

OPEN EDGE DISCUSSION

Chris Turner | CTO Howie Granat | Director, Business Development Ilyas Ayub | VP of Engineering Steve Wener | Sr. Principal Engineer William Tenorio | Director, Advanced Battery Systems Engineering

AGENDA

- Introductions
- Brief Company Overview
- Global Footprint
- Technology Overview
- Open Edge Proposal

COMPANY OVERVIEW

WHAT WE OFFER

MARKETS / APPLICATIONS BROAD APPLICATION EXPERIENCE

Consumer

- Wearables
- Tablets
- Mobile Phones
- Appliances
- Portable Radios

Data Capture

- Point-of-Sale Terminals
- **Barcode Readers**
- Printers
- Test & Measurement
- - Battery Backup

Critical Power

- Telecom
 - Data Centers
- **RAID Storage**
- UPS

E-Mobility

- E-Bikes
- E-Scooters
- Electric Wheel Chairs

Energy Storage

- Home / Private
- Commercial
- Industrial

Industrial / Low **Speed Vehicles**

- Forklifts
- **Burden Carriers**
- Pallet Jacks
- AWP/Scissor Lifts
- Utility/Golf Vehicles
- Ground Support

Medical

- **Respiratory Care** •
- Healthcare Informatics
- Diagnostic Tools
- Cardiac Care •
- Surgical Instruments
- Pain Management

- **Two-Way Radios**
- **PDAs & Computers**
- Military Vehicle Apps
- UAVs & UGVs •
- Soldier Power Source

Power Tools (Indoor/ Outdoor)

- Hand Power Tools
- Lawn & Garden Equip.
- Snow Removal Equip.

BATTERY PACK DESIGN

GROWING HIGHER COMPLEXITY EXPERIENCE

9 JULY 2019

TOTAL SYSTEM SOLUTION BATTERY PACK + CHARGER + POWER SUPPLY

Benefits of a total system design approach:

- Better fit, form & function
 - Smaller, lighter solutions via integration of all 3 components
 - Less redundancy
 - System function integration
- Higher reliability & safety
 - Improved battery life
 - Reduced charge time
 - Better heat management
 - Improved system performance
- Single source solution
 - One partner, not three
 - Reduction of part numbers

GLOBAL FOOTPRINT ENABLING LOCALIZED PACK INTEGRATION & SUPPLY

GLOBAL PRODUCT DEVELOPMENT

TECHNOLOGY CENTERS, INDEPENDENT TESTING & AGENCY CERTIFICATION

- 2 Technical Centers of Excellence (U.S. & China)
 - ~300 engineers worldwide
 - Electrical, mechanical, & software engineering
- Robust Development Process (Accelerated NPD)
- 100% In-House Design Capability
 - Design capability for complete system (battery, charger, power supply, inverters, adaptors)
 - Prototyping capabilities 3D printing
- In-House Design Verification & Reliability Testing
 - High voltage lab
 - Holds highest level of UL certification for inhouse agency testing
 - System qualification for global agencies
 - In-house agency lab certified by UL & TUV

IN-HOUSE TESTING & CERTIFICATIONS

ENSURE SAFETY & RELIABILITY AND PEAK PERFORMANCE

- Three global testing locations
- 1,000+ charging/discharging channels
- Design verification team
- Onsite test capabilities:
 - Cell and battery pack safety testing
 - Cell performance
 - Environmental tests (IP6X)

Certified for all IEC and UL standard agency approvals

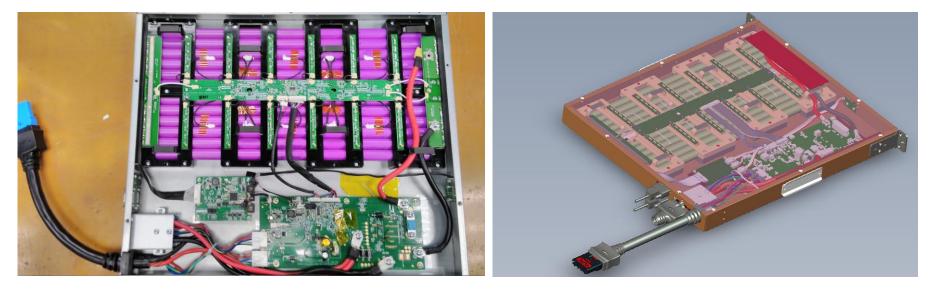
- UN38.3 [DoT]
- UL 991, UL 1998, & IEC 51508 for BMS
- UL 2595, UL2271, & UL 2580
- IEC 61960 & IEC 62133
- IEC 60950-1 & UL 60950-1
- IEC 62619

