CE EMC TEST REPORT

REPORT NO. MODEL NO. RECEIVED DATE FINAL TESTED DATE ISSUED DATE	::	AS5512-54X Mar. 30, 2016 Apr. 15, 2016
TEST STANDARD	-	
		Accton Technology Corporation No. 1 Creation Rd., III, Science-based Industrial Park, Hsinchu 300, Taiwan, R.O.C.
		Accton Technology Corporation No. 1 Creation Rd., III, Science-based Industrial Park, Hsinchu 300, Taiwan, R.O.C.
	-	SPORTON International Inc. No. 52, Hwa Ya 1st Rd., Hwa Ya Technology Park, Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C.

- The test result refers exclusively to the test presented test model / sample.
- Without written approval of SPORTON International Inc., the test report shall not be reproduced except in full.
- This test report is only applicable to European Community / Australia and New Zealand.

Table of Contents

VERIFICATION OF COMPLIANCE	1
1. Summary of Test Results	2
2. General Description of Equipment under Test	4
3. Test Configuration of Equipment under Test	5
4. General Information of Test	11
5. Test of Conducted Emission	12
6. Test of Radiated Emission	
7. Harmonics Test	
8. Voltage Fluctuations and Flicker Test	
9. General Performance Criteria Description of Immunity Test	46
10. Electrostatic Discharge Immunity Test (ESD)	47
11. Radio Frequency Electromagnetic Field Immunity Test (RS)	69
12. Electrical Fast Transient/Burst Immunity Test (EFT/BURST)	71
13. Surge Immunity Test	75
14. Conducted Disturbances Induced by Radio-Frequency Field Immunity Test (CS)	78
15. Power Frequency Magnetic Field Immunity Tests	81
16. Voltage Dips and Voltage Interruptions Immunity Tests	83
17. List of Measuring Equipment Used	
18. Uncertainty of Test Site	
Appendix A. TEST PHOTOS	A1 ~ A27

History of This Test Report

REPORT NO.	VERSION	ISSUED DATE	Description
EC633006	Rev. 01	May 06, 2016	Initial issue of report

Report No.: EC633006

Project No: CB10504089

VERIFICATION OF COMPLIANCE

EQUIPMENT NAME	;	48+6 ports, Layer 3 10Gigabit switch
BRAND NAME	:	Edge-corE
MODEL NO.	:	AS5512-54X
APPLICANT	;	Accton Technology Corporation
ADDRESS		No. 1 Creation Rd., III, Science-based Industrial Park, Hsinchu 300, Taiwan, R.O.C.
FINAL TESTED DATE	1	Apr. 15, 2016
TEST STANDARD	•	EN 55032:2012/AC:2013, Class A
		EN 61000-3-2:2014
		EN 61000-3-3:2013
		EN 55024:2010
		AS/NZS CISPR 32:2013, Class A

HEREBY DECLARE THAT:

The measurements shown in this test report were made in accordance with the procedures given in EUROPEAN COUNCIL DIRECTIVE 2014/30/EU.

The above equipment has been tested by **SPORTON International Inc.** LAB., and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

Sin Chang SPORTON INTERNATIONAL INC.

SPORTON International Inc. TEL: 886-3-327-3456 FAX: 886-3-327-0973 Page Number: 1 of 98Issued Date: May 06, 2016Version: Rev. 01

1. Summary of Test Results

After estimating all the combination of every test mode, the result shown as below is the worst case.

The EUT has been tested according to the following specifications.

EMISSION					
Test Standard	Test Type	Result	Remarks		
	AC Power Port Conducted emission test 150 kHz – 30 MHz	PASS	Meet minimum passing margin is -24.35dB at 24.1423MHz.		
EN 55032:2012/AC:2013, Class A and AS/NZS CISPR 32:2013 Class A	Telecom Port Conducted emission test 150 kHz – 30 MHz	PASS	Meet minimum passing margin is -15.64dB at 0.8618MHz.		
	Radiated emission test 30 MHz – 1,000 MHz @ 10 m 1,000 MHz – 6,000 MHz @ 3 m	PASS	Meet minimum passing margin is -8.93dB at 1000.00MHz.		
EN 61000-3-2:2014	Harmonic Current emission test	PASS	Meet the requirements.		
EN 61000-3-3:2013	Voltage Fluctuations and Flicker tests	PASS	Meet the requirements.		

CE EMC TEST REPORT

IMMUNITY (EN 55024:2010)				
Test Standard	Test Type	Pass Criterior		
	Electrostatic discharge immunity test			
IEC 61000-4-2:2008	± 2, 4 kV Contact Discharge	Α		
	± 2, 4, 8 kV Air Discharge Standard Criterion B			
	Radiated immunity test			
	Frequency Range : 80 MHz to 1,000 MHz			
IEC 61000-4-3:2006/A1:2007/A2:2010	Electromagnetic field : 3 V/m (unmodulated, r.m.s)	А		
IEC 01000-4-3.2000/A1.2007/A2.2010	Amplitude modulated : 80 % AM (1 kHz)	~		
	Standard Criterion A			
	Electrical fast transient / burst immunity test			
	AC ports 5/50 ns, \pm 1 kV, 5 kHz			
IEC 61000-4-4:2012	I/O ports 5/50 ns, ± 0.5 kV, 5 kHz	Α		
	Standard Criterion B			
	Surge immunity test			
	AC ports (1.2/50 us) :			
IEC 61000-4-5:2014	line to line : \pm 0.5, 1 kV	A (Note)		
	line to earth : \pm 0.5, 1, 2 kV			
	Standard Criterion B			
	Conducted immunity test			
	Frequency Range:150 kHz to 80 MHz			
IEC 61000-4-6:2013	Electromagnetic field : 3 V (unmodulated, r.m.s)	Α		
	Amplitude modulated : 80 % AM (1 kHz)			
	Standard Criterion A			
	Power frequency magnetic field immunity test			
IEC 61000-4-8:2009	1 A/m, 50 Hz	Α		
	Standard Criterion A			
	Voltage dips, short interruptions and voltage variations			
	immunity tests	•		
	1. >95% reduction	A		
IEC 64000 4 44:2004	10 ms (0.5 cycles) – Standard Criterion B			
IEC 61000-4-11:2004	2. 30% reduction	۸		
	500 ms (25 cycles) – Standard Criterion C	Α		
	3. Interruption >95% reduction	в		
	5,000 ms (250 cycles) – Standard Criterion C	В		

Note : According to EN 55024 Table 2 description, the surge test of telecommunication/signal cable will be performed only when it's directly connected to outdoor cables; thus, indoor telecommunication/signal port isn't necessary to perform surge test.

2. General Description of Equipment under Test

Product Detail		
Equipment Name	48+6 ports, Layer 3 10Gigabit switch	
Model No.	AS5512-54X	
Brand Name	Edge-corE	
Power Supply	From AC Power	

2.1. Feature of Equipment under Test

1. The difference of the ports of the EUT is shown as below:

Port	Description
1~48	10GHz
49~54	40GHz

2. There are two sources of power, the detail information as following:

Power source	Brand	Model No.	Fan	Rating
Main Source 1		CPR-4011-4M1	F2B	Input: 100-240V/6.0-3.0A/50-60Hz Output: +12V/33A
Main Source 2	COMPUWARE	CPR-4011-4M2	B2F	Input: 100-240V/6.0-3.0A/50-60Hz Output: +12V/33A
Power source	Brand	P/N	Fan	Rating
	Brand 3Y POWER	P/N YM-2401JDR	Fan B2F	Rating Input: 100-240Vac 50-60Hz 6.3A Output: +12V33.3A

3. For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

3. Test Configuration of Equipment under Test

3.1. Test Mode

Investigation has been done on all the possible configurations for searching the worst cases. The following table is a list of the test modes shown in this test report.

Conducted Emissions			
Test Mode	Description		
1	Main source power 1 + left power (F2B)		
2	Main source power 1 + right power (F2B)		
Mode 1 has been evaluated to be the worst case between Mode 1~2, thus measurement for Mode 3 will follow this same test mode.			
3	Main source power 2 + left power (B2F)		
4	Second source power 3 + left power (B2F)		
5	Second source power 3 + right power (B2F)		
Mode 5 has been evaluated to be the worst case between Mode 4~5, thus measurement for Mode 6 will follow this same test mode.			
6	Second source power 4 + right power (F2B)		
Mode 1 and Mode 4 generated the worst test result, so it was recorded in this report.			

Disturbances at Telecommunication Ports

Main source power 1 + left power (F2B) and Second source power 3 + left power (B2F) has been evaluated to be the worst case at Conducted Emissions test; thus, the measurement for Disturbances at Telecommunication Ports will follow this same test configuration.

Test Mode	Description
1	Main source power 1 (F2B)-DAC Port 1:10Gbps
2	Main source power 1 (F2B)-DAC Port 49: 40Gbps
3	Main source power 1 (F2B)-LAN Port 1: 10Mbps
4	Main source power 1 (F2B)-LAN Port 1: 100Mbps
5	Main source power 1 (F2B)-LAN Port 1: 1Gbps
6	Second source power 3 (B2F)-DAC Port 1:10Gbps
7	Second source power 3 (B2F)-DAC Port 49: 40Gbps

Mode 3 has been evaluated to be the worst case between Mode 3~5, thus measurement for Mode 8 will follow this same test mode.

8	Second source power 3 (B2F)-LAN Port 1: 10Mbps

Mode 1, Mode 2, Mode 3, Mode 6, Mode 7 and Mode 8 are worst test result among Mode 1 ~ Mode 8, and the test result of those six modes are selected to record in the test report.

Radiated Emissions				
Test Mode	Test Mode Description			
1	EUT + Main source power 1 (F2B)			
2	EUT + Second source power 3 (B2F)			
3	3 EUT + Main source power 2 (B2F)			
4 EUT + Second source power 4 (F2B)				
For Radiated Emission test below 1GHz				

For Radiated Emission test below 1GHz:

Mode 1 and Mode 2 generated the worst test result, so it was recorded in this report.

For Radiated Emission test above1GHz:

Mode 2 and Mode 3 generated the worst test result, so it was recorded in this report.

Harmonic Current Emissions Voltage Fluctuations and Flicker ESD RS and PFMF

Main source power (F2B) and Second source power (B2F) has been evaluated to be the worst case at Radiated Emissions test; thus, the measurement for EMS will follow this same test configuration.

Test Mode	Description		
1	Main source power 1 (F2B)		
2	Second source power 3 (B2F)		

EFT Surge CS and DIP				
Main source power (F2B) and Second source power (B2F) has been evaluated to be the worst case at Radiated Emissions test; thus, the measurement for EMS will follow this same test configuration.				
Test Mode	Description			
1	Main source power 1 + left power (F2B)			
2	Main source power 1 + right power (F2B)			
3	Second source power 3 + left power (B2F)			
4	Second source power 3 + right power (B2F)			

Note: The test configuration and test modes written in this test report are designated by the applicant.

3.2. Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Support Unit	Brand	Model	FCC ID
NB	DELL	E6430	DoC
Flash disk3.0	Transcend	639205 7755	DoC

3.3. EUT Operation Condition

<For EMI Test>

For Conducted Emissions , Radiated Emissions Test:

During the test, the following programs under win 7 were executed:

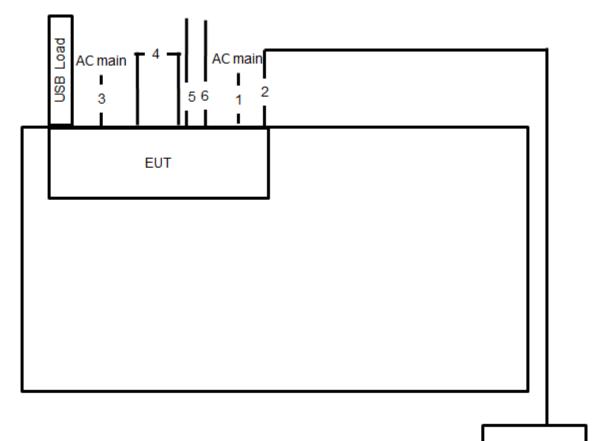
The remote notebook executed "ping.exe" to link with the EUT to maintain the connection by LAN.

The remote notebook executed "Hyper Terminal " to maintain the connection with the EUT.

For Disturbances at Telecommunication Ports Test:

At the same time, the remote notebook executed "LAN TEST" to link with the EUT to traffic packet data generated software and keep 10% traffic load by LAN and DAC.

