:0]# value and appropriately apply it to the end-point silicon. The combinatorial logic is not covered in the specification as its implementation is specific to the vendor silicon used.

3.6.3 PCIe Bifurcation Decoder

The combination of the PRSNTB[3:0]# and BIF[2:0]# pins deterministically sets the PCIe lane width for a given combination of baseboard and add-in cards. Table 21 shows the resulting number of PCIe links and its width for known combinations of baseboards and add-in cards.

*Note: The baseboard must disable PCIe lanes during the initialization phase if the number of detected PCIe links are greater than what is supported on the baseboard to prevent a nondeterministic solution. For example, if the baseboard only supports a 1 x16 connection, and the add-in card only supports a 2 x8 connection, the baseboard must disable PCIe lanes 8-15 to prevent any potential LTSSM issues during the discovery phase.

Table 21: PCIe Bifurcation Decoder for x16 and x8 Card Widths

					1000					Dual Host	Muad Host	
		Host	1 Host	1 Host	1Host	1 Host	1Host	RSVD	RSVD	2 Hosts	4 Hosts	4 or 8 Hosts
		Host CPU Sockers	1 Upstream Socket	1 Upstream Socket	1 Upstream Socket	1Upstream Socket 1Upstream Socket 1Upstream Socket 2Upstream Sockets 4 Upstream Sockets FSVD FSVD	4 Upstream Sockets	RSVD	RSVD	RSVD 2 Upstream Sockets 4 Upstream Sockets (1 Socket per Host) (1 Socket per Host)	4 Upstream Sockets (1 Socket per Host)	418 Upstream Sockets (1 Socket per Host)
Network Card - Supported PCle	Network Card - Supported PCle Configurations	Total PCle Links	1Link (No Bifurcation)	1 or 2 Links	1, 2, or 4 Links	2 Links	4 Links	RSVD	HSVD	2 Links	4 Links	4 or 8 x2 links
		System Support	1x16, 1x8, 1x4, 1x2, 1x1	1x16,1x8,1x4,1x2,1x1 1x16,1x8,1x4,1x2,1x1	1x16, 1x8, 1x4, 1x2, 1x1	1x8,1x4,1x2,1x1		RSVD	BSVD			
				2x8,2x4,2x2,2x1	2x8,2x4,2x2,2x1	2x8,2x4,2x2,2x1				2x8,2x4,2x2,2x1		
Minimum					4×4,4×2,4×1		4 x4, 4 x2, 4x1				4×4,4×2,4×1	4×2,4×1
		System Encoding	00000	00090	00000	00001	00010	06011	06100	009001	09110	0b111
Card Short x16 Cards	x16 Cards	Add-in-Card Encoding										
\neg		B(3:0)*										
Not Present	Card Not Present		RSVD - Card not present in the system	the system				Ī				
9	1x8,1x4,1x2,1x1	0P1110	9º	9%	92	1x8	1x4	ı	,	188	184	152
92		0	,	,		(Socket Lonky)	(Socket Lonky)		Ī	(Host Donly)	(Host Donly)	(Host U only)
75	1x4,1x2,1x1	neman neman	ž	ž	Ţ.	1x4 (Socket 0 only)	1x4 (Socket 0 only)			Tx4 (Host 0 only)	1x4 (Host 0 only)	Tick (Host 0 only)
142	1x2,1x1	011110	14.2	142	142	1 _N 2 (Socker 0 only)	1x2 (Sooket 0 only)			1x2 (Host 0 only)	1x2 (Host 0 only)	1x2 [Host 0 only]
2	181	0F1110	181	181	181	1x1 (Socker Donly)	1s1 (Sooker floorbil)			1x1 (Host Donly)	1x1 (Host Dools)	1st (Host Doolul
	1x8.1x4.1x2.1x1	001101	92	1,08	99	188	2 x4	,		1.8	2x4	2.42
1x8 Option B						(Socket 0 only)				(Host 0 only)		(Host 0 & Tonly)
28 Design B	2.48 Designer B d.ud d.u.2.42, 2.k1	061101	1×8.	2×8	2×8	2 н8	4×4			2×8	4×4	2x2 (Host 0x. Looks)
O CONTRACTOR	1.8 1.d	OFITOO	1.8	2 nd	2d	1.8	2d		ŀ	1.8	2.04	4.02
1x8 Option D	2 x4, 1x8 Option D 4 x2 (First 8 lanes), 4 x1		ł		Į.	(Socket 0 only)				(Host 0 only)		<u> </u>
1x16 Option D	1x16,1x8,1x4 2x8,2x4, 1x16 Option D 4x4,4x2 (First 8 lames),4x1	0b11 00	1×16	1×16	1×16	2 × 8	4×4			2,48	4. 4.	4×2
RSVD	HSVD		RSVD - The encoding of 0	b1071 is reserved due to in	sufficient spacing between	RSVD - The encoding of 0b1011 is reserved due to insufficient spacing between PRSMTA and PRSMTB2 pin to provide positive card identification.	pin to provide positive card	identifica	ion.			
2×4	2x4,2x2,2x1 1x4,1x2,1x1	0b1 010	*	2×4	2×4	1x4 [Socket Donly]	2×4			1x4 (Host Donly)	2,44	2x2 (Host 0 & 1 only)
Γ	RSVD for future x8 encoding 0b1001	061001										
	RSVD for future x8 encoding 0b1000	001000										
1x16	Ž	060111	1×16	1×16	1×16	1x8 (Socket 0 only)	1x4 (Socket 0 only)			1×8 (Host 0 only)	1x4 (Host 0 only)	1x2 (Host 0 only)
2 x8 Option A		000110	1×8*	2 ×8	2 x8	2 x8	2 x4 (Sooket 0 & 2 only)	-		2 ×8	2 s4 (Host 0 & 2 only)	1 _N 2 (Host 0 & 1 only)
1x16 Option B	1x2, 1x1 2x1	0b0 101	1×16	1×16	1×16	2 48	2 x4 (Socket 0 & 2 only)			2 1/8	2 x4 (Host 0 & 2 only)	2x2 (Host 0 & 1only)
1x16 Option C	1x16,1x8,1x4 2x8,2x4,2x2,2x1 1x16 Option C 4x4,4x2,4x1	0001000	1×16	1×16	1×16	2 ×8	4×4			2,48	4,4	2x2 (Host 0& 1 only)
4 8%	4×4,4×2,4×1	0b0 011	184*	2%4*	4×4	2×4 (EP 0 and 2 only)	4×4			2x4 (EP 0 and 2 only)	4%4	4 x2 (Host 0 & 1 only)
		000010										
	HSVD	0P0 001										
		UNUUNU							i			

3.6.4 Bifurcation Detection Flow

[Need input and clarification from system vendors]

The following detection flow shall be used to determine the resulting link count and lane width based on the baseboard and add-in card configurations.

- 1. The baseboard <u>shall</u> reads the state of the PRSNTB[3:0]# pins. <u>An add-in card is</u> present in the system <u>Fif</u> the resulting value is not 0b1111, an add in card is present.
- 2. Firmware determines the add-in card PCIe lane width capabilities per Table 21 by reading the PRSNTB[3:0]# pins.
- 3. The baseboard reconfigures the PCIe bifurcation on its ports to match the highest common lane width and lowest common link count on the card.
- 4. For cases where the baseboard request a link count override (such as requesting a 4-host baseboard requesting 4 x4 operation on a supported card that would otherwise default to a 2 x8 case), the BIF[0:2]# pins would shall be asserted as appropriate.

 Doing so Asserting the BIF[0:2]# pins assumes the add-in card supports the requested link override.
- 5. PERST# is-shall be deasserted after the >100ms window as defined by the PCIe specification. Refer to Section 3.12 for timing details.

3.6.5 PCIe Bifurcation Examples

For illustrative purposes, the following figures show several common bifurcation permutations.

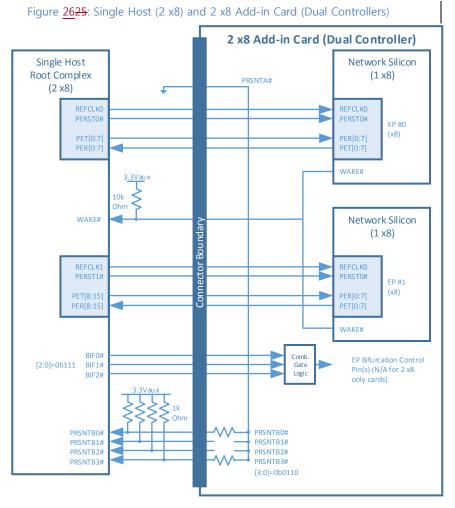

Figure 25

Figure 24 illustrates a single host baseboard that supports x16 with a single controller add-in card that also supports x16. The PRSTNB[3:0]# state is 0b0111. The BIF[2:0]# state is 0b000 as there is no need to instruct the end-point network controller to a specific bifurcation. The PRSNTB encoding notifies the baseboard that this card is only capable of 1 x16. The single host baseboard determines that it is also capable of supporting 1 x16. The resulting link width is 1 x16.

1 x16 Add-in Card Network Silicon Single Host **Root Complex** (1 x16) PRSNTA# (1 x16) REFCLKO PERSTO# REFCLK0 PERSTO# EP #0 (x16) PET[0:15] PER[0:15] PER[0:15] PET[0:15] Connector Boundary BIF0# Comb. Gat e EP Bifurcation Control [2:0]=0b111 BIF1# Pin(s) (N/A for 1 x16 only cards) WAKE# WAKE# PRSNTB1# PRSNTB1# PRSNTB2# PRSNTB2# PRSNTB3# PRSNTB3# [3:0]=0b0111

Figure <u>25</u>24: Single Host (1 x16) and 1 x16 Add-in Card (Single Controller)

<u>Figure 26Figure 25</u> illustrates a single host baseboard that supports 2 x8 with a single controller add-in card that also supports 2 x8. The PRSTNB[3:0]# state is 0b0110. The BIF[2:0]# state is 0b111 as there is no need to instruct the end-point network controllers to a specific bifurcation. The PRSNTB encoding notifies the baseboard that this card is only capable of 2 x8. The single host baseboard determines that it is also capable of supporting 2 x8. The resulting link width is 2 x8.

http://opencompute.org

<u>Figure 27 Figure 26</u> illustrates a four host baseboard that supports 4 x4 with a single controller add-in card that supports 1 x16, 2 x8 and 4 x4. The PRSTNB[3:0]# state is 0b0011. The BIF[2:0]# state is 0b101 as the end point network controller is forced to bifurcate to 4 x4. The PRSNTB encoding notifies the baseboard that this card is only capable of 1 x16, 2 x8 and 4 x4. The four host baseboard determines that it is also capable of supporting 4 x4. The resulting link width is 4 x4.

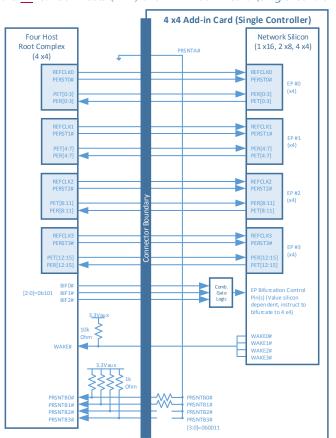


Figure 2726: Four Hosts (4 x4) and 4 x4 Add-in Card (Single Controller)

Open Compute Project • NIC • 3.0

Rev0.01

<u>Figure 28</u>Figure 27 illustrates a four host baseboard that supports 4 x4 with a four controller add-in card that supports 4 x4. The PRSTNB[3:0]# state is 0b0011. The BIF[2:0]# state is 0b111 as there is no need to instruct the end-point network controllers to a specific bifurcation. The PRSNTB encoding notifies the baseboard that this card is only capable of 4 x4. The four host baseboard determines that it is also capable of supporting 4 x4. The resulting link width is 4 x4.

Figure 2827: Four Hosts (4 x4) and 4 x4 Add-in Card (Four Controllers)

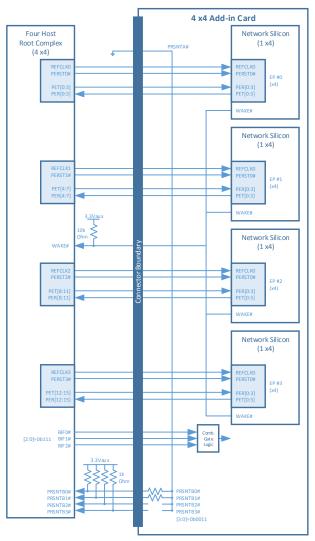
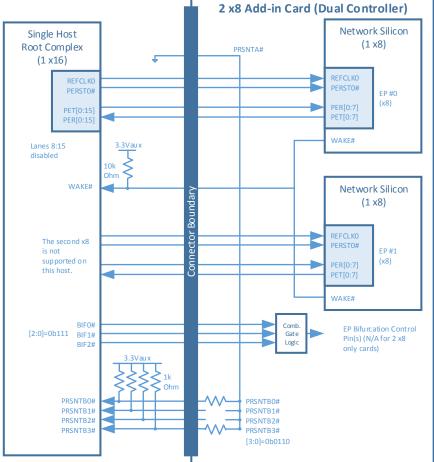



Figure 29Figure 28 illustrates a single host baseboard that supports 1 x16 with a dual controller add-in card that supports 2 x8. The PRSTNB[3:0]# state is 0b0110. The BIF[2:0]# state is 0b111 as there is no need to instruct the end-point network controllers to a specific bifurcation. The PRSNTB encoding notifies the baseboard that this card is only capable of 2 x8. The four host baseboard determines that it is capable of 1x 16, but down shifts to 1 x8. The resulting link width is 1 x8 and only on endpoint 0.