UL CTDP Certificate. First approved in 2016

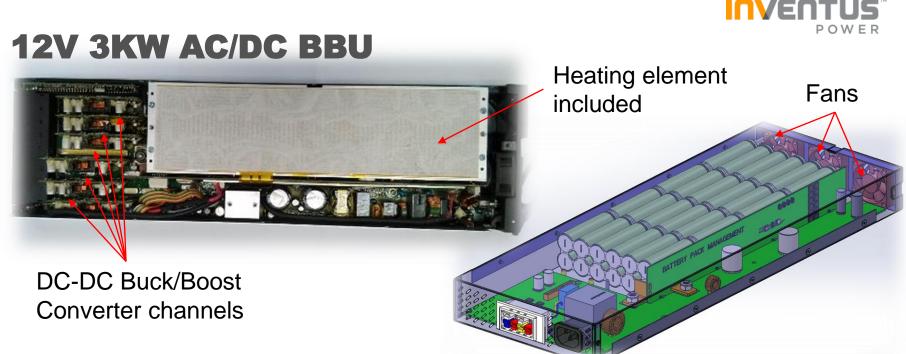
VERTICAL INTEGRATION

PROVIDES SEAMLESS SUPPORT FROM CONCEPT THOUGH EOL

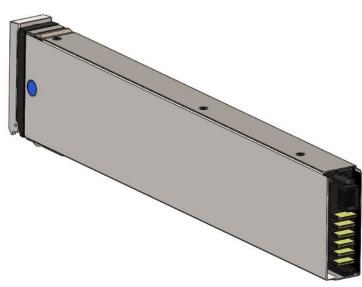
- Shorten lead-times and provide customers with turnkey solutions
- Engineering services
 - Cell selection
 - Electrical and mechanical design
- In house agency certification
- Manufacturing services
 - Battery pack, charger and power supply assembly
 - PCB layout and assembly
 - Resistance and ultrasonic welding & soldering
 - Conformal coating
 - Mechanical tooling and injection molding
 - "Clean Air" SMT production

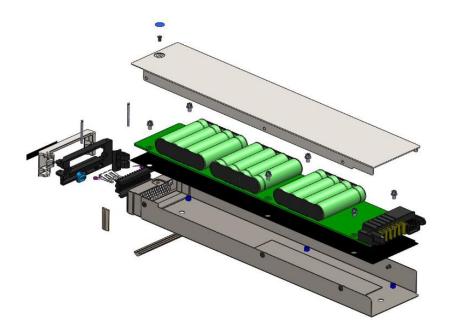


TECHNOLOGY OVERVIEW


BBU FOCUS

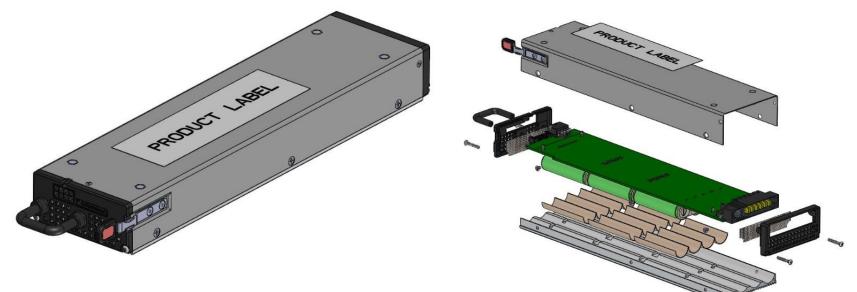
48V 3KW BBU


- Unregulated 48V
- 60A continuous output capability for >5 minutes
- 14S6P configuration using 18650 NMC cells
- Hot swappable
- Load sharing capability between multiple BBU units
- 1U height form factor for rack mounting