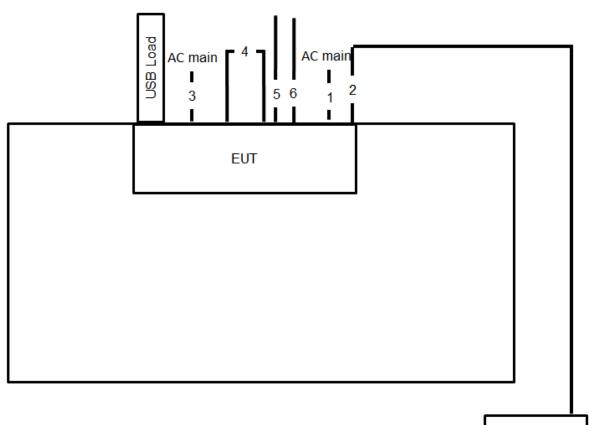
<For EMS Test>


During the test, the following programs under win 7 were executed:

The remote notebook executed "ping.exe" to link with the EUT to maintain the connection by LAN.

The remote notebook executed "Hyper Terminal " to maintain the connection with the EUT.

3.4. Connection Diagram of Test System


3.4.1. AC Power Line Conduction Emissions Test Configuration

LAN NB

Item	Connection	Shielded	Length
1	Power cable	No	1.8m
2	RJ-45 cable	No	10m
3	Power cable	No	1.8m
4	DAC cable*27	Yes	5m
5	Console cable	Yes	1.5m
6	Ground cable	No	1.8m

3.4.2. Radiation Emissions Test Configuration

LAN NB

Item	Connection	Shielded	Length
1	Power cable	No	1.8m
2	RJ-45 cable	No	10m
3	Power cable	No	1.8m
4	DAC cable*27	Yes	5m
5	Console cable	Yes	1.5m
6	Ground cable	No	1.8m

4. General Information of Test

4.1. Test Facility

<EMI>

Test Site Location	:	No.8, Lane 724, Bo-ai St., Jhubei City,
		Hsinchu County 302, Taiwan, R.O.C.
TEL	:	886-3-656-9065
FAX	:	886-3-656-9085
Test Site No.	:	Conduction: CO01-CB
		Radiation: 10CH01-CB
-FMO		

<EMS>

Test Site Location	:	No.8, Lane 724, Bo-ai St., Jhubei City,
		Hsinchu County 302, Taiwan, R.O.C.
TEL	:	886-3-656-9065
FAX	:	886-3-656-9085

4.2. Test Voltage

Power Type	Test Voltage
AC Power Supply	230 V / 50 Hz

4.3. Frequency Range Investigated

EMI Test Items	Frequency Range
Conducted emission test	150 kHz to 30 MHz
Radiated emission test	30 MHz to 6,000 MHz
EMS Test Items	Frequency Range
Radio frequency electromagnetic field immunity test	80 MHz to 1,000 MHz
Conducted immunity test	150 kHz to 80 MHz

4.4. Test Distance

Test Items	Test Distance
Radiated emission test below 1 GHz (30 MHz to 1,000 MHz)	10 m
Radiated emission test above 1 GHz (1,000 MHz to 6,000 MHz)	3 m
Radio frequency electromagnetic field immunity test	3 m

5. Test of Conducted Emission

5.1. Limit

5.1.1. Limit for AC power ports :

Frequency (MHz)	QP Limit (dBuV)	AV Limit (dBuV)
0.15~0.5	79	66
0.5~30	73	60

5.1.2. Limit for Telecommunication ports :

	Voltage Li	mit (dBuV)	Current Limit (dBuA)			
Frequency (MHz)	QP	AV	QP	AV		
0.15~0.5	97~87	84~74	53~43	40~30		
0.5~30	87	74	43	30		

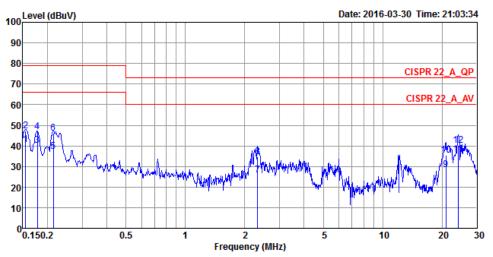

5.2. Description of Major Test Instruments

Test Receiver	Agilent N9038A
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz

5.3. Test Procedures

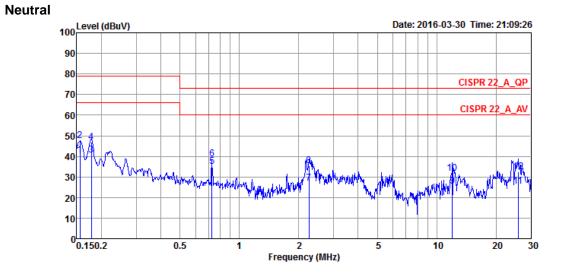
- a. The EUT was placed on a desk 0.8 meters height from the metal ground plane and 0.4 meter from the conducting wall of the shielding room and it was kept at least 0.8 meters from any other grounded conducting surface.
- b. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- c. Connect Telecommunication port to ISN (Impedance Stabilization Network).
- d. All the support units are connect to the other LISN.
- e. The LISN provides 50 Ω coupling impedance for the measuring instrument.
- f. The CISPR states that a 50 $\Omega,$ 50 uH LISN should be used.
- g. Both sides of AC line were checked for maximum conducted interference.
- h. The frequency range from 150 kHz to 30 MHz was searched.
- i. Set the test-receiver system to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

5.4. Typical Test Setup Layout of Conducted Emission and disturbances at telecommunication ports

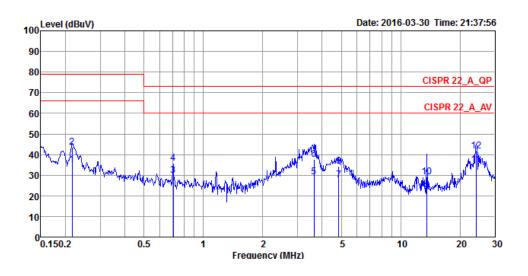


AMNs bonded to a reference ground plane

5.5. Test Result of AC Power Ports


Temperature	20 ℃	Humidity	60%					
Test Engineer	Deven Huang	ang Frequency Range 0.15 MHz to 30 MHz						
Test Mode	Mode 1							
Corrected Reading (dBuV) = LISN Factor + Cable Loss + Read Level = Level								
5	+ (Read Level + LISN Factor	,						
 All emissions no 	t reported here are more than	n 10 dB below the prescr	ibed limit.					
• The test was passed at the minimum margin that marked by a frame in the following table								
Lino								

	Freq	Level	Over Limit	Limit Line	Read Level	LISN Factor	Cable Loss	Pol/Phase	Remark
	MHz	dBuV	dB	dBuV	dBuV	dB	dB		
1	0.1548	40.58	-25.42	66.00	30.54	10.02	0.02	LINE	Average
2	0.1548	47.28	-31.72	79.00	37.24	10.02	0.02	LINE	QP
3	0.1777	40.15	-25.85	66.00	30.21	9.92	0.02	LINE	Average
4	0.1777	46.88	-32.12	79.00	36.94	9.92	0.02	LINE	QP
5	0.2139	37.12	-28.88	66.00	27.18	9.92	0.02	LINE	Average
6	0.2139	46.30	-32.70	79.00	36.36	9.92	0.02	LINE	QP
7	2.3213	25.71	-34.29	60.00	15.69	9.96	0.06	LINE	Average
8	2.3213	34.53	-38.47	73.00	24.51	9.96	0.06	LINE	QP
9	20.9243	28.45	-31.55	60.00	17.86	10.33	0.26	LINE	Average
10	20.9243	35.36	-37.64	73.00	24.77	10.33	0.26	LINE	QP
11	24.1423	35.65	-24.35	60.00	24.96	10.42	0.27	LINE	Average
12	24.1423	40.10	-32.90	73.00	29.41	10.42	0.27	LINE	QP


SPORTON International Inc. TEL: 886-3-327-3456 FAX: 886-3-327-0973 Page Number: 14 of 98Issued Date: May 06, 2016Version: Rev. 01

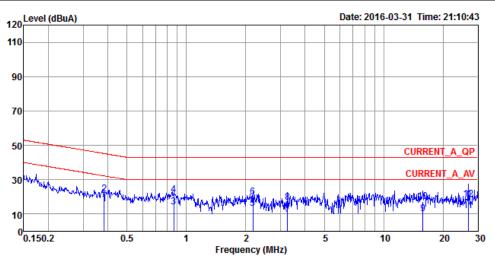
	Freq	Level	Over Limit	Limit Line	Read Level	LISN Factor	Cable Loss	Pol/Phase	Remark
	MHz	dBuV	dB	dBuV	dBuV	dB	dB		
1	0.1557	40.51	-25.49	66.00	30.47	10.02	0.02	NEUTRAL	Average
2	0.1557	47.44	-31.56	79.00	37.40	10.02	0.02	NEUTRAL	QP
3	0.1777	40.41	-25.59	66.00	30.47	9.92	0.02	NEUTRAL	Average
4	0.1777	47.02	-31.98	79.00	37.08	9.92	0.02	NEUTRAL	QP
5	0.7274	34.97	-25.03	60.00	25.00	9.93	0.04	NEUTRAL	Average
6	0.7274	38.72	-34.28	73.00	28.75	9.93	0.04	NEUTRAL	QP
7	2.2486	27.00	-33.00	60.00	16.98	9.96	0.06	NEUTRAL	Average
8	2.2486	35.40	-37.60	73.00	25.38	9.96	0.06	NEUTRAL	QP
9	11.9962	25.58	-34.42	60.00	15.15	10.18	0.25	NEUTRAL	Average
10	11.9962	31.59	-41.41	73.00	21.16	10.18	0.25	NEUTRAL	QP
11	25.8638	25.32	-34.68	60.00	14.59	10.46	0.27	NEUTRAL	Average
12	25.8638	32.30	-40.70	73.00	21.57	10.46	0.27	NEUTRAL	QP


Temperature	20 °C	Humidity	60%					
Test Engineer	Deven Huang Frequency Range 0.15 MHz to 30 MHz							
Test Mode 4								
 Margin = - Limit All emissions no 	ing (dBuV) = LISN Factor + C + (Read Level + LISN Factor t reported here are more that ssed at the minimum margin	 + Cable Loss) n 10 dB below the prescr 	ibed limit.					

Line

	Freq	Level	Over Limit	Limit Line	Read Level	LISN Factor	Cable Loss	Pol/Phase	Remark
	MHz	dBuV	dB	dBuV	dBuV	dB	dB		
1	0.2162	35.03	-30.97	66.00	25.09	9.92	0.02	LINE	Average
2	0.2162	43.60	-35.40	79.00	33.66	9.92	0.02	LINE	QP
3	0.7047	29.97	-30.03	60.00	20.00	9.93	0.04	LINE	Average
4	0.7047	35.69	-37.31	73.00	25.72	9.93	0.04	LINE	QP
5	3.6418	29.17	-30.83	60.00	19.13	9.98	0.06	LINE	Average
6	3.6418	37.76	-35.24	73.00	27.72	9.98	0.06	LINE	QP
7	4.8480	27.72	-32.28	60.00	17.62	10.01	0.09	LINE	Average
8	4.8480	34.41	-38.59	73.00	24.31	10.01	0.09	LINE	QP
9	13.5509	21.93	-38.07	60.00	11.47	10.21	0.25	LINE	Average
10	13.5509	28.99	-44.01	73.00	18.53	10.21	0.25	LINE	QP
11	24.1423	35.12	-24.88	60.00	24.43	10.42	0.27	LINE	Average
12	24.1423	41.57	-31.43	73.00	30.88	10.42	0.27	LINE	QP

SPORTON International Inc. TEL: 886-3-327-3456 FAX: 886-3-327-0973 Page Number: 16 of 98Issued Date: May 06, 2016Version: Rev. 01



	Freq	Level	Over Limit	Limit Line	Read Level	LISN Factor	Cable Loss	Pol/Phase	Remark
	MHz	dBuV	dB	dBuV	dBuV	dB	dB		
1	0.1548	43.71	-40.03	83.74	33.53	10.16	0.02		Average
2	0.1548	50.63	-46.11	96.74	40.45	10.16	0.02		QP
3	0.9282	38.34	-35.66	74.00	28.61	9.68	0.05		Average
4	0.9282	43.88	-43.12	87.00	34.15	9.68	0.05		QP
5	3.6034	36.73	-37.27	74.00	27.08	9.59	0.06		Average
6	3.6034	47.38	-39.62	87.00	37.73	9.59	0.06		QP
7	8.7757	42.40	-31.60	74.00	32.63	9.57	0.20		Average
8	8.7757	47.73	-39.27	87.00	37.96	9.57	0.20		QP
9	11.9962	50.16	-23.84	74.00	40.28	9.63	0.25		Average
10	11.9962	53.26	-33.74	87.00	43.38	9.63	0.25		QP
11	23.8878	50.78	-23.22	74.00	40.54	9.97	0.27		Average
12	23.8878	41.44	-45.56	87.00	31.20	9.97	0.27		QP