Figure 2928: Single Host with no Bifurcation (1 x16) and 2 x8 Add-in Card (Two Controllers)

2 x8 Add-in Card (Dual Controller)

3.7 PCIe Clocking Topology

The OCP NIC 3.0 specification allows for up to four PCIe REFCLKs on the Primary Connector and up to two PCIe REFCLKs on the Secondary Connector. In general, the association of each REFCLK is based on the PCIe Link number on a per connector basis and is shown in Table 22. Cards that implement both the Primary and Secondary connectors have a total of up to 6 REFCLKs.

Table 22: PCIe Clock Associations

REFCLK #	Description	Availability (Connector)
REFCLK0	REFCLK associated with Link 0.	Primary and Secondary Connectors.
REFCLK1	REFCLK associated with Link 1.	Primary and Secondary Connectors.
REFCLK2	REFCLK associated with Link 2.	Primary Connector only.
REFCLK3	REFCLK associated with Link 3.	Primary Connector only.

For each add-in card, the following REFCLK connection rules must be followed:

- For a 1 x16 capable add-in card, REFCLKO is-shall be used for lanes [0:15].
- For a 2 x8 capable add-in card, REFCLK0 is-shall be used for lanes [0:7] and REFCLK1 is-shall be used for lanes [8:15].
- For a 4 x4 capable add-in card, REFCLK0 is shall be used for lanes [0:3], REFCLK1 is shall be used for lanes [4:7], REFCLK2 is shall be used for lanes [8:11] and REFCLK3 is shall be used for lanes [12:15]. Pins for REFCLK2 and REFCLK3 are described in Section 3.5.1 and are located on the 28-pin OCP bay.

Figure 3029: PCIe Interface Connections for 1 x16 and 2 x8 Add-in Cards

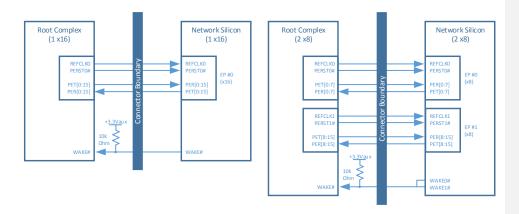
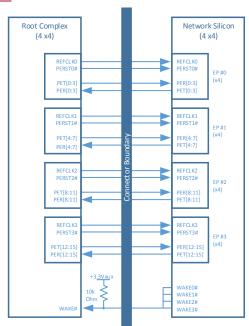



Figure 3130: PCIe Interface Connections for a 4 x4 Add-in Card

3.8 PCIe Bifurcation Results and REFCLK Mapping

For the cases where the baseboard and add-in card bifurcation are permissible, this section enumerates all of the supported PCIe link, lane and REFCLK mappings for each supported configuration. The bifurcation decoder is shown in Section 3.6.3.

Table 23: Bifurcation for Single Host, Single Socket and Single Upstream Link (BIF[2:0]#=0b000)

Single	Host, Single Upst	Single Host, Single Upstream Socket, One Upstream Link, no bifurcation	no bifurcation		1x16, 1x8, 1x4, 1x2, 1																		
Card	Min Card Card Short	Supported Bifurcation Modes	Add-in-Card Exceding	:		Upstream	BIF[2:0]		3								-		9	- 1	\$		
6/4	Mot Procest	Card Not Procest	0b1111	-	1 Ubetrobm Socket	1Link	00000	-			7	2									2	2	
٤	3	1x8, 1x4, 1x2, 1x1	051110	1Host	1 Upstream Socket	1Link	00090	1x8	Link 0,	Link O, L	Link 0, L	Link 0, Lin	Link O, Lin	Link 0, Lin	Link O, Link	Link 0,							
8 8	2	124, 1x2, 1x1	051110	1 Hopt	1 Upstroam Socket	1Link	00000	1x4	Link 0.	Link 0,	-				-								
S	6x1	1x2,1x1	01110	1 Host	1 Upstream Socket	1Link	00000	1x2	Link 0, Lane 0														
S	ž	121	061110	1Host	1 Upetream Socket	1Link	00090	lat	Link 0.														
ပ္လ	1x8 Option B	1x8 Option B 2x4, 2x2, 2x1	061101	1 Host	1 Upstream Socket	1Link	00090	1x8	Link 0, Lane 0	Link 0, L	Link 0, L	Link 0, Lin Lane 3 La	Link O, Lin Lanc 4 La	Link 0, Lin Lane 5 Lan	Link O, Link Lanc 6 Lan	Link 0, Lane 7							
û	2 x8 Option B	2x1	061101	1 Hopt	1 Upstroom Socket	1Link	00090	1x8*	Link 0, Lone 0	Link O, L	Link O, L	Link O, Lis Lane 3 La	Link O, Lin Lane 4 La	Link O, Lin Lane 5 Lan	Link O, Link Lanc 6 Lan	Link O, Lane 7							
ಜ	1x8 Option D	1x8,1x4 2x4, 1x8 Option D 4x2 (First 8 lance), 4x1	0 b1100	1Host	1 Upetream Socket	1Link	00090	821	Link 0, Lane 0	Link 0, L	Link 0, L	Link O, Lin Lune 3 Lo	Link O, Lin Lane 4 Lo	Link 0, Lin Lone 5 Los	Link O, Link Lone 6 Lon	Link 0, Lane 7							
ů	1x16 Option D	¥.	0b11 00	1Host	1 Upetream Socket	1Link	00090	1x16	Link 0, Lane 0	Link 0, L	Link 0, 1 Lane 2	Link O, Li Lone 3 Ls	Link O, Lin Lanc 4 La	Link O, Lin Lane 5 Las	Link O, Link Lone 6 Lon	Link O, Link Lane 7 Lane	Link O, Link O, Lone 8 Lone 9	Link O, Link O, Lone 9 Lone 10	10, Link 0, 10 Lane 11	o, Linko, off Lone f2	0, Link 0, 12 Lune 13	O, Link O, 13 Lane 14), Link 0,
RSVD	RSVD		061011	1 Host	1 Upstream Socket	1Link	00000																
e S	2 % 6	2 x4, 2 x2, 2 x1 1 x4, 1 x2, 1 x1	061010	1 Host	1 Upstream Socket	1Link	00090	1x4	Link 0, Lane 0	Link 0, L	Link 0, L	Link 0, Lane 3											
RSVD				1 Hopt	1 Upstream Socket	1Link	00090																
RSVD	RSVD	ding		1 Host	1 Upstream Socket	1Link	00090					_	-			-				_	-		_
Q.	1×16	1x16,1x8,1x4,1x2,1x1	050111	1 Host	1 Upstream Socket	1Link	00090	1x16	Link 0, Lone 0	Link O,	Linko, Lone 2	Link O, Lin Lune 3 Lo	Link O, Lin	Link O, Lin	Link O, Link Lune 6 Lun	Link O, Link Lane 7 Lane	Link 0, Link 0, Lane 8 Lane 9		Link O, Link O, Lane 10 Lane 11	of Linko,	0, Link 0, 12 Lane 13	0, Link 0, 13 Lane 14	Link 0,
ģ	2 x8 Option A	2x6,2x4,2x2,2x1	011090	1Host	1 Upetream Socket	1Link	00090	1x8*	Link 0, Lane 0	Link 0, L	Link 0, L	Link O, Lin Lane 3 La	Link O, Lin Lane 4 La	Link O, Lin Lone 5 Lon	Link O, Link Lanc 6 Lan	Link O, Lane 7							
ដ្	1x16 Option B	1x16,1x6,1x4,1x2,1x1 1x16 Option B 2x6,2x4,2x2,2x1	000101	1 Host	1 Upstroom Socket	1Link	00090	1x16	Link 0, Lane 0	Link 0, L	Link 0, L	Link 0, Lin Lane 3 La	Link O, Lin Lane 4 La	Link 0, Lin Lane 5 Lan	Link O, Link Lanc 6 Lan	Link O, Link Lanc 7 Lanc	Link O, Link Lane 8 Lane	Link O, Link Lane 9 Lane	Link 0, Link 0, Lane 10 Lane 11	10, Link 0, 5.11 Lane 12	0, Link 0, 12 Lane 13	0, Link 0, 13 Lane 14	Link 0,
ű	1x16 Option C	1x16,1x6,1x4 2x6,2x4,2x2,2x1 1x16 Option C 4x4,4x2,4x1	000100	1Hopt	1 Upetream Socket	1Link	00090	1x16	Link 0, Lane 0	Link 0, L	Link 0, L	Link O, Link Lane 3 La		Link O, Lin Lane 5 Lan	Link O, Link Lanc 6 Lan	Link O, Link Lane 7 Lane	Link O, Link O, Lane 8 Lane 9	_	10, Link 0, 10 Lane 11	o, Linko, 11 Lane 12	0, Link 0, 12 Lane 13	O, Link O, 13 Lane 14	t. Link 0,
ů,	4 x 4	x2, 4 x1	000011	1 Hopt	1 Upstream Socket	1Link	00090	1x4*	Link 0, Lane 0	Link O, L	Link 0, L	Link 0, Lane 3											
RSVD	RSVD RSVD		000010	1 Host	1 Upstream Socket	1Link	00090																
RSVD	RSVD RSVD	RSVD	000000	1 Host	1 Upstroam Socket	1Link	00090				ĺ												
RSVD	RSVD		000090	1Host	1 Upstream Socket	1Link	00090																

Table 24: Bifurcation for Single Host, Single Socket and Single/Dual Upstream Links (BIF[2:0]#=0b000)