- Regulated 12V (BBU + peak load assist)
- 250A continuous output capability for >90 seconds from 0°C to 47°C
- 4S12P configuration using 18650 NMC cells
- Hot swappable with integrated AC/DC charger (<3 hours)
- Load sharing capability between multiple BBU units
- DSP controlled multi-channel high efficiency DC/DC Buck/Boost topology for rapid load response and output stability

12V 1.5KW BBU

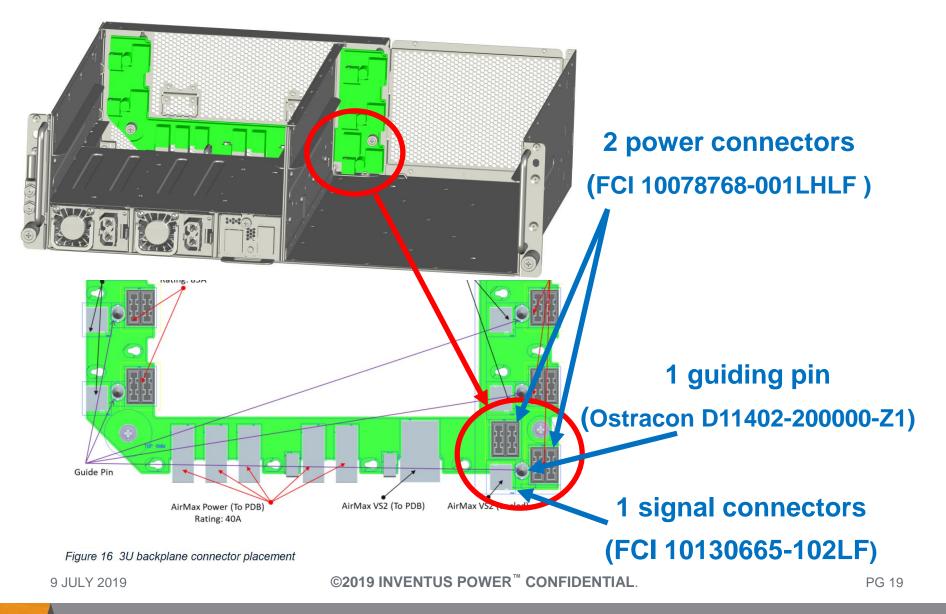


- Regulated 12V
- 125A continuous output capability for >30 seconds
- 3S3P configuration using 18650 cells
- Hot swappable with integrated DC/DC charger (OR'ing)
- Load sharing capability between multiple BBU units
- Calendar Life: 2 years storage + 5 year operational life

12V 860W BBU

- Regulated 12V
- 72A continuous output capability for >180 seconds
- 3S4P configuration using 18650 cells
- Hot swappable with integrated DC/DC charger (OR'ing)
- Load sharing capability between multiple BBU units
- Calendar Life: 2 years storage + 5 year operational life

OPEN EDGE BBU PROPOSAL


OPEN EDGE (CHASSIS REQ'S)

- The Open Edge chassis consists of 6 sections •
 - 5 useable sleds
 - 1 sled dedicated for a primary & secondary PSU and the rack management controller
- 1U sled, Addr 1 can support either server or
 - Twin Pov
 - Expected

r battery backup unit (BBU)	1U sled, Addr 4	1U sled, Addr 5	
ower connectors - Each 85A	1U sled, Addr 2	1U sled, Addr 3	
ed BBU output 133A @ 12A		1U sled, Addr 1	
	Figure 7 Open edge chassis with five 1U sleds		
	the second s		

OPEN EDGE (CHASSIS REQ'S)

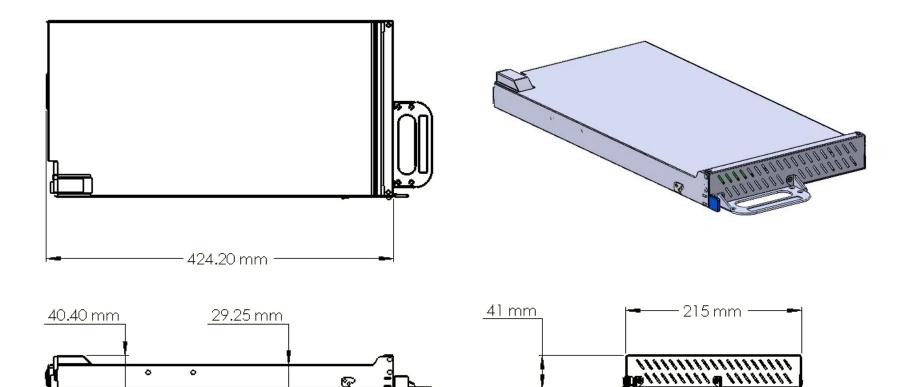
OPEN EDGE (BBU REQUIREMENTS)