Page Number: 17 of 98Issued Date: May 06, 2016Version: Rev. 01

5.6. Test Result of Telecommunication Ports

Temperature	20 °C	Humidity 60%						
Test Engineer	Deven Huang	Frequency Range 0.15 MHz to 30 MHz						
Test Mode	Mode 1 / DAC Port 1:10Gbps							
	Corrected Reading (dBuV) = LISN Factor + Cable Loss + Read Level = Level							
 Margin = - Limit - 	+ (Read Level + LISN Factor	+ Cable Loss)						
 All emissions not 	 All emissions not reported here are more than 10 dB below the prescribed limit. 							
 The test was pas 	sed at the minimum margin t	hat marked by a frame in	n the following table					

			0ver	Limit	Read	LISN	Cable		
	Freq	Level	Limit	Line	Level	Factor	Loss	Pol/Phase	Remark
	MHz	dBuA	dB	dBuA	dBuA	dB	dB		
1	0.3832	15.92	-16.31	32.23	-18.11	33.99	0.04		Average
2	0.3832	21.73	-23.50	45.23	-12.30	33.99	0.04		QP
3	0.8618	14.38	-15.64	30.02	-19.62	33.96	0.04		Average
4	0.8618	21.21	-21.81	43.02	-12.79	33.96	0.04		QP
5	2.1783	13.20	-16.82	30.02	-20.80	33.94	0.06		Average
6	2.1783	19.88	-23.14	43.02	-14.12	33.94	0.06		QP
7	3.2583	9.96	-20.06	30.02	-24.04	33.94	0.06		Average
8	3.2583	16.81	-26.21	43.02	-17.19	33.94	0.06		QP
9	15.8014	10.31	-19.71	30.02	-23.86	33.91	0.26		Average
10	15.8014	17.20	-25.82	43.02	-16.97	33.91	0.26		QP
11	26.8411	11.85	-18.17	30.02	-22.47	34.05	0.27		Average
12	26.8411	18.47	-24.55	43.02	-15.85	34.05	0.27		QP

SPORTON International Inc. TEL: 886-3-327-3456 FAX: 886-3-327-0973 Page Number: 18 of 98Issued Date: May 06, 2016Version: Rev. 01

0.150.2

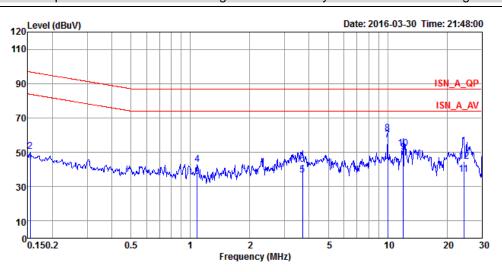
0.5

1

Temperature	20 °C	Humidity	60%							
Test Engineer	Deven Huang	Frequency Range	0.15 MHz to 30 MHz							
Test Mode	Test Mode / DAC Port 49: 40Gbps									
 Corrected Reading (dBuV) = LISN Factor + Cable Loss + Read Level = Level 										
 Margin = - Limit + (Read Level + LISN Factor + Cable Loss) 										
	t reported here are more than									
• The test was pas	ssed at the minimum margin t	nat marked by a frame i	n the following table							
120 Level (dBuA) Date: 2016-03-31 Time: 21:06:04										
110										
90										
70										
50			CURRENT_A_QP							
30 the find the for	mmul granner and property	8, 10								
10	3 THOMAN TO WANT AND A PANE	the second states and the se	and managed and a second large the							

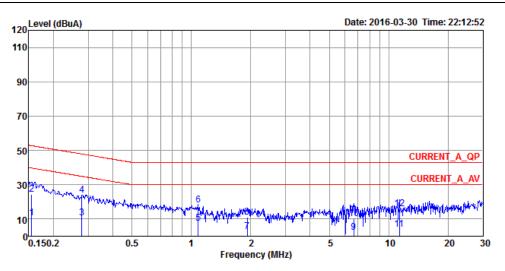
2 Frequency (MHz)

5

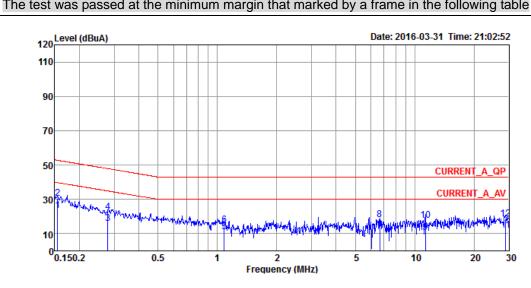

10

20

30


	Freq	Level	Over Limit	Limit Line	Read Level	LISN Factor	Cable Loss	Pol/Phase	Remark
	MHz	dBuA	dB	dBuA	dBuA	dB	dB		
1	0.1731	22.85	-15.98	38.83	-11.21	34.04	0.02		Average
2	0.1731	29.71	-22.12	51.83	-4.35	34.04	0.02		QP
3	0.4588	13.49	-17.25	30.74	-20.48	33.93	0.04		Average
4	0.4588	19.28	-24.46	43.74	-14.69	33.93	0.04		QP
5	0.9787	11.59	-18.43	30.02	-22.43	33.97	0.05		Average
6	0.9787	16.27	-26.75	43.02	-17.75	33.97	0.05		QP
7	2.1783	12.13	-17.89	30.02	-21.87	33.94	0.06		Average
8	2.1783	17.90	-25.12	43.02	-16.10	33.94	0.06		QP
9	6.6624	11.29	-18.73	30.02	-22.77	33.94	0.12		Average
10	6.6624	17.81	-25.21	43.02	-16.25	33.94	0.12		QP
11	15.8014	10.40	-19.62	30.02	-23.77	33.91	0.26		Average
12	15.8014	17.07	-25.95	43.02	-17.10	33.91	0.26		QP

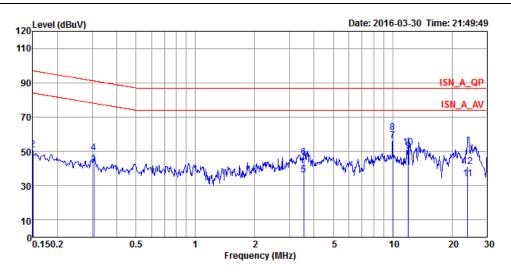
Temperature	20 °C	Humidity	60%			
Test Engineer	Deven Huang	Frequency Range	0.15 MHz to 30 MHz			
Test Mode	Mode 3 / LAN Port 1: 10Mbps					
 Corrected Readi 	ng (dBuV) = LISN Factor + C	able Loss + Read Level	= Level			
 Margin = - Limit + (Read Level + LISN Factor + Cable Loss) 						
 All emissions not reported here are more than 10 dB below the prescribed limit. 						
The test was passed at the minimum margin that marked by a frame in the following table						


	Freq	Level	Over Limit	Limit Line	Read Level	LISN Factor	Cable Loss	Pol/Phase	Remark
	MHz	dBuV	dB	dBuV	dBuV	dB	dB		
1	0.1540	43.81	-39.97	83.78	33.62	10.17	0.02		Average
2	0.1540	50.64	-46.14	96.78	40.45	10.17	0.02		QP
3	1.0824	36.03	-37.97	74.00	26.32	9.66	0.05		Average
4	1.0824	42.89	-44.11	87.00	33.18	9.66	0.05		QP
5	3.7001	36.57	-37.43	74.00	26.92	9.59	0.06		Average
6	3.7001	43.06	-43.94	87.00	33.41	9.59	0.06		QP
7	10.0000	57.11	-16.89	74.00	47.29	9.57	0.25		Average
8	10.0000	61.11	-25.89	87.00	51.29	9.57	0.25		QP
9	11.9962	50.06	-23.94	74.00	40.18	9.63	0.25		Average
10	11.9962	52.29	-34.71	87.00	42.41	9.63	0.25		QP
11	24.2706	37.10	-36.90	74.00	26.84	9.99	0.27		Average
12	24.2706	44.74	-42.26	87.00	34.48	9.99	0.27		QP

Temperature	20 °C	Humidity	60%			
Test Engineer	Deven Huang	Frequency Range	0.15 MHz to 30 MHz			
Test Mode	Mode 6 / DAC Port 1:10Gbps					
 Corrected Readi 	ng (dBuV) = LISN Factor + Ca	able Loss + Read Level	= Level			
 Margin = - Limit + (Read Level + LISN Factor + Cable Loss) 						
 All emissions not reported here are more than 10 dB below the prescribed limit. 						
 The test was passed at the minimum margin that marked by a frame in the following table 						

	Freq	Level	Over Limit	Limit Line	Read Level	LISN Factor	Cable Loss	Pol/Phase	Remark
	MHz	dBuA	dB	dBuA	dBuA	dB	dB		
1	0.1548	10.66	-29.10	39.76	-23.42	34.06	0.02		Average
2	0.1548	24.43	-28.33	52.76	-9.65	34.06	0.02		QP
3	0.2788	10.80	-24.07	34.87	-23.24	34.00	0.04		Average
4	0.2788	23.70	-24.17	47.87	-10.34	34.00	0.04		QP
5	1.0824	7.34	-22.68	30.02	-26.68	33.97	0.05		Average
6	1.0824	18.15	-24.87	43.02	-15.87	33.97	0.05		QP _
7	1.9182	2.53	-27.49	30.02	-31.47	33.94	0.06		Average
8	1.9182	11.25	-31.77	43.02	-22.75	33.94	0.06		QP
9	6.6624	2.16	-27.86	30.02	-31.90	33.94	0.12		Average
10	6.6624	10.00	-33.02	43.02	-24.06	33.94	0.12		QP
11	11.3170	3.86	-26.16	30.02	-30.31	33.92	0.25		Average
12	11.3170	15.74	-27.28	43.02	-18.43	33.92	0.25		QP

Temperature	20 °C	Humidity	60%			
Test Engineer	Deven Huang	Frequency Range	0.15 MHz to 30 MHz			
Test Mode	Mode 7 / DAC Port 49: 40Gbps					
 Corrected Readi 	 Corrected Reading (dBuV) = LISN Factor + Cable Loss + Read Level = Level 					
 Margin = - Limit + (Read Level + LISN Factor + Cable Loss) 						
 All emissions not reported here are more than 10 dB below the prescribed limit. 						
The test was passed at the minimum margin that marked by a frame in the following table						



	Freq	Level	Over Limit	Limit Line	Read Level	LISN Factor	Cable Loss	Pol/Phase	Remark
-	MHz	dBuA	dB	dBuA	dBuA	dB	dB		
1	0.1548	23.60	-16.16	39.76	-10.48	34.06	0.02		Average
2	0.1548	30.41	-22.35	52.76	-3.67	34.06	0.02		QP
3	0.2788	15.78	-19.09	34.87	-18.26	34.00	0.04		Average
4	0.2788	22.39	-25.48	47.87	-11.65	34.00	0.04		QP
5	1.0824	11.24	-18.78	30.02	-22.78	33.97	0.05		Average
6	1.0824	15.11	-27.91	43.02	-18.91	33.97	0.05		QP
7	6.6624	11.17	-18.85	30.02	-22.89	33.94	0.12		Average
8	6.6624	18.20	-24.82	43.02	-15.86	33.94	0.12		QP
9	11.3170	10.74	-19.28	30.02	-23.43	33.92	0.25		Average
10	11.3170	17.50	-25.52	43.02	-16.67	33.92	0.25		QP
11	28.9077	12.05	-17.97	30.02	-22.33	34.10	0.28		Average
12	28.9077	18.75	-24.27	43.02	-15.63	34.10	0.28		QP

Page Number: 22 of 98Issued Date: May 06, 2016Version: Rev. 01

Temperature	20 °C	Humidity	60%			
Test Engineer	Deven Huang	Frequency Range	0.15 MHz to 30 MHz			
Test Mode	Mode 8 / LAN Port 1: 10Mbps					
 Corrected Readi 	 Corrected Reading (dBuV) = LISN Factor + Cable Loss + Read Level = Level 					
 Margin = - Limit + (Read Level + LISN Factor + Cable Loss) 						
 All emissions not reported here are more than 10 dB below the prescribed limit. 						

