

OCP NIC 3.0 Design Specification

Version 0.01

Author: OCP Server Workgroup, OCP NIC subgroup

Table of Contents

1	Ove	erview		7
	1.1	Lice	ense	7
	1.2	Bac	ckground	8
	1.3	Ack	knowledgements	9
	1.4	Ove	erview	9
		1.4.1	Mechanical Form factor overview	9
		1.4.2	Electrical overview	
	1.5	Ref	ferences	
2	Car	d Form	Factor	
	2.1	Ove	erview	
	2.2	For	m Factor Options	14
	2.3	I/O) bracket	
	2.4	Lin	e Side I/O Implementations	<u>1616</u>
	2.5	LEC	O Implementations	
		2.5.1	Baseboard LEDs Configuration Over the Scan Chain	
		2.5.2	Add-in Card LED Configuration	<u>19</u> 19
		2.5.3	LED Ordering	<u>2020</u>
	2.6	Me	chanical Keepout Zones	
		2.6.1	Baseboard Keep Out Zones	
		2.6.2	Add-in Card Keep Out Zones	
	2.7	Lab	peling Requirements	<u>2121</u>
	2.8	Ins	ulation Requirements	
	2.9	NIC	C Implementation Examples	<u>2121</u>
	<mark>2.10</mark>) <mark>No</mark>	<mark>n-NIC Use Cases</mark>	
		<mark>2.10.1</mark>	PCIe Retimer card	<u>2121</u>
		<mark>2.10.2</mark>	Accelerator card	
		<mark>2.10.3</mark>	Storage HBA / RAID card	
3	Car	d Edge	and Baseboard Connector Interface	<u>2222</u>
	3.1	Go	ld Finger Requirement	

	3.1.1	Gold Finger Mating Sequence	<u>2323</u>
3.2	Ва	seboard Connector Requirement	<u>2626</u>
3.3	Pir	definition	<u>2727</u>
3.4	Sig	nal Descriptions – Common	<u>3333</u>
	3.4.1	PCIe Interface Pins	<u>3333</u>
	3.4.2	PCIe Present and Bifurcation Control Pins	<u>37</u> 37
	3.4.3	SMBus Interface Pins	<u>3939</u>
	3.4.4	Power Supply Pins	<u>40</u> 40
	3.4.5	Miscellaneous Pins	<u>42</u> 42
3.5	Sig	nal Descriptions – OCP Bay (Primary Connector)	<u>42</u> 42
	3.5.1	PCIe Interface Pins – OCP Bay (Primary Connector)	<u>43</u> 43
	3.5.2	NC-SI Over RBT Interface Pins – OCP Bay (Primary Connector)	<u>45</u> 45
	3.5.3	Scan Chain Pins – OCP Bay (Primary Connector)	<u>5151</u>
	3.5.4	Primary Connector Miscellaneous Pins – OCP Bay (Primary Connector). <u>61</u> 59
3.6	PC	Ie Bifurcation Mechanism	<u>62</u> 60
	3.6.1	PCIe Add-in Card to Baseboard Bifurcation Configuration (PRSNTA#,	
	PRSNT	B[3:0]#)	<u>6361</u>
	3.6.2	PCIe Baseboard to Add-in Card Bifurcation Configuration (BIF[2:0]#)	<u>6361</u>
	3.6.3	PCIe Bifurcation Decoder	<u>6462</u>
	3.6.4	Bifurcation Detection Flow	<u>66</u> 64
	3.6.5	PCIe Bifurcation Examples	<u>6765</u>
3.7	PC	Ie Clocking Topology	<u>73</u> 71
3.8	PC	Ie Bifurcation Results and REFCLK Mapping	<u>75</u> 73
3.9	Ро	wer Capacity and Power Delivery	<u>8482</u>
	3.9.1	AC Power Off	<u>8582</u>
	3.9.2	ID Mode	<u>8582</u>
	3.9.3	Aux Power Mode (S5)	<u>8583</u>
	3.9.4	Main Power Mode (S0)	<u>8583</u>
3.10) Po	wer Supply Rail Requirements	<u>8583</u>
3.11		t Swap Considerations for 12V and 3.3V Rails	_
3.12		wer Sequence Timing Requirements	
	-	ent	
4.1	S№	1Bus Interface	<u>89</u> 86

http://opencompute.org

8	Rev	ision Hi	story	9389
	7.3	Reg	gulation	<u>92</u> 88
	7.2	Sho	ock & Vibration	<u>92</u> 88
		7.1.1	Thermal Simulation Boundary Example	<u>92</u> 88
	7.1	Env	vironmental Requirements	<u>92</u> 88
7	The	ermal an	d Environmental	<u>92</u> 88
	6.1	NC	-SI Over RBT	<u>92</u> 88
6	Ro	uting Gu	idelines and Signal Integrity Considerations	<u>92</u> 88
	5.1	Net	twork Booting (collect view from OEMs and hyperscale)	<u>91</u> 87
5	Dat	ta Netwo	ork Requirement	<u>91</u> 87
	4.6	The	ermal Reporting Interface	
	4.5	FW	Requirement (TBD)	<u>90</u> 86
		4.4.3	EEPROM Address	<u>90</u> 86
		4.4.2	EEPROM Map Definition	<u>89</u> 86
		4.4.1	Minimum EEPROM Size	
	4.4	FRI	J EEPROM	
	4.3	MA	C Address Requirement	<u>89</u> 86
		4.2.1	NC-SI addressing and Arb#	<u>89</u> 86
	4.2	NC	-SI Sideband Interface	

Rev0.01

List of Figures

Figure 1: Representative Small OCP NIC 3.0 Card with Quad SFP Ports	8
Figure 2: Representative Large OCP NIC 3.0 Card with Dual QSFP Ports and on-board DRAM	9
Figure 3: Small and Large Card Form-Factors (not to scale)	
Figure 4: Example Small Card Form Factor	
Figure 5: Example Large Card Form Factor	
Figure 6: Primary Connector (4C + OCP Bay) with 4C and 2C Add-in Cards	
Figure 7: LED Ordering – Example Small Card Link/Activity and Speed LED Placement	
Figure 8: Small Size Primary Connector Gold Finger Mating Card Dimensions - x16 - Top Side	
Figure 9: Small Size Primary Connector Gold Finger Mating Card Dimensions - x16 - Bottom Side	
Figure 10: Large Size Card Gold Finger Mating Card Dimensions – x32 – Top Side	
Figure 11: Large Size Card Gold Finger Mating Card Dimensions – x32 – Bottom Side	
Figure 12: 168-pin Base Board Primary Connector – Right Angle	
Figure 13: 140-pin Base Board Secondary Connector – Right Angle	<u>2626</u>
Figure 14: 168-pin Base Board Primary Connector – Straddle Mount	
Figure 15: 140-pin Base Board Secondary Connector – Straddle Mount	<u>2626</u>
Figure 16: Primary and Secondary Connector Locations for Large Card Support	
Figure 17: PCIe Present and Bifurcation Control Pins	<u>38</u> 38
Figure 18: Example Power Supply Topology	<u>41</u> 41
Figure 19: NC-SI Over RBT Connection Example	<u>5050</u>
Figure 20: Scan Bus Connection Example	<u>58</u> 58
Figure 21: PCIe Bifurcation Pin Connections Support	<u>6361</u>
Figure 22: Single Host (1 x16) and 1 x16 Add-in Card (Single Controller)	<u>6765</u>
Figure 23: Single Host (2 x8) and 2 x8 Add-in Card (Dual Controllers)	<u>6866</u>
Figure 24: Four Hosts (4 x4) and 4 x4 Add-in Card (Single Controller)	<u>69</u> 67
Figure 25: Four Hosts (4 x4) and 4 x4 Add-in Card (Four Controllers)	<u>70</u> 68
Figure 26: Single Host with no Bifurcation (1 x16) and 2 x8 Add-in Card (Two Controllers)	<u>72</u> 70
Figure 27: PCIe Interface Connections for 1 x16 and 2 x8 Add-in Cards	<u>73</u> 71
Figure 28: PCIe Interface Connections for a 4 x4 Add-in Card	
Figure 29: Baseboard Power States	<u>84</u> 82
Figure 30: Power Sequencing	<u>87</u> 84

List of Tables

Table 1: OCP 3.0 Form Factor Dimensions	10
Table 2: Baseboard to OCP NIC Form factor Compatibility Chart	11
Table 3: OCP NIC 3.0 Card Definitions	16
Table 4: OCP 3.0 Line Side I/O Implementations	<u>1716</u>
Table 5: Baseboard LED Configurations with Two Physical LEDs per Port	<u>1818</u>
Table 6: Add-in Card LED Configuration with Two Physical LEDs per Port	<u>1919</u>
Table 7: Contact Mating Positions for the Primary and Secondary Connectors	<u>2423</u>
Table 8: Primary Connector Pin Definition (x16) (4C + OCP Bay)	<u>2726</u>
Table 9: Secondary Connector Pin Definition (x16) (4C)	<u>3130</u>
Table 10: Pin Descriptions – PCIe 1	<u>3332</u>
Table 11: Pin Descriptions – PCIe Present and Bifurcation Control Pins	<u>3736</u>
Table 12: Pin Descriptions – SMBus	<u>39</u> 38
Table 13: Pin Descriptions – Power	<u>40</u> 39
Table 14: Pin Descriptions – Miscellaneous 1	<u>42</u> 41
Table 15: Pin Descriptions – PCIe 2	<u>43</u> 42
Table 16: Pin Descriptions – NC-SI Over RBT	<u>45</u> 44
Table 17: Pin Descriptions – Scan Chain	<u>5150</u>
Table 18: Pin Descriptions – Scan Chain DATA_OUT Bit Definition	<u>5452</u>
Table 19: Pin Descriptions – Scan Bus DATA_IN Bit Definition	<u>5453</u>
Table 20: Pin Descriptions – Miscellaneous 2	<u>61</u> 57
Table 21: PCIe Bifurcation Decoder for x16 and x8 Card Widths	<u>6561</u>
Table 22: PCIe Clock Associations	<u>7369</u>
Table 23: Bifurcation for Single Host, Single Socket and Single Upstream Link (BIF[2:0]#=0b000)	<u>7672</u>
Table 24: Bifurcation for Single Host, Single Socket and Single/Dual Upstream Links (BIF[2:0]#=0b000)	<u>77</u> 73
Table 25: Bifurcation for Single Host, Single Socket and Single/Dual/Quad Upstream Links (BIF[2:0]#=0b000)	. <u>78</u> 74
Table 26: Bifurcation for Single Host, Dual Sockets and Dual Upstream Links (BIF[2:0]#=0b001)	<u>79</u> 75
Table 27: Bifurcation for Single Host, Four Sockets and Dual Upstream Links (BIF[2:0]#=0b010)	<u>80</u> 76
Table 28: Bifurcation for Dual Host, Dual Sockets and Dual Upstream Links (BIF[2:0]#=0b101)	<u>81</u> 77
Table 29: Bifurcation for Quad Host, Quad Sockets and Quad Upstream Links (BIF[2:0]#=0b110)	<u>82</u> 78
Table 30: Bifurcation for Quad Host, Quad Sockets and Quad Upstream Links (BIF[2:0]#=0b110)	<u>83</u> 79
Table 31: Power States	<u>84</u> 80
Table 32: Baseboard Power Supply Rail Requirements	<u>8581</u>
Table 33: Power Sequencing Parameters	<u>88</u> 83

Rev0.01

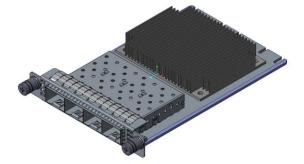
1 Overview

1.1 License

As of April 7, 2011, the following persons or entities have made this Specification available under the Open Web Foundation Final Specification Agreement (OWFa 1.0), which is available at http://www.openwebfoundation.org/legal/the-owf-1-0-agreements/owfa-1-0: Facebook, Inc.

You can review the signed copies of the Open Web Foundation Agreement Version 1.0 for this Specification at http://opencompute.org/licensing/, which may also include additional parties to those listed above.

Your use of this Specification may be subject to other third party rights. THIS SPECIFICATION IS PROVIDED "AS IS." The contributors expressly disclaim any warranties (express, implied, or otherwise), including implied warranties of merchantability, noninfringement, fitness for a particular purpose, or title, related to the Specification. The entire risk as to implementing or otherwise using the Specification is assumed by the Specification implementer and user. IN NO EVENT WILL ANY PARTY BE LIABLE TO ANY OTHER PARTY FOR LOST PROFITS OR ANY FORM OF INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES OF ANY CHARACTER FROM ANY CAUSES OF ACTION OF ANY KIND WITH RESPECT TO THIS SPECIFICATION OR ITS GOVERNING AGREEMENT, WHETHER BASED ON BREACH OF CONTRACT, TORT (INCLUDING NEGLIGENCE), OR OTHERWISE, AND WHETHER OR NOT THE OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.


1.2 Background

The OCP NIC 3.0 specification is a follow-on to the OCP 2.0 form-factor for PCIe add-in cards. The OCP NIC 3.0 specification supports two basic card sizes: Small Card, and Large Card. The Small Card allows for up to 16 PCIe lanes on the card edge while a Large Card supports up to 32 PCIe. Compared to the OCP NIC 2.0 release, the updated specification provides a broader solution space for NIC and system vendors to support the following use case scenarios:

- NICs with a higher TDP
- Support up to 79W of power delivery to a single connector (Small) card; and 158W to a dual connector (Large) card
- PCIe Gen4 and Gen5 on the system and add-in card
- Support for upto 32 lanes of PCIe per add-in card
- Support for single host and multi-host environments
- Support a greater board area for more complex add-in card designs
- Support for Smart NIC implementations with on-board DRAM
- Simplification of FRU installation and removal while reducing overall down time

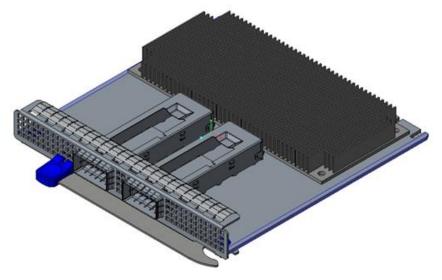

A representative Small Card OCP 3.0 NIC mezzanine card is shown in Figure 1 and a representative Large Card is shown in Figure 2.

Figure 1: Representative Small OCP NIC 3.0 Card with Quad SFP Ports

Rev0.01

Figure 2: Representative Large OCP NIC 3.0 Card with Dual QSFP Ports and on-board DRAM

In order to achieve the features outlined in this specification, OCP 3.0 compliant cards are not backwards compatible to the 2.0 cards.

This specification is created under OCP Server workgroup – OCP NIC subgroup. An electronic copy of this specification can be found on the Open Compute Project website:

http://www.opencompute.org/wiki/Server/Mezz#Specifications_and_Designs

1.3 Acknowledgements Placeholder

1.4 Overview

1.4.1 Mechanical Form factor overview

The OCP NIC 3.0 specification defines a third generation mechanical form factor that allows for interoperability between compliant baseboards and add-in cards.

OCP NIC 3.0 cards have two form factors – Small and Large. These cards are shown in Figure 3 below. The components shown in the figures are for illustrative purposes. The Small form factor card has one connector (Primary connector) on baseboard. The Large form factor card has two connectors (Primary Connector and Secondary Connector) on the baseboard. Both the Primary and Secondary connectors are defined in and compliant to SFF-TA-1002. [Editor's note: plan to submit change back to SFF-TA-1002]. On the NIC side, the card edge is implemented with gold fingers. The gold finger design follows SFF-TA-1002 as well.

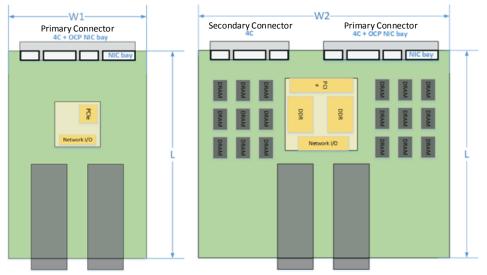


Figure 3: Small and Large Card Form-Factors (not to scale)

The two form factor dimensions are shown in Table 1.

Table 1: OCP 3.0 Form Factor Dimensions

Form	Width	Depth	Primary	Secondary	Typical Use Case
Factor			Connector	Connector	

Open Compute Project • NIC • 3.0

D	ev0	Ω1
ĸ	evu	.UI

Small	W1 = 76	L = 115	4C + OCP	N/A	Low profile and general NIC
	mm	mm	sideband		with a similar profile as an
			168 pins		OCP NIC 2.0 add-in card;
					up to x16 PCIe.
Large	W2 = 139	L = 115	4C + OCP	4C	Larger PCB width to
	mm	mm	sideband	140 pins	support feature rich NICs;
			168 pins		up to x32 PCIe.

The OCP NIC 3.0 design allows downward compatibility between the two card sizes. Table 2 shows the compatibility between the baseboard and NIC combinations. A small size baseboard slot may only accept a small sized NIC. A Large size baseboard slot may accept a small or large sized NIC.

Table 2: Baseboard to OCP NIC Form factor Compatibility Chart

Baseboard	NIC Size / Supported PCIe Width		
Slot Size	Small	Large	
Small	Up to x16	Not Supported	
Large	Up to x16	Up to x32	

There are two baseboard connector options available for system designers: straddle mount and right angle (RA). The straddle mount connector option allows the OCP NIC and baseboard to exist in a co-planer position. To achieve this, a cutout exists on the baseboard and is defined in this specification. Alternatively, the right angle option allows the OCP NIC to be installed on top of the baseboard. A baseboard cutout is not required for the right angle connector. The right angle option allows the baseboard to use this area for additional routing or backside component placement. The straddle mount and right angle connectors are shown in Section 3.2.

For both the baseboard and OCP card, this specification defines the component and routing keep out areas. Refer to Section 2.6 for details.

Both the straddle mount and right angle implementations shall accept the same OCP add-in card and shall be supported in the baseboard chassis regardless of the baseboard connector

selection (right angle or straddle mount) so long as the baseboard slot side and add-in card sizes are a supported combination as shown in Table 2.

This specification defines the form factor at the add-in card level, including the front panel, latching mechanism and card guide features [TBD; pending on the Mechanical work across stakeholders].

More details about the card form-factor is shown in Section 2.

1.4.2 Electrical overview

This specification defines the electrical interface between baseboard and the add-in card.

The electrical interface is implemented with a right angle or straddle mount connector on baseboard and gold finger on the add-in card. As previously noted in the mechanical overview, each card may implement a Primary Connector or Primary + Secondary Connector. Cards using only the Primary connector are suitable for both the Small and Large form-factors and may support up to x16 lanes of PCIe. The Secondary connector, when used in conjunction with the Primary connector, allows Large form-factor implementations and may support up to 32 lanes of PCIe.

1.4.2.1 Primary Connector

1.4.2.2 Secondary connector

1.5 References

- DMTF Standard. DSP0222, Network Controller Sideband Interface (NC-SI) Specification.
 Distributed Management Task Force, Inc, Rev 1.0.1, January 24th, 2013.
- EDSFF. *Enterprise and Datacenter SSD Form Factor Connector Specification*. Enterprise and Datacenter SSD Form Factor Working Group, Rev 0.9 (draft), August 2nd 2017.
- NXP Semiconductors. *PC-bus specification and user manual*. NXP Semiconductors, Rev 6, April 4th, 2014.

Commented [TN1]: References need to be correctly sited per MLA standards.

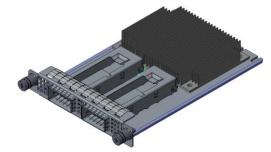
Q: How do we handle references to unpublished (draft) specifications?

Rev0.01

- Open Compute Project. *OCP NIC Subgroup*. Online. http://www.opencompute.org/wiki/Server/Mezz
- PCIe Base Specification. PCI Express Base Specification, Revision 4.0 (draft).
- PCIe CEM Specification. PCI Express Card Electromechanical Specification, Revision 4.0 (draft).
- SMBus Management Interface Forum. System Management Bus (SMBus) Specification.
 System Management Interface Forum, Inc, Version 3.0, December 20th, 2014.
- SNIA. *SFF-TA-1002, Specification for Protocol Agnostic Multi-Lane High Speed Connector.* SNIA SFF TWG Technology Affiliate, Rev 0.0.9.1, September 9th, 2017.

2 Card Form Factor

2.1 Overview

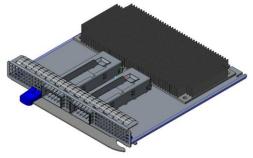

2.2 Form Factor Options

OCP3.0 provides two fundamental form factor options: a small card (76mm x 115mm) and a large card (139mm x 115mm).

These form factors support a Primary Connector and optionally, a Secondary Connector. The Primary Connector is defined to be a SFF-TA-1002 compliant 4C connector plus a 28-pin bay for OCP 3.0 specific pins. The Secondary Connector is the 4C connector as defined in SFF-TA-1002. The 4C specification supports up to 32 differential pairs for a x16 PCIe connection per connector. For host platforms, the 28-pin OCP bay is required for the Primary connector. This is also mandatory for add-in cards.

The small card uses the 4C connector for up to a x16 PCIe interface. The small cards implement and additional 28-pin OCP bay for management functions and support for up to a four PCIe hosts. The small size card provides sufficient faceplate area to accommodate up to 2x QSFP modules, 4x SFP modules, or 4x RJ-45 for BASE-T operation. The small card form factor supports up to 79W of delivered power to the card edge.

Figure 4: Example Small Card Form Factor



Commented [TN2]: Are we going to uprev the SFF-TA spec to include these 28 pins?

Rev0.01

The large card uses provides the same functionality as the small card, but with support up to a x32 PCIe interface. The large card utilizes both the Primary and Secondary connectors. The large size card supports higher power envelopes and provides additional board area for more complex designs. The small card form factor supports up to 158W of delivered power to the card edge at 79W per connector.

For both form-factors, an add-in card may optionally implement a subset of pins to support a x8 PCIe connection. This is implemented using a 2C card edge per SFF-TA-1002. The Primary Connector may support a 2C sized add-in card along with the 28 pin OCP bay. The following diagram from the SFF-TA-1002 specification illustrates the supported host Primary and Secondary Connectors and add-in card configurations.

