

OCP NIC 3.0 Design Specification

Version 0.01

Author: OCP Server Workgroup, OCP NIC subgroup

Table of Contents

1	Overview					
	<mark>1.1</mark>	Lice	nse	8		
	1.2	Bac	kground	9		
	1.3					
	1.4	Ove	erview			
		1.4.1	Mechanical Form factor overview			
		1.4.2	Electrical overview			
	1.5	Refe	erences	16		
2	Card	l Form I	Factor			
	2.1	Ove	erview			
	2.2	Forr	m Factor Options			
	2.3	I/O	bracket			
	2.4	Line	e Side I/O Implementations			
	2.5	LED	Implementations	20		
		2.5.1	Baseboard LEDs Configuration Over the Scan Chain			
		2.5.2	Add-in Card LED Configuration	21		
		2.5.3	Add-in Card LED Ordering	23		
	2.6	Med	chanical Keepout Zones	23		
		2.6.1	Baseboard Keep Out Zones	23		
		2.6.2	Add-in Card Keep Out Zones	23		
	2.7	Lab	eling Requirements	24		
	2.8	Insu	Ilation Requirements			
	2.9	NIC	Implementation Examples	24		
	<mark>2.10</mark>	<mark>Nor</mark>	ו-NIC Use Cases	24		
		<mark>2.10.1</mark>	PCIe Retimer card	24		
		<mark>2.10.2</mark>	Accelerator card	24		
		<mark>2.10.3</mark>	Storage HBA / RAID card	24		
3	Card	l Edge a	and Baseboard Connector Interface			
	3.1 Gold Finger Requirements					

	3.1.1	Gold Finger Mating Sequence	25
3.2	Bas	seboard Connector Requirements	28
3.3	Pin	definition	28
3.4	Sig	nal Descriptions – Common	35
	3.4.1	PCIe Interface Pins	35
	3.4.2	PCIe Present and Bifurcation Control Pins	39
	3.4.3	SMBus Interface Pins	41
	3.4.4	Power Supply Pins	42
	3.4.5	Miscellaneous Pins	44
3.5	Sig	nal Descriptions – OCP Bay (Primary Connector)	44
	3.5.1	PCIe Interface Pins – OCP Bay (Primary Connector)	45
	3.5.2	NC-SI Over RBT Interface Pins – OCP Bay (Primary Connector)	47
	3.5.3	Scan Chain Pins – OCP Bay (Primary Connector)	54
	3.5.4	Primary Connector Miscellaneous Pins – OCP Bay (Primary Connector)	61
3.6	PC	Ie Bifurcation Mechanism	62
	3.6.1	PCIe Add-in Card to Baseboard Bifurcation Configuration (PRSNTA#,	
	PRSNTI	3[3:0]#)	63
	3.6.2	PCIe Baseboard to Add-in Card Bifurcation Configuration (BIF[2:0]#)	63
	3.6.3	PCIe Bifurcation Decoder	64
	3.6.4	Bifurcation Detection Flow	66
	3.6.5	PCIe Bifurcation Examples	67
3.7	PC	Ie Clocking Topology	73
3.8	PC	Ie Bifurcation Results and REFCLK Mapping	75
3.9	Po	wer Capacity and Power Delivery	84
	3.9.1	AC Power Off	84
	3.9.2	ID Mode	84
	3.9.3	Aux Power Mode (S5)	84
	3.9.4	Main Power Mode (S0)	85
3.10) Po	wer Supply Rail Requirements	85
3.11	L Ho	t Swap Considerations for 12V and 3.3V Rails	86
3.12	2 Po	wer Sequence Timing Requirements	86
Ма	nageme	nt	88
4.1	NC	-SI Over RBT Sideband Interface	88

4

4.1.1	NC-SI Over RBT Addressing					
4.1.2	Arbitration Ring Connections					
4.2 SN	4.2 SMBus Interface					
4.2.1	SMBus Address Map					
4.3 M	AC Address Requirements	90				
4.4 FR	RU EEPROM					
4.4.1	FRU EEPROM Address, Size and Availability	90				
4.4.2	FRU EEPROM Content Requirements	90				
4.5 FV	V Requirements	92				
4.5.1	Firmware Update	92				
4.5.2	Secure Firmware	93				
4.5.3	Firmware Queries	93				
4.5.4	Multi-Host Firmware Queries	93				
4.6 Th	nermal Reporting Interface	93				
4.6.1	Emulated Thermal Reporting	94				
4.6.2	Remote on-die sensing	97				
<mark>4.6.3</mark>	PLDM Method					
4.6.4	Thermal reporting accuracy					
Data Netw	vork Requirement					
5.1 Ne	etwork Boot					
Routing G	uidelines and Signal Integrity Considerations					
6.1 No	C-SI Over RBT					
6.2 PC	Îe					
Thermal a	nd Environmental					
7.1 En	vironmental Requirements					
7.1.1	Thermal Reporting interface					
7.1.2	Thermal Simulation Boundary Example					
7.2 Sh	nock & Vibration					
7.3 Re	egulation					
Revision H	listory					

List of Figures

Figure 1: Representative Small OCP NIC 3.0 Card with Quad SFP Ports	9
Figure 2: Representative Large OCP NIC 3.0 Card with Dual QSFP Ports and on-board DRAM	
Figure 3: Small and Large Card Form-Factors (not to scale)	11
Figure 4: Example Small Card Form Factor	
Figure 5: Example Large Card Form Factor	
Figure 6: Primary Connector (4C + OCP Bay) with 4C and 2C Add-in Cards	
Figure 7: LED Ordering – Example Small Card Link/Activity and Speed LED Placement	23
Figure 8: Bottom Side Insulator and Mechanical Envelope	
Figure 9: Small Size Primary Connector Gold Finger Mating Card Dimensions - x16 - Top Side	25
Figure 10: Small Size Primary Connector Gold Finger Mating Card Dimensions - x16 - Bottom Side	25
Figure 11: Large Size Card Gold Finger Mating Card Dimensions – x32 – Top Side	25
Figure 12: Large Size Card Gold Finger Mating Card Dimensions – x32 – Bottom Side	25
Figure 13: 168-pin Base Board Primary Connector – Right Angle	
Figure 14: 140-pin Base Board Secondary Connector – Right Angle	
Figure 15: 168-pin Base Board Primary Connector – Straddle Mount	
Figure 16: 140-pin Base Board Secondary Connector – Straddle Mount	
Figure 17: Primary and Secondary Connector Locations for Large Card Support	
Figure 18: PCIe Present and Bifurcation Control Pins	
Figure 19: Example Power Supply Topology	
Figure 20: NC-SI Over RBT Connection Example – Single Primary Connector	
Figure 21: NC-SI Over RBT Connection Example – Dual Primary Connector	
Figure 22: Scan Bus Connection Example	
Figure 23: PCIe Bifurcation Pin Connections Support	63
Figure 24: Single Host (1 x16) and 1 x16 Add-in Card (Single Controller)	67
Figure 25: Single Host (2 x8) and 2 x8 Add-in Card (Dual Controllers)	
Figure 26: Four Hosts (4 x4) and 4 x4 Add-in Card (Single Controller)	
Figure 27: Four Hosts (4 x4) and 4 x4 Add-in Card (Four Controllers)	
Figure 28: Single Host with no Bifurcation (1 x16) and 2 x8 Add-in Card (Two Controllers)	72
Figure 29: PCIe Interface Connections for 1 x16 and 2 x8 Add-in Cards	73
Figure 30: PCIe Interface Connections for a 4 x4 Add-in Card	74
Figure 31: Baseboard Power States	
Figure 32: Power Sequencing	
Figure 33: Block Diagram for Emulated Thermal Reporting	
Figure 34: Block Diagram for Remote on-die Sensing	

List of Tables

Table 1: OCP 3.0 Form Factor Dimensions	11
Table 2: Baseboard to OCP NIC Form factor Compatibility Chart	12
Table 3: OCP NIC 3.0 Card Definitions	19
Table 4: OCP 3.0 Line Side I/O Implementations	19
Table 5: Baseboard LED Configurations with Two Physical LEDs per Port	21
Table 6: Add-in Card LED Configuration with Two Physical LEDs per Port	22
Table 7: Contact Mating Positions for the Primary and Secondary Connectors	26
Table 8: Primary Connector Pin Definition (x16) (4C + OCP Bay)	29
Table 9: Secondary Connector Pin Definition (x16) (4C)	33
Table 10: Pin Descriptions – PCIe 1	35
Table 11: Pin Descriptions – PCIe Present and Bifurcation Control Pins	39
Table 12: Pin Descriptions – SMBus	41
Table 13: Pin Descriptions – Power	42
Table 14: Pin Descriptions – Miscellaneous 1	44
Table 15: Pin Descriptions – PCIe 2	45
Table 16: Pin Descriptions – NC-SI Over RBT	47
Table 17: Pin Descriptions – Scan Chain	54
Table 18: Pin Descriptions – Scan Chain DATA_OUT Bit Definition	56
Table 19: Pin Descriptions – Scan Bus DATA_IN Bit Definition	57
Table 20: Pin Descriptions – Miscellaneous 2	61
Table 21: PCIe Bifurcation Decoder for x16 and x8 Card Widths	65
Table 22: PCIe Clock Associations	73
Table 23: Bifurcation for Single Host, Single Socket and Single Upstream Link (BIF[2:0]#=0b000)	76
Table 24: Bifurcation for Single Host, Single Socket and Single/Dual Upstream Links (BIF[2:0]#=0b000)	77
Table 25: Bifurcation for Single Host, Single Socket and Single/Dual/Quad Upstream Links (BIF[2:0]#=0b000)	78
Table 26: Bifurcation for Single Host, Dual Sockets and Dual Upstream Links (BIF[2:0]#=0b001)	79
Table 27: Bifurcation for Single Host, Four Sockets and Dual Upstream Links (BIF[2:0]#=0b010)	80
Table 28: Bifurcation for Dual Host, Dual Sockets and Dual Upstream Links (BIF[2:0]#=0b101)	81
Table 29: Bifurcation for Quad Host, Quad Sockets and Quad Upstream Links (BIF[2:0]#=0b110)	82
Table 30: Bifurcation for Quad Host, Quad Sockets and Quad Upstream Links (BIF[2:0]#=0b110)	83
Table 31: Power States	84
Table 32: Baseboard Power Supply Rail Requirements – Slot Power Envelopes	85
Table 33: Power Sequencing Parameters	87
Table 34: Power Sequencing Parameters	89
Table 35: FRU EEPROM Record – OEM Record 0xC0, Offset 0x00	90
Table 36: FRU EEPROM Record – OEM Record 0xC0, Offset 0x01	91
Table 37: FRU EEPROM Record – OEM Record 0xC0, Offset 0x02	91
Table 38: FRU EEPROM Record – OEM Record 0xC0, Offset 0x03	92

Open Compute Project • NIC • 3.0

Rev0.01

Table 39: FRU EEPROM Record – OEM Record 0xC0,	Offset 0x04	92
Table 40: FRU EEPROM Record – OEM Record 0xC0,	Offset 0x05	92
Table 41: Implementation Requirement for TMP421 F	Registers	95

1 Overview

1.1 License

As of April 7, 2011, the following persons or entities have made this Specification available under the Open Web Foundation Final Specification Agreement (OWFa 1.0), which is available at http://www.openwebfoundation.org/legal/the-owf-1-0-agreements/owfa-1-0: Facebook, Inc.

You can review the signed copies of the Open Web Foundation Agreement Version 1.0 for this Specification at http://opencompute.org/licensing/, which may also include additional parties to those listed above.

Your use of this Specification may be subject to other third party rights. THIS SPECIFICATION IS PROVIDED "AS IS." The contributors expressly disclaim any warranties (express, implied, or otherwise), including implied warranties of merchantability, noninfringement, fitness for a particular purpose, or title, related to the Specification. The entire risk as to implementing or otherwise using the Specification is assumed by the Specification implementer and user. IN NO EVENT WILL ANY PARTY BE LIABLE TO ANY OTHER PARTY FOR LOST PROFITS OR ANY FORM OF INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES OF ANY CHARACTER FROM ANY CAUSES OF ACTION OF ANY KIND WITH RESPECT TO THIS SPECIFICATION OR ITS GOVERNING AGREEMENT, WHETHER BASED ON BREACH OF CONTRACT, TORT (INCLUDING NEGLIGENCE), OR OTHERWISE, AND WHETHER OR NOT THE OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

1.2 Background

The OCP NIC 3.0 specification is a follow-on to the OCP 2.0 form-factor for PCIe add-in cards. The OCP NIC 3.0 specification supports two basic card sizes: Small Card, and Large Card. The Small Card allows for up to 16 PCIe lanes on the card edge while a Large Card supports up to 32 PCIe. Compared to the OCP NIC 2.0 release, the updated specification provides a broader solution space for NIC and system vendors to support the following use case scenarios:

- NICs with a higher TDP
- Support up to 80W of power delivery to a single connector (Small) card; and 150W to a dual connector (Large) card
- Support up to PCIe Gen5 on the system and add-in card
- Support for up to 32 lanes of PCIe per add-in card
- Support for single host and multi-host environments
- Support a greater board area for more complex add-in card designs
- Support for Smart NIC implementations with on-board DRAM
- Simplification of FRU installation and removal while reducing overall down time

A representative Small Card OCP 3.0 NIC mezzanine card is shown in Figure 1 and a representative Large Card is shown in Figure 2.

Figure 1: Representative Small OCP NIC 3.0 Card with Quad SFP Ports

Figure 2: Representative Large OCP NIC 3.0 Card with Dual QSFP Ports and on-board DRAM

In order to achieve the features outlined in this specification, OCP 3.0 compliant cards are not backwards compatible to the 2.0 cards.

This specification is created under OCP Server workgroup – OCP NIC subgroup. An electronic copy of this specification can be found on the Open Compute Project website:

http://www.opencompute.org/wiki/Server/Mezz#Specifications_and_Designs

1.3 Acknowledgements

<mark>Placeholder</mark>

1.4 Overview

1.4.1 Mechanical Form factor overview

The OCP NIC 3.0 specification defines a third generation mechanical form factor that allows for interoperability between compliant baseboards and add-in cards.

OCP NIC 3.0 cards have two form factors – Small and Large. These cards are shown in Figure 3 below. The components shown in the figures are for illustrative purposes. The Small form factor card has one connector (Primary connector) on baseboard. The Large form factor card has two connectors (Primary Connector and Secondary Connector) on the baseboard. Both the Primary and Secondary connectors are defined in and compliant to SFF-TA-1002. [Editor's note: plan to submit change back to SFF-TA-1002]. On the NIC side, the card edge is implemented with gold fingers. The gold finger design follows SFF-TA-1002 as well.

Figure 3: Small and Large Card Form-Factors (not to scale)

The two form factor dimensions are shown in Table 1.

Table 1: OCP 3.0 Form F	actor Dimensions
-------------------------	------------------

Form	Width	Depth	Primary	Secondary	Typical Use Case
Factor			Connector	Connector	

Small	Small W1 = 76 L = 115		4C + OCP	N/A	Low profile and general NIC
	mm		sideband		with a similar profile as an
			168 pins		OCP NIC 2.0 add-in card;
					up to x16 PCIe.
Large	W2 = 139	L = 115	4C + OCP	4C	Larger PCB width to
	mm	mm	sideband	140 pins	support feature rich NICs;
			168 pins		up to x32 PCIe.

The OCP NIC 3.0 design allows downward compatibility between the two card sizes. Table 2 shows the compatibility between the baseboard and NIC combinations. A small size baseboard slot may only accept a small sized NIC. A Large size baseboard slot may accept a small or large sized NIC.

Table 2: Baseboard to OCP NIC Form factor Compatibility Chart

Baseboard	NIC Size / Supported PCIe Width			
Slot Size	Small	Large		
Small	Up to x16	Not Supported		
Large	Up to x16	Up to x32		

There are two baseboard connector options available for system designers: straddle mount and right angle (RA). The straddle mount connector option allows the OCP NIC and baseboard to exist in a co-planer position. To achieve this, a cutout exists on the baseboard and is defined in this specification. Alternatively, the right angle option allows the OCP NIC to be installed on top of the baseboard. A baseboard cutout is not required for the right angle connector. The right angle option allows the baseboard to use this area for additional routing or backside component placement. The straddle mount and right angle connectors are shown in Section 3.2.

For both the baseboard and OCP card, this specification defines the component and routing keep out areas. Refer to Section 2.6 for details.

Both the straddle mount and right angle implementations shall accept the same OCP add-in card and shall be supported in the baseboard chassis regardless of the baseboard connector

selection (right angle or straddle mount) so long as the baseboard slot side and add-in card sizes are a supported combination as shown in Table 2.

This specification defines the form factor at the add-in card level, including the front panel, latching mechanism and card guide features [TBD; pending on the Mechanical work across stakeholders].

More details about the card form-factor is shown in Section 2.

1.4.2 Electrical overview

This specification defines the electrical interface between baseboard and the add-in card.

The electrical interface is implemented with a right angle or straddle mount connector on baseboard and gold finger on the add-in card. As previously noted in the mechanical overview, each card may implement a Primary Connector or Primary + Secondary Connector. Cards using only the Primary connector are suitable for both the Small and Large form-factors and may support up to x16 lanes of PCIe. The Secondary connector, when used in conjunction with the Primary connector, allows Large form-factor implementations and may support up to 32 lanes of PCIe.

1.4.2.1 Primary Connector

The Primary connector provides all OCP specific management functions as well as up to 16 lanes of PCIe between the OCP NIC and the system motherboard.

Management Function Overview (OCP Bay):

- NC-SI RBT Sideband Interface
 - o 10/100 Mb/s RMII Datapath
 - Arbitration Ring Control Bus
- Power management and status reporting
 - Power disable
 - State change control
- SMBus
- Control / status serial bus

- NIC-to-Host status
 - Port LED Link/Activity
 - Environmental Indicators
- Host-to-NIC configuration Information
- Multi-host PCIe support signals (2x PCIe resets, 2x reference clocks)
- PCIe Wake signal

See Section 3.5 for a complete list of pin and function descriptions for the OCP Bay portion of the primary connector.

PCIe Interface Overview (4C Connector):

- 16x differential transmit/receive pairs
 - Up to PCIe Gen 5 support
- 2x 100 MHz differential reference clocks
- Control signals
 - o 2x PCIe Resets
 - Link Bifurcation Control
 - Card power disable/enable
- Power
 - 12V /12V AUX
 - 3.3V AUX

See Section 3.4 for a complete list of pin and function descriptions for the 4C connector.

1.4.2.2 Secondary Connector

The secondary connector provides an additional 16 lanes of PCIe and their respective control signals.

PCIe Interface Overview (4C Connector):

- 16x differential transmit/receive pairs
 - Up to PCIe Gen 5 support
- 2x 100 MHz differential reference clocks

- Control signals
 - 2x PCIe Resets
 - Link Bifurcation Control
 - Card power disable/enable
- Power
 - o 12V /12V AUX
- 3.3V AUX

See Section 3.4 for a complete list of pin and function descriptions for the 4C connector.

1.5 References

- DMTF Standard. DSP0222, Network Controller Sideband Interface (NC-SI) Specification.
 Distributed Management Task Force, Inc, Rev 1.0.1, January 24th, 2013.
- EDSFF. *Enterprise and Datacenter SSD Form Factor Connector Specification*. Enterprise and Datacenter SSD Form Factor Working Group, Rev 0.9 (draft), August 2nd 2017.
- *IPMI Platform Management FRU Information Storage Definition*, v1.2, February 28th, 2013.
- NXP Semiconductors. *PC-bus specification and user manual*. NXP Semiconductors, Rev 6, April 4th, 2014.
- Open Compute Project. OCP NIC Subgroup. Online. http://www.opencompute.org/wiki/Server/Mezz
- PCIe Base Specification. PCI Express Base Specification, Revision 4.0 (draft).
- PCIe CEM Specification. PCI Express Card Electromechanical Specification, Revision 4.0 (draft).
- SMBus Management Interface Forum. System Management Bus (SMBus) Specification.
 System Management Interface Forum, Inc, Version 3.0, December 20th, 2014.
- SNIA. *SFF-TA-1002, Specification for Protocol Agnostic Multi-Lane High Speed Connector.* SNIA SFF TWG Technology Affiliate, Rev 1.0, December 12th, 2017.

2 Card Form Factor

2.1 Overview

2.2 Form Factor Options

OCP3.0 provides two fundamental form factor options: a small card (76mm x 115mm) and a large card (139mm x 115mm).

These form factors support a Primary Connector and optionally, a Secondary Connector. The Primary Connector is defined to be a SFF-TA-1002 compliant 4C connector plus a 28-pin bay for OCP 3.0 specific pins. The Secondary Connector is the 4C connector as defined in SFF-TA-1002. The 4C specification supports up to 32 differential pairs for a x16 PCIe connection per connector. For host platforms, the 28-pin OCP bay is required for the Primary connector. This is also mandatory for add-in cards.

The small card uses the Primary 4C connector to provide up to a x16 PCIe interface to the host. The additional 28-pin OCP bay carries sideband management interfaces as well as OCP NIC 3.0 specific control signals for multi-host PCIe support. The small size card provides sufficient faceplate area to accommodate up to 2x QSFP modules, 4x SFP modules, or 4x RJ-45 for BASE-T operation. The small card form factor supports up to 80W of delivered power to the card edge.

The large card uses the Primary 4C + OCP bay connector to provide the same functionality as the small card along with an additional Secondary 4C connector to provide up to a x32 PCIe interface. The large card utilizes both the Primary and Secondary connectors. The large size card supports higher power envelopes and provides additional board area for more complex designs. The large card form factor supports up to 150W of delivered power to the card edge across the two connectors.

For both form-factors, an add-in card may optionally implement a subset of pins to support up to a x8 PCIe connection. This is implemented using a 2C card edge per SFF-TA-1002. The Primary Connector may support a 2C sized add-in card along with the 28 pin OCP bay. The following diagram from the SFF-TA-1002 specification illustrates the supported host Primary and Secondary Connectors and add-in card configurations.

Figure 6: Primary Connector (4C + OCP Bay) with 4C and 2C Add-in Cards

Table 3 summarizes the supported card form factors. Small form factors cards support the Primary Connector and up to 16 PCIe lanes. Large form factor cards support both the Primary and Secondary Connectors and up to 32 PCIe lanes.