Single He	set Single Hoste	Single Host Single Instream Society One or Two Instream inke	- Sec. 1		1x16,1x6,1x4,1x2,1																		
	The same of	Com cocues, one or mo opens			The same of the same of the same		l		ľ	ŀ	ŀ	ŀ	ŀ	ŀ	-	ŀ	ŀ	ļ	ŀ				
Card Card	Short	Modes	Eacoding			Upstream	BIF[2:0]				•	•	-	-	-				-		,		
1	4000	Card Nos Process	PROMIDIOCUJ#	1 Hors	Upstream Socket	for 2 lists	OPOUG	Resulting Link			2 2 2	2	•	2				2	2	2	2		1386.13
ш	ш	108 104 100 101	061110	1 Hors	11 Inchrosm Socket	for Olishe		4.00	0.491	0.491	0 441	1 into	1 into	Dist O dail	1 into					ļ		l	
S	1x8	120, 124, 125, 121	2	200	- Opercent society	OH C CHING	00090	2	Lane 0	_	_	_	_	_	Lane 6 Lane 7	5 F-							
30	1x4	1x4, 1x2, 1x1	061110	1 Host	1 Upstream Socket	1 or 2 Links	00090	1×4	Link 0, Lane 0	Link 0, L	Link O, Li	Link 0, Lane 3											
30	1x2	112,111	061110	1 Host	1 Upstream Socket	1 or 2 Links	00090	1x2	Link 0,	Link 0, Lane 1													
22	1x1	1x1	061110	1 Host	1 Upotream Socket	1 or 2 Links	00090	121	Link 0, Lane 0														
g	1x8 Option B	1x8,1x4,1x2,1x1	061101	1 Host	1 Upstream Socket	1 or 2 Links	00090	9×+	Link 0,	Link 0, L	Link 0, Li	Link 0, Lin	Link 0, Lin	Link O, Lin	Link 0, Link 0, Lone 6 Lone 7	o -							
П	2 x8 Option B	2x8 Option B 4x4, 4x2, 4x1	061101	1 Host	1 Upstream Socket	1 or 2 Links	00000	es xe	Link 0,	-			-			O, Link 1,	1. Link 1.	1 Linkt,	1, Link 1, 2 Lane 3	Link1	Link 1, Lane 5	Link 1, Lane 6	Link 1,
		1x8,1x4 2x4,	061100	1Host	1 Upotresm Socket	1 or 2 Links	00090	8×1	Link 0, Lane 0	-	Link O, Li Line 2 Li	Link O, Lir Lane 3 La	Link 0, Lin Lone 4 La		Link 0, Link 0, Lone 6 Lone 7	0 -							
SS	1x8 Option D	1x8 Option D 4x2 (First 8 lanes), 4x1	00000	1177	Allestone Cooker	A see O Links		94.1	0.751	0751	0.441	0.000		0.451	0.000	-	0151	0151	0.151	0.151	0.000	0.451	154.0
		2 x 8, 2 x 4,		Š	and a second	S S	00090		0 0				Lone 4			ra Lance		_					
AC 1x16 C	1x16 Option D	1xf6 Option D 4x4, 4x2 (First 8 lanes), 4x1 RSVD RSVD	061011	Host	1 Unotream Socket	for 2 Links	00000		I	ı	l	l		l						ļ			
		2 x4, 2 x2, 2 x1	061010	1 Host	1 Upstream Socket	1 or 2 Links	00090	1×4	Link 0.	Link 0, L	-	Link 0,											
Devn Devn	Devn Devn	DSVD for future of according (0):1001	081001	Hors	11 Instrum Socket	for Olisha	00000		Lane U	-	Tane 2	Lane 3	1	1	1	-	-	-		1			
RSVD RSVD	RSVD	RSVD for future x8 encoding	000100	1 Host	1 Upstream Socket	1 or 2 Links	00090				-	-		-			-			L			
Q.	1×16	1x16,1x8,1x4,1x2,1x1	000111	1 Host	1 Upstream Socket	1 or 2 Links	00090	1×16	Link 0, Lane 0	Link 0, L	Link O, Li Line 2	Link O, Lir Lane 3 La	Link 0, Lin Lone 4 Lo	Link O, Lin Lano 5 Lon	Link 0, Link 0, Lone 5 Lone 7	0, Link 0, 17 Lans 8	0, Linko,	0, Link 0,	0, Link 0, 10 Lans 11	Link 0,	Link 0, Lone 13	Link 0, Lane 14	Link 0, Lone 15
ű	2 x8 Option A	2x8,2x4,2x2,2x1	00110	1Host	1 Upstream Socket	1 or 2 Links	00090	5 x 8	Link 0, Lane 0	Link 0, L	Link O, Li	Link O, Lin Lane 3 La	Link 0, Lin Lane 4 Lan	Link O, Lin	Link 0, Link 0, Lanc 6 Lane 7	0, Link 1, a 7 Lane 0	_	1 Link1, of Lane 2	1. Link 1. 2. Lane 3	Link 1. Lane 4	Link 1, Lane 5	Link 1, Lanc 6	Link 1, Lane 7
ů	1x16 Option B	1x16,1x6,1x4,1x2,1x1 1x16 Option B 2x8,2x4,2x2,2x1	000101	1 Hogs	1 Upstream Socket	1 or 2 Links	00090	1×16	Link 0, Lane 0	Link 0, L	Link O, Li Lanc 2 L	Link 0, Lane 3 La	Link 0, Lin Lane 4 Lan	Link O, Lin Lane 5 Lan	Link 0, Link 0, Lanc 6 Lane 7	O, Link O, r.7 Lane 8	O, Link O, 8 Lane 3	0, Link 0, 3 Lane 10	0, Link 0, 10 Lane 11	Link 0, Lane 12	Link 0, Lone 13	Link 0, Lane 14	Link 0, Lane 15
J ,	1x16 Option C	1xf6,1x8,1x4 2x6,2x4,2x2,2x1 1xf6 Option C 4x4, 4x2,4x1	000100	1 Host	1 Upstream Socket	1 or 2 Links	00090	1×16	Link 0, Lane 0	Link 0, L	Link O, Li Line 2 L	Link O, Lin Lane 3 La	Link O, Lin Lane 4 La	Link O, Lin Lane 5 Lan	Link O, Link O, Lanc 6 Lane 7	O, Link O, a.7 Lane 8	O, Link O, 18 Lane 3	0, Link 0,	O, Link O, 10 Lane 11	Link 0,	Link O, Lone 13	Link 0, Lane 14	
40	\$ x \$	4 x4, 4 x2, 4 x1	000011	1 Host	1 Upotream Socket	1 or 2 Links	00090	2×4.	Link 0, Lane 0	Link O, L	Link O, Li Lane 2 Li	Link 0, Lane 3				Link 2, Lane 0	2, Link2, :0 Lane1	2, Link 2, 1 Lane 2	2, Link 2, 2 Lane 3				
RSVD RSVD		RSVD	000010	1 Host	1 Upstream Socket	1 or 2 Links	00090															ı	
RSVD RSVD			Ī	1 Host	1 Upotroam Socket		00090																
RSVD RSVD		RSVD	0000000	1Ho2t	1 Upstream Socket	1 or 2 Links	00090																

Table 25: Bifurcation for Single Host, Single Socket and Single/Dual/Quad Upstream Links (BIF[2:0]#=0b000)

					1x16, 1x8, 1x4, 1x2, 1							Ì	l										Ī
					2 x8, 2 x4, 2 x2, 2 x1																		
Single P	foot, Single Upot	Single Host, Single Upstream Socket, One, Two or Four Upstream Links	Jpetresm Links		4 x4, 4 x2, 4 x1																		
Í		Supported Bifurcation	Add-is-Card				BIFTS-01					_			_								
Š	Card Card Short	Card Short Modes Encoding	Escoding	Hors	Hactrees Besieer	Upstream	_	Description 14 1 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3	-	,		- 2	- 1	-	2	-	9	3	13	5	-	4
e/u	Mot Prosent	Card Not Propert	061111			1.2. or 4 Links	00000																
ç	9	1x8, 1x4, 1x2, 1x1	061110	1 Host	1 Upstream Socket	1, 2, or 4 Links	00090	118	Link 0,	Link 0, L	Link 0, Li	Link O, Lin	Link O, Link	Link 0, Link 0,	O, Link O,	6.5							
8	1	1x4, 1x2, 1x1	0b1 110	1 Host	1 Upstream Socket	1, 2, or 4 Links	00090	124	Link 0,	-		_	_	_	_								
8 8	7	1x2,1x1	061110	1 Host	1 Upptream Socket	1, 2, or 4 Links	00090	112	Link 0.	-											T	T	
20	121	fxf	061110	1 Host	1 Upstream Socket	1, 2, or 4 Links	00090	121	Lane 0														
200	1x8 Option B	1x8,1x4,1x2,1x1 1x8 Option B 2x4, 2x2, 2x1	061 101	1Host	1 Upstream Socket	1, 2, or 4 Links	00090	1x8	Link 0, Lone 0	Link O, L	Link O, Li Lone 2 Li	Link O, Lin Lane 3 Lan	Link O, Link Lone 4 Lon	Link 0, Link 0, Lane 5 Lane 6	0, Link 0, 5 6 Lone 7	o =							
Q 	2 x8 Option B	2x8,2x4,2x2,2x1 2x8 Option B 4x4,4x2,4x1	061101	1 Host	1 Upstream Socket	1, 2, or 4 Links	00090	2 x8	Link 0, Lone 0		Link 0, Li Lane 2 L:	Link O, Lin Lane 3 Lan		Link 0, Link 0, Lane 5 Lane 6	0, Link 0, s 6 Lone 7), Link1,	Link 1.	Link 1, Lane 2	Link 1, Lane 3	Link 1, Lane 4	Link 1, Lone 5	Link 1, Lane 6	Link 1, Lane 7
, N	1x8 Option D	1x8 Option D 4x2 (First 8 lanes), 4x1	061 100	1 Host	1 Upstream Socket	1, 2, or 4 Links	00090	1x6	Link 0, Lanc 0	Link 0, Lane 1	Link 0, Lane 2 Li	Link O, Lin Line 3 Lin	Link 0, Link Lanc 4 Lan	Link O, Link O, Lane 5 Lane 6	O, LinkO, s 6 Lane 7								
Ů,	1×16 Option D	1x16, 1x6, 1x4 2x8, 2x4, 1x16 Option D 4x4, 4x2 (First 8 lanes), 4x1	061100	1 Host	1 Upstream Socket	1, 2, or 4 Links	00000	1×16	Link 0, Lane 0	Link 0, Lane 1	Linko, Lane 2	Link O, Lin Lane 3 Lan	Link O, Link Lane 4 Lan	Link O, Link O, Lane 5 Lane 6	Link O, Link O, Lanc 6 Lanc 7	O, Link O, 7 Lane 8	r. Link 0, 8 Lane 9	Link 0, Lane 10	Link 0, Lane 11	Link 0, Lane 12	Link 0, Lane 13	Link 0, Lane 14	Link 0, Lane 15
RSVD		RSVD	061 011	1 Host	1 Upstream Socket	1,2, or 4 Links	00000														t	t	
S	01 19%	2 x4, 2 x2, 2 x1 1 x4, 1 x2, 1 x1	061010	1Host	1 Upstream Socket	1, 2, or 4 Links	00090	2.r4	Link 0, Lone 0	Link O, L	Link O, Li Lane 2 Li	Link O, Lin	Link 1, Lind Lanc 0 Lan	Link1, Link1, Lone 1 Lone 2	11. Link1.	~ 0							
RSVD	RSVD	RSVD for future x8 encoding 0b1001	0b1001	1 Host		1, 2, or 4 Links																	
200	Ě	1x16, 1x8, 1x4, 1x2, 1x1 0b0111	000111	1 Host	1 Upstream Socket	1, 2, or 4 Links	00000	1x16	Link 0,		-	-	-	-	_	_	-	-					Link 0,
Ç	1×16	2 x8, 2 x2, 2 x1	000110	1 Host	1 Upstream Socket	1, 2, or 4 Links	0000	2 10	Link 0,	Link O, L	Link O, Li	Link O, Lin	Link 0, Link	Link 0, Link 0,	o, Linko,	7 Lane 8	B Lane 9	Link 1,	Link 1,	Link 1	Link 1,	Link 1,	Link 1
40	2 x8 Option A						nnngn		Lane 0			_			_		-	_		Lane 4	Lone 5		Lane 7
ģ.	1x16 Option B	1x16 Option B 2x6, 2x4, 2x2, 2x1	000101	1 Host	1 Upstream Socket	1, 2, or 4 Links	00090	1x16	Link 0, Lane 0	Link O,	Linko, Lane 2	Link O, Lin Lane 3 Lan	Link O, Link Lane 4 Lan	Link 0, Link 0, Lane 5 Lane 6	O, LinkO,	7 Links)	Link 0,	Lane 10	Link O, Lane 11	Link 0. Lane 12	Link 0, Lone 13	Link O,	Link 0, Lone 15
27	1x16 Option C	1xf6,1x8,1x4 2x6,2x4,2x2,2x1 1xf6 Option C 4x4,4x2,4x1	0001000	1 Host	1 Upstream Socket	1, 2, or 4 Links	00090	1x16	Link 0, Lune 0	Link O, L	Link O, Li Lone 2 Li	Link O, Lin Lune 3 Lun	Link O, Link Lone 4 Lon	Link O, Link O, Lone 5 Lone 6	0, Link 0, s 6 Lone 7), Link 0, 7 Line 8	t. Link 0, B Lane 3	Link 0,	Link 0, Lane 11	Link 0, Lane 12	Link 0, Lone 13	Link O,	Link 0, Lone 15
2	4 x 4	4 x4, 4 x2, 4 x1	000011	1 Host	1 Upstream Socket	1, 2, or 4 Links		\$ x \$	Link 0, Lane 0	Link O, L	Link O, Li Lone 2 Li	Link O, Lin Lanc 3 Lan	Link 1, Lind Lanc 0 Lan	Link 1, Link 1, Lane 1 Lane 2	Link 1, Link 1, Line 2 Line 3	1, Link 2, 3 Lane 0	Link 2, D Lane 1	Link2,	Link 2, Lane 3	Link 3, Lane 0	Link 3, Lane 1	Link 3, Lane 2	Link 3, Lone 3
RSVD		RSVD	000010	1 Host	1 Upstream Socket	1, 2, or 4 Links	00000														Ī		
RSVD	RSVD RSVD	RSVD	0P0 001	1 Host		1, 2, or 4 Links	00090														i	i	
RSVD		RSVD	000090	1 Host	1 Upstream Socket 1, 2, or 4 Links 0b000	1, 2, or 4 Links	00000																

Table 26: Bifurcation for Single Host, Dual Sockets and Dual Upstream Links (BIF[2:0]#=0b001)