Figure 6: Primary Connector (4C + OCP Bay) with 4C and 2C Add-in Cards

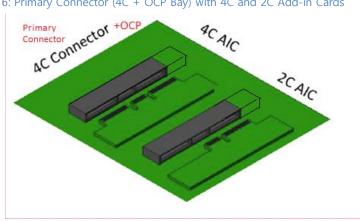


Table 3

Primary Connector and up to 16 PCIe lanes. Large form factor cards support both the Primary and Secondary Connectors and up to 32 PCIe lanes.

Table 3 summarizes the supported card form factors. Small form factors cards support the Primary Connector and up to 16 PCIe lanes. Large form factor cards support both the Primary and Secondary Connectors and up to 32 PCIe lanes.

Table 3: OCP NIC 3.0 Card Definitions

Add in Card Size and	Secondary	Connector	Primary Connector		
max PCIe Lane Count	4C Connect	or, x16 PCIe	4C Connector, x16 PCIe		OCP Bay
Small (x8)				2C	OCP Bay
Small (x16)			4	С	OCP Bay
Large (x24)		2C	4	С	OCP Bay
Large (x32)	4	C	4C		OCP Bay

2.3 I/O bracket

TBD <need input from OCP mechanical groups>

Commented [TN3]: This needs to be updated to show the OCP bay along with the secondary connector location..

Rev0.01

2.4 Line Side I/O Implementations

At the time of this writing, the Small and Large form-factor cards may support the following standard line side I/O implementations:

Form Factor	Max Topology Connector Count
Small	2x QSFP28
Small	4x SFP28
Small	4x RJ-45
Large	TBD
Large	TBD
Large	TBD

Table 4: OCP 3.0 Line Side I/O Implementations

Additional combinations are permissible as I/O form-factor technologies and thermal capabilities evolve.

2.5 LED Implementations

LEDs must be implemented on the card Scan Chain (as defined in Section 3.5.3) for remote link/activity indication on the baseboard and may optionally be implemented on the OCP NIC 3.0 I/O bracket if there is sufficient space for local indication. These two cases are described below. In both cases, the actual link rate may be directly queried through the management interface.

2.5.1 Baseboard LEDs Configuration Over the Scan Chain

A small form-factor OCP NIC 3.0 with a fully populated I/O bracket (2x QSFP28, 4x SFP28, or 4x RJ-45) has insufficient space for <u>discrete</u> on-board (faceplate) LED indicators. In this case, the line side link and activity LED indicators are implemented on the baseboard system via the Scan Chain. The Scan Chain bit stream is defined in Section 3.5.3. <u>This LED</u> <u>implementation is required for all add-in cards. The baseboard LED implementation uses two discrete LEDs (Link/Activity and Speed indication).</u>

For small form-factor low I/O count cards (such as 1x QSFP28, 2x SFP28, or 2x RJ=45), or a large form factor OCP 3.0 NIC, where additional I/O bracket area is available, the card may optionally implement on-board link/activity indications in addition to the Scan Chain.

For both cases, the OCP NIC 3.0 specification recommends the following LED definitions: Table 5 describes the baseboard LED configuration for baseboard implementations.

Rev0.01

Table	e 5: Default <u>Base</u>	board_LED Configuration-s with Two Physical LEDs per Port
LED Pin	LED Color	Description
Link <u>/</u>	Green	Active low. Multifunction LED.
Activity		
		When lit and solid, this LED is used to indicate the link is up
		at the MAC level. Local and Remote Faults are clear and the
		link is ready for data transmission.
		When the LED is off, the physical link is down or disabled.
		The LED should blink low for 50-500 ms during Packet Activity.
		Activity.
		The Link/Activity LED shall be located on the left hand side for
		each port. Active low. Multifunction LED.
		When lit and solid, this LED is used to indicate the link is up
		at the MAC level. Local and Remote Faults are clear and the
		link is ready for data transmission. When the LED is off, the
		physical link is down or disabled.
		This LED indicator may also be used for port identification
		through vendor specific link diagnostic software.
		The link LED shall be located on the left hand side of each
		port.
Speed	Green	Active low. Multifunction LED.
	Off	
		The LED is Green when the port is linked at its maximum
		speed.
		The LED is off when the device is linked at a speed lower than
		the highest capable speed, or no link is present.

The bicolor speed LED shall be located on the right hand side for each port.

At the time of this writing, the Scan Chain definition allows for up to one link<u>/activity</u> and one <u>activity-speed</u> LED per port. A total of up to 8 ports are supported in the Scan Chain. The bit stream defines the LEDs to be active low (ON). The Scan Chain LED implementation allows the NIC LED indicators to be remotely located on the OCP 3.0 compliant chassis (e.g. front LED indicators with rear I/O cards).

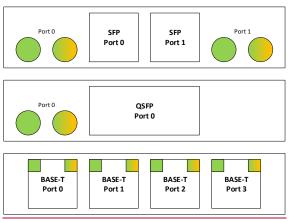
2.5.2 Add-in Card LED Configuration

For low I/O count small form-factor low I/O count-cards without built in light pipes (such as 1x QSFP28, 2x SFP28, or 2x RJ 45), or a large form-factor OCP 3.0 NIC, where additional I/O bracket area is available, the card may optionally implement on-board link/activity indications in addition to the Scan Chain LED stream. The recommended local (on-card) LED implementation uses two physical LEDs (a discrete Link/Activity LED and a bi-colored Speed A/Speed B LED). Table 6 describes the add-in card LED implementations.

Table 6: Add-in Card LED Configuration with Two Physical LEDs per Port

LED Pin	LED Color	Description
<u>Link /</u>	Green	Active low. Multifunction LED.
<u>Activity</u>		
		When lit and solid, this LED is used to indicate the link is up at
		the MAC level. Local and Remote Faults are clear and the link is
		ready for data transmission.
		When the LED is off, the physical link is down or disabled.
		The LED should blink low for 50-500 ms during Packet Activity.

Rev0.01


		The Link/Activity LED shall be located on the left hand side for each port.
Speed	<u>Green</u> Amber	Active low. Bicolor multifunction LED.
	Off	The LED is Green when the port is linked at its maximum speed.The LED is Amber when the port is linked at it second highestspeed.The LED is off when the device is linked at a speed lower than thesecond highest capable speed, or no link is present.The Amber Speed LED indicator may be used for portidentification through vendor specific link diagnostic software.The bicolor speed LED shall be located on the right hand side foreach port.

2.5.3 LED Ordering

For all LED use cases, the green Link/Activity LED shall be located on the left side for each port. The bicolor green/amber speed A/B LED shall be located on the right side for each port. (Note Speed B is only available for local (on-card) LEDs. The placement of the LEDs may be to the side of the physical port for the case with add-in cards. The LED port association shall be clearly labeled on the add-in card and on the baseboard.

Figure 7: LED Ordering – Example Small Card Link/Activity and Speed LED Placement

2.6 Mechanical Keepout Zones

2.6.1 Baseboard Keep Out Zones

TBD – Need keepout drawings and envelopes for small / large size baseboard including primary/secondary/rail keepouts/cutout for straddle mount/keepout for right angle.

2.6.2 Add-in Card Keep Out Zones

TBD – need keepout drawings and envelopes for small / large size NIC including primary/secondary/rail keepouts.

2.7 Labeling Requirements

2.8 Insulation Requirements

All cards must implement a secondary side insulator to prevent the bottom side card components from shorting out to the chassis. The recommended insulator thickness is 0.25mm and must reside within the following mechanical envelope for the Small and Large size cards:

TBD <need 2D drawings>

Rev0.01

2.9 NIC Implementation Examples

2.10 Non-NIC Use Cases "PCIe interface with extra management sideband"

2.10.1 PCIe Retimer card

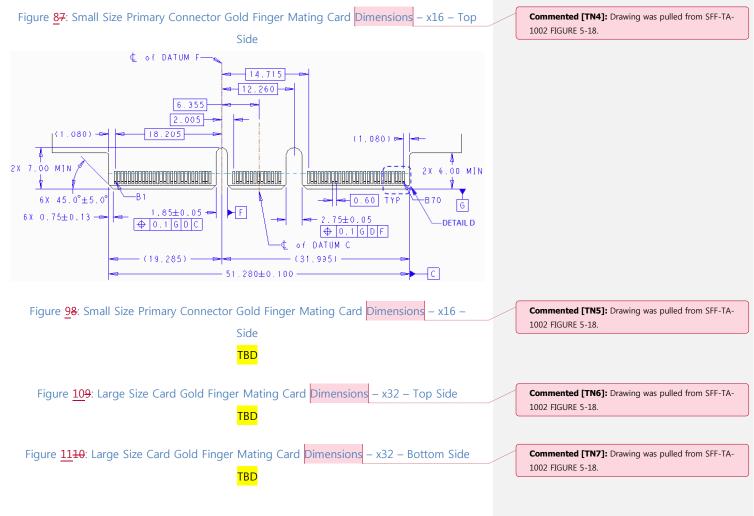
2.10.2 Accelerator card

2.10.3 Storage HBA / RAID card

3 Card Edge and Baseboard Connector Interface

3.1 Gold Finger Requirement

The OCP NIC 3.0 add-in cards are compliant to the SFF-TA-1002 specification with respect to the gold fingers and connectors.


Small Size cards fit in the Primary Connector. Primary Connector compliant cards are 76mm x 115mm and may implement the full 168-pins. The Primary Connector cards may optionally implement a subset of gold finger pins if there is a reduced PCIe width requirement (such as 1 x8 and below). In this case, the card edge gold finger may implement a 2C design. The overall board thickness is 1.60mm. The gold finger dimensions for the Primary Connector compliant cards are shown below.

Large Size Cards support up to a x32 PCIe implementation and uses both the Primary and Secondary connectors.

For additional details, refer to the card and connector mechanical drawings located in XXX.

Note: The "B" pins on the connector are associated with the top side of the add-in card. The "A" pins on the connector are associated with the bottom side of the add-in card.

3.1.1 Gold Finger Mating Sequence

Per the SFF-TA-1002 specification, the Primary and Secondary connectors are protocol agnostic and are optimized for high speed differential pairs. For use in the OCP NIC 3.0 application, some pin locations are used for single ended control nets or power and would benefit from a shorter pin length for staggering. As such, the recommended add-in card gold finger staging is shown in <u>Table 7-Table 6</u> for a two stage, first-mate, last-break The host connectors have a single stage mating and do not implement different pin lengths.

Rev0.01

The AIC Plug (Free) side refers to the add-in card gold fingers; the receptacle (Fixed) side refers to the physical connector on the host platform. This table is based on the SFF-TA-1002 Table A-1 with modifications for OCP NIC 3.0. Refer to the mechanical drawings for pin the first-mate and second-mate lengths.

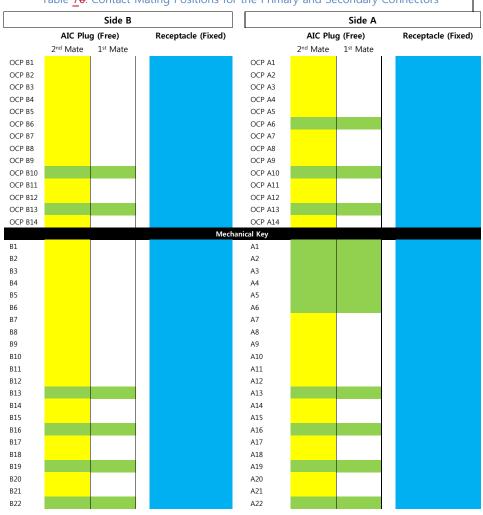
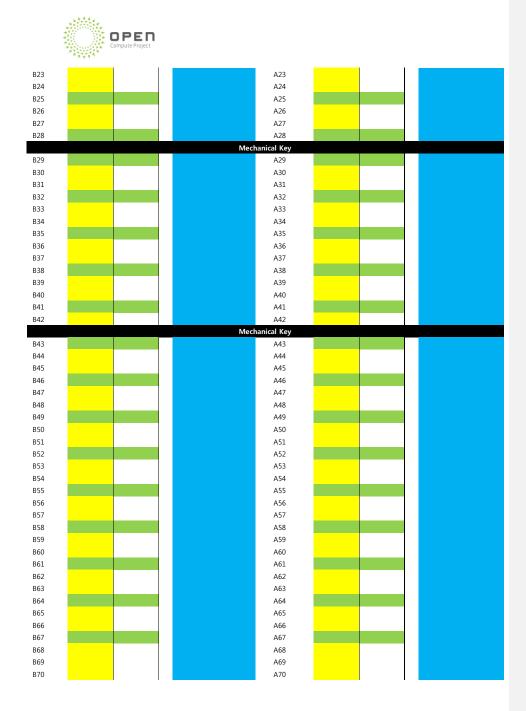
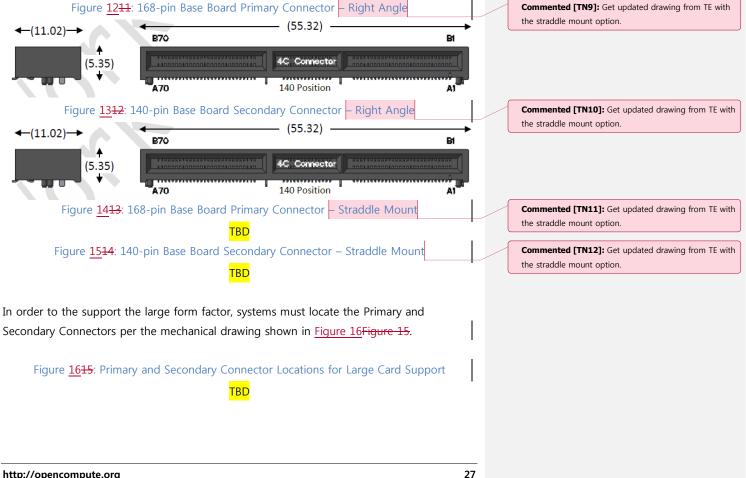



Table 76: Contact Mating Positions for the Primary and Secondary Connectors

Rev0.01


Commented [TN8]: Note: Perhaps the SFF-TA-1002 spec needs to be updated with the 168 pin and straddle-

mount definitions.

3.2 Baseboard Connector Requirement

The OCP NIC 3.0 connectors are compliant to the "4C connector" as defined in the SFF-TA-1002 specification for a right angle or straddle mount form-factor. The 4C connector is 140pins in width and includes support for up to 32 differential pairs to support a x16 PCIe connection. The connector also provides 6 pins of 12V for payload power. This implementation is common between both the Primary and Secondary Connectors. In addition, the Primary Connector has a 28-pin OCP Bay to the right of pin 1. These pins are used for management and support for up to a 4 x4 multi-host configuration on the Primary Connector. The Primary and Secondary Connector drawings are shown in Figure 12Figure 13Figure 12, Figure 14Figure 13 and Figure 15Figure 14 below.

Figure 1211: 168-pin Base Board Primary Connector – Right Angle

3.3 Pin definition

The pin definitions of an OCP NIC 3.0 card with up to a x32 PCIe interface are shown in Table 8Table 7 and Table 9Table 8. All signal directions are shown from the perspective of

A baseboard system may provide a combination of Primary Connectors only, or Primary and Secondary Connectors to support multiple sizes of add-in cards. Both connectors share common functionality with power, SMBus, x16 PCIe Gen4 and bifurcation control. The Primary Connector has an additional OCP Bay (pins OCP_A[1:14], OCP_B[1:14]) with additional REFCLKs for supporting up to four PCIe hosts, NC-SI connectivity and a Scan Chain for information exchange between the host and card. The NIC is required to implement the Scan Chain, while the baseboard may choose to optionally implement it. Depending on the baseboard form-factor, multiple OCP NIC 3.0 compliant cards may be designed into the system.

The pins common to the Primary and Secondary Connectors are shown in Section 3.4. The OCP Bay pins on the Primary Connector only are shown in Section 3.5.

Cards or systems that do not require the use of a PCIe x16 connection may optionally implement a subset electrical connections as applicable to the design. For example, a x8 (or smaller) card using the first 8 PCIe lanes that is compliant with the Primary Connector pinout. Refer to Sections 3.1 and 3.2 for mechanical details. For these cases, the Primary Connector matches the 2C dimensions as defined in SFF-TA-1002.

In all cases, the physical baseboard connectors shall support x16 PCIe widths and must be implemented with the Primary (4C + OCP Bay) and Secondary (4C) connectors.

	<u> </u>			· ·	
	Side B	Side A			
OCP_B1	NIC_PWR_GOOD	WAKE_N	OCP_A1	Pri (x1	Priı (x8
OCP_B2	PWRBRK#	PERST2#	OCP_A2	.6,	imary 3, 112
OCP_B3	LD#	PERST3#	OCP_A3	ny C 168-	
OCP_B4	DATA_IN	RBT_ARB_IN	OCP_A4	pin	
OCP_B5	DATA_OUT	RBT_ARB_OUT	OCP_A5	ecto add	nector add-ir
OCP_B6	CLK	GND	OCP_A6	- ¥	-in

Table 87: Primary Connector Pin Definition (x16) (4C + OCP Bay)

Rev0.01

OCP_B7	SLOT_ID0	RBT_TX_EN	OCP_A7		
OCP_B8	RBT_RXD1	RBT_TXD1	OCP_A8		
OCP_B9	RBT_RXD0	RBT_TXD0	OCP_A9		
OCP_B10	GND	GND	OCP_A10		
OCP_B11	REFCLKn2	REFCLKn3	OCP_A11		
OCP_B12	REFCLKp2	REFCLKp3	OCP_A12		
OCP_B13	GND	GND	OCP_A13		
OCP_B14	RBT_CRS_DV	RBT_CLK_IN	OCP_A14		
	Mechan	ical Key			
B1	+12V/+12V_AUX	GND	A1		
B2	+12V/+12V_AUX	GND	A2		
B3	+12V/+12V_AUX	GND	A3		
B4	+12V/+12V_AUX	GND	A4		
B5	+12V/+12V_AUX	GND	A5		
B6	+12V/+12V_AUX	GND	A6		
B7	BIFO#	SMCLK	A7		
B8	BIF1#	SMDAT	A8		
В9	BIF2#	SMRST#	A9		
B10	PERST0#	PRSNTA#	A10		Commented [TI
B11	+3.3V/+3.3V_AUX	PERST1#	A11		about PRSNTA#
B12	PWRDIS	PRSNTB2#	A12		
B13	GND	GND	A13		Unlike PCIe, the I necessarily help (
B14	REFCLKn0	REFCLKn1	A14		signals may still o
B15	REFCLKp0	REFCLKp1	A15		Signals may start
B16	GND	GND	A16		Perhaps we could
B17	PETn0	PERn0	A17		of PRSNTA? This
B18	PETp0	PERp0	A18		bonus, pin A10 is
B19	GND	GND	A19		per EDSFF).
B20	PETn1	PERn1	A20		
B21	PETp1	PERp1	A21		
B22	GND	GND	A22		
B23	PETn2	PERn2	A23		
B24	PETp2	PERp2	A24		
B25	GND	GND	A25		
B26	PETn3	PERn3	A26		
B27	PETp3	PERp3	A27		
B28	GND	GND	A28		
	Mechan	ical Key			
B29	GND	GND	A29		

Commented [TN13]: Jia brought up a good point about PRSNTA#

Jnlike PCIe, the PRSNTA / PRSNTB indication doesn't necessarily help us with an x-axis alignment. The Present ignals may still connect.

Perhaps we could connect PRSNTB pins to GND instead of PRSNTA? This would free up a pin for use. (As a ponus, pin A10 is a bidirectional pin (based on function) per EDSFF).