Table 3: OCP NIC 3.0 Card Definition

Add in Card Size and	Secondary Connector		Primary Connector		
max PCIe Lane Count	4C Connector, x16 PCIe		4C Connector, x16 PCIe		OCP Bay
Small (x8)			2C		OCP Bay
Small (x16)			4C		OCP Bay
Large (x24)		2C	4C		OCP Bay
Large (x32)	4C		4C		OCP Bay

2.3 I/O bracket

TBD < need input from OCP mechanical groups>

2.4 Line Side I/O Implementations

At the time of this writing, the Small and Large form-factor implementations have been optimized to support the following standard line side I/O implementations:

Table 4: OCP 3.0 Line Side I/O Implementations

Form Factor	Max Topology Connector Count		
Small	2x QSFP28		
Small	4x SFP28		
Small	4x RJ-45		
Large	TBD		
Large	TBD		
Large	TBD		

Additional combinations are permissible as I/O form-factor technologies and thermal capabilities evolve.

2.5 LED Implementations

LEDs must be implemented on the card Scan Chain (as defined in Section 3.5.3) for remote link/activity indication on the baseboard and may optionally be implemented on the OCP NIC 3.0 I/O bracket if there is sufficient space for local indication. These two cases are described below. In both cases, the actual link rate may be directly queried through the management interface.

2.5.1 Baseboard LEDs Configuration Over the Scan Chain

A small form-factor OCP NIC 3.0 with a fully populated I/O bracket (2x QSFP28, 4x SFP28 or 4x RJ-45) has insufficient space for discrete on-board (faceplate) LED indicators. In this case, the line side link and activity LED indicators are implemented on the baseboard system via the Scan Chain. The Scan Chain bit stream is defined in Section 3.5.3. This LED implementation is required for all add-in cards. The baseboard LED implementation uses two discrete LEDs (Link/Activity and Speed indication). Table 5 describes the baseboard LED configuration for baseboard implementations.

LED Pin	LED Color	Description	
Link /	Green	Active low. Multifunction LED.	
Activity			
		When lit and solid, this LED is used to indicate the link is up	
		at the MAC level. Local and Remote Faults are clear and the	
		link is ready for data transmission.	
		When the LED is off, the physical link is down or disabled.	
		The LED should blink low for 50-500 ms during Packet	
		Activity.	
		The Link/Activity LED shall be located on the left hand side for	
		each port.	
Speed	Green	Active low. Multifunction LED.	
	Off		
		The LED is Green when the port is linked at its maximum	
		speed.	
		The LED is off when the device is linked at a speed lower than	
		the highest capable speed, or no link is present.	
		The bicolor speed LED shall be located on the right hand side	
		for each nort	
		for each port.	

Table 5: Baseboard LED Configurations with Two Physical LEDs per Port

At the time of this writing, the Scan Chain definition allows for up to one link/activity and one speed LED per port. A total of up to 8 ports are supported in the Scan Chain. The bit stream defines the LEDs to be active low (ON). The Scan Chain LED implementation allows the NIC LED indicators to be remotely located on the OCP 3.0 compliant chassis (e.g. front LED indicators with rear I/O cards).

2.5.2 Add-in Card LED Configuration

For low I/O count small form-factor cards without built in light pipes (such as 1x QSFP28, 2x SFP28), or a large form-factor OCP 3.0 NIC, where additional I/O bracket area is available, the card may optionally implement on-board link/activity indications in addition to the Scan Chain LED stream. The recommended local (on-card) LED implementation uses two physical LEDs (a discrete Link/Activity LED and a bi-colored Speed A/Speed B LED). Table 6 describes the add-in card LED implementations.

LED Pin	LED Color	Description
Link /	Green	Active low. Multifunction LED.
Activity		
		When lit and solid, this LED is used to indicate the link is up
		at the MAC level. Local and Remote Faults are clear and the
		link is ready for data transmission.
		When the LED is off, the physical link is down or disabled.
		The LED should blink low for 50-500 ms during Packet
		Activity.
		The Link/Activity LED shall be located on the left hand side for
		each port when the add-in card is viewed in the horizontal
		plane.
Speed	Green	Active low. Bicolor multifunction LED.
	Amber	
	Off	The LED is Green when the port is linked at its maximum
		speed.
		The LED is Amber when the port is linked at it second highest
		speed.
		The LED is off when the device is linked at a speed lower than
		the second highest capable speed, or no link is present.

Table 6: Add-in Card LED Configuration with Two Physical LEDs per Port

	The Amber Speed LED indicator may be used for port
	identification through vendor specific link diagnostic software.
	The bicolor speed LED shall be located on the right hand side
	for each port when the add-in card is viewed in the horizontal
	plane.

2.5.3 Add-in Card LED Ordering

For all LED use cases, the green Link/Activity LED shall be located on the left side for each port. The bicolor green/amber speed A/B LED shall be located on the right side for each port. (Note Speed B is only available for local (on-card) LEDs. The placement of the LEDs may be to the side of the physical port for the case with add-in cards. The LED port association shall be clearly labeled on the add-in card and on the baseboard.

Figure 7: LED Ordering – Example Small Card Link/Activity and Speed LED Placement

2.6 Mechanical Keepout Zones

2.6.1 Baseboard Keep Out Zones

TBD – Need keepout drawings and envelopes for small / large size baseboard including primary/secondary/rail keepouts/cutout for straddle mount/keepout for right angle.

2.6.2 Add-in Card Keep Out Zones

TBD – need keepout drawings and envelopes for small / large size NIC including primary/secondary/rail keepouts.

2.7 Labeling Requirements

TBD

Editor's note [TN 20171214]: Consider the following label attributes:

- Label attributes are human (e.g. ASCII) and machine readable (e.g. barcode)
- Add-in card MAC address shall be visible (used MAC address range, or base value)
- Board serial number

2.8 Insulation Requirements

All cards must implement an insulator to prevent the bottom side card components from shorting out to the chassis. The recommended insulator thickness is 0.25mm and must reside within the following mechanical envelope for the Small and Large size cards.

Figure 8: Bottom Side Insulator and Mechanical Envelope

TBD <need 2D drawings>

2.9 NIC Implementation Examples

2.10 Non-NIC Use Cases

"PCIe interface with extra management sideband"

2.10.1 PCIe Retimer card

2.10.2 Accelerator card

2.10.3 Storage HBA / RAID card

3 Card Edge and Baseboard Connector Interface

3.1 Gold Finger Requirements

The OCP NIC 3.0 add-in cards are compliant to the SFF-TA-1002 specification with respect to the gold fingers and connectors.

Small Size cards fit in the Primary Connector. Primary Connector compliant cards are 76mm x 115mm and may implement the full 168-pins. The Primary Connector cards may optionally implement a subset of gold finger pins if there is a reduced PCIe width requirement (such as 1 x8 and below). In this case, the card edge gold finger may implement a 2C design. The overall board thickness is 1.60mm. The gold finger dimensions for the Primary Connector compliant cards are shown below.

Large Size Cards support up to a x32 PCIe implementation and uses both the Primary and Secondary connectors.

For additional details, refer to the card and connector mechanical drawings located in XXX.

Note: The "B" pins on the connector are associated with the top side of the add-in card. The "A" pins on the connector are associated with the bottom side of the add-in card.

Figure 9: Small Size Primary Connector Gold Finger Mating Card Dimensions – x16 – Top

Side

TBD Figure 10: Small Size Primary Connector Gold Finger Mating Card Dimensions – x16 – Bottom Side TBD

Figure 11: Large Size Card Gold Finger Mating Card Dimensions – x32 – Top Side TBD

Figure 12: Large Size Card Gold Finger Mating Card Dimensions – x32 – Bottom Side TBD

3.1.1 Gold Finger Mating Sequence

Per the SFF-TA-1002 specification, the Primary and Secondary connectors are protocol agnostic and are optimized for high speed differential pairs. For use in the OCP NIC 3.0

application, some pin locations are used for single ended control nets or power and would benefit from a shorter pin length for staggering. As such, the recommended add-in card gold finger staging is shown in Table 7 for a two stage, first-mate, last-break functionality. The host connectors have a single stage mating and do not implement different pin lengths.

The AIC Plug (Free) side refers to the add-in card gold fingers; the receptacle (Fixed) side refers to the physical connector on the host platform. This table is based on the SFF-TA-1002 Table A-1 with modifications for OCP NIC 3.0. Refer to the mechanical drawings for pin the first-mate and second-mate lengths.

Table 7: Contact Mating Positions for the Primary and Secondary Connectors

B17			A17		
B18			A18		
B19			A19		
B20			A20		
B21			A21		
B22			A22		
B23			A23		
B24			A24		
B25			A25		
B26			A26		
B27			A27		
B28			A28		
		Mech	anical Key		
B29			A29		
B30			A30		
B31			A31		
B32			A32		
B33			A33		
B34			A34		
B35			A35		
B36			A36		
B37			A37		
B38			A38		
B39			A39		
B40			A40		
B41			A41		
B42			A42		
	 	Mech	anical Key		
B43			A43		
B44			A44		
B45			A45		
B46			A46		
B47			A47		
B48			A48		
B49			A49		
B50			A50		
B51			A51		
B52			A52		
B53			A53		
B54			A54		
B55			A55		
B56			A56		
B57			A57		
B58			A58		
B59			A59		
B60			A60		
B61			A C 1		
			A01		
B62			A61 A62		
B62 B63			A61 A62 A63		
B62 B63 B64			A62 A63 A64		
B62 B63 B64 B65			A61 A62 A63 A64 A65		
B62 B63 B64 B65 B66			A61 A62 A63 A64 A65 A66		

3.2 Baseboard Connector Requirements

The OCP NIC 3.0 connectors are compliant to the "4C connector" as defined in the SFF-TA-1002 specification for a right angle or straddle mount form-factor. The 4C connector is 140pins in width and includes support for up to 32 differential pairs to support a x16 PCIe connection. The connector also provides 6 pins of 12V for payload power. This implementation is common between both the Primary and Secondary Connectors. In addition, the Primary Connector has a 28-pin OCP Bay to the right of pin 1. These pins are used for management and support for up to a 4 x4 multi-host configuration on the Primary Connector. The Primary and Secondary Connector drawings are shown in Figure 13, Figure 14, Figure 15 and Figure 16 below.

Figure 13: 168-pin Base Board Primary Connector – Right Angle

TBD Figure 14: 140-pin Base Board Secondary Connector – Right Angle TBD Figure 15: 168-pin Base Board Primary Connector – Straddle Mount TBD Figure 16: 140-pin Base Board Secondary Connector – Straddle Mount TBD

In order to the support the large form factor, systems must locate the Primary and Secondary Connectors per the mechanical drawing shown in Figure 17.

Figure 17: Primary and Secondary Connector Locations for Large Card Support

TBD

3.3 Pin definition

The pin definitions of an OCP NIC 3.0 card with up to a x32 PCIe interface are shown in Table 8 and Table 9. All signal directions are shown from the perspective of the baseboard.

A baseboard system may provide a combination of Primary Connectors only, or Primary and Secondary Connectors to support multiple sizes of add-in cards. Both connectors share common functionality with power, SMBus, x16 PCIe and bifurcation control. The Primary Connector has an additional OCP Bay (pins OCP_A[1:14], OCP_B[1:14]) with additional REFCLKs for supporting up to four PCIe hosts, NC-SI connectivity and a Scan Chain for information exchange between the host and card. The NIC is required to implement the Scan Chain, while the baseboard may choose to optionally implement it. Depending on the baseboard form-factor, multiple OCP NIC 3.0 compliant cards may be designed into the system.

The pins common to the Primary and Secondary Connectors are shown in Section 3.4. The OCP Bay pins on the Primary Connector only are shown in Section 3.5.

Cards or systems that do not require the use of a PCIe x16 connection may optionally implement a subset electrical connections as applicable to the design. For example, a x8 (or smaller) card using the first 8 PCIe lanes that is compliant with the Primary Connector pinout. Refer to Sections 3.1 and 3.2 for mechanical details. For these cases, the Primary Connector matches the 2C dimensions as defined in SFF-TA-1002.

In all cases, the physical baseboard connectors shall support x16 PCIe widths and must be implemented with the Primary (4C + OCP Bay) and Secondary (4C) connectors.

	Side B	Side A			
OCP_B1	NIC_PWR_GOOD	PERST2#	OCP_A1	Pri ad	Pri ad
OCP_B2	PWRBRK#	PERST3#	OCP_A2	imaı d-in	imai d-in
OCP_B3	LD#	WAKE_N#	OCP_A3	ry C	ry C
OCP_B4	DATA_IN	RBT_ARB_IN	OCP_A4	onn rd w	onn rd w
OCP_B5	DATA_OUT	RBT_ARB_OUT	OCP_A5	ecto	ecto
OCP_B6	CLK	GND	OCP_A6	or (x	OCI (X
OCP_B7	SLOT_ID0	RBT_TX_EN	OCP_A7	(16, 9 Ва	(8, 1 9 ba
OCP_B8	RBT_RXD1	RBT_TXD1	OCP_A8	168 у)	.12- y)
OCP_B9	RBT_RXD0	RBT_TXD0	OCP_A9	-pir	pin
OCP_B10	GND	GND	OCP_A10		

Table 8: Primary Connector Pin Definition (x16) (4C + OCP Bay)

OCP_B11	REFCLKn2	REFCLKn3	OCP_A11	
OCP_B12	REFCLKp2	REFCLKp3	OCP_A12	
OCP_B13	GND	GND	OCP_A13	
OCP_B14	RBT_CRS_DV	RBT_CLK_IN	OCP_A14	
	Mechan	ical Key		
B1	+12V/+12V_AUX	GND	A1	
B2	+12V/+12V_AUX	GND	A2	
B3	+12V/+12V_AUX	GND	A3	
B4	+12V/+12V_AUX	GND	A4	
B5	+12V/+12V_AUX	GND	A5	
B6	+12V/+12V_AUX	GND	A6	
B7	BIFO#	SMCLK	A7	
B8	BIF1#	SMDAT	A8	
B9	BIF2#	SMRST#	A9	
B10	PERST0#	PRSNTA#	A10	
B11	+3.3V/+3.3V_AUX	PERST1#	A11	
B12	PWRDIS	PRSNTB2#	A12	
B13	GND	GND	A13	
B14	REFCLKn0	REFCLKn1	A14	
B15	REFCLKp0	REFCLKp1	A15	
B16	GND	GND	A16	
B17	PETn0	PERn0	A17	
B18	PETp0	PERp0	A18	
B19	GND	GND	A19	
B20	PETn1	PERn1	A20	
B21	PETp1	PERp1	A21	
B22	GND	GND	A22	
B23	PETn2	PERn2	A23	
B24	PETp2	PERp2	A24	
B25	GND	GND	A25	
B26	PETn3	PERn3	A26	
B27	PETp3	PERp3	A27	
B28	GND	GND	A28	
	Mechan	ical Key		
B29	GND	GND	A29	
B30	PETn4	PERn4	A30	
B31	PETp4	PERp4	A31	
B32	GND	GND	A32	
B33	PETn5	PERn5	A33	

B34	PETp5	PERp5	A34	
B35	GND	GND	A35	
B36	PETn6	PERn6	A36	
B37	PETp6	PERp6	A37	
B38	GND	GND	A38	
B39	PETn7	PERn7	A39	
B40	PETp7	PERp7	A40	
B41	GND	GND	A41	
B42	PRSNTB0#	PRSNTB1#	A42	
	Mechan	ical Key		
B43	GND	GND	A43	
B44	PETn8	PERn8	A44	
B45	PETp8	PERp8	A45	
B46	GND	GND	A46	
B47	PETn9	PERn9	A47	
B48	PETp9	PERp9	A48	
B49	GND	GND	A49	
B50	PETn10	PERn10	A50	
B51	PETp10	PERp10	A51	
B52	GND	GND	A52	
B53	PETn11	PERn11	A53	
B54	PETp11	PERp11	A54	
B55	GND	GND	A55	
B56	PETn12	PERn12	A56	
B57	PETp12	PERp12	A57	
B58	GND	GND	A58	
B59	PETn13	PERn13	A59	
B60	PETp13	PERp13	A60	
B61	GND	GND	A61	
B62	PETn14	PERn14	A62	
B63	PETp14	PERp14	A63	
B64	GND	GND	A64	
B65	PETn15	PERn15	A65	
B66	PETp15	PERp15	A66	
B67	GND	GND	A67	
B68	RFU, N/C	RFU, N/C	A68	
B69	RFU, N/C	RFU, N/C	A69	
B70	PRSNTB3#	RFU, N/C	A70	

	Side B	Side A			
B1	+12V/+12V_AUX	GND	A1	Se	Se
B2	+12V/+12V_AUX	GND	A2	Con	Con
B3	+12V/+12V_AUX	GND	A3	dary	dary
B4	+12V/+12V_AUX	GND	A4	\ Co	\ Co
B5	+12V/+12V_AUX	GND	A5	onne	nne
B6	+12V/+12V_AUX	GND	A6	cto	cto
В7	BIFO#	SMCLK	A7	x X	r (x8
B8	BIF1#	SMDAT	A8	.6, 1	3, 84
В9	BIF2#	SMRST#	A9	L40-	-pi
B10	PERSTO#	PRSNTA#	A10	pin	ר ad
B11	+3.3V/+3.3V_AUX	PERST1#	A11	add	ld-in
B12	PWRDIS	PRSNTB2#	A12	÷	l ca
B13	GND	GND	A13	carc	rd)
B14	REFCLKn0	REFCLKn1	A14	-	
B15	REFCLKp0	REFCLKp1	A15		
B16	GND	GND	A16		
B17	PETn0	PERn0	A17		
B18	PETp0	PERp0	A18		
B19	GND	GND	A19		
B20	PETn1	PERn1	A20		
B21	PETp1	PERp1	A21		
B22	GND	GND	A22		
B23	PETn2	PERn2	A23		
B24	PETp2	PERp2	A24		
B25	GND	GND	A25		
B26	PETn3	PERn3	A26		
B27	РЕТр3	PERp3	A27		
B28	GND	GND	A28		
	Mechan	ical Key			
B29	GND	GND	A29		
B30	PETn4	PERn4	A30		
B31	PETp4	PERp4	A31		
B32	GND	GND	A32		
B33	PETn5	PERn5	A33		
B34	PETp5	PERp5	A34		
B35	GND	GND	A35		
B36	PETn6	PERn6	A36		

Table 9: Secondary Connector Pin Definition (x16) (4C)

B37	PETp6	PERp6	A37	
B38	GND	GND	A38	
B39	PETn7	PERn7	A39	
B40	PETp7	PERp7	A40	
B41	GND	GND	A41	
B42	PRSNTB0#	PRSNTB1#	A42	
	Mechan	ical Key		
B43	GND	GND	A43	
B44	PETn8	PERn8	A44	
B45	PETp8	PERp8	A45	
B46	GND	GND	A46	
B47	PETn9	PERn9	A47	
B48	PETp9	PERp9	A48	
B49	GND	GND	A49	
B50	PETn10	PERn10	A50	
B51	PETp10	PERp10	A51	
B52	GND	GND	A52	
B53	PETn11	PERn11	A53	
B54	PETp11	PERp11	A54	
B55	GND	GND	A55	
B56	PETn12	PERn12	A56	
B57	PETp12	PERp12	A57	
B58	GND	GND	A58	
B59	PETn13	PERn13	A59	
B60	PETp13	PERp13	A60	
B61	GND	GND	A61	
B62	PETn14	PERn14	A62	
B63	PETp14	PERp14	A63	
B64	GND	GND	A64	
B65	PETn15	PERn15	A65	
B66	PETp15	PERp15	A66	
B67	GND	GND	A67	
B68	RFU, N/C	RFU, N/C	A68	
B69	RFU, N/C	RFU, N/C	A69	
B70	PRSNTB3#	RFU, N/C	A70	

3.4 Signal Descriptions – Common

The pins shown in this section are common to both the Primary and Secondary Connectors. All pin directions are from the perspective of the baseboard.

The add-in card shall implement protection methods to prevent leakage paths between the Vaux and Vmain power domains in the event that a NIC is powered down in a powered up baseboard.

Note: Pins that are only used on Primary Connector 28-pin OCP bay are defined in Section 3.5.

3.4.1 PCIe Interface Pins

This section provides the pin assignments for the PCIe interface signals. The AC/DC specifications are defined in the PCIe CEM Specification, Rev 4.0. Example connection diagrams for are shown in Figure 30.

