

# **OPEN** Compute Summit

Engineering Workshop October 30-31, 2014 Paris





# **Rittal Open Rack Solution**

Andy Gill & Paul Clements

Rittal

VP Engineering (Andy), Lead Design Engineer (Paul)

Rith And And And And

### Rack - Overview



A Bailting

12 11

Key Rack Features Include : -

- Loading to 1400KG
- 2 Power zones
- E.I.A. Adaptors, in top of rack(3), can be installed in any position.
- Dimensions 2210H x 600W x 1067D



**Rear Isometric View** 



# Rack – Including Equipment Installed



(Standard Config.) Maximum Installable Equipment Includes: -

- I.T. Equipment, 16 Shelves (16 x 2OU)
- Power Equipment, 2 Shelves (2 x 3OU)
- E.I.A. Equipment, 3 Adaptor (3 x 10U)
- Total 41 x OU



**Rear Isometric View** 

# **Rack including Kits**



A Thought - At

12 11

Kits Include (Visible): -

- Side Panel Kit
- Hot Aisle Baffle
- Seismic Bracing ( Partial )



**Rear Isometric View** 

# Rack – Features – Bus-bar Assembly

Bus-Bar Assembly 2 separated zones Bus-bar convertor kit. Some low power configurations require single power zone bus-bars, this is achieved by connecting upper bus-bar to lower bus-bar. Sold as a accessories kit.



# **Rack Test Information**

| Rack Model:                 | Facebook V2 Open Rack, Single Rack with Bus Bar, 2 Power Zone 2,210H, 600W, 1067D (mm) to Facebook Specifications 06-000060 & 27-000416 Rev 2 |  |
|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--|
| Build Version:              | P.V.T. (Rittal C23670 Rev 1)                                                                                                                  |  |
| Test Specification:         | Open Rack V2 Specification Rev 7<br>Rittal Product Testing Specification (Ver.3)                                                              |  |
| Rack weight:                | 180 kg (396.8 lbs)                                                                                                                            |  |
| Load weight:                | 1400 kg (2755.8 lbs)<br>Distribution: Separate Document                                                                                       |  |
| Crate / Pallet Type:        | Cushioned Shock to TransPak San-De-0015 RevA                                                                                                  |  |
| Inserts & other components: | <ul> <li>- 3 x Wooden (Width) Brace to Rittal Drawing "Brace_Wood"<br/>Mounted in front of rack, per image</li> </ul>                         |  |
| Performed by                | Paul Clements (Design Engineer)                                                                                                               |  |
| Witnessed by                | Tom Shingleton (Design Manager)                                                                                                               |  |



# **Tests Performed**

| <u>Notes</u>                                                                                         | Palletised Product Test                                   |
|------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|
| Facebook standard                                                                                    | Flat Drop (6")                                            |
| Facebook standard                                                                                    | Rotational Flat Drops (6" on both long sides)             |
| Facebook standard – Not completed, safe method to be defined at<br>Rittal                            | Rotational Corner Impact (6" on 2 corners raised by 4")   |
| Rittal Standard, Rack toppled on Initial drop, considered un-safe, so<br>No further Tests completed. | Rotational Edge Drop (6" on both long sides raised by 4") |
| Facebook / Rittal                                                                                    | Transportation (Lorry)                                    |

The Flat drop & Rotational drop tests were initially completed, then the packaging removed and inspection performed, include dye penetrant N.D.T. on the weld corner regions.



# **Rack and Packaging**



# Monitoring Equipment



Accelerometer is mounted in the base tray, at the front for the rack. Accelerometer is a uni-axial type, calibrated to 50g



# Flat Drop (6")





Accelerometer Trace (Unfiltered) – Y value in volts – convert to acceleration (g) by subtracting 1.24, then multiplying by 40 Giving a maximum of 48g

Packaged Rack in Drop tester

# Rotational Flat Drop (6")



Accelerometer Trace (Unfiltered) – Y value in volts – convert to acceleration (g) by subtracting 1.24, then multiplying by 40 Giving a maximum of 7g



# **Transportation Testing**



Data-logger in rack



Graph shows measure accelerations ( g ) in the Vertical direction. Maximum of 1.3g measured