- Mechanical enclosure based on Open Edge sled with minor tweaks
- Connector
 - Power: FCI 10078770-002LHLF (2x)
 - Signal: FCI 10124149-102LF (1x)
 - Guiding Receptacle: Ostracon D11403-000A00-Z1 (1x)
- P, I, V
 - Power: 1600W continuous (400W per sled, 4x sleds supported)
 - Current: 133A continuous (2x FCI power connector supports up to 170A)
 - Voltage: 12V regulated output
- Communication
 - SMBus (SDA, SCL)
 - Digital and Analog Pins: ALERT, PRSNT and PD (Physical Address)
- Target at least 120 seconds or more of continuous power
- Hot swappable with integrated DC/DC charger off the 12V bus

CELL TECHNOLOGY

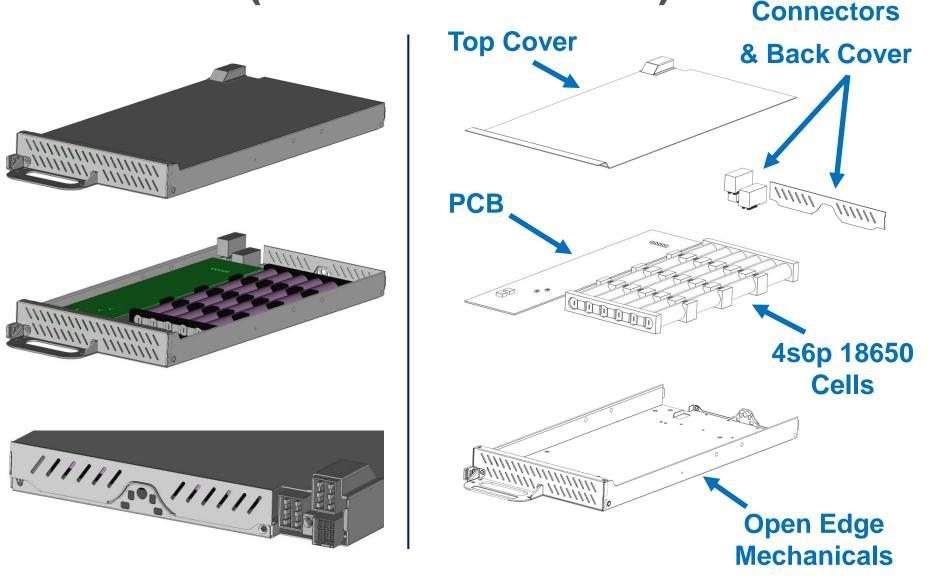
- What cell technology is the right choice for Open Edge?
- What fits?
 - Prismatic Pouch (soft rectangular enclosure)
 - Limited footprints & supplier options
 - Requires rigid enclosure to manage swelling/handling
 - Prismatic Rigid (hard rectangular enclosure)
 - Limited footprints that fit Open Edge sled (this includes VRLA replacements)
 - Cylindrical
 - Several options available in 18650, 21700 and 26650 packages
 - Several suppliers and chemistries to choose from
 - Easier to scale capacity upward if more run time is required
 - Easier to scale capacity downward if less run time and power is required
 - Possibility of integrating non-BBU electronics to utilize dead space

CELL TECHNOLOGY (CONT'D)