Signal Name	Pin #	Baseboard	Signal Description	
		Direction		
REFCLKn0	B14	Output	PCIe compliant differential reference clock #0,	
REFCLKp0	B15		and #1. 100MHz reference clocks are used for	
REFCLKn1	A14	Output	the add-in card PCIe core logic.	
REFCLKp1	A15			
			For baseboards, the REFCLK0 and REFCLK1	
			signals are required at the connector.	
			For add-in cards, the required REFCLKs shall be	
			connected per the endpoint datasheet.	
			Note: For cards that only support 1 x16,	
			REFCLK0 is used. For cards that support 2 x8,	
			REFCLK0 is used for the first eight PCIe lanes,	

Table 10: Pin Descriptions – PCIe 1

			and REFCLK1 is used for the second eight PCIe
			lanes.
			Refer to Section 2.1 in the PCIe CEM
			Specification, Rev 4.0 for electrical details.
PETn0	B17	Output	Transmitter differential pairs [0:15]. These pins
PETp0	B18		are connected from the baseboard transmitter
PETn1	B20	Output	differential pairs to the receiver differential
PETp1	B21		pairs on the add-in card.
PETn2	B23	Output	
PETp2	B24		The PCIe transmit pins are AC coupled on the
PETn3	B26	Output	baseboard with capacitors and are placed next
РЕТр3	B27		to the baseboard transmitters. The AC coupling
PETn4	B30	Output	capacitor must be between 176nF (min) and
PETp4	B31		265nF (max).
PETn5	B33	Output	
PETp5	B34		For baseboards, the PET[0:15] signals are
PETn6	B36	Output	required at the connector.
PETp6	B37		
PETn7	B39	Output	For add-in cards, the required PET[0:15] signals
PETp7	B40		shall be connected to the endpoint silicon. For
PETn8	B44	Output	silicon that uses less than a x16 connection, the
PETp8	B45		appropriate PET[0:15] signals shall be
PETn9	B47	Output	connected per the endpoint datasheet.
PETp9	B48		
PETn10	B50	Output	Refer to Section 6.1 in the PCIe CEM
PETp10	B51		Specification, Rev 4.0 for details.
PETn11	B53	Output	
PETp11	B54		
PETn12	B56	Output	
PETp12	B57		
PETn13	B59	Output	
DETn12	R60		
--------	-----	--------	--
	DOU		
PEIN14	B62	Output	
PETp14	B63		-
PETn15	B65	Output	
PETp15	B66		
PERn0	A17	Input	Receiver differential pairs [0:15]. These pins are
PERp0	A18		connected from the add-in card transmitter
PERn1	A20	Input	differential pairs to the receiver differential
PERp1	A21		pairs on the baseboard.
PERn2	A23	Input	
PERp2	A24		The PCIe receive pins are AC coupled on the
PERn3	A26	Input	add-in card with capacitors and are placed next
PERp3	A27		to the add-in card transmitters. The AC
PERn4	A30	Input	coupling capacitor must be between 176nF
PERp4	A31		(min) and 265nF (max).
PERn5	A33	Input	
PERp5	A34		For baseboards, the PER[0:15] signals are
PERn6	A36	Input	required at the connector.
PERp6	A37		
PERn7	A39	Input	For add-in cards, the required PER[0:15] signals
PERp7	A40		shall be connected to the endpoint silicon. For
PERn8	A44	Input	silicon that uses less than a x16 connection, the
PERp8	A45		appropriate PER[0:15] signals shall be
PERn9	A47	Input	connected per the endpoint datasheet.
PERp9	A48		
PERn10	A50	Input	Refer to Section 6.1 in the PCIe CEM
PERp10	A51		Specification, Rev 4.0 for details.
PERn11	A53	Input	
PERp11	A54		
PERn12	A56	Input	
PERp12	A57		
PERn13	A59	Input	
PERp13	A60		

PERn14	A62	Input	
PERp14	A63		
PERn15	A65	Input	
PERp15	A66		
PERST0#	B10	Output	PCIe Reset #0, #1. Active low.
PERST1#	A11		
			Indicates when the applied power is within
			tolerance and stable for the add-in card.
			PERST# goes high at least 100ms after the
			power rails are within operating limits per the
			PCIe CEM Specification. The PCIe REFCLKs also
			become stable within this period of time.
			PERST is pulled high on the baseboard.
			For OCP NIC 3.0, PERST deassertion also
			indicates the full card power envelope is
			available to the add-in card.
			For baseboards, the PERST[0:1]# signals are
			required at the connector.
			For add-in cards, the required PERST[0:1]#
			signals shall be connected to the endpoint
			silicon.
			Note: For cards that only support 1 x16,
			PERSTO# is used. For cards that support 2 x8,
			PERSTO# is used for the first eight PCIe lanes,
			and PERST1# is used for the second eight PCIe
			lanes.
			Refer to Section 2.2 in the PCIe CEM
			Specification, Rev 4.0 for details.

3.4.2 PCIe Present and Bifurcation Control Pins

This section provides the pin assignments for the PCIe present and bifurcation control signals. The AC/DC specifications are defined in Section XXX. An example connection diagram is shown in Figure 18.

The PRSNTA#/PRSNTB[0:3]# state may be used to determine if a card has been physically plugged in. The BIF[0:2]# pins much be latched at least 1 ms before PWRDIS deassertion to ensure the correct values are detected by the system. Changing the pin states after this timing window is not allowed. Refer to the AC timing diagram in Section XXX for details.

Signal Name	Pin #	Baseboard	Signal Description
		Direction	
PRSNTA#	A12	Output	Present A is used for add-in card presence and
			PCIe capabilities detection.
			For baseboards, this pin is directly connected to GND.
			PRSNTB[3:0]# pins
PRSNTB0#	B42	Input	Present B [0:3]# are used for add-in card
PRSNTB1#	A42	F	presence and PCIe capabilities detection.
PRSNTB2#	A10		
PRSNTB3#	B70		For baseboards, these pins are connected to
			the I/O hub and are pulled up to +3.3Vaux
			using 1kOhm resistors.
			For add-in cards, these pins are strapped to
			PRSNTA#. The encoding definitions are
			described in Section 3.6.

Table 11: Pin Descriptions – PCIe Present and Bifurcation Control Pins

			PRSNTB3# is located at the bottom of the 4C connector and is only applicable for add-in cards with a PCIe width of x16 (or greater). Add-in cards that implement a 2C card edge do not use the PRSNTB3# pin for capabilities or present detection.
BIFO#	A7	Output	Bifurcation [0:2]# pins allow the baseboard to
BIF1#	A8		force configure the add-in card bifurcation.
BIF2#	A9		
			For baseboards, these pins are outputs driven
			from the baseboard I/O hub and allows the
			system to force configure the add-in card
			bifurcation. The baseboard may optionally tie
			the BIF[0:2]# signals to 3.3Vaux or to ground if
			no dynamic bifurcation configuration is
			required.
			For add-in cards, these signals connect to the
			endpoint bifurcation pins if it is supported.
			The BIF[0:2]# encoding definitions are
			described in Section 3.6.
			Note: the required combinatorial logic output
			for endpoint bifurcation is dependent on the
			specific silicon and is not defined in this
			specification.

Figure 18: PCIe Present and Bifurcation Control Pins

3.4.3 SMBus Interface Pins

This section provides the pin assignments for the SMBus interface signals. The AC/DC specifications are defined in the SMBus and I²C bus specifications. An example connection diagram is shown in Figure XXX.

Signal Name	Pin #	Baseboard	Signal Description
		Direction	
SMCLK	A7	Output,	SMBus clock. Open drain, pulled up to 3.3Vaux
		OD	on the baseboard.
			For baseboards, connect the SMCLK from the
			platform SMBus master to the connector.
			For add-in cards, connect the SMCLK from the
			endpoint silicon to the card edge gold fingers.

Table 12: Pin Descriptions – SMBus

70	input /	SMBus Data. Open drain, pulled up to 3.3Vaux
	Output,	on the baseboard.
	OD	
		For baseboards, connect the SMDAT from the
		platform SMBus master to the connector.
		For add-in cards, connect the SMDAT from the
		endpoint silicon to the card edge gold fingers.
A9	Output,	SMBus reset. Open drain.
	OD	
		For baseboards, this pin is pulled up to
		3.3Vauxand is used to reset optional
		downstream SMBus devices (such as
		temperature sensors). SMRST# is a mandatory
		signal for baseboard implementations.
		For add-in cards. SMRST# is optional
P	49	A9 Output, OD

3.4.4 Power Supply Pins

This section provides the pin assignments for the power supply interface signals. The AC/DC specifications are defined in the PCIe CEM Specification, Rev 4.0 and amended in Section 3.10. An example connection diagram is shown in Figure 19.

Signal Name	Pin #	Baseboard	Signal Description
		Direction	
GND	Various	GND	Ground return; a total of 46 ground pins are
			on the main 140-pin connector area.
+12V/+12V_AUX	B1, B2,	Power	12V main or 12V Aux power; total of 6 pins per
	B3, B4,		connector. The 12V pins are rated to 1.1A per
	B5, B6		pin with a maximum derated power delivery of
			80W.

	Table	13:	Pin	Descriptions	_	Power
--	-------	-----	-----	--------------	---	-------

			The +12V power pins must be within the rail
			tolerances (TBD tolerance for Aux) when the
			PWRDIS pin is driven low by the baseboard.
+3.3V/3.3V_AUX	B11	Power	3.3V main or 3.3V Aux power; total of 1 pin per
			connector. The 3.3V pin is rated to 1.1A for a
			maximum derated power delivery of 3.63W.
			The 3.3Vaux/main power pin must be within
			the rail tolerances when the PWRDIS pin is
			driven low by the baseboard.
PWRDIS	B12	Output,	Power disable. Active high. Open-drain
		O/D	
			This signal is pulled up to 3.3V through a
			10kOhm resistor on the baseboard.
			When high, all add-in card supplies are
			disabled.
			When low, add-in card supplies are enabled.

Figure 19: Example Power Supply Topology

3.4.5 Miscellaneous Pins

This section provides the pin assignments for the miscellaneous interface signals.

Signal Name	Pin #	Baseboard	Signal Description
		Direction	
RFU, N/C	B68,	Input /	Reserved future use pins. Leave these pins as
	B69,	Output	no connect.
	A68,		
	A69,		
	A70		

Table 14: Pin Descriptions – Miscellaneous 1

3.5 Signal Descriptions – OCP Bay (Primary Connector)

The following section describes the functions in the Primary Connector 28-pin OCP bay. This 28-pin bay is shown in Section 3.3 and have pin numbers designated as OCP_B[1:14], and OCP_A[1:14]. All pin directions on this OCP bay are from the perspective of the baseboard.

The add-in card shall implement protection methods to prevent leakage paths between the Vaux and Vmain power domains in the event that a NIC is powered down in a powered up baseboard.

Note: The pins that are common to both the Primary and Secondary Connectors are defined in Section 3.4.

3.5.1 PCIe Interface Pins – OCP Bay (Primary Connector)

This section provides the pin assignments for the PCIe interface signals on the Primary Connector OCP bay. The AC/DC specifications are defined in Section XXX. An example connection diagram that shows REFCLK2, REFCLK3, PERST2# and PERST3# is shown in Section 3.7.

Signal Name	Pin #	Baseboard	Signal Description
		Direction	
REFCLKn2	OCP_B11	Output	PCIe compliant differential reference clock #2,
REFCLKp2	OCP_B12		and #3. 100MHz reference clocks are used for
REFCLKn3	OCP_A11	Output	the add-in card PCIe core logic.
REFCLKp3	OCP_A12		
			For baseboards, the REFCLK2 and REFCLK3
			signals are required at the Primary connector.
			For add-in cards, the required REFCLKs shall
			be connected per the endpoint datasheet.
			Note: REFCLK2 and REFCLK3 are not used for
			cards that only support a 1 x16 or 2 x8
			connection.
			Refer to Section 2.1 in the PCIe CEM
			Specification, Rev 4.0 for details.
PERST2#	OCP_A1	Output	PCIe Reset #2, #3. Active low.
PERST3#	OCP_A2		
			Indicates when the applied power is within
			tolerance and stable for the add-in card.

Table 15: Pin Descriptions – PCIe 2

			PERST# goes high at least 100ms after the
			power rails are within operating limits per the
			PCIe CEM Specification. The PCIe REFCLKs also
			become stable within this period of time.
			PERST is pulled high on the baseboard.
			For OCP NIC 3.0, PERST deassertion also
			indicates the full card power envelope is
			available to the add-in card.
			For baseboards, the PERST[0:1]# signals are
			required at the connector.
			For add-in cards, the required PERST[0:1]#
			signals shall be connected to the endpoint
			silicon.
			Note: PERST2# and PERST3# are not used for
			cards that only support a 1 x16 or 2 x8
			connection.
			Refer to Section 2.2 in the PCIe CEM
			Specification, Rev 4.0 for details.
WAKE#	OCP_A3	Input, OD	WAKE#. Open drain. Active low.
			This signal is driven by the add-in card to
			notify the baseboard restore the PCIe link. For
			add-in cards that support multiple WAKE#
			signals, their respective WAKE# pins may be
			tied together as the signal is open-drain to
			form a wired-OR.

For baseboards, this signal is pulled up to +3.3V on the baseboard with a 10kOhm resistor and is connected to the system WAKE# signal.
For add-in cards, this signal is connected directly to the endpoint silicon WAKE# pin(s).
Refer to Section 2.3 in the PCIe CEM Specification, Rev 4.0 for details.

3.5.2 NC-SI Over RBT Interface Pins – OCP Bay (Primary Connector)

This section provides the pin assignments for the NC-SI over RBT interface signals on the Primary Connector OCP bay. The AC/DC specifications are defined in the NC-SI specification. An example connection diagram is shown in Figure 20.

Signal Name	Pin #	Baseboard	Signal Description
		Direction	
RBT_CLK_IN	OCP_A14	Output	Reference clock input. Synchronous clock
			reference for receive, transmit and control
			interface. The clock has a nominal frequency of
			50MHz ±100ppm.
			For baseboards, connect this pin between the
			baseboard NC-SI over RBT PHY and the
			connector. This signal requires a 100kOhm pull
			down resistor on the baseboard. If the
			baseboard does not support NC-SI over RBT,
			then terminate this signal to ground through a
			100kOhm pull down resistor.

Table 16: Pin Descriptions – NC-SI Over RBT

			For add in cards, connact this nin from the
			gold finger to the endpoint silicon. Leave this
			pin as a no connect if NC-SI is not supported.
RBT_CRS_DV	OCP_B14	Input	Carrier sense/receive data valid. This signal is
			used to indicate to the baseboard that the
			carrier sense/receive data is valid.
			For baseboards, connect this pin between the
			baseboard NC-SI over RBT PHY and the
			connector. This signal requires a 100kOhm pull
			down resistor on the baseboard. If the
			baseboard does not support NC-SI over RBT,
			then terminate this signal to ground through a
			100kOhm pull down resistor.
			For add-in cards, connect this pin from the
			gold finger to the endpoint silicon. Leave this
			pin as a no connect if NC-SI is not supported.
RBT_RXD0	OCP_B9	Input	Receive data. Data signals from the network
RBT_RXD1	OCP_B8		controller to the BMC.
			For baseboards, connect this pin between the
			baseboard NC-SI over RBT PHY and the
			connector. This signal requires a 100kOhm
			pull-up resistor to 3.3Vaux on the baseboard. If
			the baseboard does not support NC-SLover
			RBT then terminate this signal to 3 3Vaux
			through a 100kObm pull-up
			For add-in cards, connect this pin from the
			gold finger to the RBT_RXD[0:1] pins on
			endpoint silicon. Leave this pin as a no
			connect if NC-SI is not supported.

RBT_TX_EN	OCP_A7	Output	Transmit enable.
			For baseboards, connect this pin between the baseboard NC-SI over RBT PHY and the connector. This signal requires a 100kOhm pull down resistor to ground on the baseboard. If the baseboard does not support NC-SI over RBT, then terminate this signal to ground through a 100kOhm pull down.
			gold finger to the endpoint silicon. Leave this
			pin as a no connect if NC-SI is not supported.
RBT_TXD0	OCP_A9	Output	Transmit data. Data signals from the BMC to
RBT_TXD1	OCP_A8		the network controller.
			For baseboards, connect this pin between the baseboard NC-SI over RBT PHY and the connector. This signal requires a 100kOhm pull-up resistor to 3.3Vaux on the baseboard. If the baseboard does not support NC-SI over RBT, then terminate this signal to 3.3Vaux through a 100kOhm pull-up.
			For add-in cards, connect this pin from the gold finger to the RBT_TXD[0:1] pins on the endpoint silicon. Leave this pin as a no connect if NC-SI is not supported.
RBT_ARB_OUT	OCP_A5	Output	NC-SI hardware arbitration output. Used only if
			the end point silicon supports hardware
			arbitration. Connects to the RBT_ARB_IN signal
			of an adjacent device in the hardware
			arbitration ring.

Г

			The baseboard shall implement a multiplexing implementation that directs the RBT_ARB_OUT to the RBT_ARB_IN pin of the next NC-SI capable device in the ring, or back to the RBT_ARB_IN pin of the source device if there is a single device on the ring.
			For baseboards, connect this pin between the baseboard OCP connector(s) to complete the hardware arbitration ring. If the baseboard does not support NC-SI over RBT, connect this signal directly to the RBT_ARB_IN pin.
			For add-in cards, connect this pin from the gold finger to the RBT_ARB_IN pin on the endpoint silicon. Leave this pin as a no connect if NC-SI is not supported.
RBT_ARB_IN	OCP_A4	Input	NC-SI hardware arbitration input. Used only if the end point silicon supports hardware arbitration. Connects to the RBT_ARB_OUT signal of an adjacent device in the hardware arbitration ring. The baseboard shall implement a multiplexing implementation that directs the RBT_ARB_IN to the RBT_ARB_OUT pin of the next NC-SI capable device in the ring, or back to the RBT_ARB_OUT pin of the source device if there is a single device on the ring.
			For baseboards, connect this pin between the baseboard OCP connector(s) to complete the

			hardware arbitration ring. If the baseboard
			does not support NC-SI over RBT, connect this
			signal directly to the RBT_ARB_OUT pin.
			For add-in cards, connect this pin from the
			gold finger to the RBT_ARB_OUT pin on the
			endpoint silicon. Leave this pin as a no
			connect if NC-SI is not supported.
SLOT_ID	OCP_B7	Output	NC-SI Address pin. Used only if the end point
			silicon supports package identification.
			For baseboards, this pin is used to identify the
			slot ID value. Connect this pin directly to GND
			for SlotID = 0; or pull this pin up to 3.3Vaux
			for SlotID = 1.
			For add-in cards, connect this pin to the
			endpoint device GPIO associated with the
			Package ID[1] field. Refer to Section 4.1.1 and
			the device datasheet for details.
			For add-in cards with multiple endpoint
			devices, the SLOT_ID pin may be used to
			configure a different Package ID value so long
			as the resulting combination does not cause
			addressing interferences.
			For endpoint devices without NC-SI support,
			leave this pin as a no connect on the add-in
			card.

Figure 20: NC-SI Over RBT Connection Example – Single Primary Connector

Note 1: For baseboard designs with a single Primary Connector, connect ARB_IN to ARB_OUT to complete the NC-SI hardware arbitration ring. For designs with multiple Primary Connectors, connect ARB_IN and ARB_OUT to an analog mux to complete the NC-SI arbitration ring based on the number of cards installed in the system. An example dual Primary Connector implementation is shown in Figure 21.

Note 2: For add-in cards with two discrete endpoint silicon, the Package ID[0] bit shall be statically set based on its silicon instance. For example, the figure above shows Network Silicon #0 and Network Silicon #1. Network Silicon #0 has Package ID[0] = 0b0, Network Silicon #1 has Package ID[0] = 0b1.

3.5.3 Scan Chain Pins – OCP Bay (Primary Connector)

This section provides the pin assignments for the Scan Bus interface signals on the Primary Connector OCP Bay. The AC/DC specifications are defined in Section XXX. An example connection diagram is shown in Figure 22.

Signal Name	Pin #	Baseboard	Signal Description
		Direction	
CLK	OCP_B6	Output	Scan clock. The CLK is an output pin from the
			baseboard to the add-in card. The CLK may run
			up to 12.5MHz.
			For baseboard implementations, connect the
			CLK pin to the Primary Connector. Tie the CLK
			pin directly to GND if the scan chain is not
			used.
			For NIC implementations, the CLK pin must be
			connected to Shift Registers 0 & 1, and
			optionally to Shift Registers 2 & 3 (if
			implemented) as defined in the text and Figure
			22, below. Pull the CLK pin up to 3.3Vaux
			through a 1kOhm resistor.
DATA_OUT	OCP_B5	Output	Scan clock data output from the baseboard to
			the add-in card. This bit stream is used to shift
			in NIC configuration data.
			For baseboard implementations, connect the
			DATA_OUT pin to the Primary Connector. Tie
			the DATA_OUT pin directly to GND if the scan
			chain is not used.

Table 17: Pin Descriptions – Scan Chain

			For NIC implementations, the DATA_OUT pin
			may be left floating if it is not used for add-in
			card configuration. Pull the DATA_OUT pin up
			to 3.3Vaux through a 1kOhm resistor.
DATA_IN	OCP_B4	Input	Scan clock data input to the baseboard. This
			bit stream is used to shift out NIC status bits.
			For baseboard implementations, the DATA IN
			pin shall be pulled up to 3.3Vaux through a
			10kOhm resistor to prevent the input signal
			from floating if a card is not installed. This pin
			may be left as a no connect if the scan chain is
			not used.
			For NIC implementations, the DATA_IN scan
			chain is required. The DATA_IN connection to
			Shift Registers 0 & 1, as defined in the text and
			Figure 22, are required.
LD#	OCP_B3	Output	Scan clock shift register load. Used to latch
			configuration data on the add-in card.
			For baseboard implementations, the LD# pin
			shall be pulled up to 3.3Vaux through a 1kOhm
			resistor if the scan chain is not used to prevent
			the add-in card from erroneous data latching.
			For NIC implementations, the LD# pin
			implementation is required. The LD# pin must
			be connected to Shift Registers 0 & 1 as
			defined in the text and Figure 22. Pull the LD#
			pin up to 3.3Vaux through a 1kOhm resistor.

The scan chain provides side band status indication between the add-in card and the baseboard. The scan chain bit definition is defined in the two tables below. The scan chain data stream is 32-bits in length for both the DATA_OUT and the DATA_IN streams. The scan chain implementation is optional on the host, but is mandatory on all OCP NIC 3.0 cards. The scan chain components operates on the 3.3Vaux power domain.

The DATA_OUT bus is an output from the host. The DATA_OUT bus provides initial configuration options to the add-in card. At the time of this writing, the default implementation does not use the DATA_OUT stream and is not implemented on the NIC. However, all baseboard systems that implement the Scan Chain shall connect DATA_OUT between the platform and the Primary Connector for future-proofing NIC implementations and subsequent revisions of this specification.

Byte.bit	DATA_OUT Field	Default	Description
	Name	Value	
0.[07]	RSVD	0b000000	Reserved. Byte 0 value is 0h00.
1.[07]	RSVD	0h00	Reserved. Byte 1 value is 0h00.
2.[07]	RSVD	0h00	Reserved. Byte 2 value is 0h00.
3.[07]	RSVD	0h00	Reserved. Byte 3 value is 0h00.

Table 18: Pin Descriptions – Scan Chain DATA_OUT Bit Definition

The DATA_IN bus is an input to the host and provides NIC status indication. The default implementation is completed with two 8-bit 74LV165 parallel in to serial out shift registers in a cascaded implementation. Up to four shift registers may be implemented to provide additional NIC status indication to the host platform.

DATA_IN shift registers 0 & 1 are mandatory for all cards. DATA_IN shift registers 2 & 3 are optional depending on the card type and fields being reported to the host. DATA_IN shift register 2 may be used to indicate future definitions of the scan chain bit stream. DATA_IN shift registers 3 (in conjunction with shift register 2) are required for reporting link/activity indication on card implementations with 5-8 ports.

The host should read the DATA_IN bus multiple (TBD) times to qualify the incoming data stream.

A 1kOhm pull up resistor shall be implemented on the NIC to the SER input of the last shift register on the DATA_IN scan chain to maintain a default bit value of 0b1 for unused bits for implementations using less than four shift registers.