Graph shows measure accelerations (g) in the Width direction. (Braking / acceleration of lorry) Maximum of 3.85g measured

Graph shows measure accelerations (g) in the Depth direction. (Cornering of lorry

Maximum of 1.4g measured

# Transportation Testing – Rack Movement.

| Test / Task          | Pull Force Measured |      |         |                          | Loading |      |
|----------------------|---------------------|------|---------|--------------------------|---------|------|
|                      | Configuration       | Meas | urement | Pull force to total Load | Loading |      |
|                      | Configuration       | (N)  | KG      |                          |         | KG   |
| Managura Faran       | Static              | 520  | 53.0    | 3.38%                    | Rack    | 170  |
| Measure Force        | Dynamic             | 280  | 28.5    | 1.82%                    | Load    | 1400 |
| 400M Roll ( 0.8M/S ) |                     |      |         |                          | Total   | 1570 |
| M                    | Static              | 560  | 57.1    | 3.64%                    |         |      |
| Measure Force        | Dynamic             | 260  | 26.5    | 1.69%                    |         |      |
| 1" Gap x3 Times      |                     |      |         |                          |         |      |
| Maasura Foraa        | Static              | 550  | 56.1    | 3.57%                    |         |      |
| measure Force        | Dynamic             | 250  | 25.5    | 1.62%                    |         |      |
| 200M Roll            |                     |      |         |                          |         |      |
| Maasura Foraa        | Static              | 490  | 49.9    | 3.18%                    |         |      |
| measure roice        | Dynamic             | 350  | 35.7    | 2.27%                    |         |      |
| 1" Gap x2 Time       |                     |      |         |                          |         |      |
| Maaaaaa Faaaa        | Static              | 610  | 62.2    | 3.96%                    |         |      |
| measure Force        | Dynamic             | 350  | 35.7    | 2.27%                    |         |      |
| 200M Roll            |                     |      |         |                          |         |      |
| Maasura Foraa        | Static              | 630  | 64.2    | 4.09%                    |         |      |
|                      | Dynamic             | 300  | 30.6    | 1.95%                    |         |      |
|                      |                     |      |         |                          |         |      |
| 6mm Step x5 Times    |                     |      |         | 4 429/                   |         |      |
| Measure Force        | Static              | 680  | 69.3    | 4.42%                    |         |      |
|                      | Dynamic             | 220  | 22.4    | 1.43%                    |         |      |
|                      |                     |      |         | 4.42%                    |         |      |
| ####                 |                     |      |         | Maximum                  |         |      |

Series of transportation tests completed, with the (static & dynamic) pull force measure between each step.

Slight degradation was measured over the complete tests, however all measurements were within the requirement of 5.0%.

### Post Test

All Swivel castors were free to rotate in both directions (Wheel rotation and Castor Horn Rotation)

(Open Rack V2 specification Rev 7)



# Seismic Simulations

# **GR-63-Core Seismic**

### The loaded rack is required to withstand NEBS GR-63 zone 2 Seismic Testing



North America – Earthquake Risk Zones 4 – Zone 4, Highest risk area 0 – No Substantial earthquake risk.

# Rack Loading

The Rack is loaded with masses detailed per table, the Horizontal position is Mid-way in the Depth and the Width. The masses are connected to the frame members per details below: -



I.T. Shelf Mass: - Connected to I.T. Shelf in three locations ( per side ) + connection to Rear member.

Power Shelf Mass: - Connected to Power Shelf in three locations ( per side )

E.I.A. Mass: - Connected to E.I.A adaptors in two locations ( per side )