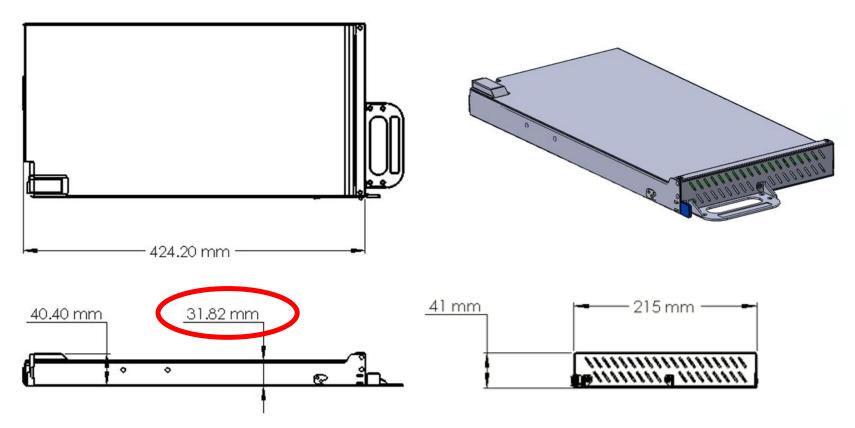


- What chemistries make the most sense?
 - Table below only considers the most relevant and widely used in the BBU space
 - LFP would seem to be the clear choice if based on safety, long life...however,
 - Higher cost, lower energy density, flat discharge curve and a larger space envelope required
 - NMC/NCA has been used for 10+years in BBUs safely and with long life

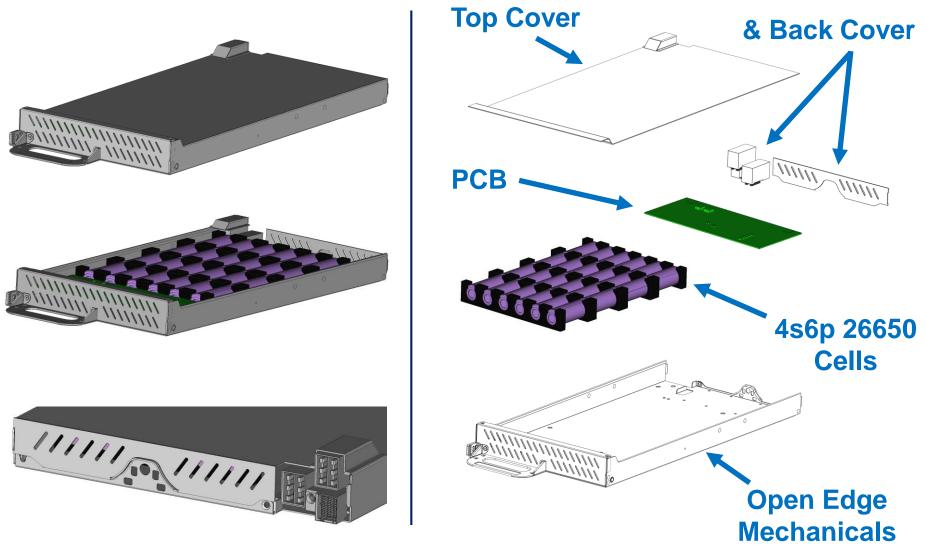
Cathode Material	Average Voltage	Voltage Range	Specific Energy Density	Safety Index	Comments
	V	V	mAh/g		
Li(Ni _{1-y-z} Co _y Al _z)O ₂ NCA	3.6	4.2-2.5V	~190	**	High capacity Medium Rate
Li(Ni _{1-y-z} Mn _y Co _z)O ₂ NMC	3.6	4.2-2.5V	~155(~170)	***	High capacity High rate. Up to 811 today
LiFePO₄ LFP	3.2	3.65-2.0V	~145	♦♦♦♦♦ very safe	Low capacity High rate Excellent cycle life



OPEN EDGE (BBU 18650 PROPOSAL)


OPEN EDGE (BBU 18650 PROPOSAL)

OPEN EDGE (BBU 26650 PROPOSAL)



Increase center height from 29.25 mm to 31.82 mm, still easily fits within height constraints

OPEN EDGE (BBU 26650 PROPOSAL)

Connectors

OPEN EDGE – BBU QUESTIONS

- Supporting Server for graceful shutdown is 2 minutes sufficient?
- Data Storage blades in system?
 - If so How much backup time?
 - Industry standard from 3 to 5 minutes
- Expected Life?
 - Assuming 5 years (or is it more)?
 - Run-Time ratings degrade over time Need to specify "New" vs. "Life End"
- Cooling or Heating options
 - Initial design around natural convection for reliability and lower cost
 - Is there a demand for a wider temp range product as a product extension?
- Front Panel any indicators or information display needed?
- Other Options?

9 JULY 2019