Byte.bit	DATA_OUT Field	Default	Description
	Name	Value	
0.0	PRSNTB[0]#	0bX	PRSNTB[3:0]# value is mirrored from the
0.1	PRSNTB[1]#	0bX	Primary Connector.
0.2	PRSNTB[2]#	0bX	
0.3	PRSNTB[3]#	0bX	
0.4	WAKE_N	0bX	PCIe WAKE_N signal is mirrored from the
			Primary Connector.
0.5	TEMP_WARN	0b0	Temperature monitoring pin from the on-
			card thermal solution. This pin is asserted
			high when temperature sensor exceeds the
			temperature warning threshold.
0.6	TEMP_CRIT	0b0	Temperature monitoring pin from the on-
			card thermal solution. This pin is asserted
			high when temperature sensor exceeds the
			temperature critical threshold.
0.7	FAN_ON_AUX	0b0	When high, FAN_ON_AUX requests the
			system fan to be enabled for extra cooling in
			the S5 state.
1.0	LINK_ACT0	0b1	Port 03 link/activity indication. Active low.
1.1	LINK_ACT1	0b1	
1.2	LINK_ACT2	0b1	0b0 – Link LED is illuminated on the host
1.3	LINK_ACT3	0b1	platform.
			0b1 – Link LED is not illuminated on the host
			platform.

Table 19: Pin Descriptions – Scan Bus DATA_IN Bit Definition

			Steady = link is detected on the port.
			Blinking = activity is detected on the port.
			The blink rate should blink low for 50-500ms
			during activity periods.
			Off = the physical link is down or disabled
1.4	SPEED_A0	0b1	Port 03 speed A (max rate) indication. Active
1.5	SPEED_A1	0b1	low.
1.6	SPEED_A2	0b1	
1.7	SPEED_A3	0b1	0b0 – Port is linked at maximum speed.
			0b1 – Port is not linked at the maximum
			speed or no link is present.
2.0	ScanChainVer[0]	0b1	ScanChainVer[1:0] is used to indicate the scan
2.1	ScanChainVer[1]	0b1	chain bit definitions. The encoding is as
			follows:
			0b11 – Scan chain bit definitions version 1
			corresponding to OCP 3.0 spec version 1.0.
			All other encodings are reserved.
2.2	RSVD	0b1	Byte 2 bits [2:7] are reserved. These bits shall
2.3	RSVD	0b1	default to the value of 0b1. These bits may
2.4	RSVD	0b1	be used in future versions of the scan chain.
2.5	RSVD	0b1	
2.6	RSVD	0b1	
2.7	RSVD	0b1	
3.0	LINK_ACT4	0b1	Port 47 link/activity indication. Active low.
3.1	LINK_ACT5	0b1	
3.2	LINK_ACT6	0b1	0b0 – Link LED is illuminated on the host
3.3	LINK_ACT7	0b1	platform.
			0b1 – Link LED is not illuminated on the host
			platform.

			Steady = link is detected on the port.
			Blinking = activity is detected on the port.
			The blink rate should blink low for 50-500ms
			during activity periods.
			Off = the physical link is down or disabled
3.4	SPEED_A4	0b1	Port 47 speed A (max rate) indication. Active
3.5	SPEED_A5	0b1	low.
3.6	SPEED_A6	0b1	
3.7	SPEED_A7	0b1	0b0 – Port is linked at maximum speed.
			0b1 – Port is not linked at the maximum
			speed or no link is present.

Figure 22: Scan Bus Connection Example

3.5.4 Primary Connector Miscellaneous Pins – OCP Bay (Primary Connector)

This section provides the miscellaneous pin assignments for the pins on the Primary Connector OCP Bay. The AC/DC specifications are defined in the PCIe CEM Specification, Rev 4.0 and Section 3.12. An example connection diagram is shown in Figure XXX.

Signal Name	Pin #	Baseboard	Signal Description
		Direction	
PWRBRK#	OCP_B2	Output, OD	Power break. Active low, open drain.
			This signal is pulled up to 3.3Vaux on the
			the baseboard with a stiffer resistance in-
			order to meet the timing specs as shown in
			the PCIe CEM Specification.
			This signal is driven low by the baseboard
			and is used to notify that an Emergency
			Power Reduction State is requested. The add-
			in card shall move to a lower power
			consumption state.
NIC_PWR_GOOD	OCP_B1	Input	NIC Power Good. Active high. This signal is
			driven by the add-in card.
			When high, this signal indicates that all of the
			add-in card power rails are operating within
			nominal tolerances.
			When low the add-in card power supplies are
			not yet ready or are in a fault condition.
			For baseboards, this pin may be connected to
			the platform I/O hub as a NIC power health

Table 20:	Pin Desc	riptions –	Miscellaneous	2
	1 111 0 0000		in insection incodes	-

			status indication. This signal is pulled down
			to ground with a 100kOhm resistor on the
			baseboard to prevent a false power good
			indication if no add-in card is present.
			For add-in cards this signal may be
			implemented by a cascaded power good or a
			discrete power good monitor output.
GND	OCP_A6	GND	Ground return; a total of 5 ground pins are
	OCP_A10		on the OCP bay area.
	OCP_A13		
	OCP B10		
	OCP_B13		

3.6 PCIe Bifurcation Mechanism

OCP3.0 baseboards and add-in cards support multiple bifurcation combinations. Single socket baseboards with a single or multiple root ports, as well as a multi-socket baseboards with a single or multiple root ports are supported. The bifurcation mechanism also supports add-in cards with a single or multiple end points. These features are accomplished via I/O pins on the Primary and Secondary connector:

- PRSNTA#, PRSNTB[3:0]#. The PRSNTA# pin connects to the PRSNTB# pins as a hard coded value on the add-in card. The encoding of the PRSNTB[3:0]# pins allows the baseboard to determine the PCIe Links available on the add-in card.
- BIF[3:0]#. The BIF# pin states are controlled by the baseboard and allows the baseboard to override the default end point bifurcation for silicon that support bifurcation. Additional combinatorial logic is required and is specific to the card silicon. The combinatorial logic is not covered in this specification.

The high level bifurcation connections are shown in Figure 23.

Figure 23: PCIe Bifurcation Pin Connections Support

3.6.1 PCIe Add-in Card to Baseboard Bifurcation Configuration (PRSNTA#, PRSNTB[3:0]#)

The add-in card to baseboard configuration mechanism consists of four dual use pins (PRSNTB[3:0]#) on the add-in card and a grounded PRSNTA# pin on the baseboard. These pins provide card presence detection as well as mechanism to notify the baseboard of the pre-defined PCIe lane width capabilities. The PRSNTB[3:0]# pins are pulled up to 3.3Vaux on the baseboard and are active low signals. A state of 0b1111 indicates that no card is present in the system. Depending on the capabilities of the add-in card, a selection of PRSNTB[3:0]# signals may be strapped to the PRSNTA# signal and is pulled low by the baseboard. The encoding of the PRSTNB[3:0]# bits is shown in Table 21 for x16 and x8 PCIe cards.

3.6.2 PCIe Baseboard to Add-in Card Bifurcation Configuration (BIF[2:0]#)

Three signals (BIF[2:0]#) are driven by the baseboard to notify requested bifurcation on the add-in card silicon. This allows the baseboard to set the lane configuration on the add-in card that supports multiple bifurcation options.

For example, a baseboard that has four separate hosts that support a 4 x4 connection, should appropriately drive the BIF[2:0]# pins per Table 21 and indicate to the add-in card silicon to setup a 4 x4 configuration.

As previously noted, the BIF[2:0]# signals require additional combinatorial logic to decode the BIF[2:0]# value and appropriately apply it to the end-point silicon. The combinatorial logic is not covered in the specification as its implementation is specific to the vendor silicon used.

3.6.3 PCIe Bifurcation Decoder

The combination of the PRSNTB[3:0]# and BIF[2:0]# pins deterministically sets the PCIe lane width for a given combination of baseboard and add-in cards. Table 21 shows the resulting number of PCIe links and its width for known combinations of baseboards and add-in cards.

***Note:** The baseboard must disable PCIe lanes during the initialization phase if the number of detected PCIe links are greater than what is supported on the baseboard to prevent a nondeterministic solution. For example, if the baseboard only supports a 1 x16 connection, and the add-in card only supports a 2 x8 connection, the baseboard must disable PCIe lanes 8-15 to prevent any potential LTSSM issues during the discovery phase.

Open	Compute	Project	•	NIC	•	3.0
		5				

						Single Host			BSVD	BSVD	Dual Host	Quad Host	Guad/Oct Host
			Host	1 Host	1 Host	1 Host	1 Host	1 Host	RSVD	RSVD	2 Hosts	4 Hosts	4 or 8 Hosts
			Host CPU Sockets	1Upstream Socket	1 Upstream Socket	1 Upstream Socket	2 Upstream Sockets	4 Upstream Sockets	RSVD	RSVD	2 Upstream Sockets (1 Socket per Host)	4 Upstream Sockets (1 Socket per Host)	4/8 Upstream Sockets (1 Socket per Host)
	Network Car Supported P	rd - PCle Configurations	Total PCIe Links	1 Link (No Bifurcation)	1 or 2 Links	1, 2, or 4 Links	2 Links	4 Links	RSVD	RSVD	2 Links	4 Links	4 or 8 x2 links
			System Support	1x16, 1x8, 1x4, 1x2, 1x1	1x16, 1x8, 1x4, 1x2, 1x1	1x16, 1x8, 1x4, 1x2, 1x1	1×8,1×4,1×2,1×1		BSVD	RSVD			
					2x8,2x4,2x2,2x1	2x8,2x4,2x2,2x1	2 x8, 2 x4, 2 x2, 2x1				2x8,2x4,2x2,2x1		
Minimum						4 ×4, 4 ×2, 4 ×1		4 x4, 4 x2, 4x1				4 ×4, 4 ×2, 4 ×1	4 x2, 4 x1
Required			System Encoding	00090	00090	00090	09001	01090	06011	0b100	0b101	0P110	0b111
Card Edue	Card Short Name	x16 Cards	Add-in-Card Encoding	1				-	•		1		
	Mar Darres	Could be and	01-1111										
Lia	Not Fresent	Lard Not Fresent 1x8.1x4.1x2.1x1	061110	1x0 - Card not present in 1x8	the system 1x8	1×8	1*8	1×4			1×8	1×4	1×2
SC	1×8			1	1	1	(Socket 0 only)	(Socket 0 only)			(Host 0 only)	(Host 0 only)	(Host 0 only)
50	1×4	1x4,1x2,1x1	0P1 110	1x4	1×4	1:4	1x4 (Socket 0 only)	1 _% 4 (Socket 0 only)	1	1	1x4 (Host 0 only)	1x4 (Host 0 only)	1x2 (Host 0 only)
50	1×2	1x2, 1x1	0b1 110	1*2	1x2	1*2	1x2 [Socket 0 only]	1×2 [Socket () only]	1		1×2 [Host 0 only]	1x2 [Host 0 only]	1x2 (Host 0 onlo)
50		1×1	0b1 110	1×1	1×1	181	1x1 [Socket 0 only]	1x1 (Socket () only)	ı.		1×1 [Host 0 only]	1s1 (Host 0 only)	1x1 [Host 0 onlu]
SC	1×8 Option B	1×8, 1×4, 1×2, 1×1 2×4, 2×2, 2×1	0b1 101	1×8	1×8	1×8	1x8 [Socket 0 only]	2x4	i.		1×8 [Host 0 only]	2.44	2 x2 (Host 0 & Tonlu)
Ą	2 x8 Option B	2x8,2x4,2x2,2x1 4x4,4x2,4x1	0b1 101	1×8*	2×8	2,48	2*8	4 ×4	1		2,48	4 84	2 x2 (Host 0 & 1 only)
50	1×8 Option D	1x8, 1x4 2x4, 4x2 (First 8 lanes), 4x1	061 100	1x8	2 x4	2 x4	1.8 (Socket 0 only)	2,44	1		1x8 (Host 0 only)	2 #4	4 *2
9	1×16 Option D	1 k16, 1 k8, 1 k4 2 k8, 2 k4, 4 k4, 4 k2 (First 8 lanes), 4 k1	061100	9,*	4 8	1×16	2,48	4×4	1	1	2*8	4 *4	4 82
RSVD	RSVD	RSVD	0b1011	RSVD - The encoding of 0	b1011 is reserved due to in	sufficient spacing betwee	n PRSNTA and PRSNTB2	pin to provide positive car	d identifio	ation.			
5	2 44	2 84, 2 82, 2 81 1 84, 1 82, 1 81	0b1 010	4%	2 ** 4	2%4	1x4 (Socket 0 only)	2.84	1	1	1x4 (Host 0 only)	2 *4	2 x2 (Host 0 & 1 only)
RSVD	RSVD	RSVD for future x8 encoding	0b1 001						1				-
RSVD	RSVD	RSVD for future x8 encoding	0b1 000						•				
Ą	1x16	1x16, 1x8, 1x4, 1x2, 1x1	060111	1x16	1×16	1x16	1x8 (Socket 0 only)	1x4 (Socket 0 only)	i.	ı	1x8 (Host 0 only)	1x4 (Host 0 only)	1x2 (Host 0 only)
4	2 x8 Option A	2 x8, 2 x4, 2 x2, 2 x1	011090	1×8.	2×8	2x8	2 x8	2 x4 (Socket 0 & 2 only)	1	i.	2 * 8	2 x4 (Host 0 & 2 only)	1x2 (Host 0 & 1 only)
4	1x16 Option B	1x16,1x8,1x4,1x2,1x1 2x8,2x4,2x2,2x1	0b0 101	1×16	1×16	1×16	2*8	2 x4 (Socket 0 & 2 only)	1	1	2 #8	2 x4 (Host 0 & 2 only)	2 x2 (Host 0 & 1 only)
4	1×16 Option C	1x16,1x8,1x4 2x8,2x4,2x2,2x1 4x4,4x2,4x1	0b0 100	1×16	1×16	1x16	2,48	4.84	1	1	2 48	4 84	2 x2 (Host 0 & 1 only)
9	4 x4	4 x4, 4 x2, 4 x1	0b0 011	1×4.	2 ×4*	4 ×4	2x4 (FP 0 and 2 only)	4 ×4	1	1	2 x4 (FP 0 and 2 only)	4 ×4	4 x2 (Host 0 & Tonlu)
BSVD	RSVD	RSVD	060010	,	,	1	-		'		-	1	-
RSVD	RSVD	RSVD	0b0 001						•				
RSVD	RSVD	RSVD	000000	1	1			1	1	•	1	T	1

	Table 21: PCIe	Bifurcation	Decoder	for x16	and x8	Card V	Vidths
--	----------------	-------------	---------	---------	--------	--------	--------

3.6.4 Bifurcation Detection Flow

[Need input and clarification from system vendors]

The following detection flow shall be used to determine the resulting link count and lane width based on the baseboard and add-in card configurations.

- The baseboard reads the state of the PRSNTB[3:0]# pins. If the resulting value is not 0b1111, an add-in card is present.
- 2. Firmware determines the add-in card PCIe lane width capabilities per Table 21 by reading the PRSNTB[3:0]# pins.
- 3. The baseboard reconfigures the PCIe bifurcation on its ports to match the highest common lane width and lowest common link count on the card.
- 4. For cases where the baseboard request a link count override (such as requesting a 4-host baseboard requesting 4 x4 operation on a supported card that would otherwise default to a 2 x8 case), the BIF[0:2]# pins would be asserted as appropriate. Doing so assumes the add-in card supports the requested link override.
- PERST# is deasserted after the >100ms window as defined by the PCIe specification.
 Refer to Section 3.12 for timing details.

3.6.5 PCIe Bifurcation Examples

For illustrative purposes, the following figures show several common bifurcation permutations.

Figure 24 illustrates a single host baseboard that supports x16 with a single controller addin card that also supports x16. The PRSTNB[3:0]# state is 0b0111. The BIF[2:0]# state is 0b000 as there is no need to instruct the end-point network controller to a specific bifurcation. The PRSNTB encoding notifies the baseboard that this card is only capable of 1 x16. The single host baseboard determines that it is also capable of supporting 1 x16. The resulting link width is 1 x16.

Figure 24: Single Host (1 x16) and 1 x16 Add-in Card (Single Controller)

Figure 25 illustrates a single host baseboard that supports 2 x8 with a single controller addin card that also supports 2 x8. The PRSTNB[3:0]# state is 0b0110. The BIF[2:0]# state is

0b111 as there is no need to instruct the end-point network controllers to a specific bifurcation. The PRSNTB encoding notifies the baseboard that this card is only capable of 2 x8. The single host baseboard determines that it is also capable of supporting 2 x8. The resulting link width is 2 x8.

Figure 25: Single Host (2 x8) and 2 x8 Add-in Card (Dual Controllers)

Figure 26 illustrates a four host baseboard that supports 4 x4 with a single controller add-in card that supports 1 x16, 2 x8 and 4 x4. The PRSTNB[3:0]# state is 0b0011. The BIF[2:0]# state is 0b101 as the end point network controller is forced to bifurcate to 4 x4. The PRSNTB encoding notifies the baseboard that this card is only capable of 1 x16, 2 x8 and 4 x4. The four host baseboard determines that it is also capable of supporting 4 x4. The resulting link width is 4 x4.

Figure 26: Four Hosts (4 x4) and 4 x4 Add-in Card (Single Controller)

Figure 27 illustrates a four host baseboard that supports 4 x4 with a four controller add-in card that supports 4 x4. The PRSTNB[3:0]# state is 0b0011. The BIF[2:0]# state is 0b111 as there is no need to instruct the end-point network controllers to a specific bifurcation. The PRSNTB encoding notifies the baseboard that this card is only capable of 4 x4. The four host baseboard determines that it is also capable of supporting 4 x4. The resulting link width is 4 x4.

Figure 27: Four Hosts (4 x4) and 4 x4 Add-in Card (Four Controllers)

Figure 28 illustrates a single host baseboard that supports 1 x16 with a dual controller addin card that supports 2 x8. The PRSTNB[3:0]# state is 0b0110. The BIF[2:0]# state is 0b111 as there is no need to instruct the end-point network controllers to a specific bifurcation. The PRSNTB encoding notifies the baseboard that this card is only capable of 2 x8. The four host baseboard determines that it is capable of 1x 16, but down shifts to 1 x8. The resulting link width is 1 x8 and only on endpoint 0.

Figure 28: Single Host with no Bifurcation (1 x16) and 2 x8 Add-in Card (Two Controllers)
3.7 PCIe Clocking Topology

The OCP NIC 3.0 specification allows for up to four PCIe REFCLKs on the Primary Connector and up to two PCIe REFCLKs on the Secondary Connector. In general, the association of each REFCLK is based on the PCIe Link number on a per connector basis and is shown in Table 22. Cards that implement both the Primary and Secondary connectors have a total of up to 6 REFCLKs.

Table 22: PCIe Clock Associations

REFCLK #	Description	Availability (Connector)
REFCLK0	REFCLK associated with Link 0.	Primary and Secondary Connectors.
REFCLK1	REFCLK associated with Link 1.	Primary and Secondary Connectors.
REFCLK2	REFCLK associated with Link 2.	Primary Connector only.
REFCLK3	REFCLK associated with Link 3.	Primary Connector only.

For each add-in card, the following REFCLK connection rules must be followed:

- For a 1 x16 capable add-in card, REFCLK0 is used for lanes [0:15].
- For a 2 x8 capable add-in card, REFCLK0 is used for lanes [0:7] and REFCLK1 is used for lanes [8:15].
- For a 4 x4 capable add-in card, REFCLK0 is used for lanes [0:3], REFCLK1 is used for lanes [4:7], REFCLK2 is used for lanes [8:11] and REFCLK3 is used for lanes [12:15].
 Pins for REFCLK2 and REFCLK3 are described in Section 3.5.1 and are located on the 28-pin OCP bay.

Figure 29: PCIe Interface Connections for 1 x16 and 2 x8 Add-in Cards

Figure 30: PCIe Interface Connections for a 4 x4 Add-in Card

3.8 PCIe Bifurcation Results and REFCLK Mapping

For the cases where the baseboard and add-in card bifurcation are permissible, this section enumerates all of the supported PCIe link, lane and REFCLK mappings for each supported configuration. The bifurcation decoder is shown in Section 3.6.3.