|       | Distribution throughout Rack |                             |  |  |  |
|-------|------------------------------|-----------------------------|--|--|--|
|       | Description                  | Load for Max 1400kg<br>(kg) |  |  |  |
|       | E.I.A                        | 12.0                        |  |  |  |
|       | E.I.A                        | 12.0                        |  |  |  |
|       | E.I.A                        | 12.0                        |  |  |  |
|       | IT                           | 78.25                       |  |  |  |
|       | IT                           | 78.25                       |  |  |  |
|       | IT                           | 78.25                       |  |  |  |
| 상     | IT                           | 78.25                       |  |  |  |
| in Ra | Power                        | 56                          |  |  |  |
|       | IT                           | 78.25                       |  |  |  |
| ing   | IT                           | 78.25                       |  |  |  |
| ion   | IT                           | 78.25                       |  |  |  |
| osit  | IT                           | 78.25                       |  |  |  |
| d     | IT                           | 78.25                       |  |  |  |
| ica   | IT                           | 78.25                       |  |  |  |
| ert   | IT                           | 78.25                       |  |  |  |
| >     | IT                           | 78.25                       |  |  |  |
|       | Power                        | 56                          |  |  |  |
|       | IT                           | 78.25                       |  |  |  |
|       | IT                           | 78.25                       |  |  |  |
|       | ІТ                           | 78.25                       |  |  |  |
|       | IT                           | 78.25                       |  |  |  |
|       | Total                        | 1400.0                      |  |  |  |
|       |                              |                             |  |  |  |

# Constraints

Constraints are applied in three regions, detailed below: -

- Fastening Bolts Surface at floor level, constrained in three degrees of linear freedom
- Castors Surface at floor level, constrained in one degrees of linear freedom, vertically locking wheel to floor.
- Levelling Feet Surface at floor level, constrained in one degrees of linear freedom, vertically locking wheel to floor.



# Analysis Configuration Details

The Analysis is Linear Transient and consists of a Restart between the Modal and the Dynamic Analysis.

Rack Analysis has been completed in the following order: -

- Single Rack No Shear Plates. Modal Analysis ONLY
- Single Rack + 2 x Shear Plates in the Upper and Lower Positions. Modal Analysis ONLY
- 3 x Bayed Ganged Pod + 2 x Shear Plates in the Upper and Lower Positions.
- 3 x Bayed Ganged Pod + 2 x Shear Plates in the Lower Positions.
- 3 x Bayed Ganged Pod + 2 x Shear Plates in the Upper and 1x in the Lower Positions.

### **Modal Analysis**

The lowest eight Natural Frequencies are analysed. Convergence level set at 5%, with a maximum Polynomial Order set to 9

### **Dynamic Analysis**

The analysis initially is completed with a time step of 0.075 seconds, a secondary analysis is to be completed, with the resolution increased around the Maximum deflection region.





# Single Rack





# Modal Analysis — Single Rack In Accordance with G3-Core R4-70, Frame-level equipment shall have a frequency greater than 2.0Hz



### First Natural Frequency at 3.18Hz





Second Natural Frequency at 13.26Hz



Fifth Natural Frequency at 44.10Hz



Third Natural Frequency at 31.38Hz



Sixth Natural Frequency at 45.65Hz



# Single Rack + 2 x Shear Plates in the Upper and Lower Positions



# Modal Analysis — Single Rack In Accordance with G3-Core R4-70, Frame-level equipment shall have a frequency greater than 2.0Hz





# **3 x Bayed / Ganged Pod** + Shear Plates in the Upper (1 x ) and Lower Positions (1 x)



### Modal Analysis — Three Bayed racks, Shear Plate high / Low Positions In Accordance with G3-Core R4-70, Frame-level equipment shall have a frequency greater than 2.0Hz





Fifth Natural Frequency at 22.80Hz



Third Natural Frequency at 19.79Hz



Sixth Natural Frequency at 27.23Hz

# Base Excitation Input – Zone2

The Base of the rack is excited, in each of the three orthogonal directions, in ordinance with Telecordia GR-63, Zone 2 Waveform



Displacement Resulting from Base Excitation in the X-Axis (Width) – Three Bayed racks, Shear Plate high / Low Positions

In Accordance with GR-63-Core R4-69, the Maximum Single amplitude deflection at Top of frame work, relative to base does not exceed 75mm



# Displacement Resulting from Base Excitation in the X-Axis (Width)





# Stresses Resulting from Base Excitation in the X-Axis (Width)

In Accordance with G3-Core R4-68, all equipment shall be constructed to sustain the waveform testing, without permanent structural or mechanical Damage



# High Stress Regions resulting from Base Excitation in the X-Axis (WCS) Progressing Up Rear Frame Member at 9.15 into Zone 2 Simulation