L																							
T of the last	toes Tuc I best	Shade Heet Time Heetman Sections Time Heetman Links			1x8, 1x4, 1x2, 1x1																		
Í	-	Supported Bifurcation	Add-is-Card		Contract to the contract to th				r	r	H	H	H	H	H	F	L	L		L		Γ	
Š	Card Card Short	Modes	Eacoding	Hors	Hactreen Designs	Upstream		Description 1 1 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 2 1 2	,	-	-			- 2	-	- 1		-	-	1	<u> </u>	3	7
0/4	Mot Present	Card Not Propert	061111	1 Host	2 Upotream Sockets	2 Linko	00001																
		1x8, 1x4, 1x2, 1x1	061110	1 Host	2 Upstream Sockets	2 Links	00000	1128	Link 0,	Link 0, L	Link 0, Li	Link O, Lir	_	⊢	Link O, Link O,	0							
S	1x8						Innan	(Socket 0 only)	Lone 0	_	Lone 2 L	Lame 3 Lo	Lone 4 Lo	Lone 5 Lon	Lane 6 Lane 7	-							
బ్ల	1.04	1x4, 1x2, 1x1	061110	1 Host	2 Upstream Sockets	2 Links	10090	1x4 (Socket 0 only)	Link 0, Lane 0	Link O, L	Linko, L	Link 0, Lane 3											
ပ္လ	521	1x2,1x1	061110	1 Host	2 Upotream Socketo	2 Linko	10090	1x2 (Socket 0 onle)	Link 0, Lane 0	Link 0, Lanc 1													
28	1x1	1x1	061110	1 Host	2 Upotream Socketo	2 Links	00900	1x1 (Socket 0 only)	Link 0, Lane 0														
S	1x8 Option B	1x8,1x4,1x2,1x1	06/101	1 Host	2 Upotream Sockets	2 Links	10090	1x8 (Socket Donle)	Link 0,	Link O, L	Link 0, Li	Link 0, Lir Line 3 La	Link 0, Lin	Link 0, Lin	Link O, Link O, Lane 6 Lane 7	o r-							
ů	2 x8 Option B	2 x 8, 2 x 9, 2 x 1, 2 x 2, 2 x 1	061101	1 Host	2 Upstream Sockets	2 Links	0090		-	-		-		-		O, Link I, Lanc O	t, Link t, 0 Lane 1	Linkt	Link 1,	Link 1, Lane 4	Link 1, Lane 5	Link 1, Lanc 6	Link 1, Lane 7
, N	1x8 Option D	1x8,1x4 2x4, 1x8 Option D 4x2 (First 8 lanes), 4x1	0P1100	1 Host	2 Upstream Sockets	2 Linko	10090	1x8 (Socket 0 only)	Link 0, Lane 0	_	Linko, L Lane 2	Link O, Lir Lane 3 La	Link O, Lin Lanc 4 La	Link O, Lin Lane 5 Lan	Link O, Link O, Lane 6 Lane 7	° -							
ų	1 vf6 Dealon	1x(6,1x6,1x4) 2x8,2x4, 1x(6,0xx)xx D 4x4,4x9 (Fires 8 (boxes) 4x4	061100	1 Host	2 Upstream Sockets	2 Links	10090	2 x8	Link 0, Lane 0	Link O, L	Link 0, L	Link O, Lir Lane 3 La	Link 0, Lin Lane 4 La	Link O, Lin Lane 5 Lan	Link O, Link O, Lanc 6 Lanc 7	0, Link 1, 27 Lane 0	1, Link 1, 0 Lane 1	Link 1.	Link 1, Lane 3	Link 1. Lane 4	Link 1, Lane 5	Link 1, Lane 6	Link 1, Lone 7
BSVD	RSVD RSVD	RsyD	061011	1 Host	2 Upstream Sockets	2 Links	00001		İ				-										
8	9 × 0	2 x4, 2 x2, 2 x1 1 x4, 1 x2, 1 x1	001010	1 Host		2 Links	0090	1x4 (Socket 0 only)	Link O, Lone O	Link O, L	Link O, Li Lone 2	Link 0, Lane 3											
BSVD	RSVD RSVD	RSVD for future x8 encoding 0b1001	061001	1 Host	2 Upstream Sockets	2 Links	00001																
û	1x16	1x16,1x8,1x4,1x2,1x1	000111	1 Host	2 Upstream Sockets	2 Links	100go	1x8 (Socket 0 only)	Link 0, Lane 0	Link O, L	Link 0, Li	Link 0, Lir Lane 3 Lo	Link 0, Lin	Link 0, Lin	Link O, Link O, Lane 6 Lane 7	o ==							
ដូ	2 x8 Option A	2 x8, 2 x4, 2 x2, 2 x1	000110	1 Host	2 Upotream Socketo	2 Linko	10090	210	Link 0, Lane 0	⊢	_	⊢	₩	⊢	Link O, Link O, Lane 6 Lane 7	0, Link 1, c.7 Lone 0	1, Link 1,	Link1,	Link 1, Lane 3	Link 1, Lane 4	Link 1, Lone 5	Link 1, Lanc 6	Link 1, Lane 7
Ç	1x16 Option B	1x16,1x6,1x4,1x2,1x1 1x16 Option B 2x6, 2x4, 2x2, 2x1	000101	1 Host	2 Upotream Socketo	2 Linko	00900	218	Link 0, Lane 0	_		Link O, Lir Line 3 La		Link O, Lin Lane 5 Lan	Link O, Link O, Lanc 6 Lanc 7	0, Link1, 57 Lane 0	1, Link1, 0 Lane1	Link1,	Link 1, Lane 3	Link 1	Link 1, Lone 5	Link 1, Lane 6	Link 1, Lone 7
)	1x16 Option C	1x16,1x6,1x4 2x6,2x4,2x2,2x1 1x16 Option C 4x4,4x2,4x1	0001000	1 Host	2 Upstream Sockets	2 Links	00001	2x8	Link 0, Lane 0	Link O, L	Link O, Li Lone 2 L	Link O, Lin Links 3 Lis	Link O, Lin Lane 4 La	Link O, Lin Lane 5 Lan	Link O, Link O, Lanc 6 Lanc 7	0, Link1, 17 Line 0	1, Link 1, 0 Lane 1	Link1,	Link 1, Lane 3	Link 1, Lane 4	Link 1, Lone 5	Link 1, Lane 6	Link 1, Lone 7
4C	4 x4	4x4,4x2,4x1	000011	1 Host	2 Upotream Sockets	2 Links	00001	2 x4 (EP 0 and 2 only)	Link 0, Lone 0	Link O, L Lane 1 L	Link O, Li Lone 2 L	Link O, Lane 3				Link 2, Lone 0	2, Link 2, 0 Lane 1	Link2,	Link 2, Lane 3				
BSVD		RSVD	000010	1 Host		2 Links	0P001																
RSVD		RSVD	000 001	1 Host	2 Upotream Socketo	2 Links	00001		Ì		۱		1									I	I
RSVD	RSVD RSVD	RSVD	000090	1 Host	1 Host 2 Upstream Sockets	2 Links	00001																

Table 27: Bifurcation for Single Host, Four Sockets and Dual Upstream Links (BIF[2:0]#=0b010)

Single H.	ost, Four Upstre	Single Host, Four Upstream Sockets, Four Upstream Links	50		4 x4, 4 x2, 4x1																		
Sard Sard	Min Card Card Short	Supported Bifurcation Modes				Upstream	BIF[2:0]																
A idea	Width Home			Host	Upstream Derices	Links		Resulting Link Lane 0 Lane 1 Lane 2 Lane 3 Lane 4 Lane 5 Lane 6 Lane 7 Lane 8 Lane 9 Lane 10 Lane 11 Lane 12 Lane 13 Lane 14 Lane 15	Lane 0	Lane 1	Same 2	lane 3 La	ne 4	ane 5 La	e 6 La	F 7	e 8 Lane	e 9 Lane	10 Lane	11 Lane	I2 Lane	3 Lane 1	Lane
eju	Mot Present	Card Not Propert	0b1111		4 Upotream Socketo	4 Linko	05010																
g	1108	1x8,1x4,1x2,1x1	061110	1 Host	4 Upstream Sockets	4 Links	01040	1x4 (Socket (Lonle)	Link 0, Lone 0	Link 0,	Link 0, Lone 2	Link 0, Lone 3											
ę	44.5	1x4, 1x2, 1x1	061110	1 Hogt	4 Upstream Sockets	4 Linko	0090	1x4 (Socker () only)	Link 0,	Link 0,	_	Link 0,											
, S	Ğ	1x2,1x1	061110	1Host	4 Upptream Sockets	4 Links	0090	1x2 (Socket 0 only)	Link 0, Lone 0		_												
SS.	1xt	124	061110	1 Host	4 Upstream Sockets	4 Links	01090	1x1 (Socket 0 only)	Link 0, Lone 0														
ပ္လ	1x8 Option B	1x6,1x4,1x2,1x1 1x8 Option B 2x4,2x2,2x1	061 101	1 Host	4 Upstream Sockets	4 Linko	00900	214	Link 0, Lane 0	Link 0, Lane 1	Link 0, Lane 2	Link O, Li Lane 3 L:	Link1, Lanc 0	Link 1, Liv Lane 1 La	Link 1, Lin Lanc 2 Lan	Link 1, Lane 3							
û	2 x8 Option B	2 x 8, 2 x 4, 2 x 2, 2 x 1 2 x 8 Option B 4 x 4, 4 x 2, 4 x 1	061 101	1 Host	4 Upotream Socketo	4 Linko	00900	4 14	Link 0, Lane 0	Link 0, Lane 1	Link 0, Lane 2	Link O, Li Lane 3 Le	Link 1, L Lane 0 L	Link 1, Lin Lane 1 La	Link 1, Lin	Link 1, Link Lone 3 Land	Link 2, Link 2, Lanc 0 Lanc 1	2, Link2, c1 Lane2	2, Link 2,	2, Link3, 3 Lane 0	C Link3,	Link 3, Lane 2	Link3, Lane3
ಜ	1x8 Option D	1x8,1x4 2x4, 1x8 Option D 4x2 (First 8 lanes), 4x1	061100	1 Host	4 Upotream Sockets	4 Links	01090	224	Link 0, Lone 0	Link 0, Lane 1	Link 0, Lone 2	Link O, Li Line 3 Lt	Link 1. Lane 0	Link 1, Lin Lone 1 Lu	Link 1, Lin	Link 1, Lone 3							
23	1x16 Option D	1x16,1x6,1x4 2x6,2x4, 1x16 Option D 4x4,4x2 (First 8 lanes),4x1	061100	1 Host	4 Upotream Socketo	4 Links	01090	4 24	Link 0, Lune 0	Link 0, Lane 1	Link 0, Lone 2	Link O, Li Line 3 Le	Link 1, L	Link 1, Lin Lone 1 Lu	Link 1, Lin	Link 1 Link Lone 3 Law	Link 2, Link 2, Lanc 0 Lanc 1	Link 2, Link 2, Lane 1 Lane 2	2, Link 2,	2, Link 3, 3 Lane 0	Lane 1	Lane 2	Link 3, Lone 3
BSVD	RSVD RSVD	RSVD	061011	1 Host	4 Upstream Sockets	4 Links	00010													-			
S	2 10	2x4, 2x2, 2x1 1x4, 1x2, 1x1	061010	1 Host	4 Upstream Sockets	4 Linko	00900	214	Link 0, Lane 0	Link 0, Lane 1	Link 0, Lane 2	Link O, Li Lane 3 L:	Link1, Lanc 0	Link 1, Liv Lane 1 La	Link 1, Lin Lane 2 Lan	Link 1, Lane 3							
RSVD	RSVD RSVD	RSVD for future x8 encoding 0b1001	061001	1 Host	4 Upstream Sockets	4 Links	000010												-	4	4		
Q O		1x16,1x8,1x4,1x2,1x1	000111	1 Host	4 Upstream Sockets	4 Links	0090	1x4 (Socket Donle)	Link 0, Line 0	Link 0,	Link 0,	Link 0, Lane 3											
ů	2 x8 Option A	2x8,2x4,2x2,2x1	000110	1 Host	4 Upstream Sockets	4 Links	01090	2 x4 (Socket 0 & 2 only)			_	Link 0, Lane 3				Link	Link 2, Link 2, Lane 0 Lane 1	2, Link2, c1 Lane2	2, Link 2,	oj es			
û	1x16 Option B	1x16,1x8,1x4,1x2,1x1 1x16 Option B 2x8, 2x4, 2x2, 2x1	000101	1 Host	4 Upptream Socketo	4 Linko	00900	2 x4 (Socket 0 & 2 only)	Link 0, Lane 0	Link 0, Lanc 1	Link 0, Lane 2	Link 0, Lane 3				Lin	Link 2, Link 2, Lane 0 Lane 1	2, Link2, c1 Lane2	2, Link 2,	oi o			
<u>ပ</u> ှ	1x16 Option C	1x16,1x6,1x4 2x6,2x4,2x2,2x1 1x16 Option C 4x4,4x2,4x1	000100	1 Host	4 Upotream Socketo	4 Links	01090	4 24	Link 0, Lune 0	Link 0, Lane 1	Link 0, Lone 2	Link O, Li	Link 1. Lanc 0	Link 1, Lin Lone 1 Lu	Link 1, Lin Lune 2 Lun	Link 1, Link 2, Lone 3 Lone 0		Link 2, Link 2, Lane 1 Lane 2	2, Link 2,	2, Link 3, 3 Lane 0	C Link3,	Link 3, Lane 2	Link 3, Lane 3
ů	4 24	4x4,4x2,4x1	000011	1Host	4 Upstream Sockets	4 Links	00900	4 14	Link 0, Lone 0	Link 0, Lane 1	Link 0, Lone 2	Lane 3 Le	Link1, L	Link 1, Lin Lone 1 Lo	Link 1, Lin	Link1, Link Lone 3 Lank	Link 2, Link 2, Lanc 0 Lanc 1	Link 2, Link 2, Lane 1 Lane 2	2, Link2,	2, Link3, 3 Lane 0	C Link3,	Link 3,	Link3, Lone3
RSVD		RSVD	060010	1 Host	1 Host 4 Upstream Sockets	4 Links	01090																
RSVD	RSVD RSVD	RSVD	000001	1 Host	1 Host 4 Upstream Sockets	4 Linko	0090																
RSVD		RSVD	000000	1 Host	1 Host 4 Upstream Sockets	4 Links	00000																

Table 28: Bifurcation for Dual Host, Dual Sockets and Dual Upstream Links (BIF[2:0]#=0b101)