Table 23: Bifurcation for Single Host, Single Socket and Single Upstream Link

Single H	'ost, Single Ups	stream Socket, One Upstream Link, I	no bifurcation		1x16, 1x8, 1x4, 1x2, 1																		
Nie Vide	Card Short Name	Supported Bifurcation t Modes	Add-in-Card Encoding PRSNTB[3:0]#	Host	Upstream Devices	Upstream Links	BIF[2:0]	Resulting Link	Lane O	Lane 1	ane 2 L	ane 3 La	ت + ا	10 10 10	۲۹ د و	ة اع	8	0 Lane	10 Lane	1 I Lane 1	2 Lame 13	Lane 14	Lane 15
e/u	Not Present	Card Not Present	061111	1 Host	1 Upstream Socket	1 Link	00000																
ŝ	1×8	1x8,1x4,1x2,1x1	0b1 110	1 Host	1 Upstream Socket	1 Link	00090	1x8	Link 0, Lane 0	Link 0, Lane 1	Link 0, Jane 2	Link 0, L Jane 3 L	ink 0, L me 4 L	nk 0, Lin me 5 La	k 0, Lini he 6 Lan								
ŝ	1 x4	1x4,1x2,1x1	0b1110	1 Host	1 Upstream Socket	1 Link	00090	1 x4	Link O, Lane O	Link 0, Lane 1 L	Link 0, 1 Jane 2 L	Link 0, ane 3											
SC	1×2	1x2,1x1	0b1110	1 Host	1 Upstream Socket	1 Link	00090	1x2	Link 0, Lane 0	Link 0, Lane 1													
5C	1×1	1x1	0b1110	1 Host	1 Upstream Socket	1 Link	00090	1x1	Link 0, Lane 0														
SC	1 x8 Option B	1 x8, 1 x4, 1 x2, 1 x1 5 2 x4, 2 x2, 2 x1	0b1101	1 Host	1 Upstream Socket	1 Link	00090	1x8	Link 0, Lane 0	Link 0, Lane 1 L	Link 0, Jane 2 L	Link 0, L Jane 3 L	ink 0, L vne 4 L	nk 0, Li vne 5 La	k 0, Linh he 6 Lan	6. 6.7							
ų.	2 x8 Option E	2 x8, 2 x4, 2 x2, 2 x1 B 4 x4, 4 x2, 4 x1	0b1101	1 Host	1 Upstream Socket	1 Link	00090	1x8"	Link 0, Lane 0	Link 0, Lane 1 L	Link 0, Jane 2 L	Link 0, L Jane 3 L	ink 0, L vne 4 L	nk 0, Li vne 5 La	k 0, Linh he 6 Lan	6. 6.7							
R	1 x8 Option D	1 x8, 1 x4 2 x4, 0 4 x2 (First 8 lanes), 4 x1	0b1100	1 Host	1 Upstream Socket	1 Link	00090	1×8	Link 0, Lane 0	Link 0, Lane 1	Link 0, Lane 2	Link O, L Lane 3 L	ink 0, L ane 4 L	nk 0, Lin Ine 5 La	k 0, Lini ne 6 Lan	0, F.a.							
ę	1 x16 Option D	1 x16, 1 x8, 1 x4 2 x8, 2 x4, D 4 x4, 4 x2 (First 8 lanes), 4 x1	0b1100	1 Host	1 Upstream Socket	1 Link	00090	1×16	Link 0, Lane 0	Link 0, Lane 1	Link 0, Lane 2	Link O, L Lane 3 L	ink 0, L ane 4 L	nk 0, Lin Ine 5 La	k 0, Lini ne 6 Lan	s O. Link s T. Lan	0, Link s 8 Lane	0, Link 9 Lane	0, Link 0 10 Lane 1	Link 0	Link 0, Lane 13	Link 0, Lane 14	Link 0, Lane 15
RSVD	RSVD	RSVD	0b1011	1 Host	1 Upstream Socket	1 Link	00090																
8	2 x4	2 x4, 2 x2, 2 x1 1 x4, 1 x2, 1 x1	0b1 010	1 Host	1 Upstream Socket	1 Link	00090	1 x4	Link O, Lane O	Link O, Lane 1	Link 0, Jane 2	Link 0, ane 3											
RSVD	RSVD	RSVD for future x8 encoding	0b1001	1 Host	1 Upstream Socket	1 Link	00090																
RSVD	RSVD	RSVD for future x8 encoding	0b1000	1 Host	1 Upstream Socket	1 Link	00000																
40	1 ×16	1x16, 1x8, 1x4, 1x2, 1x1	060111	1 Host	1 Upstream Socket	1 Link	00090	1x16	Link O, Lane O	Link 0, Lane 1	Link 0, Jane 2	Link O, L Jane 3 L	ink 0, L vne 4 L	nk O, Li vne 5 La	k 0, Linh he 6 Lan	s O, Link e 7 Lan	0, Link 28 Lane	0, Link 9 Lane	0, Link 0 10 Lane 1	Link 0	Link 0, Lane 13	Link 0, Lane 14	Link 0, Lane 15
40	2 x8 Option A	2 x8, 2 x4, 2 x2, 2 x1 A	060110	1 Host	1 Upstream Socket	1 Link	00090	1x8"	Link 0, Lane 0	Link 0, Lane 1 L	Link 0, Jane 2	Link 0, L Jane 3 L	ink 0, L yne 4 L	nk 0, Lin yn e 5 La	k 0, Linh he 6 Lan	60, 67							
ę	1 x16 Option E	1x16,1x8,1x4,1x2,1x1 B 2x8,2x4,2x2,2x1	0b0 101	1 Host	1 Upstream Socket	1 Link	00090	1 x 16	Link 0, Lane 0	Link 0, Lane 1	Link 0, Jane 2	Link 0, L Jane 3 L	ink 0, L vne 4 L	nk O, Lii Vne 5 La	k 0, Linh he 6 Lan	s O, Link e 7 Lan	0, Link 2.8 Lane	0, Link 9 Lane	0, Link 0 10 Lane 1	Link O. 1 Lane 15	Link 0, Lane 13	Link 0, Lane 14	Link O, Lane 15
40	1 x16 Option C	1 x 16, 1 x 8, 1 x 4 2 x 8, 2 x 4, 2 x 2, 2 x 1 C 4 x 4, 4 x 2, 4 x 1	000100	1 Host	1 Upstream Socket	1 Link	00090	1×16	Link O, Lane O	Link 0, Lane 1	Link 0, Lane 2	Link O, L Lane 3 L	ink 0, L ane 4 L	nk 0, Lih Vne 5 La	k0, Lini he6 Lan	s O, Link e T Lan	0, Link 28 Lane	0, Link 9 Lane	0, Link 0 10 Lane 1	t, Link () 1 Lane 15	Link 0, Lane 13	Link 0, Lane 14	Link O, Lane 15
ę	4 ×4	4 x4, 4 x2, 4 x1	060 011	1 Host	1 Upstream Socket	1 Link	00090	1×4*	Link 0, Lane 0	Link 0, Lane 1	Link 0, Jane 2	Link 0, ane 3											
RSVD	RSVD	RSVD	000010	1 Host	1 Upstream Socket	1 Link	0000Q																
RSVD	RSVD	RSVD	060001	1 Host	1 Upstream Socket	1 Link	00000																
RSVD	RSVD	RSVD	000000	1 Host	1 Upstream Socket	1 Link	00000																

(BIF[2:0]#=0b000)

Table 24: Bifurcation for Single Host, Single Socket and Single/Dual Upstream Links

				_									_	_		_	_			-	_		_	_	-	_	_	_
			Lane 15							Link 1, Lane 7		Link 0, Lane 15						Link 0, Lane 15	Link 1, Lane 7	Link 0.	Lane 15	Link 0, Line 15						
			Lane 14							Link 1, Lane 6		Link 0, Lane 14						Link 0, Lane 14	Link 1, Lane 6	Link 0.	Lane 14	Link 0, Line 14			Ī		Ī	
			Lane 13							Link 1, Lane 5		Link O, Lane 13						Link 0, Lane 13	Link 1, Lane 5	Link 0,	Lane 13	Link 0, Line 13	2					
			Lane 12							Link 1, Lane 4		Link 0, Lane 12						Link 0, Lane 12	Link 1, Lane 4	Link 0,	Lane 12	Link 0, Line 15			T	T	Ī	
			Lane 11							Link 1, Lane 3		Link 0, Lane 11						Link 0, Lane 11	Link 1, Lane 3	Link 0.	Lane 11	Link 0, Line 11		Link 2,	Lanc o	T	Ī	
			ane 10							Link 1, Lane 2		Link O, Lane 10		T				Link 0, Lane 10	Link 1, Lane 2	Link 0.	Lane 10	Link 0, Lond 10	2	Link 2,	Lanc 2	t	Ī	
			Lane 9							Link 1, Lane 1		Link O, Lane 9	T	T				Link O, Lane 9	Link 1, Lane 1	Link 0.	Lane 9	Link 0, Line 9		Link 2,	Lanc	T	Ī	
			Lane 8							Link 1, Lane 0		Link 0, Lane 8	T					Link O, Lane 8	Link 1, Lane 0	Link 0,	Lane 8	Link 0, Lone 8		Link 2,	Lanc U	T	Ī	
			Lane 7		Link O, Lane 7				Link O, Lane 7	Link O, Lane 7	Link 0, Lane 7	Link O, Lane 7		t				Link O, Lane 7	Link 0, Lane 7	Link 0.	Lane 7	Link 0, Line 7				t	İ	
			ane 6		Link O, Lane 6				Link O, Lane 6	Link O, Lane 6	Link 0, Lane 6	Link 0, Lane 6		t				Link 0, Lane 6	Link 0, Lane 6	Link 0.	Lane 6	Link 0, Lano 6			t	t	Ì	-
			Lane 5		Link O, Lane 5				Link 0, Lane 5	Link O, Lane 5	Link 0, Lane 5	Link O, Lane 5		T				Link 0, Lane 5	Link 0, Lane 5	Link 0,	Lane 5	Link 0, Line 5			t	t	Ì	-
			ane 4		Link 0, Lane 4				Link 0, Lane 4	Link 0, Lane 4	Link 0, Lane 4	Link 0, Lane 4		T				Link 0, Lane 4	Link 0, Lane 4	Link 0.	Lane 4	Link 0, Lane A			t	t	Ì	
			Lane 3		Link O, Lane 3	Link 0, Lane 3			Link 0, Lane 3	Link O, Lane 3	Link 0, Lane 3	Link 0, Lane 3			Link 0, Lane 3			Link 0, Lane 3	Link 0, Lane 3	Link 0.	Lane 3	Link 0, Line 3		Link O,	Lanc o	t	Ì	
			Lane 2		Link O, Lane 2	Link O, Lane 2			Link O, Lane 2	Link O, Lane 2	Link O, Lane 2	Link O, Lane 2			Link O, Lane 2			Link O, Lane 2	Link 0, Lane 2	Link 0.	Lane 2	Link 0, Lees 2		Link O.	Lanc z	t	İ	
			Lane 1		Link O, Lane 1	Link 0, Lane 1	Link 0, Lane 1		Link 0, Lane 1	Link 0, Lane 1	Link 0, Lane 1	Link 0, Lane 1			Link 0, Lane 1			Link 0, Lane 1	Link 0, Lane 1	Link 0.	Lane 1	Link 0, Line 1		Link O.	Lanc	t	Ì	-
			Lane 0		Link O, Lane O	Link 0, Lane 0	Link O, Lane O	Link O, Lane O	Link 0, Lane 0	Link 0, Lane 0	Link 0, Lane 0	Link 0, Lane 0			Link 0, Lane 0			Link O, Lane O	Link 0, Lane 0	Link 0,	Lane 0	Link 0, Line 0		Link 0,	Lanc U	t	Ì	_
			g Link												_			۵	~			9			I	t	Ì	-
			Resultin		1×0	1.24	1×0	1×	1×8	5×	÷	121		•	1 x4			1×1	5 X	1×1		1×1		2 x4			1	
		IF[2:0]	•	0P000	00090	00090	00090	00090	00090	00090	00000	0000	01 000	00000	00000	0b000	000090	00090	00090	000	nnnan	04000		00090	01 000		Obuuu	000090
		8	2	: Links	t Links	: Links	: Links	t Links	t Links	t Links	t Links	t Links	-	Links	: Links	: Links	: Links	: Links	: Links	: Links	_	: Links		: Links			Links	: Links
ſ		Upst	2	1 or 2	1 or 2	1 or 2	1or 2	1 or 2	1 or 2	1or 2	1 or 2	1 or 2		1 or 2	1 or 2	1 or 2	1 or 2	1 or 2	1 or 2	1 or 2		1 or 2		1 or 2		10,	lorz	1 or 2
	, 1 × 4, 1 × 2, 4, 2 × 2, 2 ×		Device	am Socket	am Socket	am Socket	am Socket	am Socket	am Socket	am Socket	am Socket	am Socket		am Socket	am Socket	am Socket	am Socket	am Socket	am Socket	am Socket		am Socket		am Socket		am socket	am Socket	am Socket
	1 x16, 1 x8 2 x8, 2 x		Upstrea	1 Upstre	1 Upstre	1 Upstre	1 Upstre	1 Upstre	1 Upstre	1 Upstre	1 Upstre	1 Upstre		1 Upstre	1 Upstre	1 Upstre	1 Upstre	1 Upstre	1 Upstre	1 Upstre		1 Upstre		1 Upstre			1 Upstre	1 Upstre
			Host	1 Host	1 Host	1 Host	1 Host	1 Host	1 Host	1 Host	1 Host	1 Host		1 Host	1 Host	1 Host	1 Host	1 Host	1 Host	1 Host		1 Host		1 Host		1 TIOST	1 Most	1Host
		in-Card ding	rB[3:0]#		_			_	_	_	-					1	0	-		-		0		-	4			2
	tream Links	Eacod	PRSNT	0b1111	061110	0P1110	061110	061110	0b1101	0b1101	06110	061100	1	001011	0P1010	00100	00100	060111	000011	00010	_	00010		0090	20.000	1000 IO	UbUdu	00000
	r Two Upa	urcation			-				-	1×1	0.4 v1		lanes), 4 x			(8 encoding	t8 encoding	c2, 1 x 1	5×1	k2, 1 x1	s x1	2						
	cket, One o	orted Bi		lot Present	x4,1x2,1x	x2,1x1	2		x4, 1x2, 1x 1x2, 2 x1	: x4, 2 x2, 2 x2, 4 x1	x 4 Tirst 8 lane	x8,1x4 :x4,	- x2 (First 8		: x2, 2 x1 x2, 1 x1	for future :	for future:	x8,1x4,1	: x4, 2 x2, 2	x8,1x4,1	x4, 2 x2, 2	x8,1x4 - v4 p v2 5	x2,4 x1	. x2, 4 x1				
	ostream So	Supp Mode		Card D	1×8,1	1 x4, 1	1×2,1	<u>×</u>	1x8,1 B 2x4,2	2 x8,2 B 4 x4,4	1x8,1 2 x4, 4 x2(f	1 x16, 1 2 x8, 2	0 4 ×4, 4	RSVD	2 x4, 2 1 x4, 1	RSVD	RSVD	1×16,1	2 x8,2	1 x16, 1	B 2 x8, 2	1 x16,1 2 v8 3	C 4 × 4, 4	4 ×4,4	0.00	HSVD Dove	HSVD	RSVD
	t, Single Up	ard Sho	lame.	lot Present	1×8	1×4	1x2	1×1	x8 Option	X8 Option	v8 Option		x16 Option	SVD	2 x4	USVD .	SVD 0	1 x16	v8 Ontion	200	x16 Option		x16 Option		4X 4	OV D	SVD	SVD
	Single Hos	Min Card	Vidth N	nla N	SC	2 2	SC	2 2	2 V	4C	5		40	HSVD F	S	RSVD F	RSVD R	ę	0 0	2	40		40				RSVU P	RSVD F
		_		- 22	_	_							-11	- 10		<u>, 199</u>	- 21	,	_		-	_	-	_	- 12	-1°	a l	<u> - 1</u>

(BIF[2:0]#=0b000)

Table 25: Bifurcation for Single Host, Single Socket and Single/Dual/Quad Upstream Links

		14 Lane 1							1, Link 1, 6 Lane 7		0, Link 0, 14 Lane 15				0, Link 0,	14 Lane 15 1, Link 1,	6 Lane 7	0, Link 0, 14 Lane 15	0, Link 0, 14 Lane 15	3, Link3, 2 Lane3			
		13 Lane							Link 1 5 Lane), Link (3 Lane 1				0, Link (3 Lane 1 1, Link 1	5 Lane	0, Link(3 Lane1	0, Link(3 Lane 1	R, Linko 1 Lane			
		2 Lane							Link Lane		Link C Lane 1				Linko	E Lane 1	Lane	Link C Lane 1	Lane 1	Link 3			
		1 Lane 1							Link 1, Lane 4		Link 0 Lane 12				Link 0	Lane 12 Link 1,	Lane 4	Link 0 Lane 12	Link 0 Lane 1	Link 3, Lane 0			
									Link 1, Lane 3		Link 0, Lane 11				Link 0,	Lane 11 Link 1,	Lane 3	Link 0, Lane 11	Link O, Lane 11	Link 2, Lane 3			
		Lane 10							Link 1, Lane 2		Link 0, Lane 10				Link 0,	Lane 10 Link 1,	Lane 2	Link 0, Lane 10	Link 0, Lane 10	Link 2, Lane 2			
		Lane 9							Link 1, Lane 1		Link O, Lane 9				Link 0,	Lane 9 Link 1,	Lane 1	Link O, Lane 3	Link O, Lane 9	Link 2, Lane 1			
		Lane 8							Link 1, Lane 0		Link 0, Lane 8				Link 0,	Lane 8 Link 1,	Lane 0	Link 0, Lane 8	Link O, Lane 8	Link 2, Lane 0			
		Lane 7		Link O. Lane 7				Link O, Lane 7	Link O, Lane 7	Link O, Lane 7	Link 0, Lane 7		Link 1, Lane 3		Link O,	Lane 7 Link 0,	Lane 7	Link O, Lane 7	Link O, Lane 7	Link 1, Lane 3			
		Lane 6		Link O, Lane 6				Link 0, Lane 6	Link 0, Lane 6	Link 0, Lane 6	Link 0, Lane 6		Link 1, Lane 2		Link 0,	Lane 6 Link 0,	Lane 6	Link 0, Lane 6	Link O, Lane 6	Link 1, Lane 2			
		Lane 5		Link O. Lane 5				Link O. Lane 5	Link O, Lane 5	Link O, Lane 5	Link O, Lane 5		Link 1, Lane 1		Link 0,	Lane 5 Link 0,	Lane 5	Link O, Lane 5	Link O, Lane 5	Link 1, Lane 1			
		Lane 4		Link 0, Lane 4				Link 0, Lane 4	Link 0, Lane 4	Link 0, Lane 4	Link 0, Lane 4		Link 1, Lane 0		Link 0,	Lane 4 Link 0,	Lane 4	Link 0, Lane 4	Link 0, Lane 4	Link 1, Lane 0			
		Lane 3		Link 0, Lane 3	Link 0, Lane 3			Link O, Lane 3	Link 0, Lane 3	Link 0, Lane 3	Link O, Lane 3		Link 0, Lane 3		Link O,	Lane 3 Link 0,	Lane 3	Link O, Lane 3	Link O, Lane 3	Link O, Lane 3			
		Lane 2		Link O. Lane 2	Link O. Lane 2			Link O, Lane 2	Link O, Lane 2	Link O, Lane 2	Link 0, Lane 2		Link O, Lane 2		Link O,	Lane 2 Link 0,	Lane 2	Link O, Lane 2	Link O, Lane 2	Link O, Lane 2			
		la e l		Link 0, Lane 1	Link 0, Lane 1	Link 0, Lane 1		Link 0, Lane 1	Link 0, Lane 1	Link 0, Lane 1	Link 0, Lane 1		Link 0, Lane 1		Link O,	Lane 1 Link 0,	Lane 1	Link 0, Lane 1	Link 0, Lane 1	Link O, Lane 1			
		Lane O		Link O, Lane O	Link 0, Lane 0	Link 0, Lane 0	Link 0, Lane 0	Link 0, Lane 0	Link 0, Lane 0	Link 0, Lane 0	Link O, Lane O		Link 0, Lane 0		Link 0,	Lane O Link O,	Lane 0	Link O, Lane O	Link 0, Lane 0	Link O, Lane O			
		Resulting Link		1x8	1×4	1x2	1×1	1x8	2 x8	1x8	1×16		2 x4		1×16	2 x8		1×16	1 x16	4 x4			
												_											
		81F[2:0] #	00000	00090	00000	00090	00090	00090	00090	00000	00090	00000	00090	00000	00000		00000	00090	00090	00090	0P000	0P000	00000
		Upstream BIF[2:0]	1, 2, or 4 Links 0b000	1, 2, or 4 Links 0b000	1, 2, or 4 Links 0b000	1, 2, or 4 Links 0b000	1, 2, or 4 Links 0b000	1, 2, or 4 Links 0b000	1, 2, or 4 Links 0b000	1, 2, or 4 Links 06000	1, 2, or 4 Links 06000	1, 2, or 4 Links 0b000	1, 2, or 4 Links 0b000	1, 2, or 4 Links 0b000	1, 2, or 4 Links 00000	1, 2, or 4 Links or oco	00000	1, 2, or 4 Links 0b000	1, 2, or 4 Links 0b000	1, 2, or 4 Links 0b000	1, 2, or 4 Links 0b000	1, 2, or 4 Links 0b000	1, 2, or 4 Links 0b000
1x16.1x8.1x4.1x2.1	2 x8, 2 x4, 2 x2, 2 x1 4 x4, 4 x2, 4 x1	Upstream Devices Links	1 Upstream Socket 1, 2, or 4 Links 0b000	1 Upstream Socket 1, 2, or 4 Links 0b000	1 Upstream Socket 1, 2, or 4 Links 0b000	1 Upstream Socket 1, 2, or 4 Links 0b000	1 Upstream Socket 1, 2, or 4 Links 0b000	1 Upstream Socket 1, 2, or 4 Links 0b000	1 Upstream Socket 1, 2, or 4 Links 0b000	1 Upstream Socket 1, 2, or 4 Links 06000	1 Upstream Socket 1, 2, or 4 Links 06000	1 Upstream Socket 1, 2, or 4 Links 0b000	1 Upstream Socket 1, 2, or 4 Links 0b000	1Upstream Socket 1, 2, or 4 Links 0b000	1 Upstream Socket 1, 2, or 4 Links 0000	1 Upstream Socket 1, 2, or 4 Links or con	000000 ·	1 Upstream Socket 1, 2, or 4 Links 0b000	1 Upstream Socket 1, 2, or 4 Links 0b000	1 Upstream Socket 1, 2, or 4 Links 0b000	1 Upstream Socket 1, 2, or 4 Links 0b000	1 Upstream Socket 1, 2, or 4 Links 0b000	1 Upstream Socket 1, 2, or 4 Links 0b000
1x16.1x8.1x4.1x2.1	2 x8, 2 x4, 2 x2, 2 x1 4 x4, 4 x2, 4 x1	Host Upstream Devices Links #	1 Host 1 Upstream Socket 1, 2, or 4 Links 0b000	1 Host 1 Upstream Socket 1, 2, or 4 Links 0b000	1Host 1Upstream Socket 1, 2, or 4 Links 0b000	1Host 1Upstream Socket 1, 2, or 4 Links 0b000	1Host 1Upstream Socket 1, 2, or 4 Links 0b000	1 Host 1 Upstream Socket 1, 2, or 4 Links 06000	1 Host 1 Upstream Socket 1, 2, or 4 Links 0b000	1 Host 1 Upstream Socket 1, 2, or 4 Links 0b000	1 Host 1 Upstream Socket 1, 2, or 4 Links 06000	1 Host 1 Upstream Socket 1, 2, or 4 Links 0b000	1Host 1Upstream Socket 1, 2, or 4 Links 0b000	1Host 1Upstream Socket 1, 2, or 4 Links 06000	1Host 1Upstream Socket 1,2, or 4 Links 00000	1Host 1Upstream Socket 1, 2, or 4 Links or on		1 Host 1 Upstream Socket 1, 2, or 4 Links 0b000	1 Host 1 Upstream Socket 1, 2, or 4 Links 06000	1Host 1Upstream Socket 1, 2, or 4 Links 0b000	1 Host 1 Upstream Socket 1, 2, or 4 Links 0b000	1Host 1Upstream Socket 1, 2, or 4 Links 0b000	1Host 1Upstream Socket 1, 2, or 4 Links 0b000
1x16.1x8.1x4.1x2.1	2 x8, 2 x4, 2 x2, 2 x1 petresm Links 4 x4, 4 x2, 4 x1	Add-in-Card BiF[2:0] Excoding Host Upstream Devices Links #	0b1111 1 Host 1 Upstream Socket 1, 2, or 4 Links 0b000	0b1110 1 Host 1 Upstream Socket 1, 2, or 4 Links 0b000	Obitio 1 Host 1 Upstream Socket 1, 2, or 4 Links 0b000	0b1110 1Host 1Upstream Socket 1, 2, or 4 Links 0b000	0b1110 1Host 1Upstream Socket 1, 2, or 4 Links 0b000	0b1101 1 Host 1 Upstream Socket 1, 2, or 4 Links 0b000	0b1101 1Host 1Upstream Socket 1, 2, or 4 Links 0b000	0b100 1Host 1Upstream Socket 1, 2, or 4 Links 0b000	0b100 1Hoet 1Upstream Socket 1.2. or 4 Links 0b000	0b1011 1Host 1Upstream Socket 1, 2, or 4 Links 0b000	0b1010 1Host 1Upstream Socket 1, 2, or 4 Links 0b000	0b1001 1 Host 1 Upstream Socket 1, 2, or 4 Links 0b000	00000 11001 10021 00000 1, 2, 01 + 1102 00000 000111 10021 100210 Socket 1, 2, or 4 Links 00000	0b0110 1Host 1Upstream Socket 1, 2, or 4 Links or one		0b0101 1Host 1Upstream Socket 1, 2, or 4 Links 0b000	0b0100 1Hock 1 Upstream Socket 1,2, or 4 Links 0b000	0b0011 1Host 1Upstream Socket 1, 2, or 4 Links 0b000	0b0010 1Host 1Upstream Socket 1, 2, or 4 Links 0b000	0b0001 1Host 1Upstream Socket 1, 2, or 4 Links 0b000	0b0000 1 Host 1 Upstream Socket 1, 2, or 4 Links 0b000
1,2(6,1,x8,1,x2,1]	2 x8, 2 x4, 2 x2, 2 x1 etream Socket, Dre, T wo or Four Upetream Links 4 x4, 4 x2, 4 x2, 4 x1	Supported Bifurcation Add-in-Card Bif[2:0] t Modes Exceeding #ost Upstream #	Card Not Present 0b1111 1 Host 1 Upstream Socket 1, 2, or 4 Links 0b000	1x8,1x4,1x2,1x1 0b1110 1Host 1Upstream Socket 1.2, or 4 Links 0b000	1x4,1x2,1x1 0b1110 1Hoct 1Upstream Socket 1.2, or 4 Links 0b000	1x2,1x1 0b1110 1Host 1Upstream Socket 1,2, or 4 Links 0b000	1x1 0bitt0 1 Host 1 Upstream Socket 1.2, or 4 Links 0b000	1 x8, 1 x4, 1 x2, 1 x1 0b1001 1 Host 1 Upstream Socket 1, 2, or 4 Links 0b000 B 2 x4, 2 x2, 2 x1 0b1001 0b000 0b000 0b000	2 x8, 2 x4, 2 x2, 2 x1 0b1101 1 Host 1 Upstream Socket 1, 2, or 4 Links 0b000 B 4 x4, 4 x2, 4 x1	1363.134 0651000 11Hocs 1Uppresm Socket 1,2, or 4 Links 06000 2 244 05 06000 1 245 06000 1 245 06000	1 tr(6, 1x8, 1x4, 1x4, 1x4, 1x8, 1x4, 1x8, 1x4, 1x8, 1x4, 1x4, 1x4, 1x4, 1x4, 1x4, 1x4, 1x4	RSVD 061011 1Host 1Upstream Socket 1, 2, or 4 Links 06000	2 x4, 2 x2, 2 x1 0b1010 1 Host 1 Upstream Socket 1, 2, or 4 Links 0b000 1 1 x4, 1 x2, 1 x1	RSVD for future x8 encoding 0b1001 1Host 1Upstream Socket 1,2, or 4 Links 0b000	Text Dial results of the second sec	2x8, 2x4, 2x2, 2x1 0b0110 1Host 1Upstream Socket 1, 2, or 4 Links Autore		1 x16, 1 x8, 1 x4, 1 x2, 1 x1 0 b0 0101 1 Host 1 Upstream Socket 1, 2, or 4 Links 0 b0000 B 2 x8, 2 x4, 2 x2, 2 x1 0 <th>1345, 1365, 1362, 1364 00:01000 11 Hock 1 Uppetream Socket 1, 2, or 4 Units 00:000 13 454, 242, 244, 244, 244, 244, 244, 244,</th> <th>4 x4, 4 x2, 4 x1 0b0011 1Host 1Upstream Socket 1, 2, or 4 Links 0b000</th> <th>RSVD 0b0010 1Host 1Upstream Socket 1,2, or 4 Links 0b000</th> <th>RSVD 066001 1Host 1Upstream Socket 1, 2, or 4 Links 06000</th> <th>RSVD 060000 1Host 1Upstream Socket 1, 2, or 4 Links 06000</th>	1345, 1365, 1362, 1364 00:01000 11 Hock 1 Uppetream Socket 1, 2, or 4 Units 00:000 13 454, 242, 244, 244, 244, 244, 244, 244,	4 x4, 4 x2, 4 x1 0b0011 1Host 1Upstream Socket 1, 2, or 4 Links 0b000	RSVD 0b0010 1Host 1Upstream Socket 1,2, or 4 Links 0b000	RSVD 066001 1Host 1Upstream Socket 1, 2, or 4 Links 06000	RSVD 060000 1Host 1Upstream Socket 1, 2, or 4 Links 06000
1,2(6,1,28,1,32,1)	e Hoet, Single Upetresm Socket, Dre, Two or Four Upetresm Links 4 44, 4 x2, 4 x1	a Supported Bifarcation Add-in-Card Bifarcation Add-in-Card Bifarcation Add-in-Card Bifarcation Biff2.01 the Support S	Not Present Card Not Present 0b1111 1 Host 1 Upstream Socket 1, 2, or 4 Links 0b000	1x8, 1x4, 1x2, 1x1 0b1110 1Host 1Upstream Socket 1, 2, or 4 Links 0b000 1x8	1x4,1x2,1x1 0b1110 1Host 1Upstream Socket 1,2,or 4 Links 0b000	1x2 1x2 1x2 0b1110 1Host 1Upstream Socket 1, 2, or 4 Links 0b000	1x1 1x1 0b1110 11host 1Upetresm Socket 1, 2, or 4 Links 0b000	1x8,1x4,1x2,1x1 0b1001 1Host 1Upstream Socket 1,2, or 4 Links 0b000 1x8 2x4, 2x2, 2x1	2 x8, 2 x4, 2 x2, 2 x1 0b1101 1 Host 1 Upstream Socket 1, 2, or 4 Links 0b000 2 x8 0ption B 4 x4, 4 x2, 4 x1 0b1001 10000 0b000	1x8,1x4 0bit00 1Host 1Uparteam Societ 1,2, or 4 Links 0b000 2 x4, 1 x5 Option D 2 x4, 0bit00 0bit00 0bi00	1 toth, 1 ab,	D RSVD RSVD 001011 1Host 1Upstream Socket 1,2, or 4 Links 0b000	2 x4, 2 x2, 2 x1 0b1010 1 Host 1 Upstream Socket 1, 2, or 4 Links 0b000 2 x4 1 x4, 1 x2, 1 x1 0b1010 1 Host 0 0000 0 0000	D RSVD RSVD for future x8 encoding 0b1001 1 Host 1 Upstream Socket 1,2, or 4 Links 0b000	Distribution Distribution<	1x16 2x8, 2x4, 2x2, 2x1 0b0110 1Host 1Upetreem Socket 1, 2, or 4 Links 2x000	2 x8 Option A	1x16, 1x8, 1x8, 1x8, 1x2, 1x1 0b0101 1Host 1Upetream Socket 1, 2, or 4 Links 0b000 1x16 Option B 2 x8, 2 x4, 2 x2, 2 x1	1415, 135, 134, 135, 134 2 25, 234, 232, 237 1 135 Option C 4 34, 42, 24, 22, 21	4 x4, 4 x2, 4 x1 0b0011 1Host 1Upetream Societ 1, 2, or 4 Links 0b000 4 x4	D RSVD RSVD 00000 1Host 1Upstream Socket 1,2, or 4 Links 0b000	D RSVD RSVD 00001 1Host 1Upstream Socket 1,2, or 4 Links 0b000	D RSVD RSVD RSVD 0b0000 1Host 1Upstream Socket 1,2, or 4 Links 0b000