B30	PETn4	PERn4	A30	
B31	PETp4	PERp4	A31	
B32	GND	GND	A32	
B33	PETn5	PERn5	A33	
B34	PETp5	PERp5	A34	
B35	GND	GND	A35	
B36	PETn6	PERn6	A36	
B37	PETp6	PERp6	A37	
B38	GND	GND	A38	
B39	PETn7	PERn7	A39	
B40	PETp7	PERp7	A40	
B41	GND	GND	A41	
B42	PRSNTB0#	PRSNTB1#	A42	
	Mechan	ical Key		
B43	GND	GND	A43	
B44	PETn8	PERn8	A44	
B45	PETp8	PERp8	A45	
B46	GND	GND	A46	
B47	PETn9	PERn9	A47	
B48	PETp9	PERp9	A48	
B49	GND	GND	A49	
B50	PETn10	PERn10	A50	
B51	PETp10	PERp10	A51	
B52	GND	GND	A52	
B53	PETn11	PERn11	A53	
B54	PETp11	PERp11	A54	
B55	GND	GND	A55	
B56	PETn12	PERn12	A56	
B57	PETp12	PERp12	A57	
B58	GND	GND	A58	
B59	PETn13	PERn13	A59	
B60	PETp13	PERp13	A60	
B61	GND	GND	A61	
B62	PETn14	PERn14	A62	
B63	PETp14	PERp14	A63	
B64	GND	GND	A64	
B65	PETn15	PERn15	A65	
B66	PETp15	PERp15	A66	
B67	GND	GND	A67	
-				

Rev0.01

B68	RFU, N/C	RFU, N/C	A68	
B69	RFU, N/C	RFU, N/C	A69	
B70	PRSNTB3#	RFU, N/C	A70	

Table <u>98</u>: Secondary Connector Pin Definition (x16) (4C)

	Side B	Side A			
B1	+12V/+12V_AUX	GND	A1	s	s
B2	+12V/+12V_AUX	GND	A2	ecol	ecol
B3	+12V/+12V_AUX	GND	A3	ndai	ndai
B4	+12V/+12V_AUX	GND	A4	y c	y c
B5	+12V/+12V_AUX	GND	A5	onn	onn
B6	+12V/+12V_AUX	GND	A6	ecto	ecto
B7	BIFO#	SMCLK	A7	r (x	r (x
B8	BIF1#	SMDAT	A8	16, .	,00 Q0
B9	BIF2#	SMRST#	A9	140	4-pi
B10	PERST0#	PRSNTA#	A10	pin	nac
B11	+3.3V/+3.3V_AUX	PERST1#	A11	Secondary Connector (x16, 140-pin add-in card)	Secondary Connector (x8, 84-pin add-in card)
B12	PWRDIS	PRSNTB2#	A12	÷	n ca
B13	GND	GND	A13	carc	rd)
B14	REFCLKn0	REFCLKn1	A14	5	
B15	REFCLKp0	REFCLKp1	A15		
B16	GND	GND	A16		
B17	PETn0	PERn0	A17		
B18	PETp0	PERp0	A18		
B19	GND	GND	A19		
B20	PETn1	PERn1	A20		
B21	PETp1	PERp1	A21		
B22	GND	GND	A22		
B23	PETn2	PERn2	A23		
B24	PETp2	PERp2	A24		
B25	GND	GND	A25		
B26	PETn3	PERn3	A26		
B27	PETp3	PERp3	A27		
B28	GND	GND	A28		
	Mechan	ical Key			
B29	GND	GND	A29		
B30	PETn4	PERn4	A30		
B31	PETp4	PERp4	A31		
B32	GND	GND	A32		
B33	PETn5	PERn5	A33		
B34	PETp5	PERp5	A34		
B35	GND	GND	A35		
B36	PETn6	PERn6	A36		

Open Compute Project • NIC • 3.0

Rev0.01

B37PETp6PERp6A37B38GNDGNDGNDA38B39PETn7PERn7A39B40PETp7PERp7A40B41GNDGNDA41B42PRSNTB0#PRSNTB1#A42Mechanical KeyB43GNDGNDA43B44PETn8PERn8A44B45PETp8PERp8A45B46GNDGNDA46B47PETn9PERn9A47B48PETp9PERp9A48B49GNDGNDA50B51PETp10PERp10A51B52GNDGNDA52B53PETn11PERn11A53B54PETp12PERn12A56B57PETp12PERn12A56B59PETn13PERn13A60B60PETp13PERn14A62B63PETp14PERp14A63B64GNDGNDA55B55GNDGNDA56B57PETn13PERn13A59B60PETp14PERn14A62B63PETp14PERp14A63B64GNDGNDA64B65PETn15PERn15A66B66PETp15PERn15A66B67GNDGNDA67B68PETL N/CBELN/C					Rev0.01
B39PETn7PERn7A39B40PETp7PERp7A40B41GNDGNDA41B42PRSNTB0#PRSNTB1#A42Mechanical KeyB43GNDGNDA43B44PETn8PERn8A44B45PETp8PERp8A45B46GNDGNDA46B47PETn9PERn9A47B48PETp9PERp9A48B49GNDGNDA50B51PETp10PERp10A51B52GNDGNDA52B53PETn11PERp11A53B54PETp11PERp11A54B55GNDGNDA55B56PETn12PERn12A56B57PETp12PERp13A60B61GNDGNDA51B58GNDGNDA56B59PETn13PERn13A59B60PETp13PERp14A62B63PETp14PERp14A63B64GNDGNDA64B65PETp15PERp15A66B67GNDGNDA67	B37	PETp6	PERp6	A37	
B40PETp7PERp7A40B41GNDGNDGNDA41B42PRSNTB0#PRSNTB1#A42Mechanical KeyB43GNDGNDA43B44PETn8PERn8A44B45PETp8PERp8A45B46GNDGNDA46B47PETp9PERp9A47B48PETp9PERp9A48B49GNDGNDA49B50PETn10PERn10A50B51PETp10PERp10A51B52GNDGNDA52B53PETn11PERp11A54B55GNDGNDA55B56PETn2PERn12A56B57PETp12PERp13A60B61GNDGNDA51B62PETn13PERn13A59B66PETp14PERp14A62B63PETp15PERp14A62B64GNDGNDA64B65PETp15PERp15A66B67GNDGNDA67	B38	GND	GND	A38	
B41GNDGNDA41B42PRSNTB0#PRSNTB1#A42Mechanical KeyB43GNDGNDA43B44PETn8PERn8A44B45PETp8PERp8A45B46GNDGNDA46B47PETn9PERp9A47B48PETp9PERp9A48B49GNDGNDA49B50PETn10PERn10A50B51PETp10PERp10A51B52GNDGNDA52B53PETn11PERp11A54B55GNDGNDA55B56PETn12PERn12A56B57PETp12PERp12A57B58GNDGNDA58B59PETn13PERp13A60B61GNDGNDA61B62PETn14PERp14A62B63PETp15PERp15A66B67GNDGNDA67	B39	PETn7	PERn7	A39	
B42PRSNTB0#PRSNTB1#A42Mechanical KeyB43GNDGNDA43B44PETn8PERn8A44B45PETp8PERp8A45B46GNDGNDA46B47PETn9PERn9A47B48PETp9PERp9A48B49GNDGNDA49B50PETn10PERn10A50B51PETp10PERp10A51B52GNDGNDA52B53PETn11PERn11A53B54PETp12PERn12A56B57PETn12PERn12A56B58GNDGNDA58B59PETn13PERn13A59B60PETp14PERp13A60B61GNDGNDA61B62PETn14PERp14A63B64GNDGNDA64B65PETn15PERn15A66B67GNDGNDA67	B40	PETp7	PERp7	A40	
Mechanical Key B43 GND GND A43 B44 PETn8 PERn8 A44 B45 PETp8 PERp8 A45 B46 GND GND A46 B47 PETn9 PERn9 A47 B48 PETp9 PERp9 A48 B49 GND GND A49 B50 PETn10 PERn10 A50 B51 PETp10 PERp10 A51 B52 GND GND A52 B53 PETn11 PERn11 A53 B54 PETp12 PERp11 A54 B55 GND GND A55 B56 PETn12 PERp12 A56 B57 PETp13 PERp13 A59 B60 PETp13 PERp13 A60 B61 GND GND A61 B62 PETn14 PERp14 A62 B63 PETp14 PERp14 <td>B41</td> <td>GND</td> <td>GND</td> <td>A41</td> <td></td>	B41	GND	GND	A41	
B43GNDGNDA43B44PETn8PERn8A44B45PETp8PERp8A45B46GNDGNDA46B47PETn9PERn9A47B48PETp9PERp9A48B49GNDGNDA49B50PETn10PERn10A50B51PETp10PERp10A51B52GNDGNDA52B53PETn11PERn11A53B54PETp12PERp12A56B57PETp12PERp12A56B59PETn13PERn13A59B60PETp14PERp13A60B61GNDGNDA61B62PETn14PERp14A63B64GNDGNDA61B65PETp15PERp15A66B66PETp15PERp15A66B67GNDGNDA64	B42	PRSNTB0#	PRSNTB1#	A42	
B44PETn8PERn8A44B45PETp8PERp8A45B46GNDGNDGNDA46B47PETn9PERn9A47B48PETp9PERp9A48B49GNDGNDA49B50PETn10PERn10A50B51PETp10PERp10A51B52GNDGNDA52B53PETn11PERn11A53B54PETp11PERp11A54B55GNDGNDA55B56PETn12PERp12A56B57PETp13PERp13A60B61GNDGNDA58B59PETn13PERp13A60B61GNDGNDA61B62PETp14PERp14A63B64GNDGNDA64B65PETp15PERp15A66B67GNDGNDA67		Mechan	ical Key		
B45PETp8PERp8A45B46GNDGNDA46B47PETn9PERn9A47B48PETp9PERp9A48B49GNDGNDA49B50PETn10PERn10A50B51PETp10PERp10A51B52GNDGNDA52B53PETn11PERn11A53B54PETp12PERp12A56B57PETp12PERp12A57B58GNDGNDA58B59PETn13PERp13A60B61GNDGNDA61B62PETp14PERp14A63B64GNDGNDA64B65PETp15PERp15A66B67GNDGNDA61	B43	GND	GND	A43	
B46GNDGNDA46B47PETn9PERn9A47B48PETp9PERp9A48B49GNDGNDA49B50PETn10PERn10A50B51PETp10PERp10A51B52GNDGNDA52B53PETn11PERn11A53B54PETp11PERp11A54B55GNDGNDA55B56PETn12PERn12A56B57PETp13PERn13A59B60PETp13PERp13A60B61GNDGNDA61B62PETn14PERp14A63B64GNDGNDA64B65PETn15PERp15A66B67GNDGNDA67	B44	PETn8	PERn8	A44	
B47PETn9PERn9A47B48PETp9PERp9A48B49GNDGNDGNDA49B50PETn10PERn10A50B51PETp10PERp10A51B52GNDGNDA52B53PETn11PERp11A53B54PETp11PERp11A54B55GNDGNDA55B56PETn12PERn12A56B57PETp12PERp12A57B58GNDGNDA58B59PETn13PERp13A60B61GNDGNDA61B62PETn14PERn14A62B63PETp15A65B64GNDGNDA64B65PETn15PERp15A66B67GNDGNDGNDA67	B45	PETp8	PERp8	A45	
B48PETp9PERp9A48B49GNDGNDGNDA49B50PETn10PERn10A50B51PETp10PERp10A51B52GNDGNDA52B53PETn11PERn11A53B54PETp11PERp11A54B55GNDGNDA55B56PETn12PERp12A57B58GNDGNDA58B59PETn13PERn13A59B60PETp14PERp14A62B63PETp14PERp14A63B64GNDGNDA65B66PETp15PERn15A66B67GNDGNDA61	B46	GND	GND	A46	
B49 GND GND A49 B50 PETn10 PERn10 A50 B51 PETp10 PERp10 A51 B52 GND GND A52 B53 PETn11 PERn11 A53 B54 PETp11 PERp11 A54 B55 GND GND A55 B56 PETn12 PERp12 A56 B57 PETp12 PERp12 A57 B58 GND GND A58 B59 PETn13 PERp13 A60 B61 GND GND A61 B62 PETn14 PERp14 A62 B63 PETp14 PERp14 A63 B64 GND GND A64 B65 PETn15 PERp15 A66 B67 GND GND A67	B47	PETn9	PERn9	A47	
B50PETn10PERn10A50B51PETp10PERp10A51B52GNDGNDA52B53PETn11PERn11A53B54PETp11PERp11A54B55GNDGNDA55B56PETn12PERn12A56B57PETp12PERp12A57B58GNDGNDA58B59PETn13PERn13A60B61GNDGNDA61B62PETn14PERn14A62B63PETp15A66B64GNDGNDA64B65PETn15PERn15A66B67GNDGNDA67	B48	PETp9	PERp9	A48	
B51PETp10PERp10A51B52GNDGNDA52B53PETn11PERn11A53B54PETp11PERp11A54B55GNDGNDA55B56PETn12PERn12A56B57PETp12PERp12A57B58GNDGNDA58B59PETn13PERp13A60B61GNDGNDA61B62PETp14PERn14A62B63PETp15A65B64GNDGNDA64B65PETn15PERp15A66B67GNDGNDA67	B49	GND	GND	A49	
B52 GND GND A52 B53 PETn11 PERn11 A53 B54 PETp11 PERp11 A54 B55 GND GND A55 B56 PETn12 PERn12 A56 B57 PETp12 PERp12 A57 B58 GND GND A58 B59 PETn13 PERn13 A59 B60 PETp13 PERp13 A60 B61 GND GND A61 B62 PETn14 PERp14 A62 B63 PETp15 A65 B64 GND GND A64 B65 PETn15 PERp15 A65 B66 PETp15 PERp15 A66 B67 GND GND A67	B50	PETn10	PERn10	A50	
B53PETn11PERn11A53B54PETp11PERp11A54B55GNDGNDA55B56PETn12PERn12A56B57PETp12PERp12A57B58GNDGNDA58B59PETn13PERn13A59B60PETp13PERp14A60B61GNDGNDA61B62PETn14PERn14A62B63PETp15A66B64GNDGNDA64B65PETn15PERn15A66B67GNDGNDA67	B51	PETp10	PERp10	A51	
B54PETp11PERp11A54B55GNDGNDA55B56PETn12PERn12A56B57PETp12PERp12A57B58GNDGNDA58B59PETn13PERn13A59B60PETp13PERp13A60B61GNDGNDA61B62PETn14PERn14A62B63PETp15A66B64GNDGNDA64B65PETn15PERn15A66B67GNDGNDA67	B52	GND	GND	A52	
B55 GND GND A55 B56 PETn12 PERn12 A56 B57 PETp12 PERp12 A57 B58 GND GND A58 B59 PETn13 PERn13 A59 B60 PETp13 PERp13 A60 B61 GND GND A61 B62 PETn14 PERn14 A62 B63 PETp15 A64 B64 GND GND A65 B66 PETp15 PERp15 A66 B67 GND GND A67	B53	PETn11	PERn11	A53	
B56 PETn12 PERn12 A56 B57 PETp12 PERp12 A57 B58 GND GND A58 B59 PETn13 PERn13 A59 B60 PETp13 PERp13 A60 B61 GND GND A61 B62 PETn14 PERn14 A62 B63 PETp14 PERp14 A63 B64 GND GND A64 B65 PETn15 PERn15 A66 B66 PETp15 A66	B54	PETp11	PERp11	A54	
B57 PETp12 PERp12 A57 B58 GND GND A58 B59 PETn13 PERn13 A59 B60 PETp13 PERp13 A60 B61 GND GND A61 B62 PETn14 PERn14 A62 B63 PETp14 PERp14 A63 B64 GND GND A64 B65 PETn15 PERp15 A66 B67 GND GND A67	B55	GND	GND	A55	
B58 GND GND A58 B59 PETn13 PERn13 A59 B60 PETp13 PERp13 A60 B61 GND GND A61 B62 PETn14 PERp14 A62 B63 PETp14 PERp14 A63 B64 GND GND A64 B65 PETn15 PERn15 A65 B66 PETp15 A66 A67	B56	PETn12	PERn12	A56	
B59 PETn13 PERn13 A59 B60 PETp13 PERp13 A60 B61 GND GND A61 B62 PETn14 PERn14 A62 B63 PETp14 PERp14 A63 B64 GND GND A64 B65 PETn15 PERn15 A66 B66 PETp15 A66 B67 GND A67	B57	PETp12	PERp12	A57	
B60 PETp13 PERp13 A60 B61 GND GND A61 B62 PETn14 PERn14 A62 B63 PETp14 PERp14 A63 B64 GND GND A64 B65 PETn15 PERn15 A65 B66 PETp15 A66 B67 GND GND A67	B58	GND	GND	A58	
B61 GND GND A61 B62 PETn14 PERn14 A62 B63 PETp14 PERp14 A63 B64 GND GND A64 B65 PETn15 PERn15 A65 B66 PETp15 A66 B67 GND GND A67	B59	PETn13	PERn13	A59	
B62 PETn14 PERn14 A62 B63 PETp14 PERp14 A63 B64 GND GND A64 B65 PETn15 PERn15 A65 B66 PETp15 PERp15 A66 B67 GND GND A67	B60	PETp13	PERp13	A60	
B63 PETp14 PERp14 A63 B64 GND GND A64 B65 PETn15 PERn15 A65 B66 PETp15 PERp15 A66 B67 GND GND A67	B61	GND	GND	A61	
B64 GND A64 B65 PETn15 PERn15 A65 B66 PETp15 PERp15 A66 B67 GND GND A67	B62	PETn14	PERn14	A62	
B65 PETn15 PERn15 A65 B66 PETp15 PERp15 A66 B67 GND GND A67	B63	PETp14	PERp14	A63	
B66 PETp15 PERp15 A66 B67 GND GND A67	B64	GND	GND	A64	
B67 GND GND A67	B65	PETn15	PERn15	A65	
	B66	PETp15	PERp15	A66	
R68 RELENC RELENC 468	B67	GND	GND	A67	
	B68	RFU, N/C	RFU, N/C	A68	
B69 RFU, N/C RFU, N/C A69	B69	RFU, N/C	RFU, N/C	A69	
B70 PRSNTB3# RFU, N/C A70	B70	PRSNTB3#	RFU, N/C	A70	

3.4 Signal Descriptions – Common

The pins shown in this section are common to both the Primary and Secondary Connectors. All pin directions are from the perspective of the baseboard.

The add-in card shall implement protection methods to prevent leakage paths between the Vaux and Vmain power domains in the event that a NIC is powered down in a powered up baseboard.

Note: Pins that are only used on Primary Connector 28-pin OCP bay are defined in Section 3.5.

3.4.1 PCIe Interface Pins

This section provides the pin assignments for the PCIe interface signals. The AC/DC specifications are defined in the PCIe CEM Specification, Rev 4.0. Example connection diagrams for are shown in Figure 28Figure 26.

Signal Name	Pin #	Baseboard	Signal Description
		Direction	
REFCLKn0	B14	Output	PCIe compliant differential reference clock #0,
REFCLKp0	B15		and #1. 100MHz reference clocks are used for
REFCLKn1	A14	Output	the add-in card PCIe core logic.
REFCLKp1	A15		
			For baseboards, the REFCLK0 and REFCLK1
			signals are required at the connector.
			For add-in cards, the required REFCLKs shall be
			connected per the endpoint datasheet.
			Note: For cards that only support 1 x16,
			REFCLK0 is used. For cards that support 2 x8,
			REFCLK0 is used for the first eight PCIe lanes,

Table 109: Pin Descriptions – PCIe 1

Rev0.01

			and REFCLK1 is used for the second eight PCIe
			lanes.
			Refer to Section 2.1 in the PCIe CEM
			Specification, Rev 4.0 for electrical details.
PETn0	B17	Output	Transmitter differential pairs [0:15]. These pins
PETp0	B18		are connected from the baseboard transmitter
PETn1	B20	Output	differential pairs to the receiver differential
PETp1	B21		pairs on the add-in card.
PETn2	B23	Output	
PETp2	B24		The PCIe transmit pins are AC coupled on the
PETn3	B26	Output	baseboard with capacitors and are placed next
PETp3	B27		to the baseboard transmitters. The AC coupling
PETn4	B30	Output	capacitor must be between 176nF (min) and
PETp4	B31		265nF (max).
PETn5	B33	Output	
PETp5	B34		For baseboards, the PET[0:15] signals are
PETn6	B36	Output	required at the connector.
PETp6	B37		
PETn7	B39	Output	For add-in cards, the required PET[0:15] signals
PETp7	B40		shall be connected to the endpoint silicon. For
PETn8	B44	Output	silicon that uses less than a x16 connection, the
PETp8	B45		appropriate PET[0:15] signals shall be
PETn9	B47	Output	connected per the endpoint datasheet.
PETp9	B48		
PETn10	B50	Output	Refer to Section 6.1 in the PCIe CEM
PETp10	B51		Specification, Rev 4.0 for details.
PETn11	B53	Output	
PETp11	B54		
PETn12	B56	Output	
PETp12	B57		
PETn13	B59	Output	
PETp13	B60		

	[1	
PETn14	B62	Output	
PETp14	B63		
PETn15	B65	Output	
PETp15	B66		
PERn0	A17	Input	Receiver differential pairs [0:15]. These pins are
PERp0	A18		connected from the add-in card transmitter
PERn1	A20	Input	differential pairs to the receiver differential
PERp1	A21		pairs on the baseboard.
PERn2	A23	Input	
PERp2	A24		The PCIe receive pins are AC coupled on the
PERn3	A26	Input	add-in card with capacitors and are placed next
PERp3	A27		to the add-in card transmitters. The AC
PERn4	A30	Input	coupling capacitor must be between 176nF
PERp4	A31		(min) and 265nF (max).
PERn5	A33	Input	
PERp5	A34		For baseboards, the PER[0:15] signals are
PERn6	A36	Input	required at the connector.
PERp6	A37		
PERn7	A39	Input	For add-in cards, the required PER[0:15] signals
PERp7	A40		shall be connected to the endpoint silicon. For
PERn8	A44	Input	silicon that uses less than a x16 connection, the
PERp8	A45		appropriate PER[0:15] signals shall be
PERn9	A47	Input	connected per the endpoint datasheet.
PERp9	A48		
PERn10	A50	Input	Refer to Section 6.1 in the PCIe CEM
PERp10	A51		Specification, Rev 4.0 for details.
PERn11	A53	Input	
PERp11	A54		
PERn12	A56	Input	
PERp12	A57		
PERn13	A59	Input	
PERp13	A60		

Rev0.01

PERn14	A62	Input	
PERp14	A63		
PERn15	A65	Input	
PERp15	A66		
PERST0#	B10	Output	PCIe Reset #0, #1. Active low.
PERST1#	A11		
			Indicates when the applied power is within
			tolerance and stable for the add-in card.
			PERST# goes high at least 100ms after the
			power rails are within operating limits per the
			PCIe CEM Specification. The PCIe REFCLKs also
			become stable within this period of time.
			PERST is pulled high on the baseboard.
			For OCP NIC 3.0, PERST deassertion also
			indicates the full card power envelope is
			available to the add-in card.
			For baseboards, the PERST[0:1]# signals are
			required at the connector.
			For add-in cards, the required PERST[0:1]#
			signals shall be connected to the endpoint
			silicon.
			Note: For cards that only support 1 x16,
			PERSTO# is used. For cards that support 2 x8,
			PERSTO# is used for the first eight PCIe lanes,
			and PERST1# is used for the second eight PCIe
			lanes.
			Refer to Section 2.2 in the PCIe CEM
			Specification, Rev 4.0 for details.
L		1	

3.4.2 PCIe Present and Bifurcation Control Pins

This section provides the pin assignments for the PCIe present and bifurcation control signals. The AC/DC specifications are defined in Section XXX. An example connection diagram is shown in Figure 17Figure 16.

The PRSNTA#/PRSNTB[0:3]# state may be used to determine if a card has been physically plugged in. The PRSNTA#/PRSNTB[0:3]#/BIF[0:2]# pins much be latched at least 1 ms before PWRDIS deassertion of the system AC power on to ensure the correct values are detected by the system. Changing the pin states after this timing window is not allowed. Refer to the AC timing diagram in Section XXX for details.