Committee Comm	ual Ho:	at, Two Upstream				2 x8, 2 x4, 2 x2, 2 x1																		
Michigones Acid Reference Acid Ref	# P 42	Short	Supported Bifurcation Modes		Host	Upstream Devices		BIF[2:0]	Resulting Link	0 300	Lane 1	2	6 3	- 1	5	E Lane 3	Late	Lane 3	Lane 10	Lase 11	Lane 12	ane 13 L	71 34	ane 15
1.00 1.00	ш	Mot Present		0b1fff	2 Hoot	2 Upstream Sockets	2 Links	10140																
144 144,12,114 Office 2 bot 2 bytems blocks 2 bits 0 bytem 0				061110	2 Host	2 Upstream Sockets	2 Links	06101		Link 0,		⊢	_	⊢		⊢								
1-12 1-12		1×8								Lone 0	-	-	_	-		-						Ī	i	
1-12 1-12		1x4	1x4, 1x2, 1x1	0b1 110	2 Host	2 Upstream Sockets	2 Links	06101		Link 0, Lane 0		_	nk 0,											
1.10 1.10		1x2		0b1 110	2 Hoot	2 Upstream Sockets	2 Links	10140		Link 0, Lane 0	Link 0, Lane 1													
1		1x1	1x1	0b1 110	2 Host	2 Upstream Sockets	2 Links	10140	_	Link 0, Lane 0														
2.05 2.05		G college	x	0b1 101	2 Hoot	2 Upstream Sockets	2 Links	10140		Link 0,		_		_	_									
2 2 2 2 2 2 2 2 2 2		a londo ovi	2×1	061101	2 Host	2 Upstream Sockets	2 Links	001100	۲	Link 0.	+	+	_	+	-	-	۰	Link 1,	-	Link 1,	Link 1,	Н	Jink 1,	Link 1
14.0 14.0		2 x8 Option B						200		Lone 0	_	-	_	_	_	_	_	-	_	Lane 3	Lone 4	-	ane 6	Lone 7
1.00 1.00			1x4	0b1100	2 Hoot	2 Upstream Sockets	2 Links			Link O.	-	-	Н	-	-	-								
170, 170, 170, 170, 170, 170, 170, 170,		1x8 Option D	2 x4, 4 x2 (First 8 lanes), 4 x1					10190		Lane 0									ĺ			_		
			1x16,1x8,1x4	0b1100	2 Host	2 Upstream Sockets	2 Links			Link 0.	⊢	₩	-	⊢	ـــ	⊢	Н	_	_		Link 1,	_	-	Link 1
1970 1970		C Tribute	2x8,2x4,					06101		Lane 0											Lane 4			Lone
2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2	le	RSVD	-	051011	2 Host		2 Links	000101						-								ı	t	
57.00 57.0	ľ			061010	2 Hoot		2 Links	00,404		Link 0,	-	_	3k 0,											
1870 1870	1	2 x4	1x4, 1x2, 1x1					-		Lane 0			ne 3										Ī	Į
1500 1500	9		RSVD for future x8 encoding	0b1 001	2 Host		2 Links	06101														Ī	Ī	
14.06 14.06, 14.16, 14.15 14.06	9	RSVD	RSVD for future x8 encoding	0b1000	2 Hoot	2 Upstream Sockets	2 Links	06101																
\$\frac{1}{2}\triangleright{\text{c}} \triangleright{\text{c}} \triang		1x16		000111	2 Host	2 Upstream Sockets	2 Links	10190		Link 0, Lane 0				_										
2000 SEPON 14 (10,10) 14 (10,10) 1 (10,			2 x8, 2 x4, 2 x2, 2 x1	011090	2 Hoot	2 Upstream Sockets	2 Linko	06101		Link O.	-		_	-	_	-	_		_		Link 1,	-	_	Link 1.
1.16 1.16	ſ	Z x8 Uption A		0,000	1000	Other Control			Ī	noue n	4	_	+	4	4	-	4	+	4	+	t auc t	+	-	oue.
11616-1561. A compared to the		1x16 Option B	×	000	E HOST	& Opertrom sockets	C LINKS	10140		Lane 0									Lane 2	Lane 3	Lane 4		_	Lone 7
44.4 4.4.4.4.4 0c.0011 2 Phoron Bookley 2 Links 0c.001 2 Phoron Bookley 2 Phoron Bookley 2 Links 0c.001 2 Phoron Bookley 2 Phoro		1x16 Option C	1x16,1x6,1x4 2x6,2x4,2x2,2x1 4x4,4x2,4x1	000100	2 Hoot	2 Upstream Sockets	2 Links	10140		Link 0, Lane 0									Link1 Lone 2	Link1, Lune 3	Link 1,			Link 1, Lone 7
RSYO RSYO Round 2 News 2 Uperson Socklet 2 Links Rest RSYO RSY RS		4 24	4x4,4x2,4x1	000011	2 Host	2 Upstream Sockets	2 Links	10140		Link 0,	_		nk0,				Link 1,							
RSVD RSVD 0b0001 2 Host and Sockets 2 Links 2 Links RSVD RSVD 0b0000 2 Host and Sockets 2 Links 2 Links	9			060010	2 Host	2 Upstream Sockets	2 Links	06101	Н		_	-								\vdash			t	
RSVD RSVD 060000 2 Host 2 Uperream Sockets 2 Links	2	RSVD		000000	2 Hoot	2 Upstream Sockets	2 Links	06101															l	
	οN	RSVD	RSVD	0000000	2 Host	2 Upstream Sockets	2 Links	06101																

Table 29: Bifurcation for Quad Host, Quad Sockets and Quad Upstream Links (BIF[2:0]#=0b110)

Quad Hos	st, Four Upstres.	Ruad Host, Four Upstream Sockets, Four Upstream Links	9		4 x4, 4 x2, 4 x1																		
Min Card Card	l se	Supported Bifurcation Modes	Add-in-Card Encoding			Upstream	BIF[2:0]		L.						H	H	H		H	-	H	H	_
9/4	Not Proceed	Card Not Precent	061111		4 Unetroom Sockete	4 Links	06110	Hesting Link Lane U Lane I Lane Z			2	2						2			2	2	
	83.7	1x8,1x4,1x2,1x1	061110	4 Hopt		4 Linko	0110	1x4 (Nove O codo)	Link 0.	Link 0,	Link 0,	Link 0,											
8 8	1	1x4,1x2,1x1	061110	4 Host	4 Upstream Sockets	4 Links	01190	1x4 (Heat 0 only)	Link 0,	-	0 3	Link 0.									H	H	
, S	1x2	1x2,1x1	061110	4 Hoot	4 Upstream Sockets	4 Linko	06110	1x2 (Host 0 only)	Link 0.	-													
မ္က	121	72	0b1 110	4 Host	4 Upstream Sockets	4 Links	01110	1x1 [Host 0 only]	Link 0, Lane 0														
S	1x8 Option B	1x8,1x4,1x2,1x1 1x8 Option B 2x4,2x2,2x1	0b11 01	4 Host	4 Upstream Sockets	4 Links	06110	2×4	Link O. Lone O	Link 0, Lane 1	Lane 2	Link 0, Lone 3	Link 1. Lone 0	Link 1.	Link 1, L	Link 1, Lane 3							
	2 x8 Option B	2 x8 Option B 4 x4, 4 x2, 4 x1	0b1101	4 Host	4 Upotroam Sockets	4 Linko	06110	\$×\$	Link 0, Lane 0	-	Link 0,	Link 0, Lane 3	Link 1, Lane 0	Link 1,	Link 1, L		Link 2, Li Lane 0 Li	Link 2, Lin Lanc 1 Lar	Link 2, Lin Lanc 2 Lan	Link 2, Link 3, Lane 3 Lane 0	Link 3, Link 3, Lane 0 Lane 1	3, Link 3,	Lane 3
		1x8,1x4	001100	4 Hoot	4 Upstream Sockets	4 Links		2 x4	Link 0,	-	Link 0,	Link 0,	Link 1,	\vdash	-	Link 1		-			-	_	-
00	1x8 Option D	1x8 Option D 4 x2 (First 8 lanes), 4 x1					06110		lane 0	Lane	Lane 2	Lone 3	0 oue 0	Lane 1	Lane 2	Same 3					_		
		1x16, 1x8, 1x4	0P1100	4 Host	4 Upstream Sockets	4 Links		p× p	Link O.	-	Link 0,	Link 0,	Link 1,	Link 1,	_	Link 1, Li		_	Link 2, Lin		_	Н	-
ç	1x16 Option D	2 x 6, 2 x 4, 1 x 16 Option D 4 x 4, 4 x 2 (First 8 lanes), 4 x 1					01110		Lane 0	Lane 1	Lane 2	Lane 3	Lane 0		Lane 2		Lane 0	Lane 1		Lane 3	Lane 0 Lane 1	1 Lane 2	Ease 3
6		RSVD	061011	4 Host	4 Upstream Sockets	4 Links	06110															H	
é	2 v.4	2 x4, 2 x2, 2 x1 1 x4 1 x2 1 x1	0b1 010	4 Hoot	4 Upotroom Sockets	4 Linko	01140	2×4	Link 0.	Link O.	Link 0,	Link 0,	Link 1.	Link 1,	Link 1, L	Link 1, Lone 3							
6	RSVD	RSVD for future x8 encoding 0b1001	061001	4 Host	4 Upstream Sockets	4 Links	06110							۰	_		-				H	ŀ	L
RSVD RSVD	RSVD	RSVD for future x8 encoding	061000	4 Host	4 Upstream Sockets	4 Links	0110																
Ů,	1×16	1x16,1x8,1x4,1x2,1x1	000111	4 Host	4 Upetream Sockets	4 Links	06110	1×4 (Host 0 only)	Link O, Lane O	Link O, Lane 1	Lane 2	Link 0, Lone 3											
ç	2 v8 Ontion A	2 x8, 2 x4, 2 x2, 2 x1	000110	4 Host	4 Upstream Sockets	4 Links	06110	2 x4 (Hoet 0 & 2 colu)	Link 0,	Link 0,	Link 0,	Link 0,					Link 1.	Link 1, Lin	Link 1, Lis	Link t, lane 3			
	0 000	1x16,1x8,1x4,1x2,1x1	000101	4 Host	4 Upotream Sockets	4 Links	0110	2 x 4	Link 0,	-	Link 0,	Link 0,						-	-	Link 1,			
	1vf6 Option C	1x16 Option C. 4x4 4x9 4x1	0001000	4 Hopt	4 Upstream Sockets	4 Linko	0110	4×4	Link 0, Lane 0	Link 0, Lane 1	Link 0, Line 2	Link 0, Lane 3	Link 1, Lane 0	Link 1, Lane 1	Link 1, L	Link 1, Lane 3 L		_			Link 3, Link 3, Lanc 0 Lanc 1	3, Link 3, 1 Lane 2	Link3, Line3
	4 × 6	4×4,4±2,4×1	050011	4 Host	4 Upstream Sockets	4 Links	06110	p×p	Link 0, Lane 0	Link 0, Lane 1	Link 0, Lone 2	Link 0, Lone 3	Link 1, Lane 0	Link 1, Lane 1	Link1, 1 Lane 2 L	Link1, Li Lane3 Li	Link 2, Li Lane 0 Li	Link 2, Lin Lane 1 Lar	Link 2, Lin Lane 2 Lan	Link 2, Link Lane 3 Lan	Link 3, Link 3, Lone 0 Lone 1	3, Link 3, 1 Lane 2	F. Link3,
RSVD RSVD		RSVD	000010	4 Hoot	4 Upotroom Sockets	4 Linko	06110																
RSVD RSVD		RSVD	000000	4 Host		4 Linko	06110																
RSVD RSVD		RSVD	000000	4 Hoot	4 Instroom Sockets	4 links	0840	ĺ		1	ĺ	ĺ	ĺ	ĺ		ĺ							

Table 30: Bifurcation for Quad Host, Quad Sockets and Quad Upstream Links (BIF[2:0]#=0b110)