• The test was passed at the minimum margin that marked by a frame in the following table

	Freq	Level	Over Limit	Limit Line	Read Level	LISN Factor	Cable Loss	Pol/Phase	Remark
	MHz	dBuV	dB	dBuV	dBuV	dB	dB		
1	0.1500	44.11	-39.89	84.00	33.91	10.18	0.02		Average
2	0.1500	50.87	-46.13	97.00	40.67	10.18	0.02		QP
3	0.3051	42.24	-35.86	78.10	32.31	9.89	0.04		Average
4	0.3051	49.14	-41.96	91.10	39.21	9.89	0.04		QP
5	3.5466	36.37	-37.63	74.00	26.72	9.59	0.06		Average
6	3.5466	46.38	-40.62	87.00	36.73	9.59	0.06		QP
7	10.0000	56.24	-17.76	74.00	46.42	9.57	0.25		Average
8	10.0000	61.26	-25.74	87.00	51.44	9.57	0.25		QP
9	11.9962	50.03	-23.97	74.00	40.15	9.63	0.25		Average
10	11.9962	52.36	-34.64	87.00	42.48	9.63	0.25		QP
11	24.0148	33.93	-40.07	74.00	23.68	9.98	0.27		Average
12	24.0148	41.39	-45.61	87.00	31.14	9.98	0.27		QP

6. Test of Radiated Emission

6.1. Limit

Radiated Emission below 1 GHz test at 10 m:

Frequency (MHz)	QP (dBuV/m)
30~230	40
230~1,000	47

Radiated Emission above 1 GHz test at 3 m:

Frequency (MHz)	PK (dBuV/m)	AV (dBuV/m)
1,000~3,000	76	56
3,000~6,000	80	60

6.2. Description of Major Test Instruments

6.2.1. 30 MHz ~ 1,000 MHz

Amplifier	Agilent 8447D
RF Gain	25 dB
Signal Input	9 kHz to 1.3 GHz

Spectrum Analyzer	R&S FSV30
Start Frequency	30 MHz
Stop Frequency	1000 MHz
Resolution Bandwidth	120 kHz
Signal Input	9 kHz to 30 GHz

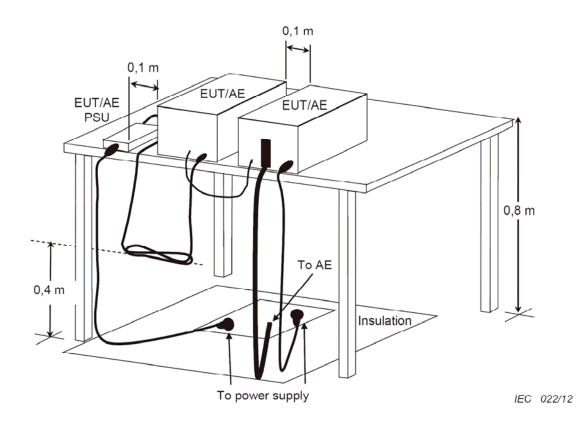
Test Receiver	R&S ESCI						
Start Frequency	30 MHz						
Stop Frequency	1000 MHz						
Resolution Bandwidth	120 kHz						
Signal Input	9 kHz to 3 GHz						

6.2.2. Above 1 GHz

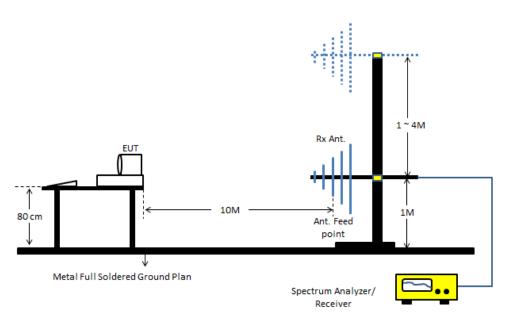
Amplifier	Agilent 8449B
RF Gain	35 dB
Signal Input	1 GHz to 26.5 GHz

Spectrum Analyzer	R&S FSV30						
Start Frequency	1 GHz						
Stop Frequency	6 GHz						
Resolution Bandwidth	1 MHz						
Signal Input	9 kHz to 30 GHz						

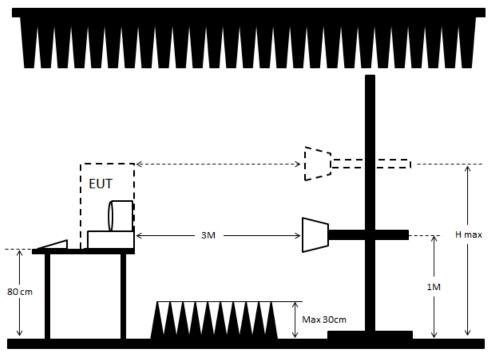
6.3. Test Procedures


<Below 1 GHz>:

- a. The EUT was placed on a rotatable table top 0.8 meter above ground.
- b. The EUT was set 10 meters from the interference receiving antenna which was mounted on the top of a variable height antenna tower.
- c. The table was rotated 360 degrees to determine the position of the highest radiation.
- d. The antenna is a half wave dipole and its height is varied between one meter and four meters above ground to find the maximum value of the field strength both horizontal polarization and vertical polarization of the antenna are set to make the measurement.
- e. For each suspected emission the EUT was arranged to its worst case and then tune the antenna tower (from 1 M to 4 M) and turn table (from 0 degree to 360 degrees) to find the maximum reading.
- f. Set the test-receiver system to Peak Detect Function and specified bandwidth with Maximum Hold Mode.
- g. If the emission level of the EUT in peak mode was 3 dB lower than the limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method and reported.

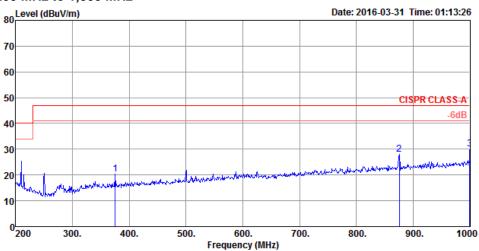

<Above 1 GHz>:

- a. Same test set up as below 1 GHz radiated testing.
- b. The EUT was set 3 meters from the interference-receiving antenna which was mounted on the top of a variable height antenna tower.
- c. There should be absorber placed between the EUT and Antenna and its located size should let the test site meet CISPR16-1-4 requirement.
- d. The table was rotated 360 degrees to determine the position of the highest radiation.
- e. Set the test-receiver system to Peak Detect Function and specified bandwidth with Maximum Hold Mode.
- f. Set the DRG Horn Antenna at 1M height, then run the turn table to get the maximum noise reading from Horizontal and Vertical polarity separately.
- g. When EUT locating on the turn-table, and its height is over 172 cm (Antenna's 3dB beam width of 6 GHz is 27°), the DRG Horn Antenna must be raised up and descended down, then turning around the turn-table to get the maximum noise reading of the Horizontal and Vertical polarity separately. Note the maximum raise up height is same as the top of EUT.
- h. If emission level of the EUT in peak mode was 20 dB lower than average limit (that means the emission level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.


6.4. Typical Test Setup Layout of Radiated Emission

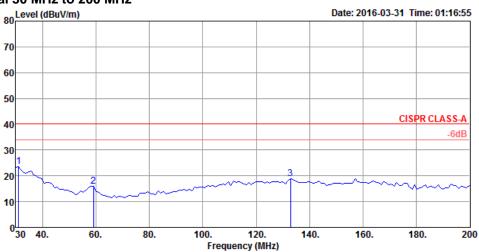
<Below 1 GHz>:

<Above 1 GHz>:


Remark : When EUT height is over 172cm , H max = Top of EUT

6.5. Test Result of Radiated Emission below 1 GHz

Temperature	20 ℃			Humidity		61%							
Test Engineer	Hank Yang			Frequenc	cy Range	30 M	/Hz to 1,000 MHz						
Test Mode	Mode 1												
 Margin = - Limit 	 Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level Margin = - Limit + (Read Level + Antenna Factor + Cable Loss - Preamp Factor) The test was passed at the minimum margin that marked by the frame in the following test record 												
Vertical 30 MHz to 200 MHz													
80 Level (dBi	JV/m)				Date: 201	6-03-31 T	ime: 01:13:26						
70													
60													
50													
40						CIS	PR CLASS-A						
30							-6dB						
20	~~		3			~~~~~	h						
10													
0 ¹ 30 40.	60.	80. 1	00.	120.	140. 160	. 1	BO. 20	0					


120. Frequency (MHz)

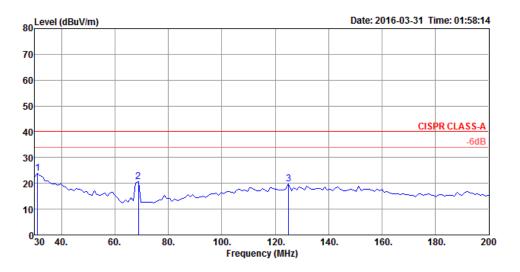
	Freq	Level		Over Limit						A/Pos	T/Pos	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB		cm	deg	
1	30.97	24.34	40.00	-15.66	27.20	28.63	24.23	1.54	QP	100	129	VERTICAL
2	55.22	22.75	40.00	-17.25	36.10	28.57	13.19	2.03	QP	100	21	VERTICAL
3	111.48	19.03	40.00	-20.97	27.58	28.42	16.98	2.89	QP	100	5	VERTICAL

Vertical 200 MHz to 1,000 MHz

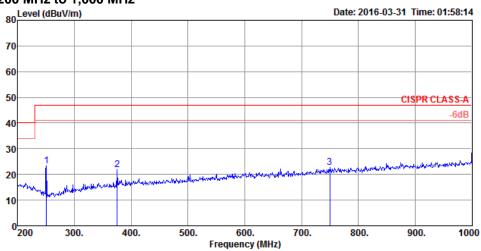
	Freq	Level		Over Limit					Remark	A/Pos	T/Pos	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB		cm	deg	
1	375.32	20.23	47.00	-26.77	28.66	27.73	15.85	3.45	QP	100	91	VERTICAL
2	875.84	28.14	47.00	-18.86	28.82	27.60	21.66	5.26	QP	400	213	VERTICAL
3	1000.00	29.97	47.00	-17.03	28.70	27.13	22.70	5.70	QP	400	144	VERTICAL

Horizontal 30 MHz to 200 MHz

	Freq	Level		Over Limit						A/Pos	T/Pos	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB		cm	deg	
1	30.97	23.56	40.00	-16.44	26.42	28.63	24.23	1.54	QP	100	258	HORIZONTAL
2	59.10	15.96	40.00	-24.04	30.24	28.56	12.17	2.11	QP	400	359	HORIZONTAL
3	132.82	18.93	40.00	-21.07	26.57	28.31	17.51	3.16	OP	100	98	HORIZONTAL

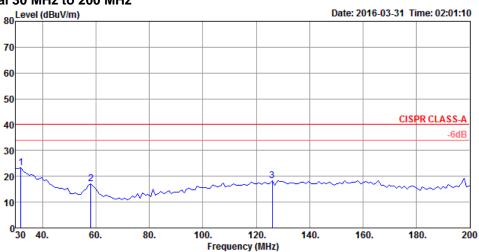


Horizontal 200 MHz to 1,000 MHz

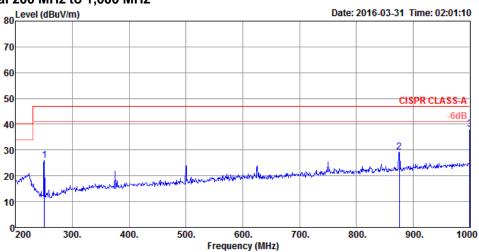

	Freq	Level					Antenna Factor			A/Pos	T/Pos	Pol/Phase
												,.
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB		cm	deg	
1	250.19	23.89	47.00	-23.11	35.84	27.23	12.48	2.80	QP	400	28	HORIZONTAL
2	500.45	27.21	47.00	-19.79	34.15	28.50	17.61	3.95	QP	100	72	HORIZONTAL
3	875.84	34.53	47.00	-12.47	35.21	27.60	21.66	5.26	QP	100	72	HORIZONTAL
4	1000.00	37.24	47.00	-9.76	35.97	27.13	22.70	5.70	QP	100	78	HORIZONTAL

Temperature	20 °C	Humidity	61%									
Test Engineer	Hank Yang Frequency Range 30 MHz to 1,000 MHz											
Test Mode	Mode 2											
 Corrected Readi 	ng: Antenna Factor + Cable L	oss + Read Level - Prea	amp Factor = Level									
 Margin = - Limit + (Read Level + Antenna Factor + Cable Loss - Preamp Factor) 												
The test was pas	ssed at the minimum margin th	hat marked by the frame	e in the following test record									