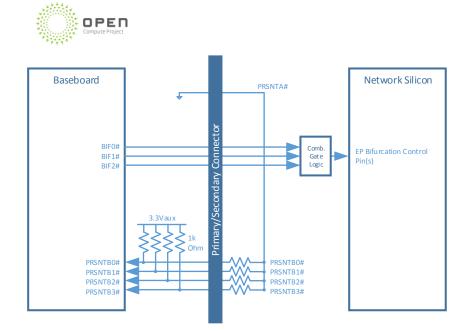

Signal Name	Pin #	Baseboard	Signal Description
		Direction	
PRSNTA#	A12	Output	Present A is used for add-in card presence and
			PCIe capabilities detection.
			For baseboards, this pin is directly connected to GND.
			For add-in cards, this pin is connected to the
			PRSNTB[3:0]# pins.
PRSNTB0#	B42	Input	Present B [0:3]# are used for add-in card
PRSNTB1#	A42		presence and PCIe capabilities detection.
PRSNTB2#	A10		
PRSNTB3#	B70		For baseboards, these pins are connected to
			the I/O hub and are pulled up to +3.3Vaux
			using 1kOhm resistors.
	1		

Table 1110: Pin Descriptions – PCIe Present and Bifurcation Control Pins

Rev0.01

	1	1	
			For add-in cards, these pins are strapped to
			PRSNTA#. The encoding definitions are
			described in Section 3.6.
			PRSNTB3# is located at the bottom of the 4C
			connector and is only applicable for add-in
			cards with a PCIe width of x16 (or greater).
			Add-in cards that implement a 2C card edge
			do not use the PRSNTB3# pin for capabilities
			or present detection.
BIFO#	A7	Output	Bifurcation [0:2]# pins allow the baseboard to
BIF1#	A8		force configure the add-in card bifurcation.
BIF2#	A9		
			For baseboards, these pins are outputs driven
			from the baseboard I/O hub and allows the
			system to force configure the add-in card
			bifurcation. The baseboard may optionally tie
			the BIF[0:2]# signals to 3.3Vaux or to ground if
			no dynamic bifurcation configuration is
			required.
			For add-in cards, these signals connect to the
			endpoint bifurcation pins if it is supported.
			The BIF[0:2]# encoding definitions are
			described in Section 3.6.
			Note: the required combinatorial logic output
			for endpoint bifurcation is dependent on the
			specific silicon and is not defined in this
			specification.

Figure <u>17</u>16: PCIe Present and Bifurcation Control Pins

3.4.3 SMBus Interface Pins

This section provides the pin assignments for the SMBus interface signals. The AC/DC specifications are defined in the SMBus and I²C bus specifications. An example connection diagram is shown in Figure XXX.

Table 1211: Pin Descriptions – SMBus

Signal Name	Pin #	Baseboard	Signal Description
		Direction	
SMCLK	A7	Output,	SMBus clock. Open drain, pulled up to 3.3Vaux
		OD	on the baseboard.
			For baseboards, connect the SMCLK from the
			platform SMBus master to the connector.
			For add-in cards, connect the SMCLK from the
			endpoint silicon to the card edge gold fingers.

Rev0.01

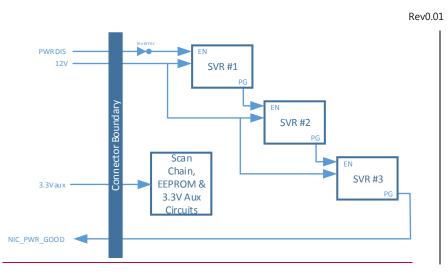
SMDAT	A8	Input /	SMBus Data. Open drain, pulled up to 3.3Vaux
		Output,	on the baseboard.
		OD	
			For baseboards, connect the SMDAT from the
			platform SMBus master to the connector.
			For add-in cards, connect the SMDAT from the
			endpoint silicon to the card edge gold fingers.
SMRST#	A9	Output,	SMBus reset. Open drain.
		OD	
			For baseboards, this pin is pulled up to
			3.3Vauxand is used to reset optional
			downstream SMBus devices (such as
			temperature sensors). SMRST# is a mandatory
			signal for baseboard implementations.
			For add-in cards, SMRST# is optional.

3.4.4 Power Supply Pins

This section provides the pin assignments for the power supply interface signals. The AC/DC specifications are defined in the PCIe CEM Specification, Rev 4.0 and amended in Section 3.10. An example connection diagram is shown in <u>-Figure 18</u>Figure XXX.

Signal Name	Pin #	Baseboard	Signal Description
		Direction	
GND	Various	GND	Ground return; a total of 46 ground pins are
			on the main 140-pin connector area.
+12V/+12V_AUX	B1, B2,	Power	12V main or 12V Aux power; total of 6 pins per
	B3, B4,		connector. The 12V pins are rated to 1.1A per
	B5, B6		pin with a maximum derated power delivery of
			79.2W.

Table 1312: Pin Descriptions – Power


http://opencompute.org

			The +12V power pins must be within the rail tolerances (TBD tolerance for Aux) when the PWRDIS pin is driven low by the baseboard.
+3.3V/3.3V_AUX	B11	Power	3.3V main or 3.3V Aux power; total of 1 pin per connector. The 3.3V pin is rated to 1.1A for a maximum derated power delivery of 3.63W.
			The 3.3Vaux/main power pin must be within the rail tolerances when the PWRDIS pin is driven low by the baseboard.
PWRDIS	B12	Output <u>,</u> O/D	Power disable. Active high. <u>Open-drain</u> This signal is <u>driven-pulled up to 3.3V through</u> <u>a 10kOhm resistor by on</u> the baseboar <u>d</u> d . When high, <u>all this signal notifies the add-in</u> card to turn off all supplies connected to <u>+12Vare disabled-power</u> . When low, <u>this signal notifies the add in card</u> to enable the on card power supplies <u>add-in</u>

Figure 18: Example Power Supply Topology

Open Compute Project • NIC • 3.0

3.4.5 Miscellaneous Pins

This section provides the pin assignments for the miscellaneous interface signals.

	Table 1413. Fill Descriptions – Miscellaneous 1			
Signal Name	Pin #	Baseboard	Signal Description	
		Direction		
RFU, N/C	B68,	Input /	Reserved future use pins. Leave these pins as	
	B69,	Output	no connect.	
	A68,			
	A69,			
	A70			

Table <u>1413</u>: Pin Descriptions – Miscellaneous 1

3.5 Signal Descriptions – OCP Bay (Primary Connector)

The following section describes the functions in the Primary Connector 28-pin OCP bay. This 28-pin bay is shown in Section 3.3 and have pin numbers designated as OCP_B[1:14], and OCP_A[1:14]. All pin directions on this OCP bay are from the perspective of the baseboard.

The add-in card shall implement protection methods to prevent leakage paths between the Vaux and Vmain power domains in the event that a NIC is powered down in a powered up baseboard.

http://opencompute.org

Note: The pins that are common to both the Primary and Secondary Connectors are defined in Section 3.4.

3.5.1 PCIe Interface Pins – OCP Bay (Primary Connector)

This section provides the pin assignments for the PCIe interface signals on the Primary Connector OCP bay. The AC/DC specifications are defined in Section XXX. An example connection diagram that shows REFCLK2, REFCLK3, PERST2# and PERST3# is shown in Section 3.7.

Signal Name	Pin #	Baseboard	Signal Description
Signal Hame	"	Direction	
REFCLKn2	OCP_B11	Output	PCIe compliant differential reference clock #2,
REFCLKp2	OCP_B12		and #3. 100MHz reference clocks are used for
REFCLKn3	OCP_A11	Output	the add-in card PCIe core logic.
REFCLKp3	OCP_A12		
			For baseboards, the REFCLK2 and REFCLK3
			signals are required at the Primary connector.
			For add-in cards, the required REFCLKs shall be
			connected per the endpoint datasheet.
			Note: REFCLK2 and REFCLK3 are not used for
			cards that only support a 1 x16 or 2 x8
			connection.
			Refer to Section 2.1 in the PCIe CEM
			Specification, Rev 4.0 for details.
PERST2#	OCP_A2	Output	PCIe Reset #2, #3. Active low.
PERST3#	OCP A3	- separ	
			Indicates when the applied power is within
			tolerance and stable for the add-in card.

Table 1514: Pin Descriptions – PCIe 2

Rev0.01

			PERST# goes high at least 100ms after the
			power rails are within operating limits per the
			PCIe CEM Specification. The PCIe REFCLKs also
			become stable within this period of time.
			PERST is pulled high on the baseboard.
			For OCP NIC 3.0, PERST deassertion also
			indicates the full card power envelope is
			available to the add-in card.
			For baseboards, the PERST[0:1]# signals are required at the connector.
			For add-in cards, the required PERST[0:1]#
			signals shall be connected to the endpoint silicon.
			Note: PERST2# and PERST3# are not used for
			cards that only support a 1 x16 or 2 x8
			connection.
			Refer to Section 2.2 in the PCIe CEM
			Specification, Rev 4.0 for details.
WAKE#	OCP_A1	Input, OD	WAKE#. Open drain. Active low.
			This signal is driven by the add-in card to
			notify the baseboard restore the PCIe link. For
			add-in cards that support multiple WAKE#
			signals, their respective WAKE# pins may be
			tied together as the signal is open-drain to
			form a wired-OR.

For baseboards, this signal is pulled up to +3.3V on the baseboard with a 10kOhm resistor and is connected to the system WAKE# signal.
For add-in cards, this signal is connected directly to the endpoint silicon WAKE# pin(s). Refer to Section 2.3 in the PCIe CEM
Specification, Rev 4.0 for details.

3.5.2 NC-SI Over RBT Interface Pins – OCP Bay (Primary Connector)

This section provides the pin assignments for the NC-SI over RBT interface signals on the Primary Connector OCP bay. The AC/DC specifications are defined in the NC-SI specification. An example connection diagram is shown in Figure 19Figure 17.

For the purposes of this specification, the min and max electrical trace length of the NC-SI signals shall be between 2 inches and 4 inches. The traces shall be implemented as 50 Ohm impedance controlled nets.

Signal Name	Pin #	Baseboard Direction	Signal Description
RBT_CLK_IN	OCP_A14	Output	Reference clock input. Synchronous clock reference for receive, transmit and control interface. The clock has a nominal frequency of 50MHz ±100ppm.
			For baseboards, connect this pin between the baseboard NC-SI over RBT PHY and the connector. This signal requires a 100kOhm pull down resistor on the baseboard. If the

Table <u>1615</u>: Pin Descriptions – NC-SI Over RBT

Rev0.01

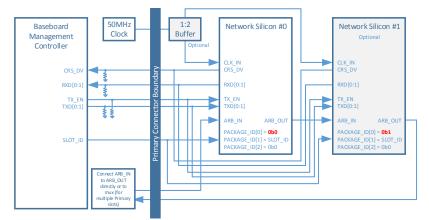
			baseboard does not support NC-SI over RBT,
			then terminate this signal to ground through a
			100kOhm pull down resistor.
			For add-in cards, connect this pin from the
			gold finger to the endpoint silicon. Leave this
			pin as a no connect if NC-SI is not supported.
RBT_CRS_DV	OCP_B14	Input	Carrier sense/receive data valid. This signal is
	_		used to indicate to the baseboard that the
			carrier sense/receive data is valid.
			For baseboards, connect this pin between the
			baseboard NC-SI over RBT PHY and the
			connector. This signal requires a 100kOhm pull
			down resistor on the baseboard. If the
			baseboard does not support NC-SI over RBT,
			then terminate this signal to ground through a
			100kOhm pull down resistor.
			For add-in cards, connect this pin from the
			gold finger to the endpoint silicon. Leave this
			pin as a no connect if NC-SI is not supported.
RBT_RXD0	OCP_B9	Input	Receive data. Data signals from the network
RBT_RXD1	OCP_B8		controller to the BMC.
			For baseboards, connect this pin between the
			baseboard NC-SI over RBT PHY and the
			connector. This signal requires a 100kOhm
			pull-up resistor to 3.3Vaux on the baseboard. If
			the baseboard does not support NC-SI over
			RBT, then terminate this signal to 3.3Vaux
			through a 100kOhm pull-up.

RBT_ARB_OUTOCP_A5OutputKet and a second does not support NC-SI over RBT, then terminate this signal to 3.3Vaux through a 100kOhm pull-up.For add-in cards, connect this pin from the gold finger to the endpoint silicon. Leave this pin as a no connect if NC-SI is not supported.				For odd in course, compare this with forms of
RBT_TX_ENOCP_A7OutputTransmit enable.RBT_TX_ENOCP_A7OutputTransmit enable.For baseboards, connect this pin between the baseboard NC-SI over RBT PHY and the connector. This signal requires a 100kOhm pull down resistor to ground on the baseboard. If the baseboard does not support NC-SI over RBT, then terminate this signal to ground through a 100kOhm pull down.RBT_TXD0OCP_A9 OCP_A8OutputFor add-in cards, connect this pin from the gold finger to the endpoint silicon. Leave this pin as a no connect if NC-SI is not supported.RBT_TXD1OCP_A8OutputTransmit data. Data signals from the BMC to the network controller.RBT_TXD1OCP_A8For baseboards, connect this pin between the baseboard NC-SI over RBT PHY and the connector. This signal requires a 100kOhm pull-up resistor to 3.3Vaux on the baseboard. If the baseboard NC-SI over RBT PHY and the connector. This signal requires a 100kOhm pull-up resistor to 3.3Vaux on the baseboard. If the baseboard NC-SI over RBT PHY and the connector. This signal requires a 100kOhm pull-up resistor to 3.3Vaux on the baseboard. If the baseboard does not support NC-SI over RBT, then terminate this signal to 3.3Vaux through a 100kOhm pull-up.RBT_ARB_OUTOCP_A5OutputFor add-in cards, connect this pin from the gold finger to the endpoint silicon. Leave this pin as a no connect if NC-SI is not supported.RBT_ARB_OUTOCP_A5OutputNC-SI hardware arbitration output. Used only if				
RBT_TX_ENOCP_A7OutputTransmit enable.For baseboards, connect this pin between the baseboard NC-SI over RBT PHY and the connector. This signal requires a 100kOhm pull down resistor to ground on the baseboard. If the baseboard does not support NC-SI over RBT, then terminate this signal to ground through a 100kOhm pull down.RBT_TXD0OCP_A9 OCP_A8OutputFor add-in cards, connect this pin from the gold finger to the endpoint silicon. Leave this pin as a no connect if NC-SI is not supported.RBT_TXD1OCP_A8OutputTransmit data. Data signals from the BMC to the network controller.For baseboard NC-SI over RBT PHY and the connector. This signal requires a 100kOhm pull-up resistor to 3.3Vaux on the baseboard. If the baseboard NC-SI over RBT PHY and the connector. This signal requires a 100kOhm pull-up resistor to 3.3Vaux on the baseboard. If the baseboard NC-SI over RBT PHY and the connector. This signal requires a 100kOhm pull-up resistor to 3.3Vaux on the baseboard. If the baseboard MC-SI over RBT PHY and the connector. This signal requires a 100kOhm pull-up resistor to 3.3Vaux on the baseboard. If the baseboard does not support NC-SI over RBT, then terminate this signal to 3.3Vaux through a 100kOhm pull-up.For add-in cards, connect this pin from the gold finger to the endpoint silicon. Leave this pin as a no connect if NC-SI is not supported.RBT_ARB_OUTOCP_A5OutputNC-SI hardware arbitration output. Used only if				
RBT_TXD0OCP_A9OutputFor baseboards, connect this pin between the baseboard NC-SI over RBT PHY and the connector. This signal requires a 100kOhm pull down resistor to ground on the baseboard. If the baseboard does not support NC-SI over RBT, then terminate this signal to ground through a 100kOhm pull down.RBT_TXD0OCP_A9OutputFor add-in cards, connect this pin from the gold finger to the endpoint silicon. Leave this pin as a no connect if NC-SI is not supported.RBT_TXD1OCP_A8OutputTransmit data. Data signals from the BMC to the network controller.RBT_TXD1OCP_A8For baseboards, connect this pin between the baseboard NC-SI over RBT PHY and the connector. This signal requires a 100kOhm pull-up resistor to 3.3Vaux on the baseboard. If the baseboard does not support NC-SI over RBT, then terminate this signal to 3.3Vaux through a 100kOhm pull-up.RBT_ARB_OUTOCP_A5OutputFor add-in cards, connect this pin from the gold finger to the endpoint silicon. Leave this pin as a no connect if NC-SI is not supported.				pin as a no connect if NC-SI is not supported.
RBT_TXD0 RBT_TXD1OCP_A8Output A A A A BFor add-in cards, connect this pin between the baseboard NC-SI over RBT PHY and the connector. This signal requires a 100kOhm pull down resistor to ground on the baseboard. If the baseboard does not support NC-SI over RBT, then terminate this signal to ground through a 100kOhm pull down.RBT_TXD0 RBT_TXD1OCP_A9 OCP_A8Output OCP_A8For add-in cards, connect this pin from the gold finger to the endpoint silicon. Leave this pin as a no connect if NC-SI is not supported.RBT_TXD1OCP_A8Output OCP_A8Transmit data. Data signals from the BMC to the network controller.RBT_TXD1OCP_A8OUtput OCP_A8Transmit data. Data signals from the BMC to the network controller.For baseboard NC-SI over RBT PHY and the connector. This signal requires a 100kOhm pull-up resistor to 3.3Vaux on the baseboard. If the baseboard does not support NC-SI over RBT, then terminate this signal to 3.3Vaux through a 100kOhm pull-up.RBT_ARB_OUTOCP_A5OutputFor add-in cards, connect this pin from the gold finger to the endpoint silicon. Leave this pin as a no connect if NC-SI is not supported.	RBT_TX_EN	OCP_A7	Output	Transmit enable.
RBT_TXD0OCP_A9OutputTransmit data. Data signals from the BMC to the network controller.RBT_TXD1OCP_A8OutputTransmit data. Data signals from the BMC to the network controller.RBT_TXD1OCP_A8For baseboards, connect this pin between the baseboard NC-SI over RBT PHY and the connector. This signal requires a 100kOhm pull-up resistor to 3.3Vaux on the baseboard. If the baseboard does not support NC-SI over RBT, then terminate this signal to 3.3Vaux through a 100kOhm pull-up.RBT_ARB_OUTOCP_A5OutputFor add-in cards, connect this pin from the gold finger to the endpoint silicon. Leave this pin as a no connect if NC-SI is not supported.				baseboard NC-SI over RBT PHY and the connector. This signal requires a 100kOhm pull down resistor to ground on the baseboard. If the baseboard does not support NC-SI over RBT, then terminate this signal to ground
RBT_TXD1OCP_A8the network controller.For baseboards, connect this pin between the baseboard NC-SI over RBT PHY and the connector. This signal requires a 100kOhm pull-up resistor to 3.3Vaux on the baseboard. If the baseboard does not support NC-SI over RBT, then terminate this signal to 3.3Vaux through a 100kOhm pull-up.RBT_ARB_OUTOCP_A5OutputNC-SI hardware arbitration output. Used only if				gold finger to the endpoint silicon. Leave this
For baseboards, connect this pin between the baseboard NC-SI over RBT PHY and the connector. This signal requires a 100kOhm pull-up resistor to 3.3Vaux on the baseboard. If the baseboard does not support NC-SI over RBT, then terminate this signal to 3.3Vaux through a 100kOhm pull-up.RBT_ARB_OUTOCP_A5OutputNC-SI hardware arbitration output. Used only if	RBT_TXD0	OCP_A9	Output	Transmit data. Data signals from the BMC to
RBT_ARB_OUTOCP_A5OutputBaseboard NC-SI over RBT PHY and the connector. This signal requires a 100kOhm pull-up resistor to 3.3Vaux on the baseboard. If the baseboard does not support NC-SI over RBT, then terminate this signal to 3.3Vaux through a 100kOhm pull-up.RBT_ARB_OUTOCP_A5OutputNC-SI hardware arbitration output. Used only if	RBT_TXD1	OCP_A8		the network controller.
RBT_ARB_OUT OCP_A5 Output NC-SI hardware arbitration output. Used only if				baseboard NC-SI over RBT PHY and the connector. This signal requires a 100kOhm pull-up resistor to 3.3Vaux on the baseboard. If the baseboard does not support NC-SI over RBT, then terminate this signal to 3.3Vaux through a 100kOhm pull-up. For add-in cards, connect this pin from the gold finger to the endpoint silicon. Leave this
	RBT_ARB_OUT	OCP_A5	Output	
				the end point silicon supports hardware

	01
Rev0	UT.

	1		
			arbitration. Connects to the ARB_IN signal of
			an adjacent device.
			The ARB_IN pin is also routed to the card edge
			to allow multiple devices and OCP slots on the
			baseboard to share the NC-SI ring. The
			baseboard shall implement a multiplexing
			implementation that directs the RBT_ARB_OUT
			to the RBT_ARB_IN pin of the next NC-SI
			capable device in the ring, or back to the
			RBT_ARB_IN pin of the source device if there is
			a single device on the ring.
			For baseboards, connect this pin between the
			baseboard OCP connector(s) to complete the
			hardware arbitration ring. If the baseboard
			does not support NC-SI over RBT, connect this
			signal directly to the RBT_ARB_IN pin.
			For add-in cards, connect this pin from the
			gold finger to the endpoint silicon. Leave this
			pin as a no connect if NC-SI is not supported.
RBT_ARB_IN	OCP_A4	Input	NC-SI hardware arbitration input. Used only if
			the end point silicon supports hardware
			arbitration. Connects to the ARB_OUT signal of
			an adjacent device.
			The ARB_OUT pin is also routed to the card
			edge to allow multiple devices and OCP slots
			on the baseboard to share the NC-SI ring. The
			baseboard shall implement a multiplexing
			implementation that directs the RBT_ARB_IN to
			the RBT_ARB_OUT pin of the next NC-SI

			capable device in the ring, or back to the
			RBT_ARB_OUT pin of the source device if there
			is a single device on the ring.
			For baseboards, connect this pin between the
			baseboard OCP connector(s) to complete the
			hardware arbitration ring. If the baseboard
			does not support NC-SI over RBT, connect this
			signal directly to the RBT_ARB_OUT pin.
			For add-in cards, connect this pin from the
			gold finger to the endpoint silicon. Leave this
			pin as a no connect if NC-SI is not supported.
SLOT_ID	OCP_B7	Output	NC-SI Address pin. Used only if the end point
			silicon supports package identification.
			For baseboards, this pin is used to identify the
			slot ID value. Connect this pin directly to GND
			for SlotID = 0; or pull this pin up to 3.3Vaux
			for SlotID = 1.
			For add-in cards, connect this pin to the
			endpoint Package ID[1] field. Refer to the
			endpoint device datasheet for details.
			The Package ID[2:0] is a 3-bit field and is
			encoded in the NC-SI Channel ID as bits [7:5].
			Package ID[2] is defaults to 0b0 in the NC-SI
			specification, but is optionally configurable if
			the target silicon supports configuring this bit.
			Package ID[1] is connected to the SLOT_ID pin.