Quad/Oct	t Host, Four/Eig	Swad/Det Host, Four/Eight Upstream Sockets, Four/Eight Upstream links	ht Upstream links		4 x2, 4 x1																		
e P	Mia Card Card Short	Supported Bifurcation Add-in-Card Modes Encoding	Add-in-Card Encoding			Upstress	BIF[2:0]						H										
Width Name	No.		PRSMTB[3:0]#		Host Upstream Devices			Reculting Line 0 Lane 1 Lane 2 Lane 3 Lane 3 Lane 4 Lane 5 Lane 6 Lane 8 Lane 3 Lane 10 Lane 12 Lane 13 Lane 14 Lane 15	Lane 0	-	Lane 2	Lane 3	2 4 au	t S see	9 20	2	8	9 Lane	10	1 1200	Lane 13	Lane 14	Lane 15
qu	Not Present	Card Not Present	061111	478 Host	4/8 Host 4/8 Upstream Sockets 4 or 8 x2 Links	4 or 8 x2 Links	06111					۱				H	H	H	H	L			
ő	118	1x8,1x4,1x2,1x1	0b1110	478 Host	4/8 Host 4/8 Upstream Sockets 4 or 8 x2 Links	4 or 8 x2 Links	06111	1x2 (Hoet 0 only)	Link 0, Lane 0	Link 0, Lane 1													
S	124	1x4,1x2,1x1	061110	4/8 Hopt	4/8 Host 4/8 Upstream Sockets 4 or 8 x2 Links	4 or 8 x2 Links	0P111	1x2 (Host 0 only)	Link 0.	Link 0, Lane 1													
ς,	112	122, 131	0P1110	478 Host	4/8 Host 4/8 Upstream Sockets 4 or 8 x2 Links	4 or 8 x2 Links	m40	1x2 (Host 0 only)	Link 0, Lane 0	Link 0, Lane 1													
S	14	121	0b1 110	478 Host	4/8 Host 4/8 Upstream Sockets 4 or 8 x2 Links	4 or 8 x2 Links	11190	fxt (Host 0 only)	Link 0, Lane 0														
ပ္လ	1x8 Option B	1x8,1x4,1x2,1x1 1x8 Option B 2x4,2x2,2x1	0b11 01	4/8 Host	4/8 Host 4/8 Upstream Sockets 4 or 8 x2 Links	4 or 8 x2 Links	III 00	2 x 2 (Hopt 0 & Lonly)	Link 0, Lane 0	Link 0, Lane 1	Link 1, Lane 0	Link 1, Lane 1											
	2 x8 Option B	2 x8 Option B 4 x4, 4 x2, 4 x1	061101	4/8 Hopt	4/8 Host 4/8 Upstream Sockets 4 or 8 x2 Links	4 or 8 x2 Links	Ob##	2 x2 (Host 0 & 1 only)	Link 0.		-	Link 1, Lane 1											
ç	0.00	1x8,1x4 2x4, 4x9 Contract A of Place Blood A of	061 100	478 Host	4/8 Host 4/8 Upstream Sockets 4 or 8 x2 Links	4 or 8 x2 links	111 gp	2X.\$	Link 0, Lane 0	Link 0, Lane 1	Link 1, Lane 0	Link 1, L	Link2, U	Link 2, Lin Lane 1 La	Link3, Link3, Lane 0 Lane 1	67							
П	a long	1x16,1x6,1x4	0P1100	478 Host	478 Host 478 Upstream Sockets 4 or 8 x2 Links	4 or 8 x2 Links	***	4 x2	Link 0,	Link O.	Link 1.	Link 1.	Link 2, L	Link 2, Lin	Link 3, Link 3,	6.		H	-				
Q.	1x16 Option D	4C 1x16 Option D 4x4, 4x2 (First 8 lance), 4x1							o allea		_		_		_		_						
RSVD RSVD	RSVD	RSVD	0b1 011	478 Hoot	4/8 Host 4/8 Upstream Sockets 4 or 8 x2 Links	4 or 8 x2 Links	0b111																
g	2 x4	2 x4, 2 x2, 2 x1 1 x4, 1 x2, 1 x1	0b1 010	478 Host	478 Host 478 Upstream Sockets 4 or 8 x2 Links	4 or 8 x2 Links	11190	2 x2 (Host 0 & 1 only)	Link 0, Lane 0	Link 0, Lane 1	Link 1, Lane 0	Link 1, Lane 1											
RSVD RSVD	RSVD	RSVD for future x8 encoding 0b1001	0b1 001	478 Host	4/8 Host 4/8 Upstream Sockets 4 or 8 x2 Links	4 or 8 x2 Links	0b111																
RSVD RSVD	RSVD	RSVD for future x8 encoding	0P1000	478 Hoot	4/8 Host 4/8 Upstream Sockets 4 or 8 x2 Links	4 or 8 x2 Links	05111																
ç	1x16	1x16, 1x8, 1x4, 1x2, 1x1	000111	4/8 Host	478 Host 478 Upstream Sockets 4 or 8 x2 Links	4 or 8 x2 Links	06111	1x2 (Host 0 only)	Link 0, Lane 0	Link 0, Lane 1								_	_				
Q.	2 x8 Option A	2x8,2x4,2x2,2x1	01000	478 Host	4/8 Host 4/8 Upstream Sockets 4 or 8 x2 Links	4 or 8 x2 Links	06111	1x2 (Host 0 & Lonle)	Link 0, Lane 0	Link O, Lane 1						Link 1,	1 Link1						
		1x16,1x8,1x4,1x2,1x1	0b0101	478 Host	4/8 Host 4/8 Upstream Sockets 4 or 8 x2 Links	4 or 8 x2 Links	DP40	2×2	Link 0.	Link O.						Link 1	-						
Ç	1x16 Option B	1x16 Option B 2x8, 2x4, 2x2, 2x1	00000	100.0				(Host 0 & Lonly)	Lane 0	Lane 1	ĺ	۱		1		Lone 0	-	- 0	-				
ů	1x16 Option C	1x16.1x0,1x4, 2x6,2x4,2x2,2x1 1x16.0ption C 4x4,4x2,4x1		#CO HOST	aro nost aro upstream socrets a or o xz umst	* of o x2	1140 1140	(Host 0 & Lonly)		Lane 1						Lane 0	Lone 0 Lone 1	V T.		_			
ç	\$1.5	4 x4, 4 x2, 4 x1	000 011	478 Host	4/8 Host 4/8 Upstream Sockets 4 or 8 x2 Links	4 or 8 x2 Links	11190	4 x2 (Host 0 & 1 only)	Link 0, Lane 0	Link 0, Lane 1			Link 1, L	Link 1, Lane 1									
RSVD RSVD	RSVD	RSVD	000010	478 Host	4/8 Host 4/8 Upstream Sockets 4 or 8 x2 Links	4 or 8 x2 Links	06111																
RSVD RSVD	RSVD	RSVD	0P0 001	478 Host	478 Host 478 Upstream Sockets 4 or 8 x2 Links 0b111	4 or 8 x2 Links	0b111																
RSVD RSVD	RSVD	RSVD	0000000	4/8 Host	478 Hotel 478 potresia Sockete 4 or 8 v9 links	4 or 8 x2 Links	0P111									_	_	_	_	_			

3.9 Power Capacity and Power Delivery

There are four permissible power states: AC-NIC Power Off, ID Mode, Aux Power Mode (S5), and Main Power Mode (S0). The transition of these states is shown in Figure 32Figure 31.

The max available power envelopes for each of these states are defined in Table 31.

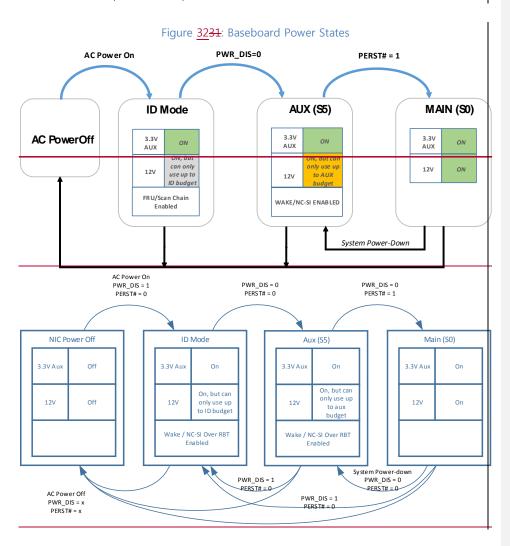


Table 31: Power States

Power State	PWRDIS	PERSTn	FRU	Scan	RBT	3.3V	12V
				Chain	Link		
AC-NIC Power Off	Low	Low					
ID Mode	High	Low	Х	Х		Х	Χ
Aux Power Mode (S5)	Low	Low	Χ	Х	Х	Х	Х
Main Power Mode (S0)	Low	High	Х	Х	Х	Х	Х

3.9.1 AC-NIC Power Off

In AC_NIC power off mode, all power delivery has been turned off or disconnected from the baseboard. Transition to this state can be from any other state.

3.9.2 ID Mode

In the ID Mode, only 3.3V Aux is available for powering up management only functions. FRU accesses are only allowed in this mode. <u>An add-in card shall transition to this mode when PWRDIS=1 and PERST#=0.</u>

3.9.3 Aux Power Mode (S5)

In Aux Power Mode provides both 3.3V Aux as well as 12V Aux is available. 12V Aux may be used to deliver power to the add-in card, but only up to the Aux budget of 35W. An add-in card shall transition to this mode when PWRDIS=0 and PERST#=0.

3.9.4 Main Power Mode (S0)

In Main Power Mode provides both 3.3V and 12V (Main) across the OCP connector. The add-in card operates in full capacity. Up to 80W may be delivered on 12V, and 3.63W on the 3.3V pins. An add-in card shall transition to this mode when PWRDIS=0 and PERST#=1.

3.10 Power Supply Rail Requirements and Slot Power Envelopes

The baseboard provides 3.3Vaux and 12Vaux/main to both the Primary and Secondary connectors. The rail requirements are leveraged from the PCIe CEM 4.0 specification. For OCP NIC 3.0 cards, the requirements are as follows:

Table 32: Baseboard Power Supply Rail Requirements – Slot Power Envelopes

Power Rail	15W Slot	25W Slot	35W Slot	80W Slot	150W
	Small Card	Small Card	Small Card	Small Card	Large Card
	Hot Aisle	Hot Aisle	Hot Aisle	Cold Aisle	Cold Aisle

3.3V					
Voltage Tolerance	±9% (max)	±9% (max)	±9% (max)	±9% (max)	±9% (max)
Supply Current					
ID Mode	375mA (max)	375mA (max)	375mA (max)	375mA (max)	375mA (max)
Aux Mode	1.1A (max)	1.1A (max)	1.1A (max)	1.1A (max)	2.2A (max)
Main Mode	1.1A (max)	1.1A (max)	1.1A (max)	1.1A (max)	2.2A (max)
Capacitive Load	150μF (max)	150μF (max)	150µF (max)	150μF (max)	300µF (max)
12V					
Voltage Tolerance	±8% (max)	±8% (max)	±8% (max)	±8% (max)	±8% (max)
Supply Current					
ID Mode	100mA (max)	100mA (max)	100mA (max)	100mA (max)	100mA (max)
Aux Mode	<u>0.7A (max)</u>	1.1A (max)	1.5A (max)	3.3A (max)	6.3A (max)
Main Mode	1.25A (max)	2.1A (max)	2.9A (max)	6.6A (max)	12.5A (max)
Capacitive Load	500μF (max)	500μF (max)	1000μF (max)	1000μF (max)	2000μF (max)

Note: While cards may draw up to the published <u>current-power</u> rating<u>s</u>, the baseboard vendor shall evaluate its cooling capacity for each slot power envelope.

3.11 Hot Swap Considerations for 12V and 3.3V Rails

For baseboards that support system hot (powered on) add-in card insertions and extractions, the system implementer shall consider the use of hotswap controllers on both the 12Vmain/aux and 3.3Vaux pins to prevent damage to the baseboard or the add-in card. Hotswap controllers help with in-rush current limiting while also providing overcurrent protection, undervoltage and overvoltage protection capabilities.

The hotswap controller may gate the 12Vmain/aux and 3.3Vmain/aux based on the PRSNTB[3:0]# value. Per Section 3.6.3, a card is present in the system when the encoded value is not 0b1111. The PRSNTB[3:0]# can-may be AND'ed together and connected to the hotswap controller to accomplish this result. Per the OCP NIC 3.0 mechanical definition (Section XXX), the present pins are short pins and engage only when the card is positively seated.

Baseboards that do not support hot insertion, or hot extractions may opt to not implement these features.

Commented [NT15]: 1000uF/1000uF/2000uF.
Tentative. Waiting for recommended values from system

3.12 Power Sequence Timing Requirements

The following figure shows the power sequence of PRSNTB[3:0]#, 3.3Vaux, 12Vaux/12Vmain relative to PWRDIS, BIF[2:0]#, PERSTn*, the add-in card power ramp and NIC_PWR_GOOD.

Figure 3332: Power Sequencing

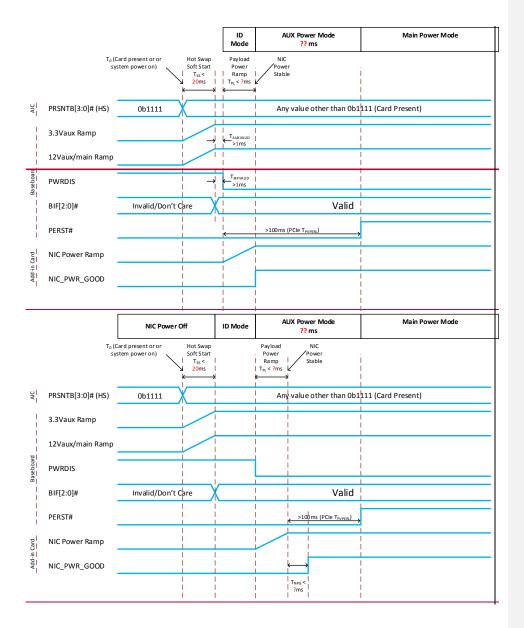


Table 33: Power Sequencing Parameters

Parameter	Value	Units	Description
T _{ss}	20	ms	Max time between system 3.3Vaux and 12Vaux/main ramp
			to power stable.
Ŧ _{AUXVALID}	>1	ms	Min time between 3.3Vaux valid to PWRDIS assertion.
Ŧ _{BIFVALID}	>1	ms	Min time between BIF[2:0]# valid to PWRDIS assertion. The
			BIF[2:0]# value sets the add in card bifurcation mode (if
			applicable)
T _{PL}	</td <td>ms</td> <td>Max time between the NIC payload power ramp to</td>	ms	Max time between the NIC payload power ramp to
			NIC_PWR_GOOD assertion
T _{NPG}	</td <td><u>ms</u></td> <td>Max time between NIC power stable and NIC_PWR_GOOD</td>	<u>ms</u>	Max time between NIC power stable and NIC_PWR_GOOD
			assertion.
T _{PVPERL}	>100	ms	Max time between PWRDIS deassertion and PERST#
			deassertion. This value is from the PCIe CEM Specification,
			Rev 4.0.