(BIF[2:0]#=0b000)

Table 26: Bifurcation for Single Host, Dual Sockets and Dual Upstream Links

								Link 1, Lane 7			Link 1, Line 7							Link 1,	Lane 7	Lane 7	Link 1,	Lane 7			Į
								Link 1, Lane 6			Link 1, Line 6	Ì						Link 1,	Lane 6	Lane 6	Link 1,	Lane 6			
								Link 1, Lane 5			Link 1, Line 5	}						Link 1,	Lane 5 List 4	Lane 5	Link 1,	Lane 5			
	-	Lane 12						Link 1, Lane 4			Link 1, Line A							Link 1,	Lone 4	Lane 4	Link 1,	Lane 4			
								Link 1, Lane 3			Link 1, Line 3							Link 1,	Lane 3 Link 4	Lane 3	Link 1,	Lane 3	Link 2, Lang 3		
	5							Link 1, Lane 2			Link 1, Line 2							Link 1,	Lane 2 List 1	Lane 2	Link 1,	Lane 2	Link 2, Lees 2		
	•	Lane J						Link 1, Lane 1			Link 1, Long 1	-						Link 1,	Lane 1 Link 1	Lane 1	Link 1,	Lane 1	Link 2, Lee 1		
	-	Lake o						Link 1, Lane 0			Link 1, Line 0	Ì						Link 1,	Lane 0	Lane 0	Link 1,	Lane O	Link 2, Lana 0	>	
		Lake	Link 0, Lane 7				Link O, Lane 7	Link O, Lane 7	Link 0,	Lane L	Link 0, Line 7						Link O, Lane 7	Link O,	Lane 7 Lisk 0	Lane 7	Link O,	Lane 7			
			Link 0, Lanc 6				Link 0, Lane 6	Link O, Lane 6	Link 0,	Lane D	Link 0, Line 6						Link 0, Lane 6	Link 0,	Lane 6	Lane 6	Link 0,	Lane 6			Ī
			Link O. Lane 5				Link 0, Lane 5	Link 0, Lane 5	Link O.	Lane 5	Link 0, Line 5						Link 0, Lane 5	Link O,	Lane 5	Lane 5	Link O,	Lane 5			
			Link 0, Lane 4				Link 0, Lane 4	Link 0, Lane 4	Link 0,	Lanc 4	Link 0, Line A						Link 0, Lane 4	Link 0,	Lane 4	Lane 4	Link 0,	Lane 4		Ī	Ī
			Link 0, Lane 3	Link 0, Lane 3			Link 0, Lane 3	Link 0, Lane 3	Link 0,	Lane J	Link 0, Line 3			Link 0, Lane 3			Link O, Lane 3	Link 0,	Lane 3	Lane 3	Link O,	Lane 3	Link 0, Lass 3		Ī
	-	Lanez	Link 0, Lane 2	Link 0, Lane 2			Link 0, Lane 2	Link 0, Lane 2	Link 0,	Lanez	Link 0, Line 2			Link 0, Lane 2			Link 0, Lane 2	Link 0,	Lane 2	Lane 2	Link O,	Lane 2	Link 0, Lass 2		Ī
			Link 0, Lane 1	Link 0, Lane 1	Link 0, Lane 1		Link 0, Lane 1	Link 0, Lane 1	Link O,	Lane 1	Link 0, Line 1	ļ		Link 0, Lane 1			Link 0, Lane 1	Link O,	Lane 1	Lane 1	Link O,	Lane 1	Link 0, Lees 1		Ī
			Link 0, Lane 0	Link 0, Lane 0	Link 0,	Lane U	Link 0, Line 0	Ì		Link 0, Lane 0			Link 0, Lane 0	Link 0,	Lane 0	Lane 0	Link O,	Lane 0	Link 0, Lass 0		Ī				
		Heseling Link	1x8 [Socket 0 only]	1x4 (Socket 0 only)	1x2 [Socket 0 only]	1x1 [Socket 0 only]	1x8 (Socket 0 only)	2 x8	1x8 2011	(socket U only)	2 x8			1x4 (Socket 0 only)			1x8 [Socket 0 only]	2 x8	870	0 X V	2 x8		2 x4 (FD 0 sed 2 colu)		
	BIF[2:0] \$	00001	00001	00001	00001	00001	00001	00001	100	Innan	00000		0P001	00001	0b001	0b001	00001	0000		00000		0P001	00001	05001	12000
	Upstream	2 Links	2 Links	2 Links	2 Links	2 Links	2 Links	2 Links	2 Links		2 Links		2 Links	2 Links	2 Links	2 Links	2 Links	2 Links	0 liebe	¢ LINK	2 Links		2 Links	2 Linka	C LIDE
2 x8, 2 x4, 2 x2, 2 x1 2 x8, 2 x4, 2 x2, 2 x1	-	2 Upstream Sockets	2 Upstream Sockets	2 Upstream Sockets	2 Upstream Sockets	2 Upstream Sockets	2 Upstream Sockets	2 Upstream Sockets	2 Upstream Sockets		2 Upstream Sockets		2 Upstream Sockets	2 Upstream Sockets	2 Upstream Sockets	2 Upstream Sockets	2 Upstream Sockets	2 Upstream Sockets	O I Instrume Sockate	e operean occurre	2 Upstream Sockets		2 Upstream Sockets	2 Unstream Sockets	C UDD/CGII: C C C C C C C C C C C C C C C C C C
	1	1 Host	1 Host	1 Host	1 Host	1 Host	1 Host	1 Host	1 Host		1 Host		1 Host	1 Host	1 Host	1 Host	1 Host	1 Host	1 Hart	Yeour	1 Host		1 Host	1 Host	100011
	Add-in-Card Encoding	PHSMI DIGUJ#	061110	061110	061110	0b1 110	0b1 101	0b1 101	0b1100		0b1100		0b1011	0b1 010	0b1001	001000	060111	0b0 110	160101		0b0 100		0b0 011	0b0010	1 00000
eam Sockets, Two Upstream Links	Supported Bifurcation Modes	Card Not Present	1x8,1x4,1x2,1x1	1x4, 1x2, 1x1	1x2,1x1	1×1	1x8,1x4,1x2,1x1 2x4,2x2,2x1	2 x 8, 2 x 4, 2 x 2, 2 x 1 4 x 4, 4 x 2, 4 x 1	1x8,1x4	z x4, 4 x2 (First 8 lanes), 4 x1	1x16,1x8,1x4 ov8 ov4	1 4 x4, 4 x2 (First 8 lanes), 4 x1	RSVD	2 x4, 2 x2, 2 x1 1 x4, 1 x2, 1 x1	RSVD for future x8 encoding	RSVD for future x8 encoding	1x16,1x8,1x4,1x2,1x1	2 x8, 2 x4, 2 x2, 2 x1	1 446 1 48 1 44 1 40 1 41	2 x6, 2 x4, 2 x2, 2 x1	1x16,1x8,1x4	2 x 8, 2 x 4, 2 x 2, 2 x 1 1 4 x 4, 4 x 2, 4 x 1	4 x4, 4 x2, 4 x1	BSVD	Devu
st, Two Upstri	Card Short	Not Present	1×8	1 14	1×2	1×1	1 x8 Option B	2 x8 Option B		1 x8 Option D		1 x16 Option D	RSVD	2 x4	RSVD	RSVD	1 x16		2 x8 Option A	1 x16 Option E		1 x16 Option C	1.1	RSVD	
¥		- 111		1											entit i	- and the			- 1					101	

(BIF[2:0]#=0b001)

	Tab	le	27:	Bi	furcat	ion	for	Singl	е	Host,	Four	Sockets	and	Dual	Upstream	Link	S
--	-----	----	-----	----	--------	-----	-----	-------	---	-------	------	---------	-----	------	----------	------	---

Single P	Host, Four Upstr	ream Sockets, Four Upstream Links			4 x4, 4 x2, 4x1																		
N Contraction	Card Short Name	Supported Bifurcation Modes	Add-in-Card Encoding PRSNTB[3:0]#	Host	Upstream Devices	Upstream Links	BIF[2:0] \$	Resulting Link	ane O	Lane 1	ane 2	L L L	-	ane 5 L	۲۵ ۱۹۹۹ ۱۹۹۹		e 8 Lan	e 9 Lane	10 Lane	11 Lane	2 Lane 1	t Lane 14	Lane 15
eje	Not Present	Card Not Present	061111	1 Host	4 Upstream Sockets	4 Links	0b010																
20	1x8	1x8,1x4,1x2,1x1	0b1 110	1 Host	4 Upstream Sockets	4 Links	05010	1 x4 (Socket () onlu)	Link 0, Lane 0	Link 0, Lane 1	Link 0, Lane 2	Link 0, Lane 3											
S	1x4	1x4,1x2,1x1	0b1110	1 Host	4 Upstream Sockets	4 Links	0b010	1 x4 [Socket 0 only]	Link 0, Lane 0	Link 0, Lane 1	Link 0, Lane 2	Link 0, Lane 3				-							
SC	1x2	1x2,1x1	0b 1110	1 Host	4 Upstream Sockets	4 Links	06010	1 x2 (Socket 0 only)	Link 0, Lane 0	Link 0, Lane 1													
SC	1×1	1×1	0b1110	1 Host	4 Upstream Sockets	4 Links	06010	1 x1 (Socket 0 only)	Link 0, Lane 0														
SC	1 x8 Option B	1x8,1x4,1x2,1x1 3 2x4,2x2,2x1	0b1101	1 Host	4 Upstream Sockets	4 Links	06010	2 x4	Link 0, Lane 0	Link 0, Lane 1	Link O, Lane 2	Link 0, 1 Lane 3 L	ink 1, ane 0	ink 1, 1 ane 1 – L	ink 1, Lin ane 2 Lar	41 63							
ę	2 x8 Option B	2 x8, 2 x4, 2 x2, 2 x1 3 4 x4, 4 x2, 4 x1	0b 1101	1 Host	4 Upstream Sockets	4 Links	06010	4 x4	Link 0, Lane 0	Link 0, Lane 1	Link 0, Lane 2	Link 0, 1 Lane 3 L	ink 1, ane 0	ink 1, 1 ane 1 L	ink 1, Lin ane 2 Lar	k1, Lini e3 Lan	:2, Link s 0 Lan	2, Link e1 Lane	2, Link: 2 Lane	2. Link 3 3 Lane (Link 3, Lane 1	Link 3, Lane 2	Link 3, Lane 3
S	1 x8 Option D	1 x8, 1 x4 2 x4, 1 4 x2 (First 8 lanes), 4 x1	0b1 100	1 Host	4 Upstream Sockets	4 Links	06010	2 x4	Link O, Lane O	Link 0, Lane 1	Link O, Lane 2	Link 0, 1 Lane 3 L	ink 1, ane 0	ink 1, 1 ane 1 L	ink 1, Lin ane 2 Lar								
ą	1×16 Option D	1 x16, 1 x8, 1 x4 2 x8, 2 x4, 0 4 x4, 4 x2 (First 8]anes), 4 x1	0b1100	1 Host	4 Upstream Sockets	4 Links	06010	4 x4	Link 0, Lane 0	Link 0, Lane 1	Link 0, Lane 2	Link 0, L Lane 3 L	ink 1, ane 0	ink 1, 1 ane 1 L	ink 1, Lin ane 2 Lar	k1. 63 Lan	2. Link c C Lan	2, Link e 1 Lanc	2, Link: 2 Lane	2. Link 3 3 Lane (Link 3, Lane 1	Link 3, Lane 2	Link 3, Lane 3
RSVD	RSVD	RSVD	0b1011	1 Host	4 Upstream Sockets	4 Links	0b010				T												
N	2 x4	2 x4, 2 x2, 2 x1 1 x4, 1 x2, 1 x1	0b1 010	1 Host	4 Upstream Sockets	4 Links	0b010	2 x4	Link 0. Lane 0	Link 0, Lane 1	Link 0, Lane 2	Link 0, 1 Lane 3 L	ink 1, ane 0	ink 1, 1 ane 1 L	ink 1, Lin Die 2 Lar	6.0 6.0	-	-					
RSVD	RSVD	BSVD for future x8 encoding	0b1001	1 Host	4 Upstream Sockets	4 Links	06010									+	$\left \right $	$\left \right $					
	Havu	How U for future x o encoding 1 x16, 1 x8, 1 x4, 1 x2, 1 x1	000111	1 Host	4 Upstream sockets 4 Upstream Sockets	4 Links 4 Links	06010	1x4 60-4000100	Link 0,	Link 0,	Link 0,	Link 0,	-			+	-	+	-				
; ц	2 x8 Option A	2 x8, 2 x4, 2 x2, 2 x1	0b0110	1 Host	4 Upstream Sockets	4 Links	06010	2 x4 Socket 0 & 2 only)	Link 0. Lane 0	Link 0, Lane 1	Link 0, Lane 2	Link 0, Lane 3	\vdash	+	-	Lin.	c 2, Link c 0 Lan	2, Link e 1 Lane	2, Link: 2 Lane	ai 12			
ų	1 x16 Option E	1 x16, 1 x8, 1 x4, 1 x2, 1 x1 5 2 x8, 2 x4, 2 x2, 2 x1	0b0 101	1 Host	4 Upstream Sockets	4 Links	0b010	2 x4 (Socket 0 & 2 only)	Link 0. Lane 0	Link 0, Lane 1	Link 0, Lane 2	Link 0, Lane 3				La Li	a Cink Link Link	2, Link e 1 Lane	2, Link: 2 Lane	ai 9			
9	1×16 Option C	1 x16, 1 x8, 1 x4 2 x8, 2 x4, 2 x2, 2 x1 2 4 x4, 4 x2, 4 x1	0b0 100	1 Host	4 Upstream Sockets	4 Links	06010	4 x4	Link O. Lane O	Link 0, Lane 1	Link 0, Lane 2	Link 0, L Lane 3 L	ink 1, ane 0	ink 1, 1 ane 1 L	ink 1. Lin ane 2 Lar	k1. Lin 63 Lan	s C Link	e 1 Link e 1 Lane	2, Link:	C Link 3 C Lane (Link 3, Lane 1	Link 3, Lane 2	Link 3, Lane 3
ų	4 x4	4 x4, 4 x2, 4 x1	060 011	1 Host	4 Upstream Sockets	4 Links	0b010	4 x4	Link 0, Lane 0	Link 0, Lane 1	Link O, Lane 2	Link 0, 1 Lane 3 L	ink 1, ane 0	ink 1, 1 ane 1 L	ink 1, Lin ane 2 Lar	k1, Lini e3 Lan	:2, Link e O Lan	2, Link e1 Lanc	2, Link: 2 Lane	2, Link 3 3 Lane (Link 3, Lane 1	Link 3, Lane 2	Link 3, Lane 3
BSVD	RSVD	RSVD	0b0 010	1Host	4 Upstream Sockets	4 Links	06010									+							
HSVD	RSVD	RSVD	00001	THOSE	4 Upstream Sockets	4 Links	00010		T		1	+	+	+	+	+	+	+	+				
RSVD	RSVD	RSVD	000000	1 Host	4 Upstream Sockets	4 Links	00010					-		-	-								