Rev0.01

Package ID[0] is set to 0b0 for Network Silicon
#0. Package ID[1] is set to 0b1 for Network
Silicon #1 in the case of an OCP NIC 3.0 card
with two discrete silicon instances.
As written in the NC-SI specification, up to
four silicon devices are supported on the bus if
only Package ID[1:0] is configurable (e.g.
Package ID[2] is statically set to 0b0). Up to
eight silicon devices are supported on the NC-
SI bus if Package ID[2:0] are all configurable.
For add-in cards with multiple endpoint
devices, the SLOT_ID pin may be used to
configure a different Package ID value so long
as the resulting combination does not cause
addressing interferences.
For endpoint devices without NC-SI support,
leave this pin as a no connect on the add-in
card.

Figure 1917: NC-SI Over RBT Connection Example

http://opencompute.org

Note 1: For baseboard designs with a single Primary Connector, connect ARB_IN to ARB_OUT to complete the NC-SI hardware arbitration ring. For designs with multiple Primary Connectors, connect ARB_IN and ARB_OUT to an analog mux to complete the NC-SI arbitration ring based on the number of cards installed in the system.

Note 2: For add-in cards with two discrete endpoint silicon, the Package ID[0] bit shall be statically set based on its silicon instance. For example, the figure above shows Network Silicon #0 and Network Silicon #1. Network Silicon #0 has Package ID[0] = 0b0, Network Silicon #1 has Package ID[0] = 0b1.

3.5.3 Scan Chain Pins – OCP Bay (Primary Connector)

This section provides the pin assignments for the Scan Bus interface signals on the Primary Connector OCP Bay. The AC/DC specifications are defined in Section XXX. An example connection diagram is shown in Figure 20Figure 18.

Signal Name	Pin #	Baseboard	Signal Description		
		Direction			
CLK	OCP_B6	Output	Scan clock. The CLK is an output pin from the baseboard to the add-in card. The CLK may run		
			up to 12.5MHz.		

Table 1716: Pin Descriptions – Scan Chain

Rev0.01

			Nev0.01
			For baseboard implementations, connect the
			CLK pin to the Primary Connector. Tie the CLK
			pin directly to GND if the scan chain is not
			used.
			For NIC implementations, the CLK pin must be
			connected to Shift Registers 0 & 1, and
			optionally to Shift Registers 2 & 3 (if
			implemented) as defined in the text and Figure
			20 Figure 18 , below. Pull the CLK pin up to
			through a 1kOhm resistor.
DATA_OUT	OCP_B5	Output	Scan clock data output from the baseboard to
Drin <u>c</u> oor	001_00	output	the add-in card. This bit stream is used to shift
			in NIC configuration data.
			For baseboard implementations, connect the
			DATA_OUT pin to the Primary Connector. Tie
			the DATA_OUT pin directly to GND if the scan
			chain is not used.
			For NIC implementations, the DATA_OUT pin
			may be left floating if it is not used for add-in
			card configuration. Pull the DATA_OUT pin up
			to 3.3Vaux through a 1kOhm resistor.
DATA_IN	OCP_B4	Input	Scan clock data input to the baseboard. This
			bit stream is used to shift out NIC status bits.
			For baseboard implementations, the DATA_IN
			pin shall be pulled up to 3.3Vaux through a
			10kOhm resistor to prevent the input signal
			from floating if a card is not installed. This pin
			may be left as a no connect if the scan chain is
			not used.
	-	-	

			For NIC implementations, the DATA_IN scan chain is required. The DATA_IN connection to Shift Registers 0 & 1, as defined in the text and <u>Figure 20</u> Figure 18, are required.
LD#	OCP_B3	Output	Scan clock shift register load. Used to latch configuration data on the add-in card.
			For baseboard implementations, the LD# pin shall be pulled up to 3.3Vaux through a 1kOhm resistor if the scan chain is not used to prevent the add-in card from erroneous data latching.
			For NIC implementations, the LD# pin implementation is required. The LD# pin must be connected to Shift Registers 0 & 1 as defined in the text and <u>Figure 20Figure 18</u> . Pull the LD# pin up to 3.3Vaux through a 1kOhm resistor.

The scan chain provides side band status indication between the add-in card and the baseboard. The scan chain bit definition is defined in the two tables below. The scan chain data stream is 32-bits in length for both the DATA_OUT and the DATA_IN streams. The scan chain implementation is optional on the host, but is mandatory on all OCP NIC 3.0 cards. The scan chain components operates on the 3.3Vaux power domain.

The DATA_OUT bus is an output from the host. The DATA_OUT bus provides initial configuration options to the add-in card. At the time of this writing, the default implementation does not use the DATA_OUT stream and is not implemented on the NIC. However, all baseboard systems that implement the Scan Chain shall connect DATA_OUT between the platform and the Primary Connector for future-proofing NIC implementations and subsequent revisions of this specification.

Rev0.01

	Table 1817: Pin Descriptions – Scan Chain DATA_OUT Bit Definition				
Byte.bit	DATA_OUT Field	Default	Description		
	Name	Value			
0.[07]	RSVD	0b000000	Reserved. Byte 0 value is 0h00.		
1.[07]	RSVD	0h00	Reserved. Byte 1 value is 0h00.		
2.[07]	RSVD	0h00	Reserved. Byte 2 value is 0h00.		
3.[07]	RSVD	0h00	Reserved. Byte 3 value is 0h00.		

The DATA_IN bus is an input to the host and provides NIC status indication. The default implementation is completed with two 8-bit 74LV165 parallel in to serial out shift registers in a cascaded implementation. Up to four shift registers may be implemented to provide additional NIC status indication to the host platform.

DATA_IN shift registers 0 & 1 are mandatory for all cards. DATA_IN shift registers 2 & 3 are optional depending on the card type and fields being reported to the host. DATA_IN shift register 2 may be used to indicate future definitions of the scan chain bit stream. DATA_IN shift registers 3 (in conjunction with shift register 2) are required for reporting link/activity indication on card implementations with 5-8 ports.

The host should read the DATA_IN bus multiple (TBD) times to qualify the incoming data stream.

A 1kOhm pull up resistor shall be implemented on the NIC to the SER input of the last shift register on the DATA_IN scan chain to maintain a default bit value of 0b1 for unused bits for implementations using less than four shift registers.

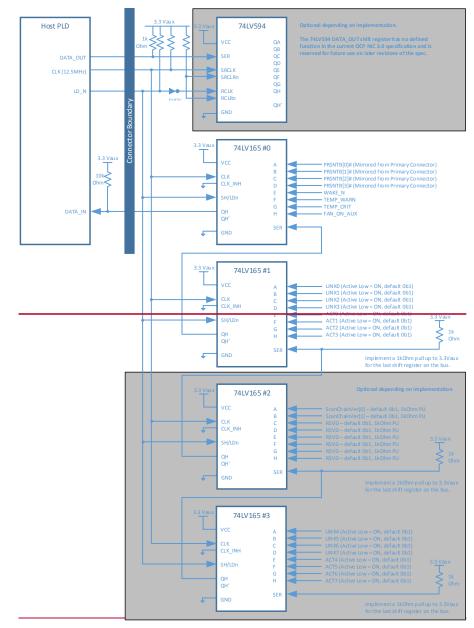
Byte.bit	DATA_OUT Field	Default	Description
	Name	Value	
0.0	PRSNTB[0]#	0bX	PRSNTB[3:0]# value is mirrored from the
0.1	PRSNTB[1]#	0bX	Primary Connector.
0.2	PRSNTB[2]#	0bX	

Table 19 18 : Pi	n Descriptions -	- Scan Bus DATA	IN Bit Definition
-----------------------------	------------------	-----------------	-------------------

0.3	PRSNTB[3]#	0bX	
0.4	WAKE_N	0bX	PCIe WAKE_N signal is mirrored from the
			Primary Connector.
0.5	TEMP_WARN	0b0	Temperature monitoring pin from the on-
			card thermal solution. This pin is asserted
			high when temperature sensor exceeds the
			temperature warning threshold.
0.6	TEMP_CRIT	0b0	Temperature monitoring pin from the on-
			card thermal solution. This pin is asserted
			high when temperature sensor exceeds the
			temperature critical threshold.
0.7	FAN_ON_AUX	0b0	When high, FAN_ON_AUX requests the
			system fan to be enabled for extra cooling in
			the S5 state.
1.0	LINK <u>ACT</u> 0	0b1	Port 03 link/activity indication. Active low.
1.1	LINK <u>ACT</u> 1	0b1	
1.2	LINK <u>ACT</u> 2	0b1	0b0 – Link LED is illuminated on the host
1.3	LINK <u>ACT</u> 3	0b1	platform.
			0b1 – Link LED is not illuminated on the host
			platform.
			Steady = link is detected on the port.
			Blinking = activity is detected on the port.
			The blink rate should blink low for 50-500ms
			during activity periods.
			Off = no link is detected on the port.the
			physical link is detected on the portant
1.4	SPEED0 ACT0	0b1	Port 0.3 speed indication. Active low.
1.5	SPEED1ACT1	0b1	
1.6	SPEED2ACT2	0b1	0b0 – Port is linked at maximum speed.
1.7	SPEED3ACT3	0b1	0b1 – Port is not linked at the maximum
	<u></u>		speed or no link is present. Port 03 activity
			indication. Active low.
L			

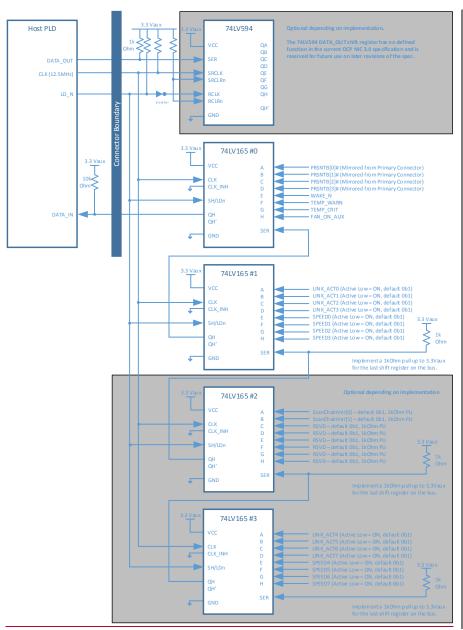
Rev0.01

			0b0Link LED is illuminated on the hostplatform.0b1Link LED is not illuminated on the hostplatform.Steady = no activity is detected on the port
			Blink = activity is detected on the port.
			Off = no link, see also LINK[3:0] LED bits.
			The LED blink duty cycle is dependent on the add in card implementation. The recommended duty cycle is 50%.
2.0	ScanChainVer[0]	0b1	ScanChainVer[1:0] is used to indicate the scan
2.1	ScanChainVer[1]	0b1	chain bit definitions. The encoding is as follows: 0b11 – Scan chain bit definitions version 1 corresponding to OCP 3.0 spec version 1.0.
2.2		061	All other encodings are reserved.
2.2	RSVD RSVD	0b1 0b1	Byte 2 bits [2:7] are reserved. These bits shall default to the value of 0b1. These bits may
2.3	RSVD	0b1 0b1	be used in future versions of the scan chain.
2.4	RSVD	0b1 0b1	
2.6	RSVD	0b1	
2.7	RSVD	0b1	
3.0	LINK_ACT4	0b1	Port 47 link/activity indication. Active low.
3.1	LINK_ACT 5	0b1	,
3.2	LINK_ACT 6	0b1	0b0 – Link LED is illuminated on the host
3.3	LINK <u>ACT</u> 7	0b1	platform. 0b1 – Link LED is not illuminated on the host platform.



		1	
			Steady = link is detected on the port. Blinking = activity is detected on the port. The blink rate should blink low for 50-500ms during activity periods. Off = the physical link is down or disabledPort 47 link indication. Active low. 0b0 — Link LED is illuminated on the host platform. 0b1 — Link LED is not illuminated on the host platform. Steady = link is detected on the port.
			Off = no link is detected on the port.
3.4	ACT4SPEED4	0b1	Port 47 speed indication. Active low.
3.5	SPEED5ACT5	0b1	
3.6	SPEED6ACT6	0b1	0b0 – Port is linked at maximum speed.
3.7	SPEED7ACT7	0b1	0b1 – Port is not linked at the maximum
			speed or no link is present. Port 47 activity
			indication. Active low.
			0b0 Link LED is illuminated on the host platform. 0b1 Link LED is not illuminated on the host platform.
			Steady = no activity is detected on the port
			Blink = activity is detected on the port.
			Off = no link, see also LINK[3:0] LED bits.

Rev0.01


Figure 2018: Scan Bus Connection Example

Open Compute Project • NIC • 3.0

Rev0.01

3.5.4 Primary Connector Miscellaneous Pins – OCP Bay (Primary Connector)

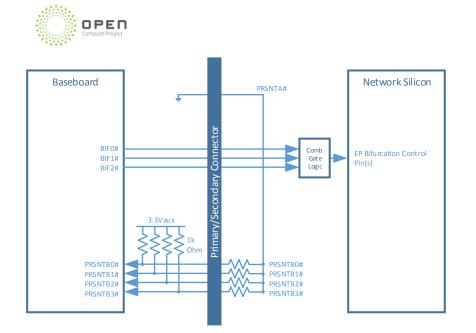
This section provides the miscellaneous pin assignments for the pins on the Primary Connector OCP Bay. The AC/DC specifications are defined in the PCIe CEM Specification, Rev 4.0 and Section 3.12. An example connection diagram is shown in Figure XXX.

Signal Name	Pin #	Baseboard	Signal Description
		Direction	
PWRBRK#	OCP_B2	Output,	Power break. Active low, open drain.
		OD	
			This signal is pulled up to 3.3Vaux on the
			add-in card with a minimum of 95kOhm and
			the baseboard with a stiffer resistance in-
			order to meet the timing specs as shown in
			the PCIe CEM Specification.
			This signal is driven low by the baseboard
			and is used to notify that an Emergency
			Power Reduction State is requested. The add-
			in card shall move to a lower power
			consumption state.
NIC_PWR_GOOD	OCP_B1	Input	NIC Power Good. Active high. This signal is
			driven by the add-in card.
			When high, this signal indicates that all of the
			add-in card power rails are operating within
			nominal tolerances.
			When low the add-in card power supplies are
			not yet ready or are in a fault condition.
			For baseboards, this pin may be connected to
			the platform I/O hub as a NIC power health
			status indication. This signal is pulled down

Table 2019: Pin Descriptions – Miscellaneous 2

Rev0.01

			to ground with a 100kOhm resistor on the baseboard to prevent a false power good indication if no add-in card is present.
			For add-in cards this signal may be implemented by a cascaded power good or a discrete power good monitor output.
GND	OCP_A6 OCP_A10 OCP_A13 OCP_B10 OCP_B13	GND	Ground return; a total of 5 ground pins are on the OCP bay area.


3.6 PCIe Bifurcation Mechanism

OCP3.0 baseboards and add-in cards support multiple bifurcation combinations. Single socket baseboards with a single or multiple root ports, as well as a multi-socket baseboards with a single or multiple root ports are supported. The bifurcation mechanism also supports add-in cards with a single or multiple end points. These features are accomplished via I/O pins on the Primary and Secondary connector:

- PRSNTA#, PRSNTB[3:0]#. The PRSNTA# pin connects to the PRSNTB# pins as a hard coded value on the add-in card. The encoding of the PRSNTB[3:0]# pins allows the baseboard to determine the PCIe Links available on the add-in card.
- BIF[3:0]#. The BIF# pin states are controlled by the baseboard and allows the baseboard to override the default end point bifurcation for silicon that support bifurcation. Additional combinatorial logic is required and is specific to the card silicon. The combinatorial logic is not covered in this specification.

The high level bifurcation connections are shown in Figure 21 Figure 19.

Figure 2119: PCIe Bifurcation Pin Connections Support

3.6.1 PCIe Add-in Card to Baseboard Bifurcation Configuration (PRSNTA#, PRSNTB[3:0]#) The add-in card to baseboard configuration mechanism consists of four dual use pins (PRSNTB[3:0]#) on the add-in card and a grounded PRSNTA# pin on the baseboard. These pins provide card presence detection as well as mechanism to notify the baseboard of the pre-defined PCIe lane width capabilities. The PRSNTB[3:0]# pins are pulled up to 3.3Vaux on the baseboard and are active low signals. A state of 0b1111 indicates that no card is present in the system. Depending on the capabilities of the add-in card, a selection of PRSNTB[3:0]# signals may be strapped to the PRSNTA# signal and is pulled low by the baseboard. The encoding of the PRSTNB[3:0]# bits is shown in Table 21Table 20 for x16 and x8 PCIe cards.

3.6.2 PCIe Baseboard to Add-in Card Bifurcation Configuration (BIF[2:0]#)

Three signals (BIF[2:0]#) are driven by the baseboard to notify requested bifurcation on the add-in card silicon. This allows the baseboard to set the lane configuration on the add-in card that supports multiple bifurcation options.

For example, a baseboard that has four separate hosts that support a 4 x4 connection, should appropriately drive the BIF[2:0]# pins per <u>Table 21</u>Table 20 and indicate to the add-silicon to setup a 4 x4 configuration.

As previously noted, the BIF[2:0]# signals require additional combinatorial logic to decode the BIF[2:0]# value and appropriately apply it to the end-point silicon. The combinatorial logic is not covered in the specification as its implementation is specific to the vendor silicon used.

3.6.3 PCIe Bifurcation Decoder

The combination of the PRSNTB[3:0]# and BIF[2:0]# pins deterministically sets the PCIe lane width for a given combination of baseboard and add-in cards. <u>Table 21</u>Table 20 shows the number of PCIe links and its width for known combinations of baseboards and add-in cards.

***Note:** The baseboard must disable PCIe lanes during the initialization phase if the number of detected PCIe links are greater than what is supported on the baseboard to prevent a nondeterministic solution. For example, if the baseboard only supports a 1 x16 connection, and the add-in card only supports a 2 x8 connection, the baseboard must disable PCIe lanes 8-15 to prevent any potential LTSSM issues during the discovery phase.

Table 2120: PCIe Bifurcation Decoder for x16 and x8 Card Widths

					venu alfino						VFOI DED	
		Host		I Host	-+	LTOST	LTIOST	INCH	INCH	Z Hosts	4 Hosts	4 or 8 Hosts
		Host CPU Sockets	1 Upstream Socket	1 Upstream Socket		1 Upstream Socket 2 Upstream Sockets 4 Upstream Sockets	4 Upstream Sockets	DVSH	RSVD	HSVD 2 Upstream Sockets 4 Upstream Sockets (1 Socket per Host) (1 Socket per Host)	4 Upstream Sockets (1 Socket per Host)	4/8 Upstream Sockets (1 Socket per Host)
Network Card – Supported PCle	Network Card - Supported PCle Configurations	Total PCIe Links	1 Link (No Bifurcation)	1 or 2 Links		2 Links	4 Links	RSVD	RSVD	2 Links	4 Links	4 or 8 x2 links
		System Support	1x16, 1x8, 1x4, 1x2, 1x1	1x16,1x8,1x4,1x2,1x1	1x16,1x8,1x4,1x2,1x1	1x8,1x4,1x2,1x1		RSVD	RSVD			
				2 x8, 2 x4, 2 x2, 2 x1	2 x8, 2 x4, 2 x2, 2 x1	2 x8, 2 x4, 2 x2, 2x1				2x8,2x4,2x2,2x1		
					4 84, 4 82, 4 81		4 ×4, 4 ×2, 4×1				4 ×4, 4 ×2, 4 ×1	4 ×2, 4 ×1
		System Encoding	00090	00000	00090	0P001	0P010	06011	06100	06101	0b110	0b111
Card Short	x16 Cards	Add-in-Card Encoding										
1000	Cord Not Descent	0H111	DSM - Card not recorded in the statem	the curtain								
t.	UN 144 142 141	061110	1/28 1/28	1.078 3/3400	1.8	148	144	,		148	1.44	142
1×8						(Socket 0 only)	(Socket 0 only)			(Host 0 only)	(Host 0 only)	(Host 0 only)
101	1x4, 1x2, 1x1	0b1110	¥.	4. 4.	2×1	1x4 [Seedar Donly]	1x4 [Seedaar () control		,	1s4 (Host 0 onlin)	1x4 (Host 0 only)	1x2 (Host 0 onlu)
ę	1x2, 1x1	001110	142	142	1x2	1×2	1×2			122	122	182
t	1.4	Obstin	5.5	1.4	1.4	Loocket U only)	Loocket U only)	•	ŀ	(rtost u oniy)	(nost u oniy) 1.4	(nost u oniy) 1.d
1×1			8		2	(Socket 0 only)	(Socket 0 only)			(Host 0 only)	(Host 0 only)	(Host 0 only)
1x8 Dption B 2x4, 2x2, 2x1 1x8 Dption B 2x4, 2x2, 2x1	1x8,1x4,1x2,1x1 2x4,2x2,2x1	061101	8%1	1:6	1×8	1x8 (Socket 0 only)	2x4			1x8 (Host 0 only)	2 44	2 x/2 (Host 0 & 1 only)
2 x8, 2 x4, 2 x2 2 x8 Option B 4 x4, 4 x2, 4 x1	2 x8, 2 x4, 2 x2, 2 x1 4 x4, 4 x2, 4 x1	0b1101	1×8.	2×8	2×8	2x8	4×4			2%8	4 %4	2 x/2 (Host 0 & 1 only)
	1x8,1x4 2 v4	0bft00	84	2 x4	2 44	1×8 (Soodwarf) only)	2 H4			1x8 (Host 0 onlu)	2 ×4	4 ×2
1×8 Option D	1x8 Option D 4 x2 (First 8 lanes), 4 x1											
1x16 Oction D	1x16.1x8,1x8,1x4 2x8,2x4 1x16.Detion 0 4x4,4x2.Eftst81anes1,4x1	061100	1×16	1x16	1×16	2×8	484			2%8	4.84	4 22
RSVD F		0b1011	RSVD - The encoding of U	1b1011 is reserved due to it	PSVD - The encoding of 0b1011 is reserved due to insufficient spacing between PPSNTA and PPSNTB2 pin to provide positive card identification.	In PRSNTA and PRSNTB2	pin to provide positive care	identificati	ion.			
2	2 k4, 2 k2, 2 k1	0b1010	4	2,44	2x4	1x4	2x4	,		184 640010	2,44	2%2
T	184, 186, 181 DSM for his words conciled [hhi001	051001				(nonset o orig)				(LTUSE U OFFIU)		(11054.0 G 1010)
T	RSVD for future x8 encoding	001000										
1×16	1x16,1x8,1x4,1x2,1x1	060111	1×16	1×16	1×16	1x8 (Socket 0 only)	1x4 (Socket 0 only)		,	1x8 (Host 0 only)	1 _% 4 (Host 0 only)	1x2 (Host 0 only)
2 x8 Option A		060110	1×8.	2%8	2×8	2×8	2 x4 (Sooket 0 & 2 only)			2%8	2 x4 (Host 0 & 2 only)	1x2 (Host 0 & Tonly)
1x16 Option B	1x2, 1x1 2x1	0b0 101	1×16	1×16	1×16	2x8	2 x4 (Socket 0 & 2 only)			2%8	2 x4 (Host 0 & 2 only)	2 x/2 (Host 0 & 1 only)
1x16, 1x8, 1x8, 1x4 2x8, 2x4, 2x2, 1x16 Option C 4x4, 4x2, 4x1	1x16, 1x8, 1x4 2x8, 2x4, 2x2, 2x1 4x4, 4x2, 4x1	060100	1×16	1×16	1×16	2x8	4×4			2%8	4 x4	2 x/2 (Host 0 & 1 only)
4	4x4,4x2,4x1	060 011	1×4*	2%4"	4 84	2×4 (EP0 and 2 only)	484			2x4 (EP 0 and 2 only)	4.4	4 x2 (Host 0 & 1 only)
RSVD F	BSVD	0b0010			-	-						
	dvs	060 001										
		0.000						İ	ĺ			

Rev0.01

3.6.4 Bifurcation Detection Flow

[Need input and clarification from system vendors]

The following detection flow shall be used to determine the resulting link count and lane width based on the baseboard and add-in card configurations.