Vertical 30 MHz to 200 MHz



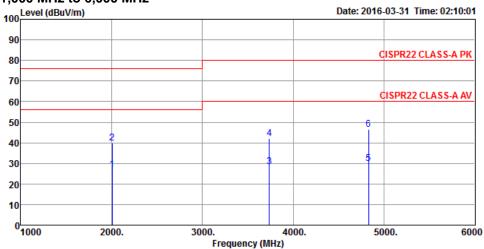
	Freq	Level		Over Limit					Remark	A/Pos	T/Pos	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB		cm	deg	
1	30.97	24.03	40.00	-15.97	26.89	28.63	24.23	1.54	QP	100	169	VERTICAL
2	68.80	20.81	40.00	-19.19	35.00	28.54	12.08	2.27	QP	100	356	VERTICAL
3	125.06	19.73	40.00	-20.27	27.46	28.35	17.55	3.07	QP	100	52	VERTICAL


Vertical 200 MHz to 1,000 MHz

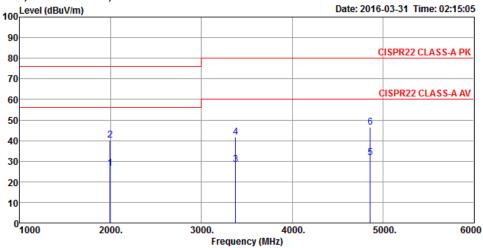
	Freq	Level		Over Limit					Remark	A/Pos	T/Pos	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB		Cm	deg	
1	250.19	23.30	47.00	-23.70	35.25	27.23	12.48	2.80	QP	400	358	VERTICAL
2	375.32	21.72	47.00	-25.28	30.15	27.73	15.85	3.45	QP	100	118	VERTICAL
3	749.74	22.66	47.00	-24.34	25.09	28.02	20.59	5.00	QP	100	306	VERTICAL

Horizontal 30 MHz to 200 MHz

	Freq	Level					Antenna Factor			A/Pos	T/Pos	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB		cm	deg	
1	31.94	23.26	40.00	-16.74	26.67	28.62	23.65	1.56	QP	400	138	HORIZONTAL
2	58.13	17.01	40.00	-22.99	31.10	28.56	12.38	2.09	QP	400	352	HORIZONTAL
3	126.03	18.25	40.00	-21.75	25.95	28.34	17.56	3.08	QP	400	53	HORIZONTAL


Horizontal 200 MHz to 1,000 MHz

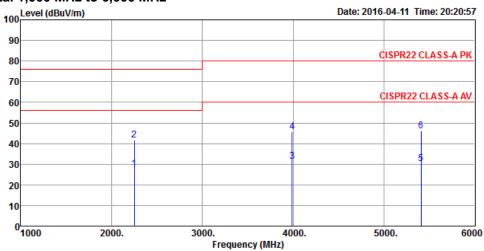
	Freq	Level					Antenna Factor		Remark	A/Pos	T/Pos	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB		cm	deg	
1	250.19	26.11	47.00	-20.89	38.06	27.23	12.48	2.80	QP	400	56	HORIZONTAL
2	875.84	29.24	47.00	-17.76	29.92	27.60	21.66	5.26	QP	100	101	HORIZONTAL
3	1000.00	38.07	47.00	-8.93	36.80	27.13	22.70	5.70	QP	100	83	HORIZONTAL


Temperature	20 ℃	Humidity	61%								
Test Engineer	Hank Yang	Frequency Range	1,000 MHz to 6,000 MHz								
Test Mode Mode 2											
 Corrected Readi 	Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level										
 Margin = - Limit + (Read Level + Antenna Factor + Cable Loss - Preamp Factor) 											
• The test was passed at the minimum margin that marked by the frame in the following test record											

6.6. Test Result of Radiated Emission above 1 GHz

Vertical 1,000 MHz to 6,000 MHz

	Freq	Level					Antenna Factor			A/Pos	T/Pos	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB		cm	deg	
1	2005.00	26.99	56.00	-29.01	23.70	35.89	31.70	7.48	Average	100	126	VERTICAL
2	2005.00	39.77	76.00	-36.23	36.48	35.89	31.70	7.48	Peak	100	126	VERTICAL
3	3735.00	28.40	60.00	-31.60	21.70	36.32	33.19	9.83	Average	100	310	VERTICAL
4	3735.00	42.17	80.00	-37.83	35.47	36.32	33.19	9.83	Peak	100	310	VERTICAL
5	4830.00	29.79	60.00	-30.21	20.81	36.38	34.23	11.13	Average	100	36	VERTICAL
6	4830.00	46.64	80.00	-33.36	37.66	36.38	34.23	11.13	Peak	100	36	VERTICAL



Horizontal 1,000 MHz to 6,000 MHz

	Freq	Level	Limit Line				Antenna Factor			A/Pos	T/Pos	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB		cm	deg	
1	1995.00	26.59	56.00	-29.41	23.30	35.89	31.70	7.48	Average	100	52	HORIZONTAL
2	1995.00	40.16	76.00	-35.84	36.87	35.89	31.70	7.48	Peak	100	52	HORIZONTAL
3	3375.00	28.24	60.00	-31.76	22.30	36.36	32.95	9.35	Average	100	63	HORIZONTAL
4	3375.00	41.53	80.00	-38.47	35.59	36.36	32.95	9.35	Peak	100	63	HORIZONTAL
5	4860.00	31.76	60.00	-28.24	22.71	36.38	34.24	11.19	Average	100	296	HORIZONTAL
6	4860.00	46.65	80.00	-33.35	37.60	36.38	34.24	11.19	Peak	100	296	HORIZONTAL

Temperature	er Hank Yang Frequency Range 1,000 MHz to 6,000 MHz Mode 3 Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level Limit + (Read Level + Antenna Factor + Cable Loss - Preamp Factor) as passed at the minimum margin that marked by the frame in the following test record MHz to 6,000 MHz Date: 2016-04-11 Time: 20:24:01 Image: Class A PK Class A PK Image: Class A AV Class A AV Image: Class A AV Image: Class A AV											
Test Engineer	Hank Yang		Frequency Range	1,000 MHz to 6,00	0 MHz							
Test Mode	Mode 3											
 Margin = - Limit 	+ (Read Level +	Antenna Fa	ctor + Cable Loss - Pre	amp Factor)	record							
Vertical 1,000 MHz to 6,000 MHz												
90												
80				CISPR22 CLASS-A PK								
70												
60				CISPR22 CLASS-A AV								
50		0	4									
40		2										
30			P									
20												
10												
0 <mark>1000</mark>												

			Limit	0ver	Read	Preamp/	Antenna	Cable		A/Pos	T/Pos	
	Freq	Level	Line	Limit	Level	Factor	Factor	Loss	Remark			Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB		cm	deg	
1	2620.00	26.82	56.00	-29.18	21.89	36.17	32.72	8.38	Average	100	281	VERTICAL
2	2620.00	40.56	76.00	-35.44	35.63	36.17	32.72	8.38	Peak	100	281	VERTICAL
3	4440.00	30.64	60.00	-29.36	22.40	36.40	34.02	10.62	Average	100	115	VERTICAL
4	4440.00	45.35	80.00	-34.65	37.11	36.40	34.02	10.62	Peak	100	115	VERTICAL
5	5465.00	30.51	60.00	-29.49	20.29	36.27	34.77	11.72	Average	100	71	VERTICAL
6	5465.00	47.88	80.00	-32.12	37.66	36.27	34.77	11.72	Peak	100	71	VERTICAL

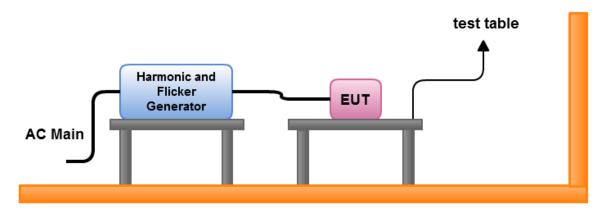
Horizontal 1,000 MHz to 6,000 MHz

	Freq	Level					Antenna Factor			A/Pos	T/Pos	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB		cm	deg	
1									Average	100		HORIZONTAL
2	2250.00	41.67	76.00	-34.33	37.67	36.00	32.17	7.83	Peak	100	12	HORIZONTAL
3	3990.00	31.24	60.00	-28.76	23.80	36.27	33.50	10.21	Average	100	327	HORIZONTAL
4	3990.00	45.89	80.00	-34.11	38.45	36.27	33.50	10.21	Peak	100	327	HORIZONTAL
5	5410.00	30.31	60.00	-29.69	20.20	36.28	34.70	11.69	Average	100	333	HORIZONTAL
6	5410.00	45.99	80.00	-34.01	35.88	36.28	34.70	11.69	Peak	100	333	HORIZONTAL

7. Harmonics Test

7.1. Standard

• EN 61000-3-2:2014


7.2. Test Procedure

The measured values of the harmonics components of the input current, including line current and neutral current, shall be compared with the limits given in Clause 7 of EN 61000-3-2.

7.3. Test Equipment Settings

Line Voltage	230 V
Line Frequency	50 Hz
Device Class	A

7.4. Test Setup

7.5. Test Result of Current Harmonics Test

3 0.054 2.300 2.3 0.054 3.450 1.6 F 4 0.001 0.430 N/A 0.001 0.645 N/A F 5 0.024 1.140 2.1 0.024 1.710 1.4 F	oass oass oass
Highest parameter values during test: V_RMS (Volts): 230.26 Frequency(Hz): 50.00 I_Peak (Amps): 0.993 I_RMS (Amps): 0.619 I_Fund (Amps): 0.612 Crest Factor: 1.632 Power (Watts): 127.6 Power Factor: 0.902 Harm# Harms(avg) 100%Limit %of Limit Harms(max) 150%Limit %of Limit \$tags of \$t	oass oass oass
Highest parameter values during test: V_RMS (Volts): 230.26 Frequency(Hz): 50.00 I_Peak (Amps): 0.993 I_RMS (Amps): 0.619 I_Fund (Amps): 0.612 Crest Factor: 1.632 Power (Watts): 127.6 Power Factor: 0.902 Harm# Harms(avg) 100%Limit %of Limit Harms(max) 150%Limit %of Limit \$tags of \$t	oass oass oass
2 0.003 1.080 N/A 0.003 1.620 N/A F 3 0.054 2.300 2.3 0.054 3.450 1.6 F	oass oass oass
2 0.003 1.080 N/A 0.003 1.620 N/A F 3 0.054 2.300 2.3 0.054 3.450 1.6 F 4 0.001 0.430 N/A 0.001 0.645 N/A F 5 0.024 1.140 2.1 0.024 1.710 1.4 F	Pass Pass
3 0.054 2.300 2.3 0.054 3.450 1.6 F 4 0.001 0.430 N/A 0.001 0.645 N/A F 5 0.024 1.140 2.1 0.024 1.710 1.4 F 6 0.000 0.300 N/A 0.001 0.450 N/A	ass
4 0.001 0.430 N/A 0.001 0.645 N/A F 5 0.024 1.140 2.1 0.024 1.710 1.4 F	
5 0.024 1.140 2.1 0.024 1.710 1.4 F	1
	Pass
6 0.000 0.300 N/A 0.001 0.450 N/A F	ass
	ass
	ass
	Pass Pass
	ass
	ass
	ass
	ass
	Pass
	Pass
	ass
	ass
	ass
20 0.001 0.092 N/A 0.001 0.138 N/A F	ass
	Pass
	ass
	ass
	Pass
	ass
	ass
	ass
	Pass Pass
	ass
	Pass
36 0.001 0.051 N/A 0.001 0.077 N/A P	ass
37 0.002 0.061 N/A 0.002 0.091 N/A F	ass
38 0.001 0.048 N/A 0.001 0.073 N/A F	Pass
	ass
40 0.001 0.046 N/A 0.001 0.069 N/A P	ass