(BIF[2:0]#=0b010)

Table 28: E	Bifurcation	for Dual	Host,	Dual	Sockets	and	Dual	Upstream	Links	(BIF[2:0]#=0	Ob101)
-------------	-------------	----------	-------	------	---------	-----	------	----------	-------	--------------	--------

			_	_	_	_			_	_			_		_	_	_	-	_	_	_		_	_			_	_	_	_	
		Lane 15								Link 1, Lane 7			Link 1,	Lane 7								Link 1. Lane 7	Link 1,	Lane 7	Link 1,	Lane 7					
		Lane 14								Link 1, Lane 6			Link 1,	Lane 6								Link 1. Lane 6	Link 1,	Lane 6	Link 1,	Lane 6					
		ane 13								Link 1, Lane 5			Link 1,	Lane 5				T				Link 1. Lane 5	Link 1,	Lane 5	Link 1,	Lane 5					
		ane 12 L								Link 1, ane 4			Link 1,	ane 4				t				Link 1, ane 4	Link 1,	ane 4	Link 1,	ane 4					
		ne 11 La								ink t and 3 - 1			ink 1, 1	ane 3 L				+				ink t ane 3	ink 1, 1	ane 3 L	ink 1, 1	ne 3	ink 1,	one 3			
		ie 10 La			$\left \right $					n ti ti da ti da			nk 1, L	ne 2 L				+				nkt ne 2 L	nk1, L	ne 2 L	nk 1, L	19 09	nk 1, L	ne 2 L			
		ne 9 Lai								sk t. Li Li			sk t. Li	ne 1 La		-		+				ak t. ne t. Li La	ak t. Li	ne 1 La	sk 1. Li	ne 1 La	ak 1, Li	ne 1 La			
		se 8 La			$\left \right $					44 1 - 0 2 - 1			kt, U	ne O La				╞				** * 0 * 5 C	k1, Li	ne O Li	kt. Li	یں د	ik 1, Li	ne O Li			
		ie 7 Lai		k 0.					k 0. ne 7	k 0, be 7 la	k 0.	i - a	k 0, Li	ne 7 La		_		+		k 0,	ne 7	k0. Na 1 La Li	k O, Li	ne 7 La	k o, Lia	10 J	5	2	_	_	
		e 6 Lai		0, 0, 6, 5, 6, 5,					60, Lin 66 Li	60, Lin La	60. Lin	2 9	6 0, Lin	66 La		_		+		60, Lin	c 6 La	6.0 6	s o, Lin	e 6 La	í O,	دو ا					
		e 5 Lan		0, 0 So La					c, Lin e 5 Lan	c O, Lini o 5	0. Lin	e5 Lan	i O, Lin	e5 Lan		_		╞		i O, Lin	e 5 Lan	60. La Lin	i O, Lin	e 5 Lan	i O, Lin	e5 Lan		_	_	_	
		e 4 Lan		io. List La List					c d Lint c d Lan	c O, Lint o di Lan	0. Link	e 4 Lan	0, Lin	e 4 Lan		_		+		i O, Linł	e 4 Lan	c de Lint e de La	i O, Linł	e 4 Lan	i O, Lint	c 4 Lan		_	_	_	
		a Lan		0. Generation Cineta	ő	0			0, Link 3 Lan	0, Link Jan	0. Link	1 I I	0, Link	3 Lan		_	ۍ د ۲	2		0, Link	3 Lan	0. 13 Link	0, Link	3 Lan	0, Link	Can	ő	0	_	_	
		2 Lane		0. Lan	o, Link	2 Lane			0, Link 2 Lane	0, Link Jane	0. Link	5 Lane	0, Link	2 Lane		_	o, Link			0, Link	2 Lane	0, Lane	0, Link	2 Lane	0, Link	5 Lane	0, Link	2 Lane	_	_	
		1 Lane		0. Lane	0, Link	1 Lane	<u> </u>		0, Link 1 Lane	0, Link I and	C. Link	1 Lane	0, Link	1 Lane			0, Link	-		0, Link	1 Lane	0. Lane	0, Link	1 Lane	0, Link	1 Lane	0, Link	1 Lane	_	_	
		0 Lane	_	Link C	Linko	0 Lane	Link (Lane	- 0	Link (Lane	Link C	Linko	Lane	 Link 0 	0 Lane			Linko			 Link 0 	0 Lane	Link C	 Link 0 	0 Lane	 Linko 	0 Lane	 Link 0 	0 Lane	_	_	
		Lane		Link 0 Lane (Link 0	Lane	Link 0 Lane (Link 0 Lane (Link 0 Lane (Link 0 Lane (Link 0	Lane	Link 0	Lane (Linko			Link 0	Lane (Link O Lane (Link 0	Lane (Link 0	Lane (Link 0	Lane (
		Resulting Link		1x8 (Host 0 only)	1x4	(Host 0 only)	1x2 (Host 0 only)	1 x1 (Host 0 only)	1 x8 [Host 0 only]	2 x8	1×8	(Host 0 only)	2 x8				1x4 Others O and O	- fámo o vouit		1x8	(Host 0 only)	2 x8	2 x8		2 x8		2 x4	(EP 0 and 2 only)			
	3IF[2:0]	•	0b101	0b101	0b101		0b101	0b101	06101	0b101		0b101		0b101		0b101	0b101	06101	0b101	Obtot		0b101	Obtot			06101	Obtot		0b101	0b101	0b101
	Upstream	Links	2 Links	2 Links	2 Links		2 Links	2 Links	2 Links	2 Links	2 Links		2 Links			2 Links	2 Links	2 Links	2 Links	2 Links		2 Links	2 Links		2 Links		2 Links		2 Links	2 Links	2 Links
2 x4, 2 x2, 2 x1		ream Devices	stream Sockets	stream Sockets	stream Sockets		stream Sockets	atream Sockets	stream Sockets	stream Sockets	stream Sockets		stream Sockets			stream Sockets	stream Sockets	stream Sockets	stream Sockets	stream Sockets		stream Sockets	stream Sockets		stream Sockets		stream Sockets		stream Sockets	stream Sockets	stream Sockets
2 x8,		Upst	t 2Up	¢ s∩ ¥	* 2 Up		t 2Up	* 2Up	* 2 Up	¥ 50	* 2Ub		t 2Up		_	¢ SUp	t 2Up	* 2Ub	5 Ch	¢ 2 ∪p		å s	* 2 Up	_	t 2Up		t 2Up	_	t 2Up	t 2Up	t 2 Up
	-	t Host	2 Hos	2 Hog	2 Hoo		2 Hos	2 Hos	2 Hos	2 Hos	2 Hos		2 Hos			2 Hos	2 Hos	2 Hos	2 Hos	2 Hos		2 Hos	2 Hos		2 Hos		2 Hos		2 Hos	2 Hoo	2 Hoo
	Add-in-Card Encoding	PRSNTB[3:0]#	0b1111	0b1110	0b1110		0b1 110	0b1 110	0b1 101	0b1101	0b1100		0b1100			0b1 011	0b1 010	0b1001	0b1000	060111		000110	060101		000100		0b0 011		0b0 010	060 001	000000
\ Sockets, Two Upstream Links	Supported Bifurcation Modes		Card Not Present	1x8,1x4,1x2,1x1	1x4,1x2,1x1		1x2,1x1	1x1	1×8,1×4,1×2,1×1 2×4,2×2,2×1	2 x8, 2 x4, 2 x2, 2 x1 4 v4 4 v2 4 v1	1 x8.1 x4	2 x4, 4 x2 (First 8 Ianes), 4 x1	1x16, 1x8, 1x4	2 x8, 2 x4,	4 x4, 4 x2 (First 8 lanes), 4 x1	RSVD	2 x4, 2 x2, 2 x1	BSVD for future x8 encoding	BSVD for future x8 encoding	1x16, 1x8, 1x4, 1x2, 1x1		2 x8, 2 x4, 2 x2, 2 x1	1x16,1x8,1x4,1x2,1x1	2 x8, 2 x4, 2 x2, 2 x1	1x16, 1x8, 1x4	2 x6, 2 x4, 2 x2, 2 x1 4 x4, 4 x2, 4 x1	4 x4, 4 x2, 4 x1		RSVD	RSVD	RSVD
зt, Two Upstream	Card Short	Name	Not Present	1x8		1×4	1x2	1×1	1 x8 Option B	2 v8 Ontion B		1 x8 Option D		-	1 x16 Uption D	RSVD	1.0	BSVD	RSVD		1×16	2 x8 Option A		1x16 Option B		1 x16 Option C		4 x 4	RSVD	RSVD	RSVD
20H leu	Nin S	Videk	ala	SC		ŝ	20	50	SC	9		S			ę	RSVD	ç	BSVD	RSVD		ş	ų		ç		ę		ş	RSVD	RSVD	RSVD

Table 29: Bifurcation for Quad Host, Quad Sockets and Quad Upstream Links

	<u>ن</u>																						Γ
	Lane 1							Link 3 Lane 3		Link 3	Lane								Link 3 Lane 3	Link 3			
	Lane 14							Link 3, Lane 2		Link 3,	Lane Z								Link 3, Lane 2	Link 3, Lass 0			
	Lane 13							Link 3, Lane 1		Link 3, Lee 4	Laffe								Link 3, Lane 1	Link 3, Loss 1			
	Lane 12							Link 3, Lane 0		Link 3, Lee, 6	Lane U								Link 3, Lane 0	Link 3, Lees 0			
	Lane 11							Link 2, Lane 3		Link 2, 1	Lane J						Link 1, Lane 3	Link 1, Lane 3	Link 2, Lane 3	Link 2, Lass 3			
	Lane 10							Link 2, Lane 2		Link 2,	Lane z						Link 1, Lane 2	Link 1, Lane 2	Link 2, Lane 2	Link 2, Lange			Ī
	Lane 9							Link 2, Lane 1		Link 2, 1 a. 1 4	Lanel						Link 1, Lane 1	Link 1, Lane 1	Link 2, Lane 1	Link 2, Lee 1			Ī
	Lane 8							Link 2, Lane 0		Link 2, 1 0	Lane U						Link 1, Lane 0	Link 1, Lane 0	Link 2, Lane 0	Link 2, Lose 0			Ī
	Lane 7						Link 1, Lane 3	Link 1, Lane 3	Link 1, Lane 3	Link 1.	C auto		Link 1, Lane 3						Link 1, Lane 3	Link 1, Lass 3			Ī
	Lane 6						Link 1, Lane 2	Link 1, Lane 2	Link 1, Lane 2	Link 1.	Lane 2		Link (Lane 2						Link 1, Lane 2	Link 1. Less 0			
	Lane 5						Link 1, Lane 1	Link 1, Lane 1	Link 1, Lane 1	Link 1,	Lanel		Link 1, Lane 1						Link 1, Lane 1	Link 1, Lees 1			
	Lane 4						Link 1, Lane 0	Link 1, Lane 0	Link 1, Lane 0	Link 1,	Lane U		Link 1, Lane 0						Link 1, Lane 0	Link 1, Leee D			
	Lane 3		Link O, Lane 3	Link O, Lane 3			Link 0, Lane 3	Link O, Lane 3	Link O, Lane 3	Link 0, Lee, 3	C auch		Link O, Lane 3			Link O, Lane 3	Link 0, Lane 3	Link O, Lane 3	Link O, Lane 3	Link 0, Lass 3	Falls o		
	Lane 2		Link O, Lane 2	Link O, Lane 2			Link 0, Lane 2	Link O, Lane 2	Link O, Lane 2	Link 0, Last 0	Faue 2		Link 0, Lane 2			Link O, Lane 2	Link 0, Lane 2	Link O, Lane 2	Link O, Lane 2	Link 0, Lass 0			
	Lane 1		Link 0, Lane 1	Link O, Lane 1	Link 0, Lane 1		Link 0, Lane 1	Link 0, Lane 1	Link 0, Lane 1	Link 0,	Lane I		Link 0, Lane 1			Link O, Lane 1	Link 0, Lane 1	Link O, Lane 1	Link O, Lane 1	Link 0, Lass 1			
	Lane O		Link O, Lane O	Link O, Lane O	Link 0, Lane 0	Link O, Lane O	Link 0, Lane 0	Link O, Lane O	Link O, Lane O	Link 0, Last 0	Lane U		Link 0, Lane 0			Link O, Lane O	Link 0, Lane 0	Link O, Lane O	Link O, Lane O	Link 0, Lanc 0	Paris o		
	Resulting Link		1 x4 (Host 0 only)	1 x4 (Host 0 only)	1 x2 (Host 0 only)	1 x1 (Host 0 only)	2 x4	4 x4	2 x4	4 x4			2 x4			1 x4 [Host 0 only]	2 x4 [Host 0 & 2 only]	2 x4 (Host 0 & 2 only)	4 x 4	4 x4			
BIF[2:0]		0b110	0b110	0b110	0b110	0b110	0b110	0b110	06110	01.440	2190	0b110	0b110	0b110	0b110	0b110	0b110	0b110	06110	06110	0b110	0b110	01.440
	Upstream Links	4 Links	4 Links	4 Links	4 Links	4 Links	4 Links	4 Links	4 Links	4 Links		4 Links	4 Links	4 Links	4 Links	4 Links	4 Links	4 Links	4 Links	4 Links	4 Links	4 Links	4 1 to 1 to
, 4 XC, 4 XI	am Devices	ream Sockets	ream Sockets	ream Sockets	ream Sockets	ream Sockets	ream Sockets	ream Sockets	ream Sockets	ream Sockets		ream Sockets	ream Sockets	ream Sockets	ream Sockets	ream Sockets	ream Sockets	ream Sockets	ream Sockets	ream Sockets	ream Sockets	ream Sockets	Contractor of the second second second second second second second second second second second second second se
4 X4	Upstre	4 Upstr	4 Upst	4 Upst	4 Upst	4 Upst		4 Upsti	4 Upst	4 Upsti	4 Upsti	4 Upst	4 Upst	4 Upst	4 Upst	4 Upst	4 Upst	4 Upst	1 1				
	Host	4 Host	4 Host	4 Host	4 Host	4 Host	4 Host	4 Host	4 Host	4 Host		4 Host	4 Host	4 Host	4 Host	4 Host	4 Host	4 Host	4 Host	4 Host	4 Host	4 Host	1 11-11
Add-in-Card	Encoding PRSNTB[3:0]#	0b1111	0b1110	0b1 110	0b1 110	0b1 110	0b1 101	0b1 101	0b1 100	0b1100		0b1011	0b1 010	0b1001	0b1000	060111	0b0 110	0b0 101	0b0 100	0b0 011	0b0010	00001	OBODO
N Sockets, Four Upstream Links Supported Bifurcation	Modes	Card Not Present	1x8,1x4,1x2,1x1	1x4,1x2,1x1	1x2,1x1	1×1	1×8, 1×4, 1×2, 1×1 2 ×4, 2 ×2, 2 ×1	2 x8, 2 x4, 2 x2, 2 x1 4 x4, 4 x2, 4 x1	1 x8, 1 x4 2 x4, 4 x2 (First 8 lanes), 4 x1	1×16, 1×8, 1×4	z xo, z x4, 4 x4, 4 x2 (First 8 lanes), 4 x1	RSVD C	2 x4, 2 x2, 2 x1 1 x4, 1 x2, 1 x1	RSVD for future x8 encoding	RSVD for future x8 encoding	1x16, 1x8, 1x4, 1x2, 1x1	2 x8, 2 x4, 2 x2, 2 x1	1 x16, 1 x8, 1 x4, 1 x2, 1 x1 2 x8, 2 x4, 2 x2, 2 x1	1 x16, 1 x8, 1 x4 2 x8, 2 x4, 2 x2, 2 x1 4 x4, 4 x2, 4 x1	4 x4, 4 x2, 4 x1	BSVD	BSVD	10100
st, Four Upstrea	Card Short Name	Not Present	1×8	1 ×4	1x2	1x1	1 x8 Option B	2 x8 Option B	1 x8 Option D		1 x16 Option D	RSVD 1	2 14	RSVD	RSVD	1×16	2 x8 Option A	1 x16 Option B	1×16 Option C		BSVD	BSVD	Dour Dour
₽́ , ,	ard			0			0					2		20	svp	0		0			20	SVD	ovo.

(BIF[2:0]#=0b110)

Table 30: Bifurcation for Quad Host, Quad Sockets and Quad Upstream Links

	ane 15																								
	ane 14																						T		
	Lane 13																						T		
	Lane 12																						T		
	Lane 11																						T		
	Lane 10																						T		
	Lane 9																	Link 1, Lane 1	Link 1, Lanc 1	Link 2,	Lane 1		T		
	Lane 8																	Link 1. Lane 0	Link 1, I ane 0	Link 2,	Lane 0		T		
	Lane 7								Link 3,	Lane 1	Link 3,	Lane 1											T		
	Lane 6								Link 3,	Lane 0	Link 3,	Lane 0											T		
	Lane 5								Link 2,	Lane 1	Link 2,	Lane 1										Link 1, Lane 1			
	Lane 4								Link 2,	Lane O	Link 2,	Lane O										Link 1, Lane ()			
	Lane 3						Link 1, Lane 1	Link 1, Lane 1	Link 1,	Lane 1	Link 1,	Lane 1		Link 1. Lane 1											
	Lane 2						Link 1. Lane 0	Link 1, Lane 0	Link 1,	Lane 0	Link 1,	Lane 0		Link 1. Lane 0											
	Lane 1		Link O, Lane 1	Link O, Lane 1	Link 0, Lane 1		Link O, Lane 1	Link 0, Lane 1	Link 0,	Lane 1	Link O,	Lane 1		Link O. Lane 1			Link O, Lane 1	Link O. Lane 1	Link 0, Lane 1	Link O,	Lane 1	Link 0, Lane 1			
	Lane O		Link O, Lane O	Link 0, Lane 0	Link 0, Lane 0	Link O, Lane O	Link O, Lane O	Link 0, Lane 0	Link O,	Lane O	Link O,	Lane O		Link O, Lane O			Link O, Lane O	Link O, Lane O	Link 0, Lane 0	Link O,	Lane O	Link 0, Lane 0			
	Resulting Link		1 x2 (Host 0 only)	1 x2 (Host 0 only)	1 x2 (Host 0 only)	1x1 (Host 0 only)	2 x2 (Host 0 & 1 only)	2 x2 (Host 0 & 1 only)	4 x2		4 x2			2 x2 [Host 0 & 1 only]			1 x2 [Host 0 only]	1 x2 [Host 0 & 1 only]	2 x2 (Host 0 & Loslu)	2 X2	(Host 0 & 1 only)	4 x2 (Host 0 & Loolu)			
	31F[2:0] \$	0b111	0b111	0b111	0b111	0b111	0b111	0b111		0b111		0b111	0b111	0b111	0b111	0b111	0b111	0b111	0b111		0b111	0b111	0b111	0b111	0b111
	Upstream E	Lor 8 x2 Links	t or 8 x2 Links	t or 8 x2 Links	L or 8 x2 Links	t or 8 x2 Links	t or 8 x2 Links	L or 8 x2 Links	L or 8 x2 Links		t or 8 x2 Links		L or 8 x2 Links	t or 8 x2 Links	Lor 8 x2 Links	Lor 8 x2 Links	t or 8 x2 Links	L or 8 x2 Links	L or 8 x2 Links	t or 8 x2 Links		t or 8 x2 Links	Lor 8 x2 Links	t or 8 x2 Links	L or 8 x2 Links
4 x2, 4 x1	Upstream Devices	4/8 Upstream Sockets	4/8 Upstream Sockets	4/8 Upstream Sockets	4/8 Upstream Sockets	4/8 Upstream Sockets	4/8 Upstream Sockets	4/8 Upstream Sockets	4/8 Upstream Sockets		4/8 Upstream Sockets		4/8 Upstream Sockets	4/8 Upstream Sockets	4/8 Upstream Sockets	4/8 Upstream Sockets	4/8 Upstream Sockets	4/8 Upstream Sockets	4/8 Upstream Sockets	4/8 Upstream Sockets		4/8 Upstream Sockets	4/8 Upstream Sockets	4/8 Upstream Sockets	4/8 Upstream Sockets
	Host	4/8 Host	4/8 Host	4/8 Host	4/8 Host	4/8 Host	4/8 Host	4/8 Host	4/8 Host		4/8 Host		4/8 Host	4/8 Host	4/8 Host	4/8 Host	4/8 Host	4/8 Host	4/8 Host	4/8 Host		4/8 Host	4/8 Host	4/8 Host	4/8 Host
Upetream links	Add-in-Card Encoding PRSNTB(3:0)#	0b1111	0b1 110	0b1 110	0b1 110	0b1 110	0b1 101	0b1 101	0b1100		0b1100		0b1 011	0b1 010	0b1001	0b1000	060111	0b0 110	0b0 101	0b0100		0b0 011	0b0 010	00001	000000
ht Upstream Sockets, Four/Eight	Supported Bifurcation Modes	Card Not Present	1x8,1x4,1x2,1x1	1x4,1x2,1x1	1x2,1x1	1x1	1x8,1x4,1x2,1x1 2 x4,2 x2,2 x1	2 x8, 2 x4, 2 x2, 2 x1 4 x4, 4 x2, 4 x1	1x8,1x4	2 x4, 4 x2 (First 8 lanes), 4 x1	1 x16, 1 x8, 1 x4	2 x8, 2 x4, 4 x4, 4 x2 (First 8 lanes), 4 x1	RSVD	2 x4, 2 x2, 2 x1 1 x4, 1 x2, 1 x1	RSVD for future x8 encoding	RSVD for future x8 encoding	1x16,1x8,1x4,1x2,1x1	2 x8, 2 x4, 2 x2, 2 x1	1 x16, 1 x8, 1 x4, 1 x2, 1 x1 2 v8 2 v4 2 v2 2 v1	1x16,1x8,1x4	2 x8, 2 x4, 2 x2, 2 x1 4 x4, 4 x2, 4 x1	4 x4, 4 x2, 4 x1	RSVD	RSVD	RsvD
st Host, Four/Eig	Card Short Name	Not Present	1×8	1×4	1x2	1×1	1 x8 Option B	2 x8 Option B		1 x8 Option D		1 x16 Option D	RSVD	2 x4	RSVD	RSVD	1×16	2 x8 Option A	1 v16 Ontion B		1 x16 Option C	4 v 4	RSVD	RSVD	RSVD
Quad/O.	Min Card Videb	e ju	SC	50	SC	20	50	ţ.		50		40	RSVD	S	RSVD	RSVD	Ş	Q Q	ų,		4	U.	BSVD	RSVD	RSVD

(BIF[2:0]#=0b110)

3.9 Power Capacity and Power Delivery

There are four permissible power states: AC Power Off, ID Mode, Aux Power Mode (S5), and Main Power Mode (S0). The transition of these states is shown in Figure 31. The max available power envelopes for each of these states are defined in Table 31.