- The baseboard reads the state of the PRSNTB[3:0]# pins. If the resulting value is not 0b1111, an add-in card is present.
- 2. Firmware determines the add-in card PCIe lane width capabilities per <u>Table 21</u><u>Table</u> reading the PRSNTB[3:0]# pins.
- 3. The baseboard reconfigures the PCIe bifurcation on its ports to match the highest common lane width and lowest common link count on the card.
- 4. For cases where the baseboard request a link count override (such as requesting a 4-host baseboard requesting 4 x4 operation on a supported card that would otherwise default to a 2 x8 case), the BIF[0:2]# pins would be asserted as appropriate. Doing so assumes the add-in card supports the requested link override.
- PERST# is deasserted after the >100ms window as defined by the PCIe specification. Refer to Section 3.12 for timing details.

3.6.5 PCIe Bifurcation Examples

For illustrative purposes, the following figures show several common bifurcation permutations.

Figure 22

in card that also supports x16. The PRSTNB[3:0]# state is 0b0111. The BIF[2:0]# state is 0b000 as there is no need to instruct the end-point network controller to a specific bifurcation. The PRSNTB encoding notifies the baseboard that this card is only capable of 1 x16. The single host baseboard determines that it is also capable of supporting 1 x16. The resulting link width is 1 x16.

Figure 20 illustrates a single host baseboard that supports x16 with a single controller addin card that also supports x16. The PRSTNB[3:0]# state is 0b0111. The BIF[2:0]# state is 0b000 as there is no need to instruct the end-point network controller to a specific bifurcation. The PRSNTB encoding notifies the baseboard that this card is only capable of 1 x16. The single host baseboard determines that it is also capable of supporting 1 x16. The resulting link width is 1 x16.

Figure 2220: Single Host (1 x16) and 1 x16 Add-in Card (Single Controller)

Open Compute Project • NIC • 3.0

Rev0.01

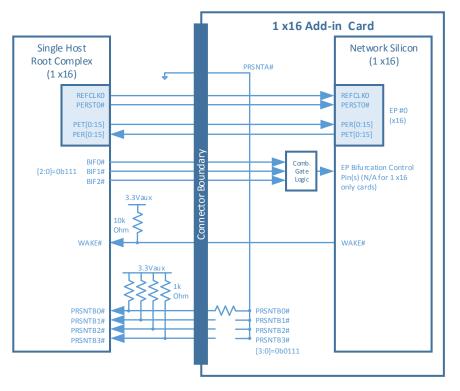


Figure 23Figure 21 illustrates a single host baseboard that supports 2 x8 with a single in card that also supports 2 x8. The PRSTNB[3:0]# state is 0b0110. The BIF[2:0]# state is 0b111 as there is no need to instruct the end-point network controllers to a specific bifurcation. The PRSNTB encoding notifies the baseboard that this card is only capable of 2 x8. The single host baseboard determines that it is also capable of supporting 2 x8. The resulting link width is 2 x8.

Figure 2321: Single Host (2 x8) and 2 x8 Add-in Card (Dual Controllers)

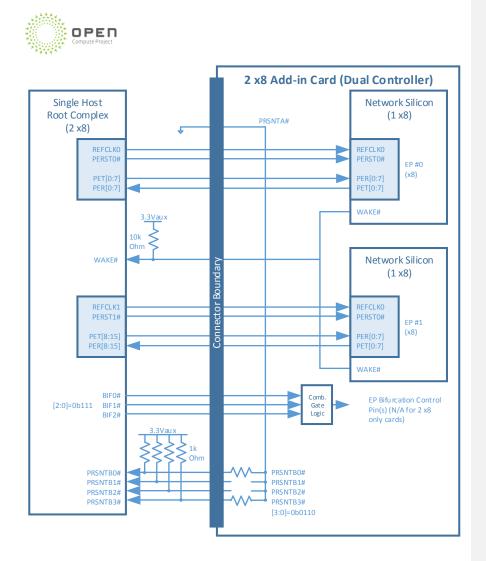


Figure 24Figure 22 illustrates a four host baseboard that supports 4 x4 with a single card that supports 1 x16, 2 x8 and 4 x4. The PRSTNB[3:0]# state is 0b0011. The BIF[2:0]# state is 0b101 as the end point network controller is forced to bifurcate to 4 x4. The PRSNTB encoding notifies the baseboard that this card is only capable of 1 x16, 2 x8 and 4 x4. The four host baseboard determines that it is also capable of supporting 4 x4. The resulting link width is 4 x4.

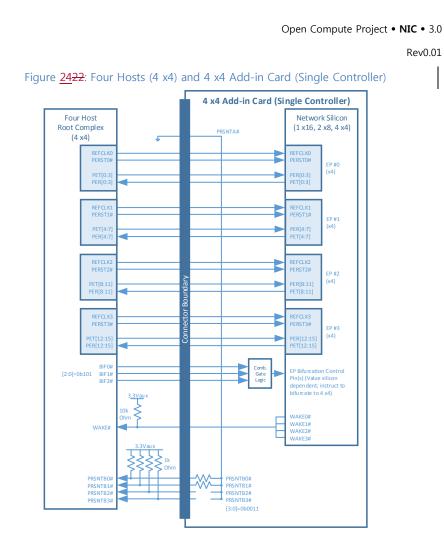
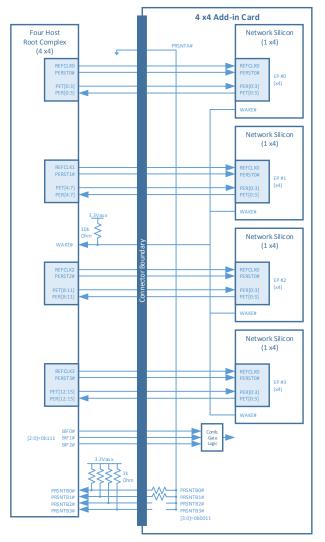
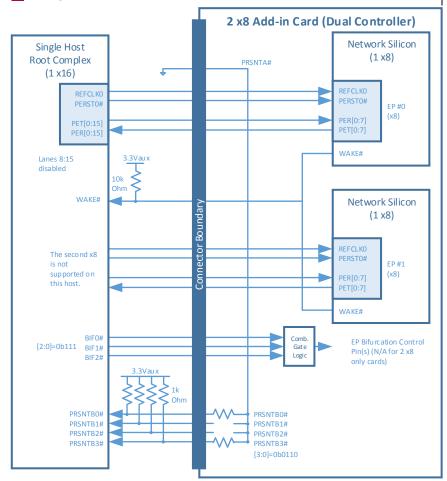



Figure 25Figure 23 illustrates a four host baseboard that supports 4 x4 with a four controlled card that supports 4 x4. The PRSTNB[3:0]# state is 0b0011. The BIF[2:0]# state is 0b111 as there is no need to instruct the end-point network controllers to a specific bifurcation. The PRSNTB encoding notifies the baseboard that this card is only capable of 4 x4. The four host baseboard determines that it is also capable of supporting 4 x4. The resulting link width is 4 x4.


Figure 2523: Four Hosts (4 x4) and 4 x4 Add-in Card (Four Controllers)

Rev0.01

Figure 26Figure 24 illustrates a single host baseboard that supports 1 x16 with a dual in card that supports 2 x8. The PRSTNB[3:0]# state is 0b0110. The BIF[2:0]# state is 0b111 as there is no need to instruct the end-point network controllers to a specific bifurcation. The PRSNTB encoding notifies the baseboard that this card is only capable of 2 x8. The four host baseboard determines that it is capable of 1x 16, but down shifts to 1 x8. The resulting link width is 1 x8 and only on endpoint 0.

REFCLK # **REFCLK0**

REFCLK1

REFCLK2

REFCLK3

3.7 PCIe Clocking Topology

The OCP NIC 3.0 specification allows for up to four PCIe REFCLKs on the Primary Connector and up to two PCIe REFCLKs on the Secondary Connector. In general, the association of each REFCLK is based on the PCIe Link number on a per connector basis and is shown in Table 22 Table 21. Cards that implement both the Primary and Secondary connectors have a up to 6 REFCLKs.

Description	Availability (Connector)
REFCLK associated with Link 0.	Primary and Secondary Connectors.

Primary and Secondary Connectors.

Primary Connector only.

Primary Connector only.

REFCLK associated with Link 1.

REFCLK associated with Link 2.

REFCLK associated with Link 3.

Table 2221. PCIe Clock Associations

	• For a 2 x8 capable add-in card, REFCLK0 is used for lanes [0:7] and REFCLK1 is used
	for lanes [8:15].
•	For a 4 x4 capable add-in card, REFCLK0 is used for lanes [0:3], REFCLK1 is used for lanes
	[4:7], REFCLK2 is used for lanes [8:11] and REFCLK3 is used for lanes [12:15]. Pins for

For each add-in card, the following REFCLK connection rules must be followed: • For a 1 x16 capable add-in card, REFCLK0 is used for lanes [0:15].

REFCLK2 and REFCLK3 are described in Section 3.5.1 and are located on the 28-pin OCP bay.

Figure 2725: PCIe Interface Connections for 1 x16 and 2 x8 Add-in Cards

Open Compute Project • NIC • 3.0

Rev0.01

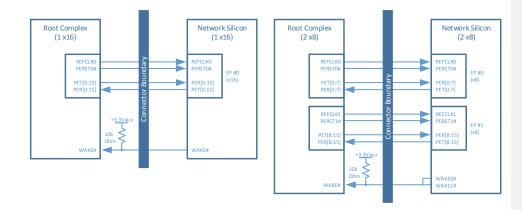
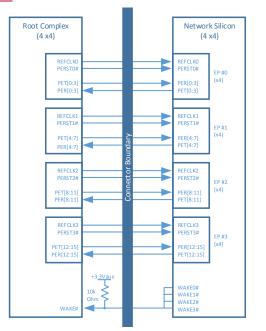



Figure 2826: PCIe Interface Connections for a 4 x4 Add-in Card

3.8 PCIe Bifurcation Results and REFCLK Mapping

For the cases where the baseboard and add-in card bifurcation are permissible, this section enumerates all of the supported PCIe link, lane and REFCLK mappings for each supported configuration. The bifurcation decoder is shown in Section 3.6.3.

Rev0.01

Table 2322: Bifurcation for Single Host, Single Socket and Single Upstream Link

Text Number Nu			3 Lane 14 Lane 15									Link 0, Link 0, Lane 14 Lane 15					Link 0, Link 0, Lane 14 Lane 15		Link 0. Link 0. Lane 14 Lane 15	Link O. Link O. Lane 14 Lane 15			
Other at State, Out Jerrise Line, Link 1, 14, 11-2, 11-			Lane 12 Lane 1																				
Other at State, Out Jerrise Line, Link 1, 14, 11-2, 11-			ae 10 Lane 11																				
Other at State, Out Jerrise Line, Link 1, 14, 11-2, 11-			Lane 9 L:									Link O, Lone 3					Link O, Lone 3		Link 0, Lane 3	Link O, Lane 3			
Other at State, Our Jgennes Asset, Our Jgennes State, Our Jgennes Asset, Our Jack Jgennes Asset, Jack JJ,			7 Lane 8		2.15				~ 10	~ ~	~ ~						_	~ 1-					
Other at State, Our Jgennes Asset, Our Jgennes State, Our Jgennes Asset, Our Jack Jgennes Asset, Jack JJ,			ae 6 Lane		_																		
Other at State, Our Jgennes Asset, Our Jgennes State, Our Jgennes Asset, Our Jack Jgennes Asset, Jack JJ,			Lane 5 La		_														_				
Other at State, Our Jgennes Asset, Our Jgennes State, Our Jgennes Asset, Our Jack Jgennes Asset, Jack JJ,			t Lane 4		_													_	-				
Other at State, Our Jgennes Asset, Our Jgennes State, Our Jgennes Asset, Our Jack Jgennes Asset, Jack JJ,			e 2 Lane :		_	-													_		-		
Other at State, Our Jgennes Asset, Our Jgennes State, Our Jgennes Asset, Our Jack Jgennes Asset, Jack JJ,			and 1 lan			-								_				_	_				1
Other at State, Our Jgennes Asset, Our Jgennes State, Our Jgennes Asset, Our Jack Jgennes Asset, Jack JJ,			Lane 0	_	_	<u> </u>		Link 0. Lane 0									Link 0, Lune 0	_	<u> </u>				
Open statut, Data of the partnersis This, Tria, Lia, Lia, Lia, Lia, Lia, Lia, Lia, L			Resulting Link		128	1x4	1x2	1x1	1x8	1x8"	118	1±16		1 24			1±16	1x8"	1×16	1±16	1 ±4*		
Hybernes Folds Operation Electronic Folds Fold		BIF[2:0]	•	0P000	00900	00090	00000	00900	00090	00090	00090	00090	000000	00090	00090	00000	000q0	00090	00090	00090	00000	00090	00000
Open set Set of the Light results Descriptions Description Description <thdescription< th=""> <thdescription< th=""> <thde< td=""><td>_</td><td></td><td></td><td>1 Link</td><td>1 Link</td></thde<></thdescription<></thdescription<>	_			1 Link	1 Link	1 Link	1 Link	1 Link	1 Link	1 Link	1 Link	1 Link	1 Link	1 Link	1 Link	1 Link	1 Link	1 Link	1 Link	1 Link	1 Link	1 Link	1 Link
Open one State Color Openance (a) A color openanc	1x16. 1x8.1z4.1x2.1	The second second second second	Upstream Devices	1 Upstream Socket	1 Upstream Socket	1 Upstroam Socket	1 Upstream Socket	1 Upstream Socket	1 Upstream Socket	1 Upstream Socket	1 Upstream Socket	1 Upstream Socket	1 Upstream Socket	1 Upstream Socket	1 Upstream Socket	1 Upstream Socket	1 Upstream Socket	1 Upstream Socket	1 Upstream Socket	1 Upstream Socket	1 Upstream Socket	1 Upstream Socket	1 Upstream Socket
Bit (April rows 5 color), On: Upprived Link, Base Bit (April rows), Display Bit (April rows), Display, Disp			_	1 Hopt	1 Host	1 Hogt	1 Host	1 Host	1 Host	1 Hopt	1Host	1 Host	1 Host	1 Host	1 Hopt	1 Host	1 Host	1 Host	1 Host	1 Host	1 Host	1 Host	1 Hopt
le Uport Stant Sta	. no bifurcation	Add-in-Card	PRSMTB[3:0]#	0b1111	061110	0b1110	061110	0b1110	061101	0b1101	061100					0b1000	060111	060110	000101	060100	000011	060010	0b0001
le Uport Stant Sta	cam Socket. One Ubstream Link	Supported Bifurcation	Modes	Card Not Present	1±6, 1×4, 1×2, 1×1	1±4, 1×2, 1×1	1±2, 1×1	1±1	1±8, 1×4, 1×2, 1×1 2 ±4, 2 ×2, 2 ×1	2 x8, 2 x4, 2 x2, 2 x1 4 x4, 4 x2, 4 x1	1x8, 1x4 2 x4, 4 x2 (First 8 lance), 4 x1	1x16, 1x8, 1x4 2x8, 2x4, 4x4, 4x2 (First 8 lancs), 4x1	RSVD	2 x4, 2 x2, 2 x1 1 x4, 1 x2, 1 x1	RSVD for future x8 encoding	RSVD for future x8 encoding	1±16, 1×8, 1×4, 1±2, 1×1	2 x8, 2 x4, 2 x2, 2 x1	1 ±16, 1 ×6, 1 ×4, 1 ±2, 1 ×1 2 ×6, 2 ×4, 2 ×2, 2 ×1	1 ±16, 1 × 8, 1 × 4 2 × 8, 2 × 4, 2 × 2, 2 × 1 4 × 4, 4 × 2, 4 × 1	4 ±4, 4 ×2, 4 ×1	DVD	RSVD
	tost. Sinale Upstr		Short		1×8	124	1 x2	1×1	1x8 Option B	2 x8 Option B	1 x8 Option D	1 x16 Option D	RSVD	2.14	RSVD		1×16	2 x8 Option A	1x16 Option B	1x16 Option C	4 x4		

Lane 15 Link 0. Lone 15 Link 1, Link 1, Link 0, Link 0, Link 0, Link 0, Link 0. Lone 15 Link 1, Lone 7 Lane 3 Lane 10 Lane 11 Lane 12 Lane 13 Lane 14 Link 0, Lane 14 Link 0, Lane 14 Lane 14 Link 1, Link 0, Link 0, Link 0, Lane 14 Link 1, Lane 6 Link 0, Lone 13 Link 1, Lane 5 Link 0, Lane 13 Link 1, Lane 5 Link 0, Lane 13 Lane 13 Link 0. Lane 12 Link 0, Lane 12 Link 1 Lane 4 Link 0, Lane 12 Lane 12 Lane 12 Link 1. Lone 4 Link O, Lane 11 Link 1, Lane 3 Link 0, Link 1, Link 1, Link 0, Link 0, Link 1, Link 0, Late 10 Link 1, Lone 2 Link 0, Lune 10 Lane 2 Lane 2 Link 0, Lane 10 Lane 10 Link O. Lone 3 Link 0, Lone 3 Lone 1 Lone 1 Lone 3 Lone 3 Lone 3 Link 1 Lane 1 Lane 8 Link O, Lane 8 Link 1, Lane 0 Link 0, Lane 8 Lane 8 Lane 0 Lane 8 Link 0, Lane 8 Lane 7 Link 0, Lane 7 Link 0, Lane 7 Lane 7 Lane 7 Lane 7 Lane 7 Lane 7 Link 0, Lane 7 Link 0, Link 0, Link 0, Lane 7 Link O, Lune 7 Lane 6 Link 0, Lane 6 Link 0. Lane 6 Link 0. Link 0. Link 0. Lane 6 Lane 6 Link 0, Lane 6 Lane 6 Lane 6 Link 0, Link 0, Lane 6 Lane 5 Link 0, Lane 5 Link 0, Lane 5 Lane 5 Lane 5 Lane 5 Lane 5 Lane 5 Link 0, Lans 5 Lane 4 Link 0, Lane 4 Link 0, Lone 4 Link 0, Link 0, Link 0, Lone 4 Link 0, Lone 4 Link 0, Lane 4 Lane 4 Lane 4 Lane 4 Lane 4 Lane 3 Link 0, Link 0, Link 0, Lane 3 Link 0. Lane 3 Lane 3 Lane 3 Lane 3 Link O. Lane 3 Link 0, Lane 3 Link 0, Link 0, Lane 3 Lane 3 Lane 3 Lane 3 Lane 2 Link 0, Lane 2 Link 0, Lane 2 Link 0, Lane 2 Link 0, Link 0, Link 0, Link 0, Lane 2 Link 0, Lane 2 Link 0, Link 0, Link 0, Link 0, Link 0, Link 0, Lane 1 Link 0, Lane 1 Link 0, Link 0, Lane 1 Link 0, Lane 1 Link 0, Link 0, Lane 1 Link 0, Lane 1 Link 0, Lane 1 Lane 1 Lane 1 Lane 1 Lane 1 Lane 1 Link 0, Lone 1 Link 0, Lone 1 Lane 0 Lukh C. ulting Link 1×2 1×1 1×2 2 ×8 1 ×8 1×4 1×16 2 x8 1 x16 1×16 1×4 ×16 •** BIF[2:0] # 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00090 1 or 2 Links 1 or 2 Links Upstream Links 1 or 2 Links or & Linko Socket Socket Socket 1x16, 1x8, 1x4, 1x2, 1 2x8, 2x4, 2x2, 2x1 Devices Socket Socket 1Upstream Socket 1Upstream Socket 1 Upstream Socket 1 Upstream Socket Upstream Socket 1Upstream Socket 1 Upstream Socket 1Upstream Socket Upstream Socket Upstream Socket Ipstream Socket Ipstream Socket Upstream [Upstream 1 Host 1 1 Host 1 1 Host 1 Host 1 Host 1 Host Host 1 Host topt ard om Links Add-in-Cs Eacoding PRSMTB[35 061111 061110 061110 061110 061101 061101 061011 061010 061001 061000 060111 0b0110 0b0101 60100 00011 060**010** 060**001** 060**001** b1110 b1100
 11
 1