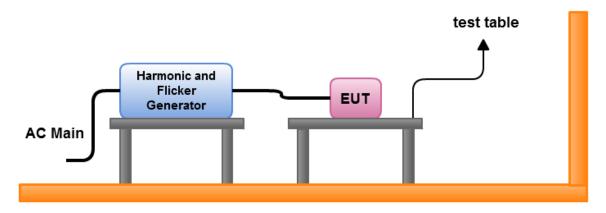
Temperature	25 ℃			Humidity	61%	,)	
Test Engine		ana		Test Date		15, 2016	
¥		_ č		Test Date	Γ Api.	15, 2010	
Test Mode	Mode	2					
	parameter va /_RMS (Volts _Peak (Amps _Fund (Amp Power (Watts	s): 230.26 s): 0.985 s): 0.610	test:	Frequency(Hz I_RMS (Amps) Crest Factor: Power Factor:	: 0.617 1.626		
Harm#	Harms(avg)	100%Limit	%of Limit	Harms(max)	150%Limit	%of Limit	Status
2 3	0.003	1.080	N/A	0.003	1.620	N/A	Pass
3	0.053	2.300	2.3	0.054	3.450	1.6	Pass
4 5 6 7 8	0.001	0.430	N/A	0.001	0.645	N/A	Pass
5	0.024	1.140	2.1	0.024	1.710	1.4	Pass
6	0.000	0.300	N/A	0.001	0.450	N/A	Pass
(0.013	0.770	1.7	0.013	1.155	1.1	Pass
8 9	0.000	0.230	N/A	0.001	0.345	N/A	Pass
	0.007	0.400	1.6	0.007	0.600	1.1	Pass
10	0.001	0.184	N/A	0.001	0.276	N/A	Pass
11 12	0.007 0.000	0.330 0.153	2.0 N/A	0.007 0.001	0.495 0.230	1.3 N/A	Pass Pass
13	0.008	0.155	4.0	0.009	0.230	2.7	Pass
14	0.008	0.210	4.0 N/A	0.009	0.315	2.7 N/A	Pass
14	0.007	0.151	4.9	0.007	0.197	3.3	Pass
16	0.000	0.115	N/A	0.000	0.173	N/A	Pass
17	0.005	0.132	N/A	0.005	0.198	N/A	Pass
18	0.000	0.102	N/A	0.001	0.153	N/A	Pass
19	0.001	0.118	N/A	0.002	0.178	N/A	Pass
20	0.001	0.092	N/A	0.001	0.138	N/A	Pass
21	0.003	0.107	N/A	0.003	0.161	N/A	Pass
22	0.000	0.084	N/A	0.001	0.125	N/A	Pass
23	0.005	0.098	N/A	0.005	0.147	N/A	Pass
24	0.000	0.077	N/A	0.001	0.115	N/A	Pass
25	0.004	0.090	N/A	0.004	0.135	N/A	Pass
26	0.000	0.071	N/A	0.001	0.107	N/A	Pass
27	0.003	0.083	N/A	0.004	0.125	N/A	Pass
28	0.001	0.066	N/A	0.001	0.099	N/A	Pass
29	0.003	0.078	N/A	0.003	0.116	N/A	Pass
30	0.001	0.061	N/A	0.001	0.092	N/A	Pass
31	0.003	0.073	N/A	0.003	0.109	N/A	Pass
32	0.001 0.006	0.058	N/A	0.001	0.086	N/A	Pass
33 34	0.006	0.068 0.054	9.1 N/A	0.006 0.000	0.102 0.081	6.2 N/A	Pass
34 35	0.000	0.054	N/A N/A	0.000	0.081	N/A N/A	Pass Pass
36	0.002	0.064	N/A	0.002	0.090	N/A	Pass
37	0.002	0.061	N/A	0.002	0.091	N/A	Pass
38	0.002	0.048	N/A	0.002	0.031	N/A	Pass
39	0.003	0.048	N/A	0.003	0.087	N/A	Pass
40	0.001	0.046	N/A	0.001	0.069	N/A	Pass
40	0.001	0.046	N/A	0.001	0.069	N/A	Pass

8. Voltage Fluctuations and Flicker Test

8.1. Standard

• EN 61000-3-3:2013

8.2. Test Procedure


The equipment shall be tested under the conditions of Clause 5.

The total impedance of the test circuit, excluding the appliance under test, but including the internal impedance of the supply source, shall be equal to the reference impedance. The stability and tolerance of the reference impedance shall be adequate to ensure that the overall accuracy of $\pm 8\%$ is achieved during the whole assessment procedure.

8.3. Test Equipment Settings

Line Voltage	230 ∨
Line Frequency	50 Hz

8.4. Test Setup

8.5. Test Result of Voltage Fluctuation and Flicker Test

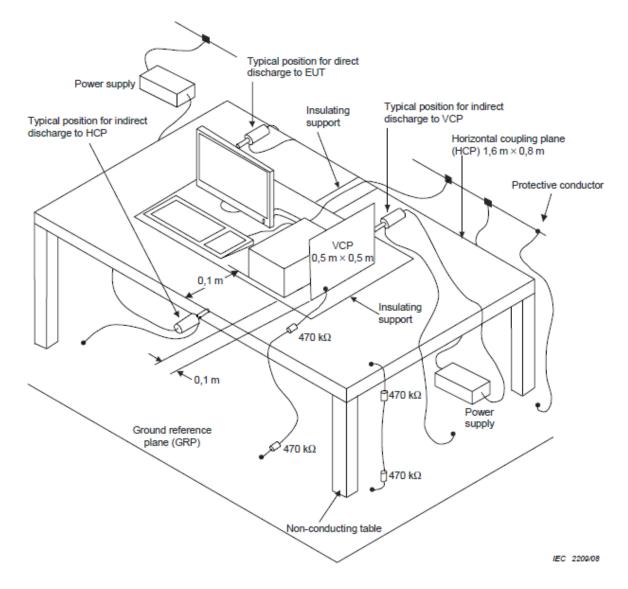
Temperature	21 ℃	Humidity	58%
Test Engineer	Jimmy Chen / Ryo Fan	Test Date	Mar. 31, 2016
Test Mode	Mode 1	Final Test Result	Pass
Vrms at the end of f Highest dt (%): T-max (mS): Highest dc (%): Highest dmax (%): Highest Pst (10 min	0.00 T 0 T 0.00 T 0.03 T	est limit (%): 3.30 est limit (mS): 500.0 est limit (%): 3.30 est limit (%): 4.00 est limit: 1.000	Pass Pass Pass Pass Pass

Temperature	21 °C		Humidity		58%
Test Engineer	Jimmy Chen / Ryo Fan		Test Date		Mar. 31, 2016
Test Mode	Mode 2		Final Test Re	esult	Pass
Vrms at the end of Highest dt (%): T-max (mS): Highest dc (%): Highest dmax (%): Highest Pst (10 mir	0.00 0 0.00 0.11	T T	est limit (%): est limit (mS): est limit (%): est limit (%): est limit:	3.30 500.0 3.30 4.00 1.000	Pass Pass Pass Pass Pass

9. General Performance Criteria Description of Immunity Test

According to Clause 7.1 of EN 55024 standard, the following describes the general performance criteria.

criteria.	
	During and after the test the EUT shall continue to operate as intended without operator
Criterion A	intervention.
(Note 1)	No degradation of performance or loss of function is allowed below a minimum
	performance level specified by the manufacturer when the EUT is used as intended.
	During the test, degradation of performance is allowed. However, no change of
	operating state or stored data is allowed to persist after the test.
	After the test, the equipment shall continue to operate as intended without operator
Criterion B	intervention.
(Note 2)	For xDSL Terminal equipment:
	During the test shall not cause the system to lose the established connection or retrain.
	At the cessation of the test, the system shall operate in the condition established prior to
	the application of the test without user intervention.
	Loss of function is allowed, provided the function is self-recoverable, or can be restored
	by the operation of the controls by the user in accordance with the manufacturer's
Criterion C	instructions.
	Functions, and/or information stored in non-volatile memory, or protected by a battery
	backup, shall not be lost.
Note 1 : No degrada	ation of performance or loss of function is allowed below a performance level specified by
the manufa	acturer when the equipment is used as intended. The performance level may be replaced
by a permis	ssible loss of performance. If the minimum performance level or the permissible
performanc	ce loss is not specified by the manufacturer, then either of these may be derived from the
product des	scription and documentation, and by what the user may reasonably expect from the
equipment	if used as intended.
Note 2 : After the a	pplication of the phenomenon below a performance level specified by the manufacturer,
when the e	equipment is used as intended. The performance level may be replaced by a permissible
loss of per	formance. During the test, degradation of performance is allowed. However, no change of
operating s	state if stored data is allowed to persist after the test. If the minimum performance level
(or the per	missible performance loss) is not specified by the manufacturer, then either of these may
be derived	from the product description and documentation, and by what the user may reasonably
expect fror	n the equipment if used as intended.


10. Electrostatic Discharge Immunity Test (ESD)

10.1. Test Specification

Reference Standard	IEC 61000-4-2
Discharge Impedance	330 ohm / 150 pF
Contact Discharge	± 2, 4 kV
Air Discharge	± 2, 4, 8 kV
Rise Time	0.8 ns +/-25 %
Current at 30 ns	+/- 30 %
Current at 60 ns	+/- 30 %
Polarity	Positive / Negative
	Air Discharge 20 times at each test point
Number of Discharge	Contact Discharge 50 times at each test point
Single Discharge Mode	1 discharge per 1s

CE EMC TEST REPORT

10.2. Test Setup

The test setup consists of the test generator, EUT and auxiliary instrumentation necessary to perform DIRECT and INDIRECT application of discharges to the EUT as applicable, in the follow manner: CONTACT DISCHARGE to the conductive surfaces and to coupling plane;

AIR DISCHARGE at insulating surfaces.

The preferred test method is that of type tests performed in laboratories and the only accepted method of demonstrating conformance with this standard. The EUT was arranged as closely as possible to arrangement in final installed conditions.

10.3. Test Setup for Tests Performed in Laboratory

A ground reference plane was provided on the floor of the test site. It was a metallic sheet (copper or aluminum) of 0.25 mm, minimum thickness; other metallic may be used but they shall have at least 0.65 mm thickness. In the SPORTON EMC LAB., we provided 1 mm thickness aluminum ground reference plane or 1 mm thickness stainless steel ground reference plane. The minimum size of the ground reference plane is 1 m x 1 m, the exact size depending on the dimensions of the EUT. It was connected to the protective grounding system.

The EUT was arranged and connected according to its functional requirements. A distance of 1m minimum was provided between the EUT and the wall of the lab. and any other metallic structure. In cases where this length exceeds the length necessary to apply the discharges to the selected points, the excess length shall, where possible, be placed non-inductively off the ground reference plane and shall not come closer than 0.2m to other conductive parts in the test setup.

Where the EUT is installed on a metal table, the table was connected to the reference plane via a cable with a 470k ohm resister located at each end, to prevent a build-up of charge. The test setup was consist a wooden table, 0.8m high, standing on the ground reference plane. A HCP, 1.6 m x 0.8 m, was placed on the table. The EUT and cables was isolated from the HCP by an insulating support 0.5 mm thick. The VCP size, 0.5 m x 0.5 m.

10.4. ESD Test Procedure

- a. In the case of air discharge testing the climatic conditions shall be within the following ranges:
 - ambient temperature: 15°C to 35°C;
 - relative humidity : 30% to 60%;
 - atmospheric pressure : 86 kPa (860 mbar) to 106 kPa (1060 mbar).
- b. Test programs and software shall be chosen so as to exercise all normal modes of operation of the EUT.

The use of special exercising software is encouraged, but permitted only where it can be shown that the EUT is being comprehensively exercised.

- c. The test voltage shall be increased from the minimum to the selected test severity level, in order to determine any threshold of failure. The final severity level should not exceed the product specification value in order to avoid damage to the equipment.
- d. For the time interval between successive single discharges an initial value of one second is recommended. Longer intervals may be necessary to determine whether a system failure has occurred.
- e. In the case of contact discharges, the tip of the discharge electrode shall touch the EUT before the discharge switch is operated.
- f. In the case of painted surface covering a conducting substrate, the following procedure shall be adopted:
 - If the coating is not declared to be an insulating coating by the equipment manufacturer, then the pointed tip of the generator shall penetrate the coating so as to make contact with the conducting substrate.
 - Coating declared as insulating by the manufacturer shall only be submitted to the air discharge.
 - The contact discharge test shall not be applied to such surfaces.
- g. In the case of air discharges, the round discharge tip of the discharge electrode shall be approached as fast as possible (without causing mechanical damage) to touch the EUT. After each discharge, the ESD generator (discharge electrode) shall be removed from the EUT. The generator is then retriggered for a new single discharge. This procedure shall be repeated until the discharges are completed. In the case of an air discharge test, the discharge switch, which is used for contact discharge, shall be closed.

10.5. Test Result

Temperature	19°C	Humidity	50%
Pressure	100 kPa	Test Engineer	Jimmy Chen / Da Deng
Test Mode	Mode 1	Test Date	Apr. 01, 2016
Standard	Required Criteria B		
Test Recorded	There was no abnormal situation during the test compared with initial operation.		