### Analysis Result Details Modal Analysis

The analysis Converged to within 10% on frequency, individual modal convergence listed below: -

| Mode | Frequency (Hz) | Convergence |  |
|------|----------------|-------------|--|
|      |                |             |  |
| 1    | 5.28e+00       | 2.6%        |  |
| 2    | 1.81e+01       | 3.1%        |  |
| 3    | 1.98e+01       | 3.2%        |  |
| 4    | 2.20e+01       | 2.4%        |  |
| 5    | 2.28e+01       | 0.9%        |  |
| 6    | 2.72e+01       | 2.8%        |  |
| 7    | 2.92e+01       | 2.6%        |  |
| 8    | 3.76e+01       | 1.5%        |  |
| 9    | 3.91e+01       | 1.4%        |  |
|      |                |             |  |

### **Dynamic Analysis**

The analysis initially is completed with a time step of 0.075 seconds, a secondary analysis is to be completed, with the resolution increased around the Maximum deflection region.

The Target of 80% + Mass Participation was achieved, below is the participation factor for each mode

| M     | ode | Part. Factor | Eff. Mass Tot. Mass |                     |
|-------|-----|--------------|---------------------|---------------------|
|       |     |              |                     |                     |
|       | 1   | 68.1%        | 68.1%               |                     |
|       | 2   | 0.0%         | 68.1%               |                     |
|       | 3   | 1.0%         | 69.1%               |                     |
| 01440 | 4   | 12.2%        | 81.3%               |                     |
|       | 5   | 0.0%         | 81.3%               |                     |
|       | 6   | 0.0%         | 81.3%               |                     |
| Ar    | 7   | 0.0%         | 81.3%               |                     |
|       | 8   | 1.6%         | 82.9%               |                     |
|       | 9   | 3.2%         | 86.1%               | Engineering Worksho |



## **3 x Bayed / Ganged Pod** + 2 x Shear Plates in the Lower Positions



### Modal Analysis — Three Bayed racks, Shear Plate 2x Lower Positions In Accordance with G3-Core R4-70, Frame-level equipment shall have a frequency greater than 2.0Hz







Displacement Resulting from Base Excitation in the X-Axis (Width) – Three Bayed racks, Shear Plate Low / Low Positions

In Accordance with G3-G3-Core R4-69, the Maximum Single amplitude deflection at Top of frame work, relative to base does not exceed 75mm



# Displacement Resulting from Base Excitation in the X-Axis (Width)





Stresses Generated in the rack at 9.15s

# Stresses Resulting from Base Excitation in the X-Axis (Width)

In Accordance with G3-Core R4-68, all equipment shall be constructed to sustain the waveform testing, without permanent structural or mechanical Damage





# 3 x Bayed / Ganged Pod

- + 1 x Shear Plates in the
- Upper and 2x in the Lower
- Positions





### Modal Analysis — Three Bayed racks, Shear Plates 2x Lower+ 1 x Upper Positions In Accordance with G3-Core R4-70, Frame-level equipment shall have a frequency greater than 2.0Hz



Displacement Resulting from Base Excitation in the X-Axis (Width) – Three Bayed racks, Shear Plate Low / Low + Up Positions

In Accordance with G3-G3-Core R4-69, the Maximum Single amplitude deflection at Top of frame work, relative to base does not exceed 75mm



# Displacement Resulting from Base Excitation in the X-Axis (Width)





# Stresses Resulting from Base Excitation in the X-Axis (Width) In Accordance with G3-Core R4-68, all equipment shall be constructed to sustain the waveform testing,

without permanent structural or mechanical Damage



# High Stress Regions resulting from Base Excitation in the X-Axis (Width)



# Alternate Solution to Facebook Interpretation

# **Open compute – Alternative Solution**





Key Rack Features Include : -

- 19 I.T. Shelves accessible
- 1 Power zone.
- Bus-bars 3 full height in rear
- Dimensions 2210H x 600W x 1067D



**Rear Isometric View** 

Rittal / A.Gill & P.Clements / 23.Jan.2014



# **OPER** Compute Summit Engineering Workshop October 30-31, 2014 Paris