 11
 141
 141
 141

 1
 110
 200
 200
 200

 2
 0
 143
 425
 213
 1

 2
 0
 143
 425
 413
 1

 1
 16
 0
 143
 412
 413
 413
 413
 413
 413
 413
 413
 413
 413
 413
 413
 413
 413
 413
 413
 413
 413
 413
 413
 413
 413
 413
 413
 413
 413
 414
 414
 414
 414
 414
 414
 414
 414
 414
 414
 414
 414
 414
 414
 414
 414
 414
 414
 414
 414
 414
 414
 414
 414
 414
 414
 414
 414
 414
 414
 414
 414
 414
 414
 414
 414
 414
 414
 414
 414
 <t A 1x16, 1x6, 1x4, 1x2, 1x1 B 2x8, 2x4, 2x2, 2x1 1x16, 1x8, 1x4 2x6, 2x4, 2x2, 2x1 C 4x4, 4x2, 4x1 4x4, 4x2, 4x1 2 x8, 2 x4, 2 x2, 2 x1 Card Not Prepent 1x8, 1x4, 1x2, 1x1 ream Socket, One Supported B Modes 1x4, 1x2, 1x1 x2, 1x1 RSVD RSVD Card Short Hame 2 x8 Option A A 14 BSVD 1×2 *8 1×4 1×1 1×16 16 Optio Single Min Car Card Car Vidth Rs

Table 2423: Bifurcation for Single Host, Single Socket and Single/Dual Upstream Links

(BIF[2:0]#=0b000)

Rev0.01

Table 2524: Bifurcation for Single Host, Single Socket and Single/Dual/Quad Upstream Links

			ane 14 Lane D							Link 1, Link 1, Lane 6 Lane 7)]#		Lane 14 Lane 15					Link 0, Link 0, Lane 14 Lane 15	Link 1, Link 1, Lane 6 Lane 7	Link O, Link O, Lane 14 Lane 15	Link 0, Link 0, Lane 14 Lane 15	Link 3, Link 3, Lane 2 Lone 3		
			Lane 13 La							Link 1, 1 Lane 5 L			-	Lane 13 L					Link 0, 1 Lone 13 L	Link 1, 1 Lane 5 L	Link 0, 1 Lane 13 L	Link 0, 1 Lune 13 L	Link 3, L Lone 1 L		
			Lane 12							Link 1. Lane 4				Lane 12					Link 0, Lane 12	Link 1. Lane 4	Link 0. Lane 12	Link 0. Lone 12	Link 3. Lane 0		
			Lane I							Link 1, Lane 3				Lane 11					Link 0, Lane 11	Link 1, Lane 3	Link 0, Lane 11	Link 0, Lane 11	Link 2, Lane 3		
			J Lane 1							Link 1, Lone 2				Lane 10					Link 0, Lone 10	Link 1, Lane 2	Link 0, Lane 10	Link 0. Lone 10	Link 2, Lane 2		
			S Lane							Link 1, 0 Line 1			-	8 Lane 9					r, Linko. B Lane 3	Link 1. D Lane 1	, Link O, 5 Lane 3		t. Link 2, Lane 1		
			e Lane		05				01	0, Link I, 17 Lane 0	0	~	_	r lane 8		- 0			0, Link 0, 17 Lane 8	0, Link I, 17 Lane 0	0, Link 0, 7 Lane 8	0, Link 0, 7 Line 8	1. Link 2, 3 Link 0		
			e b Lane	-	Link 0, Link 0, Lane 6 Lane 7				Link 0, Link 0, Lane 6 Lone 7	Link 0, Link 0, Lane 6 Lane 7	0, Linko.		-	Lane 6 Lane 7		Link 1, Link 1, Lane 2 Lane 3			Link 0, Link 0, Lane 6 Lane 7	Link 0, Link 0, Lane 6 Lane 7	Link 0, Link 0, Lane 6 Lane 7	Link 0, Link 0, Lane 6 Lone 7	Link 1, Link 1, Lane 2 Lane 3		
			-	-	Link 0, Link Lone 5 Lon				Link 0, Link 0, Lone 5 Lone 6	Link 0, Link Lane 5 Lan	Link 0, Link 0,	Lane 5 Lane 6	_	Lane 5 Lan		Link 1, Link Lane 1 Lan			Link 0, Link Lane 5 Lan	Link 0, Link Lane 5 Lan	Link 0, Link Lane 5 Lan	Link O, Link Lone 5 Lon	Link 1, Link Lone 1 Lon		
			-	-	Link 0, Lir Lone 4 Lo				Link 0, Lin Lone 4 Lo	Link 0, Lir Lane 4 La	-	Lane 4 La	_	Lane 4 La		Lane 0 La			Link 0, Lir Lane 4 La	Link 0, Lin Lane 4 La	Link 0, Lir Lane 4 La	Link 0. Lin Lane 4 La	Link 1, Li Lane 0 La		
			386 3 L3	-	Link 0, Li Lane 3 Li	Link 0, Lane 3			Link O, Li Lane 3 Li	Link 0, Li Lane 3 Li	Link O, Li	Lane 3 Li	_	Lane 3 Li		Lane 3 Li			Link O, Li Lane 3 Li	Lane 3 Li	Lane 3 Li	Link O, Li Lane 3 Li	Lane 3 Li		
			Take Z	_	Link 0, Lone 2	Link 0, Lone 2			Link 0, 1 Lone 2	Link 0, 1 Lone 2	Link 0,	Lane 2	_	Lane 2		Link 0, 1 Lone 2 1			Link 0, 1 Lone 2	Link 0, 1 Lane 2	Link 0, 1 Lane 2	Link 0, Lone 2	Link 0, 1 Lane 2		
			13861		Link 0. Lane 1	Link 0, Lane 1	Link 0, Lane 1		Link 0, Lane 1	Link 0, Lane 1	Link 0.	Lane 1	Link O,	Lane 1		Link 0, Lane 1			Link 0, Lane 1	Link 0, Lane 1	Link 0, Lane 1	Link 0, Lane 1	Link 0, Lane 1		
			Lake		Link 0, Line 0	Link 0, Lane 0	Link 0, Lane 0	Link 0, Lone 0	Link 0, Lone 0	Link 0, Lane 0	Link 0,	Lane 0	Link 0,	Lane 0		Link 0, Lone 0			Link 0, Lane 0	Link 0, Lane 0	Link 0, Lane 0	Link 0, Lune 0	Link 0, Lane 0		
		:	Resulting Link Lane U Lane 2 Lane 3 Lane 4 Lane 5 Lane 5 Lane 6 Lane 8 Lane 9 Lane 10 Lane 11 Lane 12 Lane 13 Lane 14 Lane 15		118	124	112	1x1	1128	2 x8	1x8		1 x 16			5.14			1±16	2 x8	1x16	1±16	4 14		
		BIF[2:0]		00000	00000	0090	00000	0000Q	0000Q	00000		00000		00000	00090	0000Q		00000	00000	0000Q	00000	00000	00000	00090	010000
		-			1, 2, or 4 Links	1, 2, or 4 Links	1, 2, or 4 Links	1, 2, or 4 Links	1, 2, or 4 Links	1, 2, or 4 Links	1, 2, or 4 Links		1, 2, or 4 Links		1, 2, or 4 Links	1, 2, or 4 Links	1, 2, or 4 Links	1, 2, or 4 Links	1, 2, or 4 Links	1, 2, or 4 Links	1, 2, or 4 Links	1, 2, or 4 Links	1, 2, or 4 Links	1, 2, or 4 Links	1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1x16, 1x8, 1x4, 1x2, 1 2x8, 2x4, 2x2, 2x1	4 x4, 4 x2, 4 x1		Upstream Derices	1 Upptream Socket	1 Upstream Socket	1 Upstream Socket	1 Upptream Socket	1 Upstream Socket	1 Upstream Socket	1 Upstream Socket	1 Upstream Socket		1 Upstream Socket		1 Upstream Socket 1, 2, or 4 Links	1 Upstream Socket 1, 2, or 4 Links	1 Upstream Socket	1 Upptream Socket 1, 2, or 4 Links	1 Upstream Socket	1 Upstream Socket	1 Upstream Socket	1 Upstream Socket	1 Upstream Socket	1 Upstream Socket 1, 2, or 4 Links	Allowing Andres a second Autom
				1 Hodt	1Host	1 Host	1 Host	1 Host	1 Host	1 Host	1 Host		1 Host		1 Host	1 Host	1 Host	1 Host	1 Host	1 Host	1Host	1 Host	1 Host	1 Host	11111
	Ipstream Links	Add-in-Card Encoding	PHSMI B(3:0)=	0b1111	0b1110	061 110	0b1110	061110	0b1 101	0b1 101	0b1100		0b1100		061011	061010	061001	0b1000	000111	000110	0b0 101	060100	000011	060010	010001
- - - - -	Single Host, Single Upstream Socket, Une, I wo or Four Upstream Links	Supported Bifurcation Modes		Card Not Propent	1x8, 1x4, 1x2, 1x1	1x4,1x2,1x1	1x2, 1x1	1x1	1x8,1x4,1x2,1x1 1x8 Option B 2x4,2x2,2x1	2 x8, 2 x4, 2 x2, 2 x1 2 x8 Option B 4 x4, 4 x2, 4 x1	1x8,1x4	2 x4, 1 x8 Option D 4 x2 (First 8 Isnes), 4 x1	1x16, 1x8, 1x4	2 x8, 2 x4, 1 x16 Option D 4 x4, 4 x2 (First 8 lanes), 4 x1	RSVD	2 x4, 2 x2, 2 x1 1 x4, 1 x2, 1 x1	RSVD for future x8 encoding 0b1001	RSVD for future x8 encoding 0b1000	1x16, 1x8, 1x4, 1x2, 1x1	2 x8, 2 x4, 2 x2, 2 x1	1x16 Option B 2x8, 2x4, 2x2, 2x1 1x16 Option B 2x8, 2x4, 2x2, 2x1	1x16,1x8,1x4 2x6,2x4,2x2,2x1 1x16 Ominer C 4 x 2 4 x 2 4 x	4 x4, 4 x2, 4 x1		DeVD
	Host, Single Upst	Short	Vidth Name	Mot Present	1x8	1xt	57	1×1	1 x8 Option B	2 x8 Option B		1 x8 Option D		1 x16 Option D	RSVD RSVD	2 x4	RSVD	RSVD RSVD	1×16	2 x8 Option A	1 x16 Option B	1 vf6 Onelion C	4 24	RSVD RSVD	Devn Devn
	읡	12	ŧ.	2	ŝ	20	20	SC	ő	ų		ŝ		ų	BVD	SC	RSVD	GVS	ų	÷	ų	ç	9	DASS	D/Voo

(BIF[2:0]#=0b000)

Table 2625: Bifurcation for Single Host, Dual Sockets and Dual Upstream Links

(BIF[2:0]#=0b001) Link 1 Lane 7 Link 1, Lane 7 Link 1, Lane 7 Lane 12 Lane 13 Lane 14 Lane 1 Link 1, Lone 7 Link 1, Lone 7 Link 1, Lane 6 Link 1, Lane 6 Link 1, Lane 6 Link 1, Lane 6 Lane 6 Lane 6 Link 1, Lone 5 Link 1, Lane 5 Link 1, Lane 5 Lane 5 Lane 5 Lane 5 Lane 5 Link 1. Lane 4 Link (Lane 4 Link 1 Lane 4 Lane 4 Lane 4 Lane 4 Lane 3 Lane 10 Lane 11 Link 1, Lane 3 Link 1, Lane 3 Link 1, Link 1, Link 1, Link 1, Link 2 Link 1, Lone 2 Link 1, Lone 2 Link 1, Lane 2 Link 1, Link 1, Lane 2 Link 1. Lane 1 Link 1. Lane 1 Link 1, Link 1, Link 1, Link 1, Line 1 ink 2, Lane 8 Link 1, Lane 0 .ink 2, Lane 7 Link 0, Lane 7 Link 0, Lone 7 Lone 7 Lone 7 Link 0, Lone 7 Lone 7 Link 0, Lone 7 Link 0, Lone 7 Link 0, Link 0, Link 0, Lone 7 Lane 6 Link 0, Lane 6 Link 0, Lans 6 Link 0, Lane 6 Lane 6 Lane 6 Lane 6 Lane 6 Lane 5 Link 0, Lone 5 Link 0, Lake 5 Link 0, Lake 5 Link 0, Lake 5 Link 0, Lake 5 Link 0, Lane 5 Lane 5 Lane 5 Link 0, Lane 5 Lane 5 Line 4 Link 0, Line 4 Link 0, Lane 4 Lane 4 Lane 4 Link 0, Lane 4 Lase 3 Link 0, Lane 3 Lane 3 Link 0, Lane 3 Link 0, Lanc 3, Lanc 3, Lanc 3, Lanc 3, Lanc 3, Lanc 3, Lane 2 Link 0, Lone 2 Link 0, Lone 2 Link 0, Lone 2 Lone 2 Link 0, Lone 2 Link 0, Lone 2 Link 0, Lone 2 Link 0. Lone 2 Lone 2 Lone 2 Lone 2 Lone 2 Lone 2 Lane 1 Link 0, Link 0, Link 0, Lane 1 Lane 1 Link 0, Link 0, Link 0, Link 0, Link 0, Link 0, Link 1, Link 0, Lane 1 Lane 1 Lane 1 Lane 1 Lane 1 Link 0, Lane 1 Link 0, Lane 1 Lane 0 Link 0, Line 0 Link 0, Lane 0 Lane 0 Lane 0 Lane 0 Lane 0 Lane 0 Link 0, Lone 0 (Socket 0 only) 2 x8 (Socket 0 only) 2 x8 ulting Link (duo (Socket 0 only) 1 x8 1±8 (Socket 0 only) 2 x8 2 x 8 2 Links 0b001 2 Links 0b001 2 Links 0b001 2 Links 0b001 06001 06001 06001 06001 06001 06001 06001 06001 00001 06001 06001 06001 06001 2 Links 2 Links 2 Links 0b1011 1Host 2Uperteam Sockets 2Ukks 0b1010 1Host 2Uperteam Sockets 2Ukks pstrea Links 2 Links 2 Links 2 Linko e Linko 2 Links 2 Links e Links 2 Linko 2 Links Host Upstream Derices 1 Host 2 Upstream Sockets 1 Host 2 Upstream Sockets 1 Host 2 Upstream Sockets 1x8,1x4,1x2,1x1 2x8,2x4,2x2,2x1 1Host 2Upstream Sockets 1Host 2Upstream Sockets 1Host 2Upstream Sockets Sockets 2 Upstream Sockets 2 Upstream Sockets 2 Upstream Sockets Socketo 2 Upstream Sockets 2 Upstream Sockets 1Host 2Upstream 5 1Host 2Upstream 5 1Host 21Instream 5 2 Upstream 2 Upstream 1Host 1Host 1Host 1 Host Host 1 Host 1 Host
 nt
 nt
 nt

 2:10 Openeo 1:14(2:2:11)
 2:14(2:2:12)
 0

 2:10 Openeo 1:14(2:2:12)
 2:14(2:2:12)
 0

 1:10 Openeo 1:14(2:2:12)
 0
 0

 1:10 Openeo 1:14(2:2:12)
 0
 0

 1:10 Openeo 1:14(2:2:12)
 0
 0

 1:10 Openeo 1:14(2:12)
 0
 0

 1:10 III Openeo 1:14(2:12)
 0
 0
 Add-in-Ca Eacoding PRSNTB[3/ 0b1110 0b1110 000101 060100 060**010** 060**001** 060**000** 000011 061110 Card Not Prosent 1x8, 1x4, 1x2, 1x1 1x4, 1x2, 1x1 an Sockets, Support Modes x2,1x1 RSVD RSVD RSVD Card Short Name 1x2 1 x6 1 x6 Single Hozt, Two Up Min Card Sh Vidth Name Ma

Rev0.01

Table 2726: Bifurcation for Single Host, Four Sockets and Dual Upstream Links

		,		1 A 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		ľ				ŀ		$\left \right $	ŀ		$\left \right $	$\left \right $						
Min Card Short	Supported Bifurcation Modes	Add-in-Card Encoding			Upstream	BIF[2:0]																
Vidth Name		B[3:0]#	Host	Host Upstream Derices	Links	•	Resolting Link Lane 0 Lane 1 Lane 2 Lane 3 Lane 4 Lane 5 Lane 6 Lane 7 Lane 8 Lane 9 Lane 10 Lane 12 Lane 13 Lane 14 Lane 15	ane 0	Lane 1 L	ane 2 L	ane 3 La	ae 4 Li	nne 5 La	ae 6 La	ne 7 Lan	ie 8 Lan-	e 3 Lane	10 Lane	11 Lane 1	2 Lane 10	3 Lane 14	Lane 1:
a Not Present	Ť	061111	1 Host	4 Upptream Socketo	4 Linko	0b010																
2C 1×8	1x8,1x4,1x2,1x1	061110	1 Host	4 Upstream Sockets	4 Linko	0P010	1 x4 [Socket 0 only]	Link 0, Lane 0	Link 0, Lane 1	Link 0, 1 Lone 2	Link 0, Lane 3											
2C 1×4	1×4, 1×2, 1×1	061110	1 Host	4 Upptream Socketa	4 Linko	0P010	1 x4 [Socket 0 only]	Link 0, Lane 0	Link 0, Lane 1	Link 0, Lane 2	Link 0, Lane 3											
2C	1x2, 1x1	061110	1 Host	4 Upstream Sockets	4 Linko	06010	1x2 [Socket 0 only]	Link O. Lune O	Link 0. Lane 1													
2C 1x1	1x1	061110	1 Host	4 Upstream Sockets	4 Links	01040	1x1 [Socket 0 only]	Link 0. Lane 0														
2C 1x8 Option	1x8.0ption B 2x4, 2x2, 2x1	061101	1 Host	4 Upstream Sockets	4 Linko	00010	2 24	Link 0, Lanc 0	Link 0, Lane 1	Link 0, Lane 2	Link O, Li Lane 3 La	Link (Li Line 0 Li	Link 1, Li Lane 1 La	Link 1, Li Lane 2 La	Link 1. Lane 3							
4C 2 x8 Option	2 x8 Option B 4 x4, 4 x2, 4 x1	061101	1 Host	4 Upstream Sockets	4 Linko	05010	4 24	Link 0, Lone 0	Link 0, Lane 1	Link 0, 1 Lane 2	Liade O, Li Liane 3 Lia	Link 1. Li Lane 0. Li	Lane 1 La	Link 1, Li Lane 2 La	Link 1. Link Lanc 3. Lan	Link 2, Link 2, Lane 0 Lane 1	Link 2, Link 2, Lane 1 Lane 2	2, Link 2, 2 Lane 3	B, Link3, 3 Lane 0	. Link 3, bane 1	Link 3, Lane 2	Link3, Lane3
of 1v8 Desire	1 x8, 1 x4 2 x4, 1 ×8 Omins D. 4 ×9 (Fines 8 Innes) 4 ×1	061100	1Host	4 Upstream Sockets	A الملاد	06010	2.14	Link 0, Lune 0	Link 0, Lane 1	Link 0, Lone 2	Link O, Li Line 3 Lo	Link 1, Li Lane 0 Li	Link 1, Li Lone 1 Lo	Link 1, Li Lane 2 La	Link 1. Lone 3							
	1 x16, 1 x8, 1 x4 2 x6, 2 x4, 1 x16 Option D 4 x4, 4 x2 (Firite 8 lanes), 4 x1	061100	1 Host	4 Upstream Sockets	4 Links	06.010	4 14	Link 0, Lone 0	Link 0, Lane 1	Link 0, 1 Lone 2	Link O, Li Line 3 Li	Link 1. Lane 0	Link 1. Li Lone 1 La	Link 1, Li Lane 2 La	Link 1. Link Lone 3 Lon	Link 2, Link 2, Lane 0 Lane 1	Link 2, Link 2, Lane 1 Lane 2	2, Link2, 2 Line 3	D. Link 3. 3 Lane 0	. Link 3, Lane 1	Link 3, Lano 2	Link3, Lone 3
RSVD RSVD	RSVD	0b1011	1 Host	4 Upstream Sockets	4 Linko	0b010																
2C 2.14	2 x4, 2 x2, 2 x1 1 x4, 1 x2, 1 x1	061010	1 Host	4 Upstream Sockets	4 Linko	0b010	2 24	Link 0, Lane 0	Link 0, Lane 1	Link 0, Lane 2	Link 0, Li Line 3 La	Link (Li Line 0 Li	Link 1, Li Lane 1 La	Link 1, Li Lane 2 La	Link 1. Lane 3							
RSVD RSVD	BSVD for future x8 encoding	0b1001	1 Host	4 Upptream Socketo	4 Linko	0b010																
RSVD RSVD	RSVD for future x8 encoding	0b1000	1 Host	4 Upstream Sockets	4 Linko	05010																
4C 1×16	1x16,1x8,1x4,1x2,1x1	060111	1Host	4 Upstream Sockets	4 Linko	0P040	1 ±4 (Socket 0 only)	Link 0, Lune 0	Link 0, Lane 1	Link 0, 1 Lone 2	Link 0, Lane 3											
4C 2 x8 Option A	2 x8, 2 x4, 2 x2, 2 x1 n A	060110	1 Host	4 Upstream Sockets	4 Linko	01040	2 x4 (Socket 0 & 2 only)	Link 0, Lane 0	Link 0, Lane 1	Link 0, 1 Lone 2 1	Link 0, Lane 3				Lin Lin	Link 2, Link 2, Lane 0 Lane 1	Link 2, Link 2, Lane 1 Lane 2	2, Link 2, 2 Lane 3	oi 🕫			
4C 1x16 Option	1x16.0ption B 2x8, 2x4, 2x2, 2x1 1x16.0ption B 2x8, 2x4, 2x2, 2x1	000101	1 Host	4 Upstream Sockets	4 Linko	06010	2 x4 (Socket 0 & 2 only)	Link 0, Lane 0	Link 0, Lane 1	Link 0, 1 Lane 2	Link 0, Line 3				E E	Link 2, Link 2, Lane 0 Lane 1	Link 2, Link 2, Lane 1 Lane 2	2, Link 2, 2 Lane 3	oi 🕫			
4C 1x16 Option	1 x16, 1 x6, 1 x6 2 x6, 2 x4, 2 x2, 2 x1 1 x16 Option C 4 x4, 4 x2, 4 x1	000100	1 Host	4 Upstream Sockets	4 Linko	06.010	4 24	Link 0, Lune 0	Link 0, Lane 1	Link O, I Lone 2	Link O, Li Lane 3 La	Link 1, Li Lane 0 Li	Link 1, Li Lone 1 Lo	Link 1, Li Lane 2 La	Link 1. Link Lone 3 Lon	Link 2, Link 2, Lane 0 Lane 1	Link 2, Link 2, Lane 1 Lane 2	2, Link 2, 2 Lano 3	0. 1 Link 3. 1 Line 0	Link 3, Lane 1	Link 3, Lano 2	Link 3, Lane 3
	4 x4, 4 x2, 4 x1	000011	1 Host	4 Upstream Sockets	4 Linko	05010	4 14	Link 0, Lane 0	Link 0, Lane 1	Link 0, 1 Lane 2 1	Link O, Li Lane 3 La	Link 1. Li Lane 0 Li	Link 1, Li Lone 1 La	Link 1, Li Lane 2 La	Link 1, Link Lane 3, Lan	Link 2, Link 2, Lane 0 Lane 1	Link 2, Link 2, Lane 1 Lane 2	2, Link 2, 2 Lane 3	e, Link3, 3 Lane 0	. Link 3. Dane 1	Link 3, Lane 2	Link3. Lone3
RSVD RSVD	RSVD		1 Host	4 Upstream Sockets	4 Links	05010						ľ										
RSVD RSVD	RSVD	00001		4 Upptream Socketo	4 Linko	0b010																
REVN REVN	Devn	ŀ	İ																			