4 Management

OCP NIC 3.0 card management is an important aspect to overall system management. This section specifies a common set of management requirements for OCP NIC 3.0 implementations. There are two types of implementations (Type 1 and Type 2) depending on the physical sideband management interfaces, transports, and traffic supported over different transports. An OCP NIC 3.0 implementation shall support at least one type of implementation for card management.

4.1 Sideband Management Interface and Transport

OCP NIC 3.0 sideband management interfaces are used by a Management Controller (MC) or Baseboard Management Controller (BMC) to communicate with the NIC. Table 34 summarizes the sideband management interface and transport requirements.

Table 34: Sideband Management Interface and Transport Requirements

Requirement	Type 1	Type 2
NC-SI 1.1 or later compliant RMII Based Transport (RBT) including	Required	<u>Optional</u>
physical interface defined in Section 10 of DSP0222.		
At least one of the following physical sideband interfaces:	Required	Required
1. SMBus 2.0		
2. PCIe VDM		
Management Component Transport Protocol (MCTP) Base 1.3 on	Required	Required
at least one of the following physical bindings:		
1. MCTP/SMBus (DSP0237 1.1)		
2. MCTP/PCIe VDM (DSP0238 1.1)		

4.2 NC-SI Traffic

DSP0222 defines two types of NC-SI traffic: Pass-Through and Control. Table 35 summarizes the NC-SI traffic requirements.

Table 35: NC-SI Traffic Requirements

Requirement	Type 1	Type 2

NC-SI Control over RBT (DSP0222 1.1 or later compliant)	Required	<u>Optional</u>
NC-SI Control over MCTP (DSP0261 1.2 or later compliant)	Optional	Required
NC-SI Pass-Through over RBT (DSP0222 1.1 or later compliant)	Required	<u>Optional</u>
NC-SI Pass-Through over MCTP (DSP0261 1.2 or later compliant)	Optional	<u>Optional</u>

4.3 Management Controller (MC) MAC Address Provisioning

An OCP NIC 3.0 add-in card shall provision one or more MAC addresses for Out-Of-Band (OOB) management traffic. The number of MC MAC addresses provisioned is implementation dependent. These MAC addresses are not exposed to the host(s) as available MAC addresses. The MC is not required to use these provisioned MAC addresses. Table 36 summarizes MC MAC address provisioning requirements.

Table 36: MC MAC Address Provisioning Requirements

Type 1	Type 2
Required	Optional
Required	Optional
	Required

4.4 Temperature Reporting

An OCP NIC 3.0 implementation can have several silicon components including one or more ASICs implementing NIC functions and one or more optical modules providing physical network media connectivity. It is important for the system management that temperatures of these components can be retrieved over sideband interfaces. Table 37 summarizes temperature reporting requirements.

Table 37: Temperature Reporting Requirements

Requirement		Type 2
ASIC Temperature Reporting	Required	Required
Optical Modules Temperature Reporting	Optional	Optional

Support at least one of the following mechanisms for ASIC	Required	Required
temperature reporting:		
1. NC-SI Control (DSP0222 1.1 or later compliant)		
2. PLDM for Platform Monitoring and Control (DSP0248 1.1		
<u>compliant)</u>		
3. TMP421 emulation over SMBus 2.0		
Support at least one of the following mechanisms for optical	<u>Optional</u>	<u>Optional</u>
modules temperature reporting:		
4. NC-SI Control (DSP0222 1.1 or later compliant)		
5. PLDM for Platform Monitoring and Control (DSP0248 1.1		
<u>compliant)</u>		

4.5 Power Consumption Reporting

An OCP NIC 3.0 implementation may be able to report the power consumed by ASICs implementing NIC functions. It is important for the system management that the information about the power consumption can be retrieved over sideband interfaces. Table 38 summarizes power consumption reporting requirements.

Table 38: Power Consumption Reporting Requirements

Requirement	Type 1	Type 2
ASIC Power Consumption Reporting		Optional
Support at least one of the following mechanisms for ASIC power	Optional	Optional
consumption reporting:		
1. NC-SI Control (DSP0222 1.1 or later compliant)		
2. PLDM for Platform Monitoring and Control (DSP0248 1.1		
<u>compliant)</u>		

4.6 Link Status/Speed Reporting

Link status/speed reporting is important for network operations and link management. Table 39 summarizes link status and speed reporting requirements.

Table 39: Link Status/Speed Reporting Requirements

Requirement	Type 1	Type 2
Link Status Reporting	Required	Required
Support at least one of the following mechanisms for reporting	Required	Required
the link status:		
1. NC-SI Control (DSP0222 1.1 compliant)		
2. PLDM for Platform Monitoring and Control (DSP0248 1.1		
compliant)		
<u>Link Speed Reporting</u>	Required	Required
Support at least one of the following mechanisms for reporting	Required	Required
the link speed:		
3. NC-SI Control (DSP0222 1.1 compliant)		
4. PLDM for Platform Monitoring and Control (DSP0248 1.1		
compliant)		

4.7 Pluggable Module Status Reporting

Pluggable modules like optical modules or direct attach cables are used to connect OCP NIC to physical media. It is important to know the presence of pluggable modules and information about insertion/deletion of pluggable modules. Table 40 summarizes pluggable module status reporting requirements.

Table 40: Pluggable Module Status Reporting Requirements

Requirement	Type 1	Type 2
Pluggable Module Presence Reporting		<u>Optional</u>
Support at least one of the following mechanisms for reporting the	Optional	Optional
pluggable module presence status:		
1. NC-SI Control (DSP0222 1.1 or later compliant)		
2. PLDM for Platform Monitoring and Control (DSP0248 1.1		
<u>compliant)</u>		

Pluggable Module Insertions/Deletions Reporting	Optional	<u>Optional</u>
Support at least one of the following mechanisms for reporting the		Optional
pluggable module insertions/deletions:		
3. NC-SI Control (DSP0222 1.1 or later compliant)		
4. PLDM for Platform Monitoring and Control (DSP0248 1.1		
<u>compliant)</u>		

4.8 Out-Of-Band Firmware Update

An OCP implementation can have different types of firmware components for data path, control path, and management path operations. It is desirable that OCP NIC 3.0 implementations support an OS-independent Out-Of-Band mechanism for the firmware update. Table 41 summarizes out-of-band firmware update requirements.

Table 41: Out-Of-Band Firmware Update Requirements

Requirement	Type 1	Type 2
Support PLDM for Firmware Update (DSP0267 1.0 compliant)	Optional	Optional

3.134.9 NC-SI Over RBT Sideband Interface

NC-SI Over RBT provides a low speed management path for the add-in card. This is implemented via RMII pins between the BMC and the add-in card. NC-SI Over RBT is the recommended management method for OCP NIC 3.0 cards. Protocol and implementation details can be found in the DMTF DSP0222 standard.

3.13.14.9.1 NC-SI Over RBT Addressing

NC-SI Over RBT capable devices must use a unique Package ID to ensure there are no addressing conflicts.

Baseboards use the Slot_ID pin on the Primary Connector for this identification. The Slot_ID value may be directly connected to GND (Slot ID = 0), or pulled up to 3.3Vaux (Slot ID = 1).

For add-in cards, Package ID[2:0] is a 3-bit field and is encoded in the NC-SI Channel ID as bits [7:5]. Package ID[2] is defaults to 0b0 in the NC-SI specification, but is optionally

configurable if the target silicon supports configuring this bit. Package ID[1] is connected to the SLOT_ID pin and is directly connected to the Slot_ID pin. Package ID[0] is set to 0b0 for Network Silicon #0. For OCP NIC 3.0 add-in cards with two discrete silicon instances, Package ID[1] is set to 0b1. Refer to the endpoint device datasheet for details on the Package ID configuration options.

Up to four silicon devices are supported on the bus if only Package ID[1:0] is configurable (e.g. Package ID[2] is statically set to 0b0). Up to eight silicon devices are supported on the NC-SI bus if Package ID[2:0] are all configurable. Refer to the DMTF DSP0222 standard for more information.

3.13.24.9.2 Arbitration Ring Connections

For baseboards that implement two or more Primary Connectors, the NC-SI Over RBT arbitration ring may be connected to each other. The arbitration ring must support operation with a one card, or both cards installed. <u>Figure 22Figure 21</u> shows an example connection with dual Primary Connectors.

3.144.10 SMBus 2.0 Interface

The SMBus provides a low speed management bus for the add-in card. The FRU EEPROM and on-board temperature sensors are connected on this bus. Additionally, network controllers may utilize the SMBus interface for NC-SI over MCTP. Proper power domain isolation shall be implemented on the NIC.

Note: The preferred network controller management path is NC-SI Over RBT, as described in Section <u>4.94.1</u>. Silicon devices may offer both a SMBus and NC-SI Over RBT interface. In such instances, the add-in card developer shall choose NC-SI Over RBT.

3.14.14.10.1 SMBus Address Map

All predefined SMBus addresses for OCP NIC 3.0 are shown in <u>Table 42Table 34</u>. Baseboard and add-in card designers must ensure additional devices do not conflict. The addresses shown are in 8-bit format and represent the read/write address pair.

Table 4234: Power Sequencing Parameters

Address (8-bit)	Device	Notes
ridaress (o bit)	201.00	110103

0x <mark>TBD</mark>	Network	Value dependent on NIC vendors.	
	Controller IC		
0x98 / 0x99 Temperature		TMP422/423 Temperature sensor	
	Sensor		
		Optional. Used for remote on-die thermal sensing.	
		Optional. Powered from Aux power domain.	
0x9E / 0x9F	Temperature	Emulated TMP421 Temperature sensor.	
	Sensor		
		Optional. Thermal reporting is emulated from the target	
		device. The communication interface is over SMBus and	
		is compliant to the TMP421 register definition.	
0x9E / 0x9F	Temperature	TMP421 Temperature sensor.	
	Sensor		
		Optional. Used for remote on-die thermal sensing.	
		Optional. Powered from Aux power domain.	
0xA2 / 0xA3	EEPROM	On-board FRU EEPROM.	
		Mandatory. Powered from Aux power domain.	

3.15 MAC Address Requirements

Placeholder; needs other editors' help. AR: Jia for internal feedback.

[Editor's note: TN 20171215] Is the MAC address information located in the FRU EEPROM or is it a separate device all together?

3.164.11 FRU EEPROM

3.16.14.11.1 FRU EEPROM Address, Size and Availability

The FRU EEPROM provided for the baseboard to determine the card type and is directly connected to the SMBus on the card edge. Only one EEPROM is required for a single physical add-in card regardless of the PCIe width or number of physical card edge connectors it occupies. The FRU EEPROM shall be connected to the Primary connector SMBus.

Commented [TN16]: Should we pre-define a range?

Commented [TN17]: The OCP 2.0 specification says the TMP421 is located at address 0x3E (8-bit).

The TI datasheet for this device shows 100 11xx (7-bit) / 0x98 (8-bit) as the base address.

The EEPROM is addressable at 0xA2/0xA3 for the write/read pair in 8-bit format. The size of EEPROM is 1Kbits for the base EEPROM map. Add-in card suppliers may use larger size EEPROM if needed to store vendor specific information.

The FRU EEPROM is readable in all three power states (ID mode, AUX(S5) mode, and MAIN(S0) mode.

3.16.24.11.2 FRU EEPROM Content Requirements

The FRU EEPROM shall follow the data format specified in the IPMI Platform Management FRU Information Storage Definition v1.2. Use OEM record 0xC0, offset 0x01 through 0x05 to store specific records for the OCP NIC.

Table 4335: FRU EEPROM Record – OEM Record 0xC0, Offset 0x00

Offset 0	Description	
	Manufacturer ID, LS Byte first (3 bytes total)	

Table 4436: FRU EEPROM Record – OEM Record 0xC0, Offset 0x01

Offset 1	Primary Connector PRSNTB [3:0]#		
0b1110 (ox0E)	Follows Pinout; to be filled after the pinout table is fixed		
0b1101 (ox0D)			
0b1100 (0x0C)			
0b1010 (0x0A)			
0b0111 (0x07)			
0b0110 (0x06)			
0b0101 (0x05)			
0b0100 (0x04)			
0b0011 (0x03)			
0b1011 (0x0B)	Not a valid reading – Wrong EEPROM programming		
0b1111 (0x0F)	Not a valid reading – Wrong EEPROM programming		

Commented [JN18]: Need update to larger?