Direct Application :

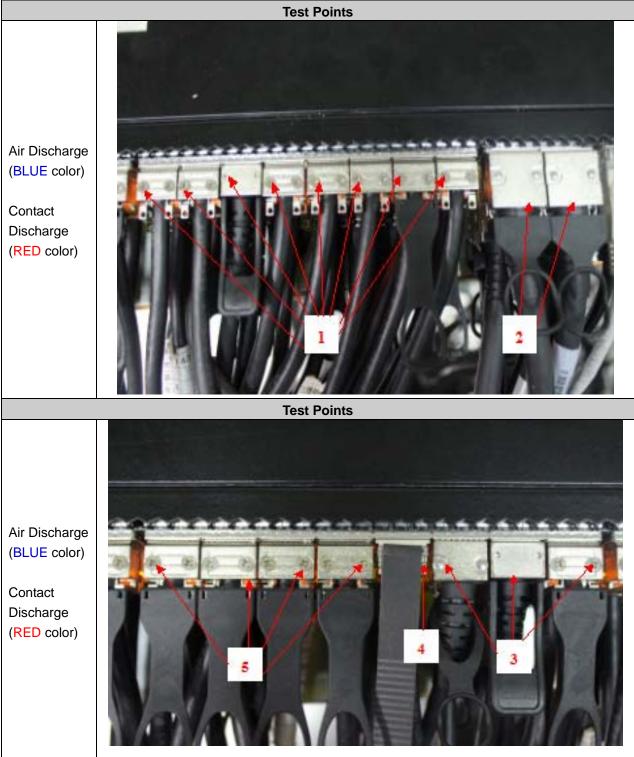
Test Point	Tested Voltage (kV)	Contact Discharge (Performance Criteria)	Air Discharge (Performance Criteria)
1-11	±2,4	A	-
12	±2,4,8	-	А
13	±2,4	А	-
14-17	±2,4,8	-	A
18-20	±2,4	А	-
21-26	±2,4,8	-	А
27-31	±2,4	А	-
32	±2,4,8	-	А
33-34	±2,4	А	-
35	±2,4,8	-	А
36	±2,4	А	-
37	±2,4,8	-	А

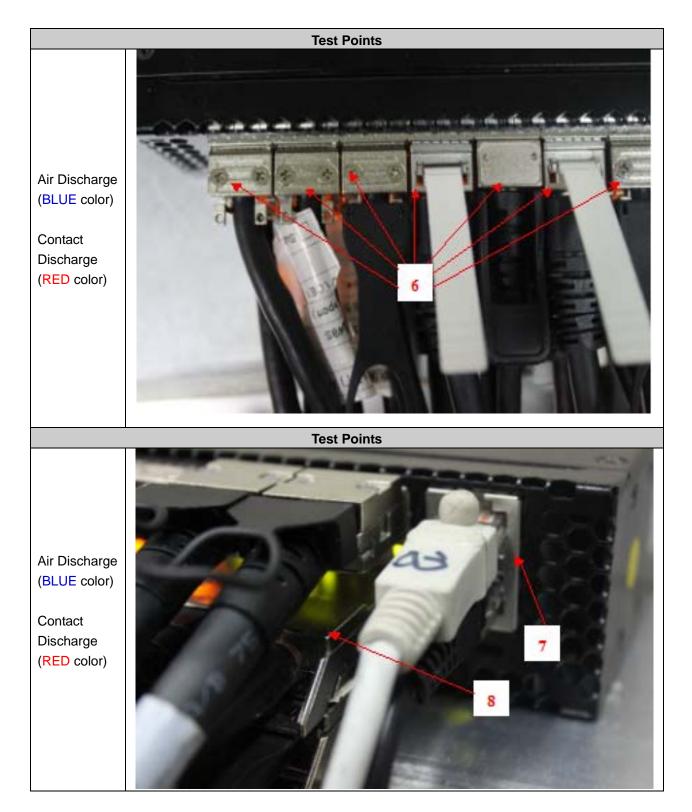
Indirect Application :

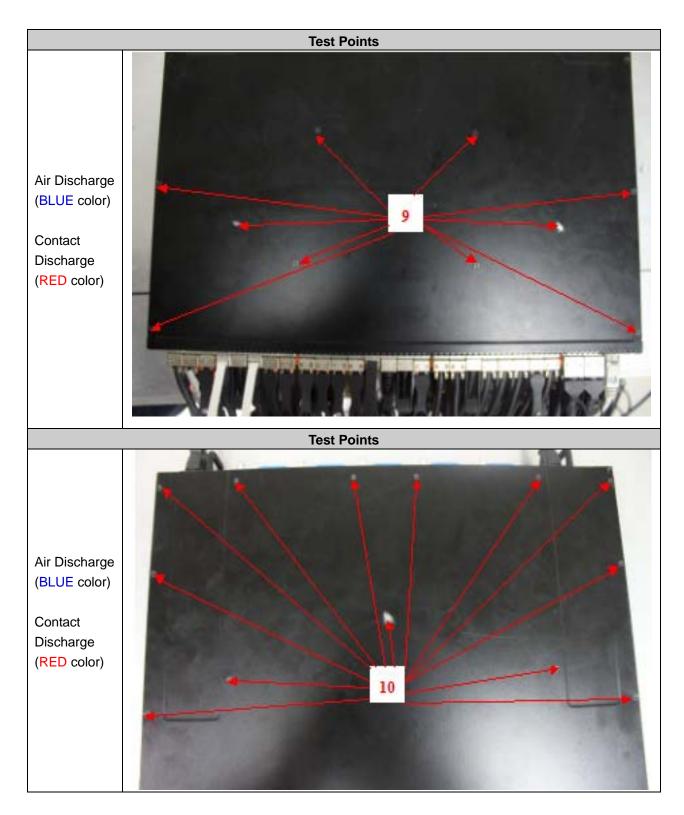
Coupling Plan	Coupling Side	Test Voltage (kV)	Performance Criteria
HCP	Front / Rear / Right / Left	± 2, 4	А
VCP	Front / Rear / Right / Left	± 2, 4	А

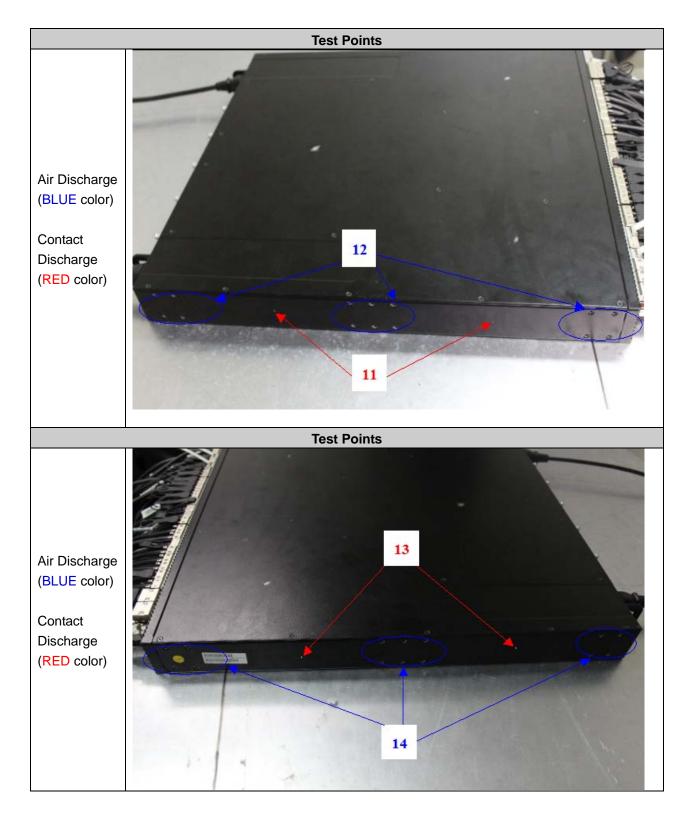
Temperature	19°C	Humidity	50%
Pressure	100 kPa	Test Engineer	Jimmy Chen / Da Deng
Test Mode	Mode 2	Test Date	Apr. 01, 2016
Standard	Required Criteria B		
Test Recorded	There was no abnormal situation during the test compared with initial operation.		

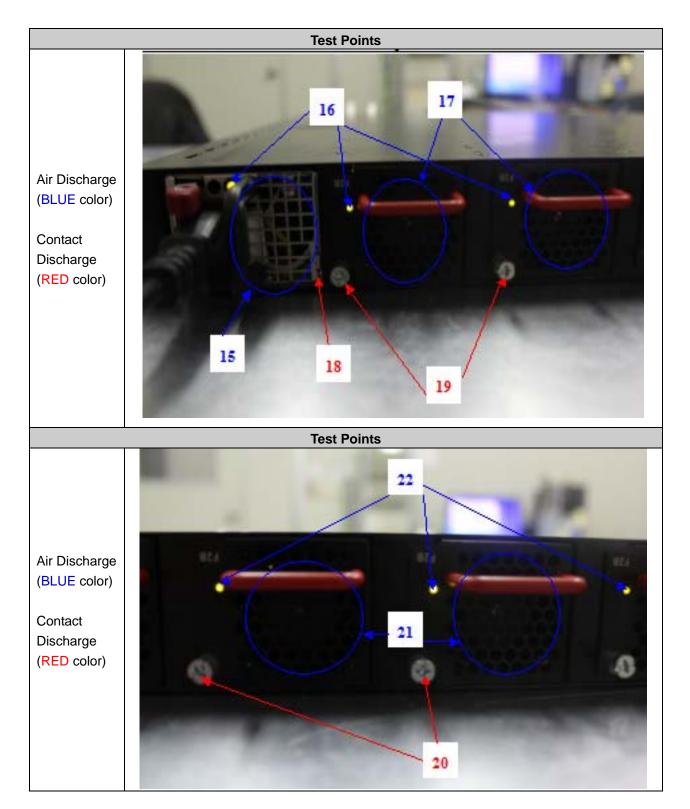
Direct Application :

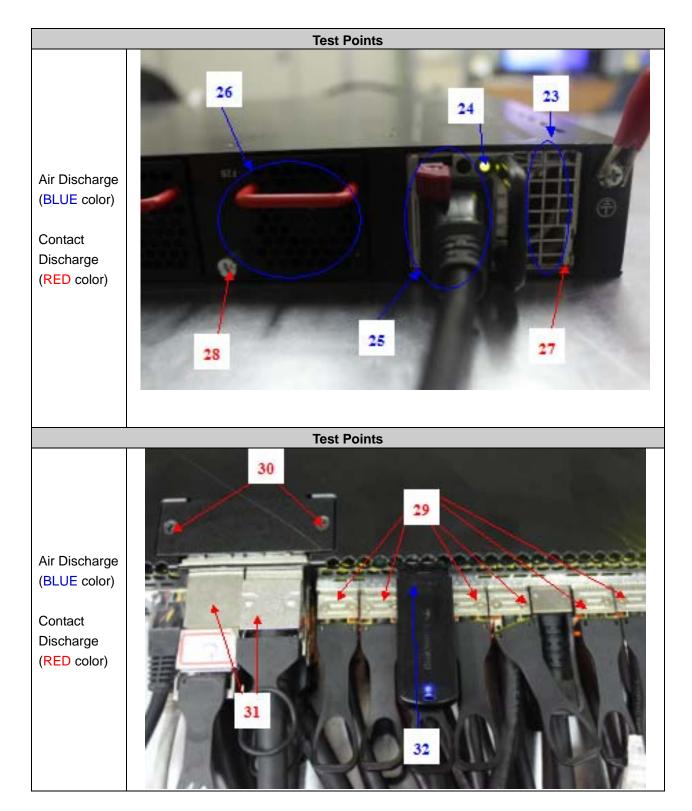

Test Point	Tested Voltage (kV)	Contact Discharge (Performance Criteria)	Air Discharge (Performance Criteria)
1-11	±2,4	А	-
12	±2,4,8	-	А
13	±2,4	А	-
14-16	±2,4,8	-	А
17-18	±2,4	А	-
19-25	±2,4,8	-	А
26-30	±2,4	А	-
31	±2,4,8	-	А
32-33	±2,4	А	-
34	±2,4,8	-	А
35	±2,4	А	-
36	±2,4,8	-	A