Table 2827: Bifurcation for Dual Host, Dual Sockets and Dual Upstream Links

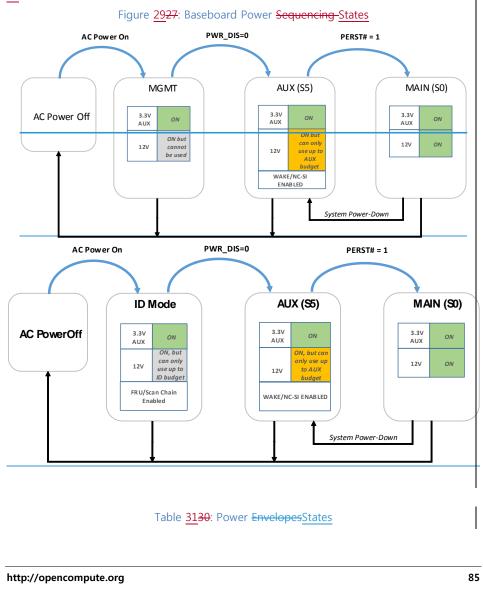
Rev0.01

Table 2928: Bifurcation for Quad Host, Quad Sockets and Quad Upstream Links

I	www.most.row.upstream.cockets.row.upstream.Links			4 ×4, 4 ×2, 4 ×1				Ì	ľ		ł											
Min Card Card Short	Supported Bifurcation Modes	Add-in-Card Encoding				BIF[2:0]																
- 11		PRSMTB[3:0]#	Host	Host Upstream Derices	Links	04.40	Resulting Link lane 0 Lane 1 Lane 2 Lane 3 Lane 5 Lane 5 Lane 5 Lane 3 Lane 3 Lane 9 Lane 10 Lane 11 Lane 12 Lane 14 Lane 15 Lane 14 Lane 15	Lane O	1	ane 2 Li	12 12		e 2	e 6 Lane	7 Lane	8 Lane	9 Lane 1	0 Lane 1	I Lane 12	Lane 13	Lane 14	Lane 15
NOT Prepert	Card Not Present		4 1050	a most a Upstream aocrets	4 LINKS	NIIO		I	ł	÷												
	1x8,1x4,1x2,1x1	0P1110	4 Host	4 Upstream Sockets	4 Linko	06110	1×4 (Host 0 only)	Link 0. Lane 0	Lane 1	Lane 2 L	Link 0, Lane 3											
Г	1x4,1x2,1x1	0b1110	4 Host	4 Upstream Sockets	4 Links	~ ~ ~	1 x4	Link 0,	Link 0,	Link 0, L	nk 0,	\vdash										
							(Host 0 only)	Lane 0	Lane 1	Lane 2 L	Lane 3			_	_	_	_					
	1x2,1x1	0P1110	4 Host	4 Upstream Sockets	4 Linko	06110	1 x2 (Host 0 only)	Link O. Lane O	Link 0, Lane 1													
	1x1	0b1 110	4 Host	4 Upstream Sockets	4 Links	06110	1 x1 [Host 0 only]	Link 0, Lane 0														
0	1×8.1×4,1×2,1×1 1×8 Option B 2×4,2×2,2×1	0b1 101	4 Host	4 Upstream Sockets	4 Links	06110	2 x4	Link O. Lane O	Link 0, Lane 1	Link O, L Lone 2 L	Link 0, L Lone 3 Li	Link 1, Li Lone 0 Lo	Link 1, Lin Lane 1 Lan	Link 1, Link 1, Lane 2 Lane 3	20							
0	2 x6 Option B 4 x4, 4 x2, 4 x1	0b1 101	4 Host	4 Upstream Sockets	4 Linko	06110	4 ×4	Link 0, Lane 0	Link 0, Lane 1	Link 0, L Lane 2 L	Link 0, L Lane 3 L:	Link 1, Li Lane 0 La	Link 1, Lin Lane 1 Lan	Link 1, Link 1, Lane 2 Lane 3	1. Link 2. 3 Lane 0	Link 2, 1 Lane 1	. Link 2, Lane 2	Link 2, Lone 3	Link 3, Lane 0	Link 3, Lane 1	Link 3, Lane 2	Link 3, Lane 3
	1x8,1x4 2 x4,	0b1 100	4 Host	4 Upstream Sockets	4 Links	06110	2 x4	Link 0, Lane 0	Link 0, Lane 1	Link O, L Lane 2 L	Link 0, L Lane 3 Li	Link 1, Li Lane 0 La	Link 1, Lin Lane 1 Lan	Link 1, Link 1, Lane 2 Lane 3	20							
9	1x8 Option D 4 x2 (First 8 lones), 4 x1								-	-	_	-	-	-	_	-	-	-	_	_		
0	1 x16, 1 x6, 1 x4 2 x6, 2 x4, 1 x16 Option D 4 x4, 4 x2 (First 8 Janes), 4 x1	0b1 100	4 Host	4 Upstream Sockets	4 Linko	06110	4×4	Link 0, Lane 0	Link 0, Lane 1	Lanc 2 Lanc 2 L	Link 0, L Lane 3 L:	Link 1. Lane 0 La	Link 1, Lin Lane 1 Lan	Link 1, Link 1, Lane 2 Lane 3	1. Link2, 3 Lane 0	Link2, Lane 1	. Link 2, I Lane 2	Link 2, Lane 3	Link 3, Lane 0	Link 3, Lane 1	Link 3, Lane 2	Link 3, Lane 3
			4 Host	4 Upstream Sockets	4 Links	0b110																
	2 ×4, 2 ×2, 2 ×1 1 ×4, 1 ×2, 1 ×1	0b1 010	4 Host	4 Upstream Sockets	4 Linka	06110	2 ×4	Link O. Lane O	Link 0, Lane 1	Lank O, L Lank 2 L	Link O. L Lane 3 Li	Link 1, Li Lone 0 Lo	Link 1, Lin Lane 1 Lan	Link 1, Link 1, Lane 2 Lane 3	-0							
	RSVD for future x8 encoding 0b1001	061001	4 Host	4 Upstream Sockets	4 Links	0b110						\vdash										
	RSVD for future x8 encoding	001000	4 Host	4 Upstream Sockets	4 Links	06110																
	1x16,1x8,1x4,1x2,1x1	000111	4 Host	4 Upstream Sockets	4 Linko	06110	1×4 [Host 0 only]	Link O. Lane O	Link 0, Lane 1	Link O, L Lane 2 L	Link O. Lone 3											
2 x8 Option A	2 x6, 2 x4, 2 x2, 2 x1	0b0110	4 Host	4 Upstream Sockets	4 Linko	06110	2 x4 (Host 0 & 2 only)	Link 0. Lane 0	Link 0, Lane 1	Link 0, L Lanc 2 L	Link 0. Lane 3				Link 1. Lane 0	. Link 1. D Lane 1	Link 1, Lane 2	Link 1, Lane 3				
Ш с	1×16.0ption B 2×8, 2×4, 2×2, 2×1	060101	4 Host	4 Upstream Sockets	4 Links	06110	2 x4 [Host 0 & 2 only]	Link 0. Lane 0	Link 0, Lane 1	Link O, L Lane 2 L	Link 0, Lone 3				Link 1. Lone 0	. Link 1. 0 Lone 1	Link 1, Lane 2	Link 1, Lone 3				
0	1 x16, 1 x6, 1 x6 2 x6, 2 x4, 2 x2, 2 x1 1 x16 Option C 4 x4, 4 x2, 4 x1	000100	4 Host	4 Upstroom Sockets	4 Linko	06110	4 ×4	Link O. Lane O	Link 0, Lane 1	Link 0, L Link 2, L	Link 0, L Lane 3 L	Link 1. Lane 0 La	Link 1, Lin Lane 1 Lan	Link 1, Link 1, Lane 2 Lane 3	t. Link 2, 3 Lane 0	r Link 2, Lane 1	. Link 2, Lane 2	Link 2, Lanc 3	Link 3, Lone 0	Link 3, Lane 1	Link 3, Lane 2	Link 3, Lane 3
	4 x4, 4 x2, 4 x1	060 011	4 Host	4 Upstream Sockets	4 Links	06110	4 x 4	Link 0. Lane 0	Link 0. Lane 1	Link 0, L Lane 2 L	Link 0, L Lone 3 L:	Link 1, Li Lone 0 Lo	Link 1, Lin Lane 1 Lan	Link 1, Link 1, Lane 2 Lane 3	1. Link2, 3 Lone 0	Link 2, b Lane 1	. Link 2. Lane 2	Link 2, Lane 3	Link 3. Lone 0	Link 3, Lone 1	Link 3, Lane 2	Link 3, Lone 3
	RSVD		4 Host	4 Upstream Sockets	Η	0b110																
	RSVD		4 Host	4 Host 4 Upstream Sockets	H	0b110					-		-									
	RSVD	000000	4 Host	4 Host 4 Upstream Sockets	4 Links	0b110				-	-											

(BIF[2:0]#=0b110)

Table 3029: Bifurcation for Quad Host, Quad Sockets and Quad Upstream Links


(BIF[2:0]#=0b110) Lane 5 Lane 6 Lane 7 Lane 8 Lane 9 Lane 10 Lane 11 Lane 12 Lane 13 Lane 14 Lane 15 Link 1 Lone 1 Link 1 Link 2, Lone 1 Lone 1 Link 1. Lone 0 Link 1. Link 2, Link 2, Lone 0 Link 3, Lone 1 Link 3, Lone 1 Link 3, Lane 0 Link 3, Lane 0 Link 2, Lane 1 Link 2, Lane 1 Link 1, Lane 1 Lase 4 Link 2, Lane 0 Link 2, Lane 0 Link 1, Lane 0 Lane 2 Lane 3 Link 1, Lane 1 Link 1, Link 1, Lane 1 Lane 1 Lane 1 Link 1, Lane 1 Link 1, Link 1, Link 1, Link 1, Lane 0 Link 1, Lane 0 Link 1, Lane 0 Link 0, Link 0, Link 0, Link 0, Link 0, Link 1 Link 0, Lane 1 Link 0, Lane 1 Lane 1 Lane 1 Link 0, Lane 1 Link 0, Lane 1 Link 0, Lane 1 Link 0, Lane 1 Link 0, Link 0, Lane 1 Lane 1 Lane O Link 0, Link 0, Lane 0 Link 0, Lane 0 Link 0, Lane 0 Link 0, Lane 0 Link 0, Lane 0 Link 0, Lane 0 Lane 0 Lane 0 Lane 0 Link 0, Lane 0 Lane 0 Link 0, Lane 0 Link 0, Lane 0 (Host 0 only) 2 x2 (Host 0 & 1 only) 2 x2 (Host 0 & 1 only) 4 x2 iting Link (Host 0 & 1 o . 0× 0 (Host 0b111 0b111 11190 11190 0b111 0b111 DP11 0b111 0b111 0b111 0b111 06111 0b111 0P111 L or 8 x2 Links t or 8 x2 Links t or 8 x2 Links or 8 x2 Links 4/8 Host 4/8 Upstream Sockets 4/8 Upstream Sockets 4/8 Host 4/8 Upstream Socket /8 Host 4/8 Upstream 4/8 Upstream 4/8 Upstream 4/8 Upstream Host 4/8 Upstri 4/8 Upst 4/8 L 4/8 Host 4/8 Host 4/8 Host Host Add-in-Card Add-in-Card Encoding PRSMTB(3:0)# 0b1110 0b1110 0b1101 0b0**110** 0b1011 0b1010 0P0100 0b0010 0b0001 b1110 0b1110 0b1110 0b1101 0b1100 01100 0b1001 0b1000 0b0111 1100g pht Upstream Societe, FouriEigh Supported Bifurcation Modes 1 x16, 1 x6, 1 x4, 1 x2, 1 x1 1 x16, 1 x6, 1 x4, 1 x2, 1 x1 2 x6, 2 x4, 2 x2, 2 x1 2 x6, 2 x4, 2 x2, 2 x1 2 x4, 2 x2, 4 x1 4 x4, 4 x2, 4 x1 2 x8, 2 x4, 2 x2, 2 x1 1x4, 1x2, 1x1 Dard Not P 1x8, 1x4, 1 Card Short 2:4 RSVD 95W Host, Four/Ei 1x8 1x4 1±2 X8 Option

Min Card

Rev0.01

3.9 Power Capacity and Power Delivery

There are four permissible power states: AC Power Off, <u>Management (FRU OnlyID</u> Mode), Aux Power Mode (S5), and Main Power Mode (S0). The transition of these states is shown in <u>Figure 29Figure 27</u>. The max available power envelopes for each of these states are defined 31Table 30.

Power State	PWRDIS	PERSTn	FRU	Scan	RBT	<u>3.3V</u>	Max
				Chain	Link		Powe
							<u>+12V</u>
AC_AC_Power Off	Low	Low					0W
Management-ID	High	Low	X	X		X	<u>X</u> 1₩
Mode(FRU only mode)							
Aux Power Mode (S5)	Low	Low	X	X	X	X	<u>X</u> 35₩
Main Power Mode (S0)	Low	High	X	X	X	X	<u>X79.2</u>
							₩

3.9.1 AC Power Off

In AC power off mode, all power delivery has been turned off or disconnected from the baseboard.

3.9.2 Management ID Mode(FRU Only Mode)

In the Management (FRU OnlyID Mode), only 3.3V Aux is available for powering up management only functions. FRU accesses are only allowed in this mode.

3.9.3 Aux Power Mode (S5)

In Aux Power Mode provides both 3.3V Aux as well as 12V Aux is available. 12V Aux may be used to deliver power to the add-in card, but only up to the Aux budget of 35W.

3.9.4 Main Power Mode (S0)

In Main Power Mode provides both 3.3V and 12V (Main) across the OCP connector. The add-in card operates in full capacity. Up to 79.2W may be delivered on 12V, and 3.63W on the 3.3V pins.

3.10 Add-in Card Input CapacitancePower Supply Rail Requirements

The baseboard provides 3.3Vaux and 12Vaux/main to both the Primary and Secondary connectors. The rail requirements are leveraged from the PCIe CEM 4.0 specification. For OCP NIC 3.0 cards, the requirements are as follows:

Table <u>32</u>31: <u>Baseboard</u> Power Supply Rail Requirements

Power Rail	30W Slot	79.2W (Main Power	150W
	Small Card Hot Aisle	Mode)80W Slot	Large Card Cold Aisle
		Small Card Cold Aisle	

Rev0.01

3.3V aux			
Voltage Tolerance	<u>±9% (max)</u>	<u>±9% (max)</u>	<u>±9% (max)</u>
Supply Current			
ID Mode	375mA (max)	<u>375mA (max)</u>	375mA (max)
Aux Mode	<u>1.1A (max)</u>	<u>1.1A (max)</u>	2.2A (max)
Main Mode	<u>1.1A (max)</u>	<u>1.1A (max)</u>	2.2A (max)
Capacitive Load	<u>150µF (max)</u>	<u>150µF (max)</u>	<u>300µF (max)</u>
		±9% (max)	
		1.1A (max)	
		150µF (max)	
12V			
Voltage Tolerance	<u>±8% (max)</u>	<u>±8% (max)</u>	<u>±8% (max)</u>
Supply Current			
ID Mode	100mA (max)	100mA (max)	100mA (max)
Aux Mode	<u>1.3A (max)</u>	<u>3.3A (max)</u>	<u>6.3A (max)</u>
Main Mode	<u>2.5A (max)</u>	<u>6.6A (max)</u>	<u>12.5A (max)</u>
Capacitive Load	<u>1000µF (max)</u>	2000µF (max)	4000µF (max)
		±8% (max)	
		6.6A (max)	
		2000µF (max)	

3.11 Hot Swap Considerations for 12V and 3.3V Rails

For baseboards that support system hot (powered on) add-in card insertions and extractions, the system implementer shall consider the use of hotswap controllers on both the 12Vmain/aux and 3.3Vaux pins to prevent damage to the baseboard or the add-in card. Hotswap controllers help with in-rush current limiting while also providing overcurrent protection, undervoltage and overvoltage protection capabilities.

The hotswap controller may gate the 12Vmain/aux and 3.3Vmain/aux based on the PRSNTB[3:0]# value. Per Section 3.6.3, a card is present in the system when the encoded value is not 0b1111. The PRSNTB[3:0]# can be AND'ed together and connected to the hotswap controller to accomplish this result. Per the OCP NIC 3.0 mechanical definition (Section XXX), the present pins are short pins and engage only when the card is positively seated.

Baseboards that do not support hot insertion, or hot extractions may opt to not implement these features.

3.12 Power Sequence Timing Requirements

The following figure shows the power sequence of PRSNTB[3:0]#, 3.3Vaux, 12Vaux/12Vmain relative to PWRDIS, BIF[2:0]#, PERSTn*, the add-in card power ramp and NIC_PWR_GOOD.

Figure <u>30</u>28: Power Sequencing

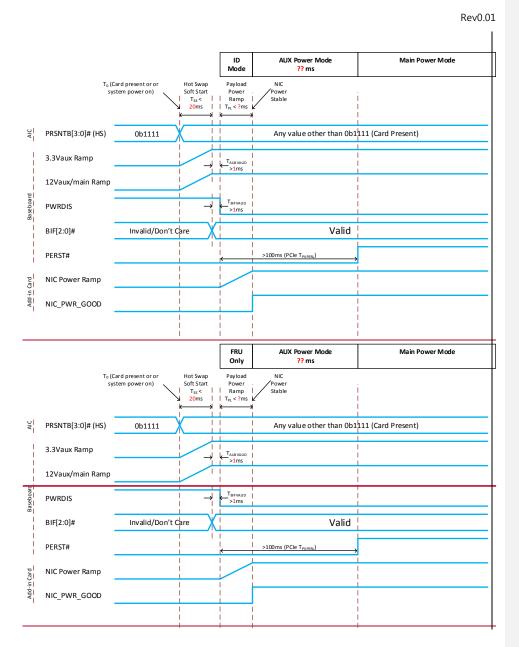


Table <u>3332</u>: Power Sequencing Parameters

http://opencompute.org

89

Parameter	Value	Units	Description
T _{ss}	20	ms	Max time between system 3.3Vaux and 12Vaux/main ramp
			to power stable.
T _{AUXVALID}	>1	ms	Min time between 3.3Vaux valid to PWRDIS assertion.
T _{BIFVALID}	>1	ms	Min time between BIF[2:0]# valid to PWRDIS assertion. The
			BIF[2:0]# value sets the add-in card bifurcation mode (if
			applicable)
T _{PL}	</td <td>ms</td> <td>Max time between the NIC payload power ramp to</td>	ms	Max time between the NIC payload power ramp to
			NIC_PWR_GOOD assertion
T _{PVPERL}	>100	ms	Max time between PWRDIS deassertion and PERST#
			deassertion. This value is from the PCIe CEM Specification,
			Rev 4.0.

4 Management

4.1 SMBus Interface

The SMBus provides manageability of the add-in card.

4.2 NC-SI Sideband Interface

4.2.1 NC-SI addressing and Arb#

4.3 MAC Address Requirement

4.4 FRU EEPROM

4.4.1 Minimum EEPROM Size

4.4.2 EEPROM Map Definition

Editor's note [TN, 20171208]: the EEPROM map definition should include the card power class (e.g. be able to identify the max power required for 12V to the baseboard). This allows the baseboard to intelligently enable/disable the card based on the available baseboard power budget.

4.4.2<u>4.4.3 EEPROM</u>Address

Rev0.01

4.5 FW Requirement (TBD)

4.6 Thermal Reporting Interface

5 Data Network Requirement

5.1 Network Booting (collect view from OEMs and hyperscale)

Mezzanine NIC shall support network booting in uEFI system environment. Mezzanine NIC shall support both IPv4 and IPv6 network booting.

Rev0.01

6 Routing Guidelines and Signal Integrity Considerations

6.1 NC-SI Over RBT

Min Length: 2" Max length: 4" Impedance: 50 Ohm single ended

7 Thermal and Environmental

7.1 Environmental Requirements

The specific environment requirement is removed to allow the adoption of OCP Mezzanine NIC in systems with very different thermal requirement and boundary condition.

This Mezzanine card shall meet the same environmental requirements specified in the OCP systems that the Mezzanine card is in. The OCP system that uses OCP Mezzanine card shall define air flow direction, inlet air temperature, air flow (or speed) to the local area where Mezzanine card is at, and simulation boundary.

7.1.1 Thermal Simulation Boundary Example

Placeholder for Thermal Simulation Method. Using Facebook Intel® Motherboard V3.0 as example. Not covered by this update.

7.2 Shock & Vibration

This Mezzanine card shall meet the same shock & vibration requirements specified in updated Facebook OCP Intel® Motherboard V2.0 and V3.0 Design Specification.

7.3 Regulation

This Mezzanine card shall meet CE, CB, FCC Class A, WEEE, ROHS requirements.

8 Revision History

Author	Description	Revision	Date
Thomas Ng	Initial draft	0.1	12/xx/2017