Commented [JN19]:

To be refreshed; may match to present pin decode table.

All others	RFU	
No FRU device	No NIC connected / bad connection	
detected		

Table 4537: FRU EEPROM Record – OEM Record 0xC0, Offset 0x02

Offset 2	Secondary Connector PRSNTB [3:0]#
0b1110 (ox0E)	Follows Pinout; to be filled after the pinout table is fixed
0b1101 (ox0D)	
0b1100 (0x0C)	
0b1010 (0x0A)	
0b0111 (0x07)	
0b0110 (0x06)	
0b0101 (0x05)	
0b0100 (0x04)	
0b0011 (0x03)	
0b1011 (0x0B)	Not a valid reading – Wrong EEPROM programming
0b1111 (0x0F)	Not a valid reading – Wrong EEPROM programming
All others	RFU
No FRU device	No NIC connected / bad connection
detected	

Table 4638: FRU EEPROM Record – OEM Record 0xC0, Offset 0x03

Offset 3	Card max power in Aux(S5)		
0x01 - 0xFE	Hex format in Watts when NIC is in AUX(S5) mode; LSB = 1x Watt;		
	roundup to the nearest Watt for fractional values.		
0xFF	Invalid entry		
0x00	Invalid entry		

Table 4739: FRU EEPROM Record – OEM Record 0xC0, Offset 0x04

Offset 4	Card max power in Main(S0)
	The state of the s

0x01 - 0xFE	Hex format in Watts when NIC is in Main (S0) mode; LSB = $1x$ Watt; roundup to the nearest Watt for fractional values.	
0xFF	Invalid entry	
0x00	Invalid entry	

Table 4840: FRU EEPROM Record – OEM Record 0xC0, Offset 0x05

Offset 5	Thermal Reporting Interface		
0x01	Emulated thermal reporting on SMBus		
0x02	Remote on-die sensor with TMP421 on SMBus		
0x04	PLDM thermal reporting via NC-SI over RBT		

3.174.12 FW Requirements

(Editors note (Jia): Tentative list; collecting feedback)

3.17.14.12.1 Firmware Update

 The OCP NIC 3.0 add-in card shall support device firmware upgrades from the BMC controller.

3.17.24.12.2 Secure Firmware

- The OCP NIC 3.0 add-in card shall support secured firmware.
- Where the secured firmware feature is enabled, the OCP NIC 3.0 add-in card shall allow only update and execute signed firmware.

3.17.34.12.3 Firmware Queries

 The OCP NIC 3.0 add-in card shall allow queries to obtain the firmware version, device model, and device ID via in-band and out-of-band interfaces without impacting NIC function and performance of said paths.

3.17.44.12.4 Multi-Host Firmware Queries

 A multi-host capable OCP NIC 3.0 add-in card shall gracefully handle concurrent inband queries from multiple hosts and out-of-band access from the BMC the management status and firmware, device model, and device ID information.

- A multi-host capable OCP NIC 3.0 add-in card shall only permit one entity to perform write accesses to NIC firmware at a time, without creating contention.
- A multi-host capable OCP NIC 3.0 add-in card shall gracefully handle exceptions when more than one entity attempts to perform concurrent NIC firmware writes.

3.184.13 Thermal Reporting Interface

The OCP NIC 3.0 thermal reporting interface is defined on the primary connector SMBus or via NC-SI over RBT depending on the implementation method described in this section.

This requirement improves the system thermal management and allows the baseboard management device to access key component temperatures on an OCP NIC.

There are three defined methods to implement thermal reporting described in this section: emulated thermal reporting, remote on-die sensing and via Platform Level Data Model (PLDM).

Emulated thermal reporting and remote on-die sensing the two methods defined in OCP NIC 2.0 and is used in the current 3.0 spec release. In both cases, the BMC treats the temperature sensors as a TI/TMP421 (or equivalent) device. The temperature sensor is accessible at slave address 0x3E/0x3F as the read/write pair in 8-bit format over the SMBus.

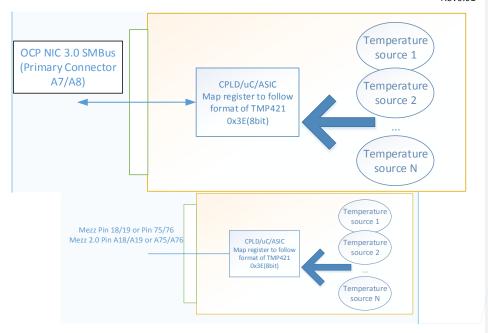
The third reporting method is using PLDM. This is the recommend implementation for OCP NIC 3.0. PLDM uses the NC-SI over RBT as the underlying protocol.

A thermal reporting interface is required for all OCP NIC 3.0 complaint cards with a TDP > 10W.

Thermal reporting interface shall be accessible in AUX(S5) mode, and MAIN(S0) mode.

3.18.14.13.1 Emulated Thermal Reporting

Emulated Thermal Reporting requires each OCP NIC 3.0 compliant device to emulate its key temperatures following the TI/TMP421 (or equivalent) register mapping¹. The slave address 0x3E/0x3F as the read/write pair in 8-bit format over the Primary Connector SMBus.


The baseboard will threat the thermal sensor as a TMP421. The baseboard BMC controller must use two separate reads to obtain the MSB and LSB of temperature data. This information is used for system thermal monitoring and fan speed control.

There are two temperatures for TMP421 register mapping – remote channel 1 and local. Remote channel 1 is typically used to represent key controller temperature of the card. This measures the temperature using a remote diode. The local channel is typically used to represent highest of other key components temperature on the card, such as highest temperature of active cable module.

An implementation block diagram is shown in Figure 34.

Figure 3433: Block Diagram for Emulated Thermal Reporting

¹ TMP421 specification: http://www.ti.com/lit/ds/sbos398c/sbos398c.pdf

Commented [JN20]: Needs update

If an additional temperature sensitive device needs monitoring, the emulated controller can be changed to a TMP422/TMP423 in addition to the register map. The TMP422/TMP423 slave address of emulated device is always 0x3E/0x3F as a read/write 8-bit address pair.

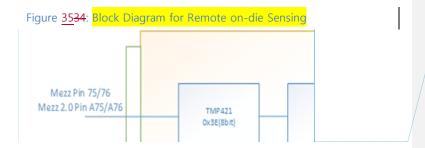
The vendor ID and device ID are mapped to offset 0xFE and 0xFF for the BMC to detect card types.

Power reporting and power capping are mapped to offset 0xF2 and 0xF3 as an optional feature to achieve device power monitoring and power capping level setting.

Table 49: Table 41: describes the register implementation requirement for emulated method.

Table 4941: Implementation Requirement for TMP421 Registers

Offset	Description	Original	Implementation requirement for emulated method
		TMP offset	


		,	
0x0	Local Temperature (High Byte)	Y	Represents highest temperature of all other key components Required if any of the other key components or modules are critical for thermal design Otherwise it is an optional offset and return 0x00 if
			not used
0x1	Remote Temperature 1 (High Byte)	Y	Required; represent temperature of main controller
0x2	Remote Temperature 2 (High Byte)	Y	Optional; represent temperature of key component 1; return 0x00 if not used
0x3	Remote Temperature 3 (High Byte)	Y	Optional; represent temperature of key component 2; return 0x00 if not used
0x8	Status Register	Υ	Not required
0x9	Configuration Register 1	Υ	Not required; Emulated behavior follows SD=0, Temperature Range=0
0x0A	Configuration Register 2	Υ	Required; follow TMP423 datasheet to declare the channel supported; RC=1
0x0B	Conversion Rate Register	Υ	Not required; Equivalent emulated conversion rate should be >2 sample/s
0x0F	One-Shot Start	Υ	Not required
0x10	Local Temperature (Low Byte)	Υ	Optional; return 0x00 if not used
0x11	Remote Temperature 1 (Low Byte)	Y	Optional; return 0x00 if not used
0x12	Remote Temperature 2 (Low Byte)	Y	Optional; return 0x00 if not used

0x13	Remote Temperature 3 (Low Byte)	Y	Optional; return 0x00 if not used	
0x21	N Correction 1	Υ	Not required	
0x22	N Correction 2	Υ	Not required	
0x23	N Correction 3	Υ	Not required	
0xF0	Manufacturer ID(High Byte)	N	High byte of PCIe vendor ID, if using emulated temperature sensor method	
0xF1	Device ID(High Byte)	N	High byte of PCIe device ID, if using emulated temperature sensor method	
0xF2	Power reporting	N	Optional; card power reporting; 1LSB=1W; Read only	
0xF3	Power capping	N	Optional; card power capping; 1LSB=1W; Read/Write	
0xFC	Software Reset	Υ	Not required	
0xFE	Manufacturer ID	Y(redefined)	Low byte of PCIe vendor ID, if using emulated temperature sensor method	
0xFF	Device ID	Y(redefined)	Low byte of PCIe device ID, if using emulated temperature sensor method	

3.18.24.13.2 Remote on-die sensing

Alternatively, one TMP421 sensor can be used to do on die temperature sensing for IC with thermal diode interface with TMP421 remote sensing channel; Connection diagram is shown in Figure 35.

_For NIC_add-in cards that require needs-more than one remote on-die sensingsense point, a TMP422/TMP423 can be used and slave address is 0x98/0x99 (8-bit) for this case.

Commented [JN21]: Update pin # of diagram

Open Compute Project • NIC • 3.0

Rev0.01

3.18.3<u>4.13.3</u> PLDM Method

Placeholder; needs other editors' help.

3.18.44.13.4 Thermal reporting accuracy

The recommended accuracy for temperature sensors on the card is $\pm 3^{\circ}\text{C}$

45 Data Network Requirements

4.15.1 Network Boot

OCP NIC 3.0 shall support network booting in uEFI system environment with both IPv4 and IPv6 network booting.

For UEFI booting, below features are required (tentative list; collecting feedback)

- EFI_DRIVER_BINDING_PROTOCOL (for starting and stopping the driver)
- EFI_DEVICE_PATH_PROTOCOL (provides location of the device)
- EFI_MANAGED_NETWORK_SERVICE_BINDING_PROTOCOL (asynchronous network packet I/O services)
- EFI_DRIVER_DIAGNOSTICS2_PROTOCOL & EFI_DRIVER_DIAGNOSTICS_PROTOCOL (driver will allow the UEFI shell command *drvdiag* to perform a cursory check of the connections managed by the driver)
- Human Interface Infrastructure (HII) protocols
- EFI_DRIVER_HEALTH_PROTOCOL

EFI_FIRMWARE_UPDATE_PROTOCOL

56 Routing Guidelines and Signal Integrity Considerations

5.16.1 NC-SI Over RBT

For the purposes of this specification, the min and max electrical trace length of the NC-SI signals shall be between 2 inches and 4 inches. The traces shall be implemented as 50 Ohm impedance controlled nets.

5.26.2 PCIe

This section is a placeholder for the PCIe routing guidelines and SI considerations.

Add-in card suppliers shall follow the PCIe routing specifications.

At this time, the OCP NIC subgroup is working to identify and agree to the channel budget for an add-in card and leave sufficient margin for the baseboard.

Refer to the PCIe CEM and PCIe Base specifications for end-to-end channel signal integrity considerations.

Commented [JN22]:

- 1.Discussion point of $1^{\rm st}$ draft (define or not define in 1.00?)
- 2. Anything other than loss and impedance shall be defined to be complete

Commented [TN23]: Point to the PCIe spec for the electrical specs (See PCIe CEM Section 6.3.x. 4.7.x, 4.8) and SFF-TA-1002.

67 Thermal and Environmental

6.17.1 Environmental Requirements

Specifics are not included to permit adoption of OCP 3.0 NIC in systems with varying thermal requirements and boundary conditions. The system adopting OCP NIC should define air flow direction, local approach air temperature and speed to the NIC, operational altitude and relative humidity.

For example, a system configured with I/O facing the cold aisle, can specify approach air temperature and speed of 35°C and 200 LFM respectively, with airflow impinging on the I/O modules first and an operational altitude of 6000 feet.

6.1.17.1.1 Thermal Reporting interface

[Link to 4.6; this session can be incorporated into Chapter 4.6] The NIC should support temperature reporting for key components on the card (including readings from active I/O modules). To improve thermal efficiency, the recommended accuracy for temperature sensors on the card is ±3°C. A power reporting interface is optional for low-power NICs (less than 10W), but strongly recommended for higher-powered NICs.

6.1.27.1.2 Thermal Simulation Boundary Example

Placeholder for the link to upcoming test fixture documentation (under development).

6.27.2 Shock & Vibration

This specification does not cover the shock and vibration testing requirements for an OCP NIC 3.0 add in card or its associated baseboard systems. OCP NIC 3.0 components are deployed in various environments. It is up to each add-in card and baseboard vendor to decide how the shock and vibration tests shall be done.

6.37.3 Regulation Regulatory

An OCP NIC 3.0 add-in card shall meet CE, CB, FCC Class A, WEEE, and RoHS requirements.

78 Revision History

Author	Description	Revision	Date
Thomas Ng	Initial draft	0.1	12/xx/2017