Figure 31: Baseboard Power States

Table 31: Power States

Power State	PWRDIS	PERSTn	FRU	Scan	RBT	3.3V	12V
				Chain	Link		
AC Power Off	Low	Low					
ID Mode	High	Low	Х	Х		Х	Х
Aux Power Mode (S5)	Low	Low	Х	Х	Х	Х	Х
Main Power Mode (S0)	Low	High	Х	Х	Х	Х	Х

3.9.1 AC Power Off

In AC power off mode, all power delivery has been turned off or disconnected from the baseboard.

3.9.2 ID Mode

In the ID Mode, only 3.3V Aux is available for powering up management only functions. FRU accesses are only allowed in this mode.

3.9.3 Aux Power Mode (S5)

In Aux Power Mode provides both 3.3V Aux as well as 12V Aux is available. 12V Aux may be used to deliver power to the add-in card, but only up to the Aux budget of 35W.

3.9.4 Main Power Mode (S0)

In Main Power Mode provides both 3.3V and 12V (Main) across the OCP connector. The add-in card operates in full capacity. Up to 80W may be delivered on 12V, and 3.63W on the 3.3V pins.

3.10 Power Supply Rail Requirements

The baseboard provides 3.3Vaux and 12Vaux/main to both the Primary and Secondary connectors. The rail requirements are leveraged from the PCIe CEM 4.0 specification. For OCP NIC 3.0 cards, the requirements are as follows:

Power Rail	35W Slot	80W Slot	150W
	Small Card Hot Aisle	Small Card Cold Aisle	Large Card Cold Aisle
3.3V			
Voltage Tolerance	±9% (max)	±9% (max)	±9% (max)
Supply Current			
ID Mode	375mA (max)	375mA (max)	375mA (max)
Aux Mode	1.1A (max)	1.1A (max)	2.2A (max)
Main Mode	1.1A (max)	1.1A (max)	2.2A (max)
Capacitive Load	150µF (max)	150µF (max)	300µF (max)
12V			
Voltage Tolerance	±8% (max)	±8% (max)	±8% (max)
Supply Current			
ID Mode	100mA (max)	100mA (max)	100mA (max)
Aux Mode	1.5A (max)	3.3A (max)	6.3A (max)
Main Mode	2.9A (max)	6.6A (max)	12.5A (max)
Capacitive Load	1000µF (max)	1000µF (max)	2000µF (max)

Table 32: Baseboard Power Supply Rail Requirements – Slot Power Envelopes

Note: While cards may draw up to the published current rating, the baseboard vendor shall evaluate its cooling capacity for each slot power envelope.

3.11 Hot Swap Considerations for 12V and 3.3V Rails

For baseboards that support system hot (powered on) add-in card insertions and extractions, the system implementer shall consider the use of hotswap controllers on both the 12Vmain/aux and 3.3Vaux pins to prevent damage to the baseboard or the add-in card. Hotswap controllers help with in-rush current limiting while also providing overcurrent protection, undervoltage and overvoltage protection capabilities.

The hotswap controller may gate the 12Vmain/aux and 3.3Vmain/aux based on the PRSNTB[3:0]# value. Per Section 3.6.3, a card is present in the system when the encoded value is not 0b1111. The PRSNTB[3:0]# can be AND'ed together and connected to the hotswap controller to accomplish this result. Per the OCP NIC 3.0 mechanical definition (Section XXX), the present pins are short pins and engage only when the card is positively seated.

Baseboards that do not support hot insertion, or hot extractions may opt to not implement these features.

3.12 Power Sequence Timing Requirements

The following figure shows the power sequence of PRSNTB[3:0]#, 3.3Vaux, 12Vaux/12Vmain relative to PWRDIS, BIF[2:0]#, PERSTn*, the add-in card power ramp and NIC_PWR_GOOD.

Figure 32: Power Sequencing

Table 33: Power Sequencing Parameters

Parameter	Value	Units	Description
T _{ss}	20	ms	Max time between system 3.3Vaux and 12Vaux/main ramp
			to power stable.
T _{AUXVALID}	>1	ms	Min time between 3.3Vaux valid to PWRDIS assertion.
T _{BIFVALID}	>1	ms	Min time between BIF[2:0]# valid to PWRDIS assertion. The
			BIF[2:0]# value sets the add-in card bifurcation mode (if
			applicable)
T _{PL}	</td <td>ms</td> <td>Max time between the NIC payload power ramp to</td>	ms	Max time between the NIC payload power ramp to
			NIC_PWR_GOOD assertion
T _{PVPERL}	>100	ms	Max time between PWRDIS deassertion and PERST#
			deassertion. This value is from the PCIe CEM Specification,
			Rev 4.0.

4 Management

4.1 NC-SI Over RBT Sideband Interface

NC-SI Over RBT provides a low speed management path for the add-in card. This is implemented via RMII pins between the BMC and the add-in card. NC-SI Over RBT is the recommended management method for OCP NIC 3.0 cards. Protocol and implementation details can be found in the DMTF DSP0222 standard.

4.1.1 NC-SI Over RBT Addressing

NC-SI Over RBT capable devices must use a unique Package ID to ensure there are no addressing conflicts.

Baseboards use the SlotID pin on the Primary Connector for this identification. The SlotID value may be directly connected to GND (Slot ID = 0), or pulled up to 3.3Vaux (Slot ID = 1).

For add-in cards, Package ID[2:0] is a 3-bit field and is encoded in the NC-SI Channel ID as bits [7:5]. Package ID[2] is defaults to 0b0 in the NC-SI specification, but is optionally configurable if the target silicon supports configuring this bit. Package ID[1] is connected to the SLOT_ID pin and is directly connected to the SlotID pin. Package ID[0] is set to 0b0 for Network Silicon #0. For OCP NIC 3.0 add-in cards with two discrete silicon instances, Package ID[1] is set to 0b1. Refer to the endpoint device datasheet for details on the Package ID configuration options.

Up to four silicon devices are supported on the bus if only Package ID[1:0] is configurable (e.g. Package ID[2] is statically set to 0b0). Up to eight silicon devices are supported on the NC-SI bus if Package ID[2:0] are all configurable. Refer to the DMTF DSP0222 standard for more information.

4.1.2 Arbitration Ring Connections

For baseboards that implement two or more Primary Connectors, the NC-SI Over RBT arbitration ring may be connected to each other. The arbitration ring must support operation with a one card, or both cards installed. Figure 21 shows an example connection with dual Primary Connectors.

4.2 SMBus Interface

The SMBus provides a low speed management bus for the add-in card. The FRU EEPROM and on-board temperature sensors are connected on this bus. Additionally, network controllers may utilize the SMBus interface for NC-SI over MCTP. Proper power domain isolation shall be implemented on the NIC.

Note: The preferred network controller management path is NC-SI Over RBT, as described in Section 4.1. Silicon devices may offer both a SMBus and NC-SI Over RBT interface. In such instances, the add-in card developer shall choose NC-SI Over RBT.

4.2.1 SMBus Address Map

All predefined SMBus addresses for OCP NIC 3.0 are shown in Table 34. Baseboard and add-in card designers must ensure additional devices do not conflict. The addresses shown are in 8-bit format and represent the read/write address pair.

Address (8-bit)	Device	Notes
0xTBD	Network	Value dependent on NIC vendors.
	Controller IC	
0x98 / 0x99	Temperature	TMP422/423 Temperature sensor
	Sensor	
		Optional. Used for remote on-die thermal sensing.
		Optional. Powered from Aux power domain.
0x9E / 0x9F	Temperature	Emulated TMP421 Temperature sensor.
	Sensor	
		Optional. Thermal reporting is emulated from the target
		device. The communication interface is over SMBus and
		is compliant to the TMP421 register definition.
0x9E / 0x9F	Temperature	TMP421 Temperature sensor.
	Sensor	
		Optional. Used for remote on-die thermal sensing.
		Optional. Powered from Aux power domain.
0xA2 / 0xA3	EEPROM	On-board FRU EEPROM.

Table 34: Power Sequencing Parameters

Mandatory. Powered from Aux power domain.		
		Mandatory. Powered from Aux power domain.

4.3 MAC Address Requirements

Placeholder; needs other editors' help. AR: Jia for internal feedback<mark>.</mark> [Editor's note: TN 20171215] Is the MAC address information located in the FRU EEPROM or is it a separate device all together?

4.4 FRU EEPROM

4.4.1 FRU EEPROM Address, Size and Availability

The FRU EEPROM provided for the baseboard to determine the card type and is directly connected to the SMBus on the card edge. Only one EEPROM is required for a single physical add-in card regardless of the PCIe width or number of physical card edge connectors it occupies. The FRU EEPROM shall be connected to the Primary connector SMBus.

The EEPROM is addressable at 0xA2/0xA3 for the write/read pair in 8-bit format. The size of EEPROM is 1Kbits for the base EEPROM map. Add-in card suppliers may use larger size EEPROM if needed to store vendor specific information.

The FRU EEPROM is readable in all three power states (ID mode, AUX(S5) mode, and MAIN(S0) mode.

4.4.2 FRU EEPROM Content Requirements

The FRU EEPROM shall follow the data format specified in the IPMI Platform Management FRU Information Storage Definition v1.2. Use OEM record 0xC0, offset 0x01 through 0x05 to store specific records for the OCP NIC.

Table 35: FRU EEPROM Record – OEM Record 0xC0, Offset 0x00

Offset 0 Description

	Manufacturer ID, LS Byte first (3 bytes total)
--	--

Table 36: FRU EEPROM Record – OEM Record 0xC0, Offset 0x01

Offset 1	Primary Connector PRSNTB [3:0]#
0b1110 (ox0E)	Follows Pinout; to be filled after the pinout table is fixed
0b1101 (ox0D)	
0b1100 (0x0C)	
0b1010 (0x0A)	
0b0111 (0x07)	
0b0110 (0x06)	
0b0101 (0x05)	
0b0100 (0x04)	
0b0011 (0x03)	
0b1011 (0x0B)	Not a valid reading – Wrong EEPROM programming
0b1111 (0x0F)	Not a valid reading – Wrong EEPROM programming
All others	RFU
No FRU device	No NIC connected / bad connection
detected	

Table 37: FRU EEPROM Record – OEM Record 0xC0, Offset 0x02

Offset 2	Secondary Connector PRSNTB [3:0]#
0b1110 (ox0E)	Follows Pinout; to be filled after the pinout table is fixed
0b1101 (ox0D)	
0b1100 (0x0C)	
0b1010 (0x0A)	
0b0111 (0x07)	
0b0110 (0x06)	
0b0101 (0x05)	
0b0100 (0x04)	
0b0011 (0x03)	

0b1011 (0x0B)	Not a valid reading – Wrong EEPROM programming
0b1111 (0x0F)	Not a valid reading – Wrong EEPROM programming
All others	RFU
No FRU device	No NIC connected / bad connection
detected	

Table 38: FRU EEPROM Record – OEM Record 0xC0, Offset 0x03

Offset 3	Card max power in Aux(S5)	
0x01 - 0xFE	Hex format in Watts when NIC is in AUX(S5) mode; LSB = 1x Watt;	
	roundup to the nearest Watt for fractional values.	
0xFF	Invalid entry	
0x00	Invalid entry	

Table 39: FRU EEPROM Record – OEM Record 0xC0, Offset 0x04

Offset 4	Card max power in Main(S0)	
0x01 - 0xFE	Hex format in Watts when NIC is in Main (S0) mode; LSB = 1x Watt;	
	roundup to the nearest Watt for fractional values.	
0xFF	Invalid entry	
0x00	Invalid entry	

Table 40: FRU EEPROM Record – OEM Record 0xC0, Offset 0x05

Offset 5	Thermal Reporting Interface
0x01	Emulated thermal reporting on SMBus
0x02	Remote on-die sensor with TMP421 on SMBus
0x04	PLDM thermal reporting via NC-SI over RBT

4.5 FW Requirements

(Editors note (Jia): Tentative list; collecting feedback)

4.5.1 Firmware Update

• The OCP NIC 3.0 add-in card shall support device firmware upgrades from the BMC controller.

4.5.2 Secure Firmware

- The OCP NIC 3.0 add-in card shall support secured firmware.
- Where the secured firmware feature is enabled, the OCP NIC 3.0 add-in card shall allow only update and execute signed firmware.

4.5.3 Firmware Queries

• The OCP NIC 3.0 add-in card shall allow queries to obtain the firmware version, device model, and device ID via in-band and out-of-band interfaces without impacting NIC function and performance of said paths.

4.5.4 Multi-Host Firmware Queries

- A multi-host capable OCP NIC 3.0 add-in card shall gracefully handle concurrent inband queries from multiple hosts and out-of-band access from the BMC the management status and firmware, device model, and device ID information.
- A multi-host capable OCP NIC 3.0 add-in card shall only permit one entity to perform write accesses to NIC firmware at a time, without creating contention.
- A multi-host capable OCP NIC 3.0 add-in card shall gracefully handle exceptions when more than one entity attempts to perform concurrent NIC firmware writes.

4.6 Thermal Reporting Interface

The OCP NIC 3.0 thermal reporting interface is defined on the primary connector SMBus or via NC-SI over RBT depending on the implementation method described in this section.

This requirement improves the system thermal management and allows the baseboard management device to access key component temperatures on an OCP NIC.

There are three defined methods to implement thermal reporting described in this section: emulated thermal reporting, remote on-die sensing and via Platform Level Data Model (PLDM).

Emulated thermal reporting and remote on-die sensing the two methods defined in OCP NIC 2.0 and is used in the current 3.0 spec release. In both cases, the BMC treats the temperature sensors as a TI/TMP421 (or equivalent) device. The temperature sensor is accessible at slave address 0x3E/0x3F as the read/write pair in 8-bit format over the SMBus.

The third reporting method is using PLDM. This is the recommend implementation for OCP NIC 3.0. PLDM uses the NC-SI over RBT as the underlying protocol.

A thermal reporting interface is required for all OCP NIC 3.0 complaint cards with a TDP > 10W.

Thermal reporting interface shall be accessible in AUX(S5) mode, and MAIN(S0) mode.

4.6.1 Emulated Thermal Reporting

Emulated Thermal Reporting requires each OCP NIC 3.0 compliant device to emulate its key temperatures following the TI/TMP421 (or equivalent) register mapping¹. The slave address 0x3E/0x3F as the read/write pair in 8-bit format over the Primary Connector SMBus.

The baseboard will threat the thermal sensor as a TMP421. The baseboard BMC controller must use two separate reads to obtain the MSB and LSB of temperature data. This information is used for system thermal monitoring and fan speed control.

There are two temperatures for TMP421 register mapping – remote channel 1 and local. Remote channel 1 is typically used to represent key controller temperature of the card. This measures the temperature using a remote diode. The local channel is typically used to represent highest of other key components temperature on the card, such as highest temperature of active cable module.

An implementation block diagram is shown in .

¹ TMP421 specification: http://www.ti.com/lit/ds/sbos398c/sbos398c.pdf

If an additional temperature sensitive device needs monitoring, the emulated controller can be changed to a TMP422/TMP423 in addition to the register map. The TMP422/TMP423 slave address of emulated device is always 0x3E/0x3F as a read/write 8-bit address pair.

The vendor ID and device ID are mapped to offset 0xFE and 0xFF for the BMC to detect card types.

Power reporting and power capping are mapped to offset 0xF2 and 0xF3 as an optional feature to achieve device power monitoring and power capping level setting.

Table 41: describes the register implementation requirement for emulated method.

Offset	Description	Original	Implementation requirement for emulated method
		TMP offset	

Table 41: Implementation Requirement for TMP421 Registers

		Y	Represents highest temperature of all other key components		
0x0	Local Temperature		Required if any of the other key components or		
	(High Byte)		modules are critical for thermal design		
			Otherwise it is an optional offset and return 0x00 if not used		
	Remote	Υ	Required; represent temperature of main controller		
0x1	Temperature 1 (High Byte)				
	Remote	Y	Optional; represent temperature of key component		
0x2	Temperature 2 (High Byte)		1; return 0x00 if not used		
	Remote	Υ	Optional; represent temperature of key component		
0x3	Temperature 3 (High Byte)		2; return 0x00 if not used		
0x8	Status Register	Y	Not required		
0x9	Configuration	Y	Not required; Emulated behavior follows SD=0,		
	Register 1		Temperature Range=0		
0x0A	Configuration	Υ	Required; follow TMP423 datasheet to declare the		
	Register 2		channel supported; RC=1		
0x0B	Conversion Rate	Y	Not required; Equivalent emulated conversion rate		
	Register		snould be >2 sample/s		
0x0F	One-Shot Start	Y	Not required		
0x10	Local Temperature (Low Byte)	Y	Optional; return 0x00 if not used		
0x11	Remote	Y	Optional; return 0x00 if not used		
	Temperature 1				
	(Low Byte)				
0x12	Remote	Y	Optional; return 0x00 if not used		
	Temperature 2				
	(LOW Dyte)				

	Remote	Υ	Optional; return 0x00 if not used	
0x13	Temperature 3			
	(Low Byte)			
0x21	N Correction 1	Y	Not required	
0x22	N Correction 2	Y	Not required	
0x23	N Correction 3	Y	Not required	
0xF0	Manufacturer	Ν	High byte of PCIe vendor ID, if using emulated	
	ID(High Byte)		temperature sensor method	
0xF1	Device ID(High	Ν	High byte of PCIe device ID, if using emulated	
	Byte)		temperature sensor method	
0xF2	Power reporting	N	Optional; card power reporting; 1LSB=1W; Read only	
0xF3	Power capping	N	Optional; card power capping; 1LSB=1W; Read/Write	
0xFC	Software Reset	Y	Not required	
0xFE	Manufacturer ID	Y(redefined)	Low byte of PCIe vendor ID, if using emulated	
			temperature sensor method	
0xFF	Device ID	Y(redefined)	Low byte of PCIe device ID, if using emulated	
			temperature sensor method	

4.6.2 Remote on-die sensing

Alternatively, one TMP421 sensor can be used to do on die temperature sensing for IC with thermal diode interface with TMP421 remote sensing channel; Connection diagram is shown in . For NIC needs more than one remote on-die sensing, TMP422/TMP423 can be used and slave address is 0x98(8bit) for this case.

4.6.3 PLDM Method

Placeholder; needs other editors' help.

4.6.4 Thermal reporting accuracy

The recommended accuracy for temperature sensors on the card is ±3°C

5 Data Network Requirement

5.1 Network Boot

OCP NIC 3.0 shall support network booting in uEFI system environment with both IPv4 and IPv6 network booting.

For UEFI booting, below features are required (tentative list; collecting feedback)

- EFI_DRIVER_BINDING_PROTOCOL (for starting and stopping the driver)
- EFI_DEVICE_PATH_PROTOCOL (provides location of the device)
- EFI_MANAGED_NETWORK_SERVICE_BINDING_PROTOCOL (asynchronous network packet I/O services)
- EFI_DRIVER_DIAGNOSTICS2_PROTOCOL & EFI_DRIVER_DIAGNOSTICS_PROTOCOL (driver will allow the UEFI shell command *drvdiag* to perform a cursory check of the connections managed by the driver)
- Human Interface Infrastructure (HII) protocols
- EFI_DRIVER_HEALTH_PROTOCOL

EFI_FIRMWARE_UPDATE_PROTOCOL

6 Routing Guidelines and Signal Integrity Considerations

6.1 NC-SI Over RBT

For the purposes of this specification, the min and max electrical trace length of the NC-SI signals shall be between 2 inches and 4 inches. The traces shall be implemented as 50 Ohm impedance controlled nets.

6.2 PCIe

This section is a placeholder for the PCIe routing guidelines and SI considerations.

Add-in card suppliers shall follow the PCIe routing specifications.

At this time, the OCP NIC subgroup is working to identify and agree to the channel budget for an add-in card and leave sufficient margin for the baseboard.

Refer to the PCIe CEM and PCIe Base specifications for end-to-end channel signal integrity considerations.

7 Thermal and Environmental

7.1 Environmental Requirements

Specifics are not included to permit adoption of OCP 3.0 NIC in systems with varying thermal requirements and boundary conditions. The system adopting OCP NIC should define air flow direction, local approach air temperature and speed to the NIC, operational altitude and relative humidity.

For example, a system configured with I/O facing the cold aisle, can specify approach air temperature and speed of 35°C and 200 LFM respectively, with airflow impinging on the I/O modules first and an operational altitude of 6000 feet.

7.1.1 Thermal Reporting interface

[Link to 4.6; this session can be incorporated into Chapter 4.6] The NIC should support temperature reporting for key components on the card (including readings from active I/O modules). To improve thermal efficiency, the recommended accuracy for temperature sensors on the card is ±3°C. A power reporting interface is optional for low-power NICs (less than 10W), but strongly recommended for higher-powered NICs.

7.1.2 Thermal Simulation Boundary Example

Placeholder for the link to upcoming test fixture documentation (under development).

7.2 Shock & Vibration

This specification does not cover the shock and vibration testing requirements for an OCP NIC 3.0 add in card or its associated baseboard systems. OCP NIC 3.0 components are deployed in various environments. It is up to each add-in card and baseboard vendor to decide how the shock and vibration tests shall be done.

7.3 Regulation

An OCP NIC 3.0 add-in card shall meet CE, CB, FCC Class A, WEEE, and RoHS requirements.

8 Revision History

Author	Description	Revision	Date
Thomas Ng	Initial draft	0.1	12/xx/2017