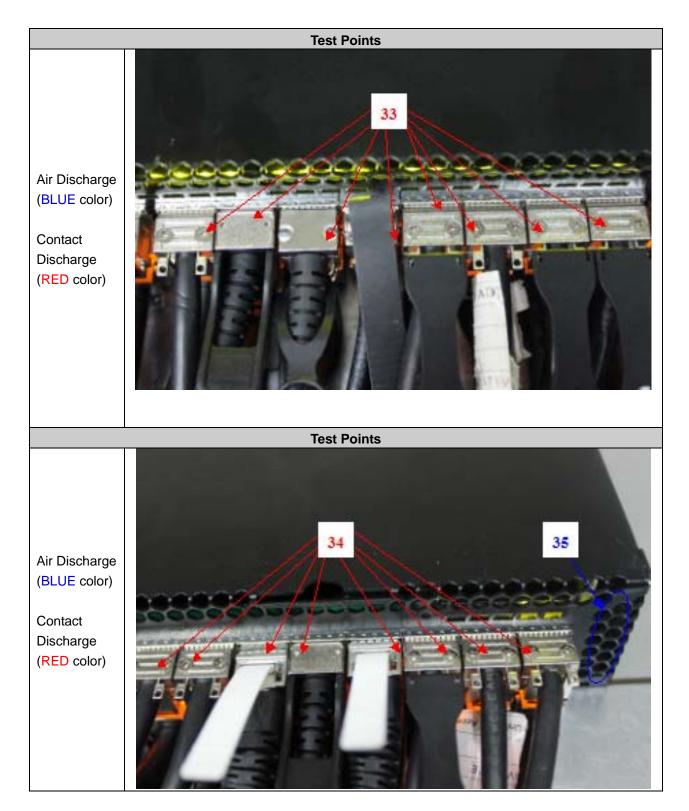

Indirect Application :

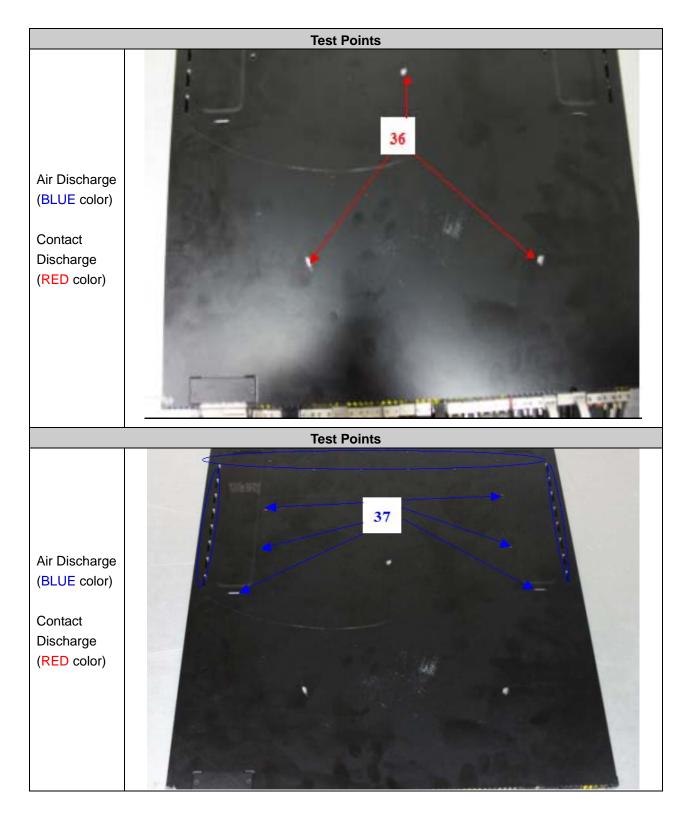

Coupling Plan	Coupling Side	Test Voltage (kV)	Performance Criteria
HCP	Front / Rear / Right / Left	± 2, 4	А
VCP	Front / Rear / Right / Left	± 2, 4	А

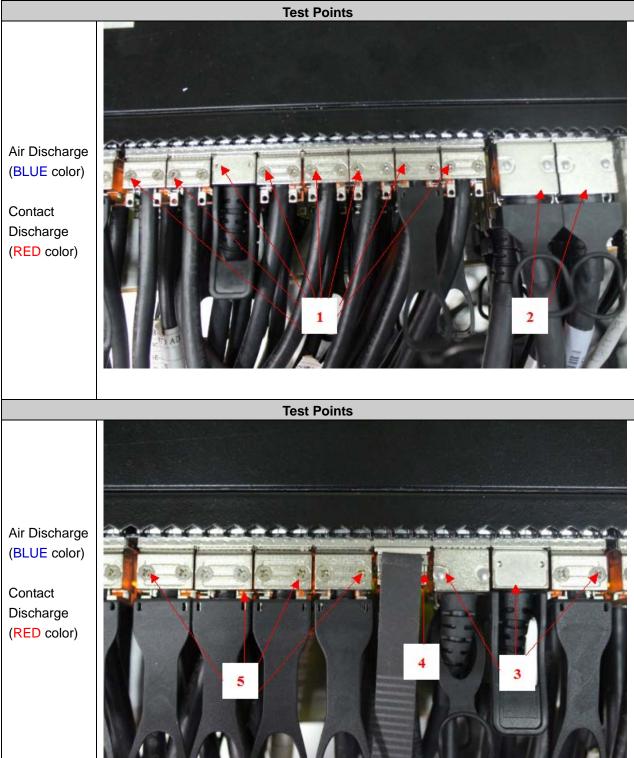

10.6. Photographs of Electrostatic Discharge Immunity Test


Test Mode: Mode 1

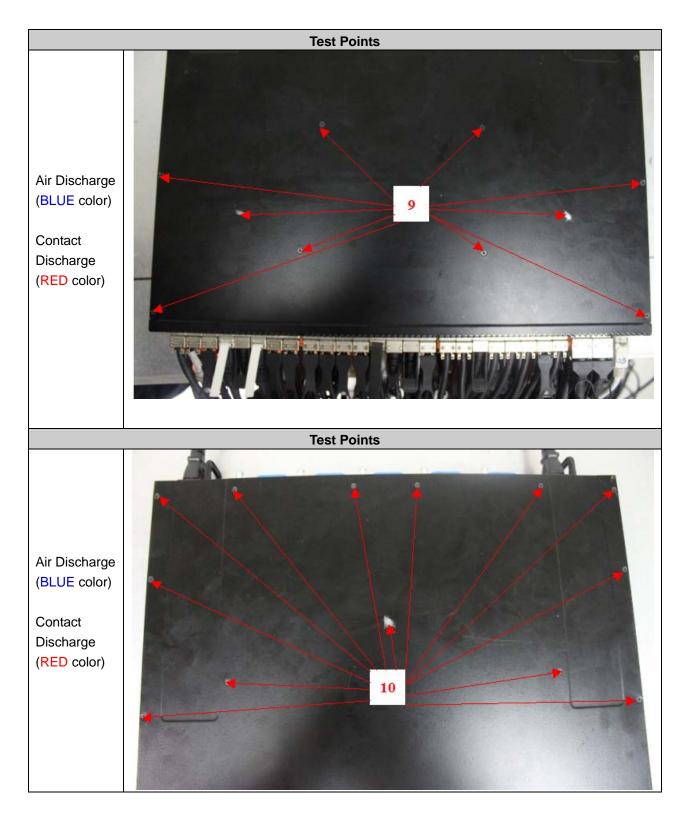


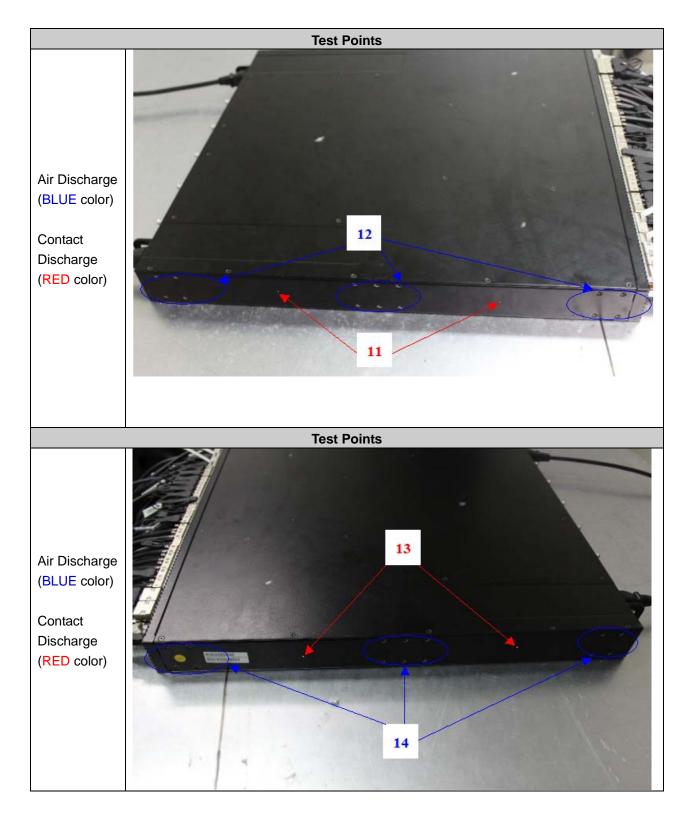


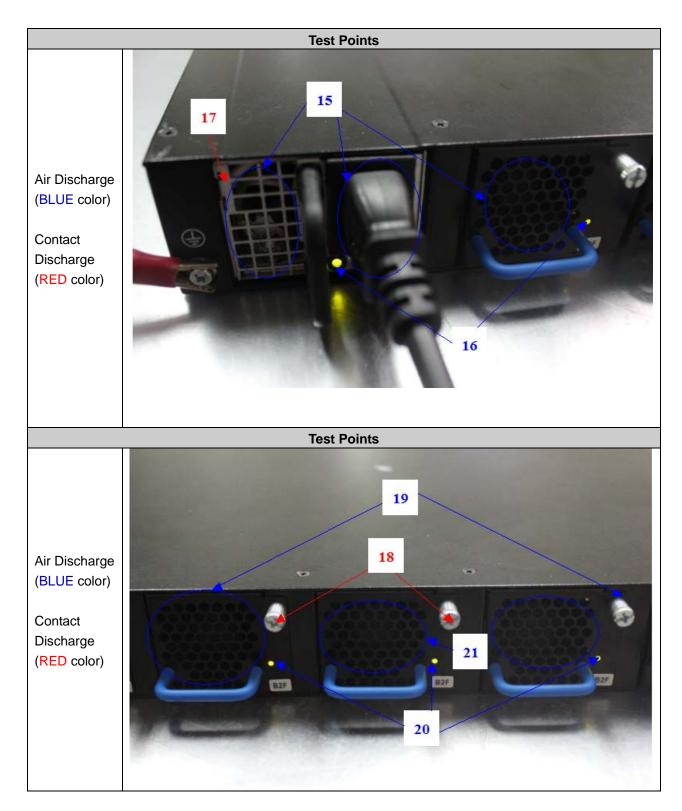


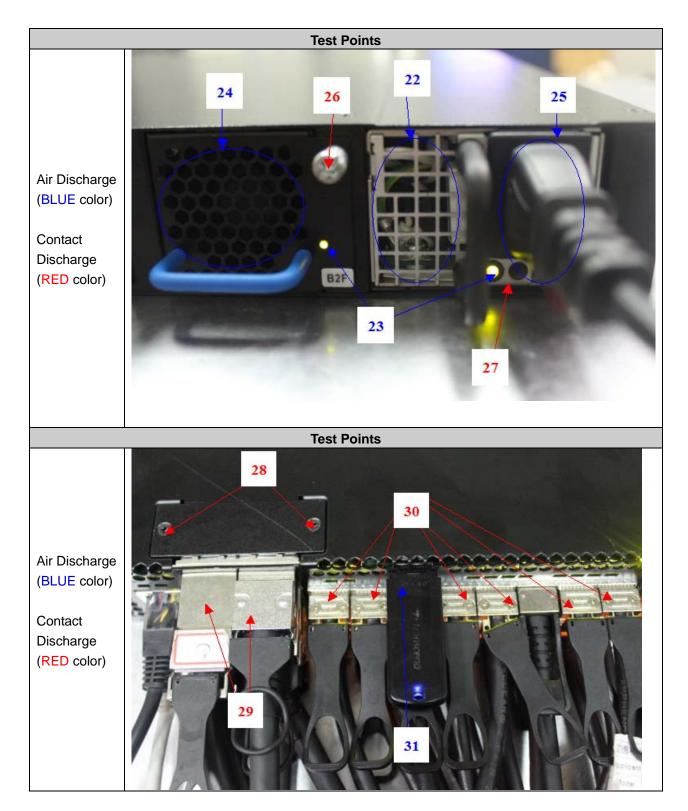


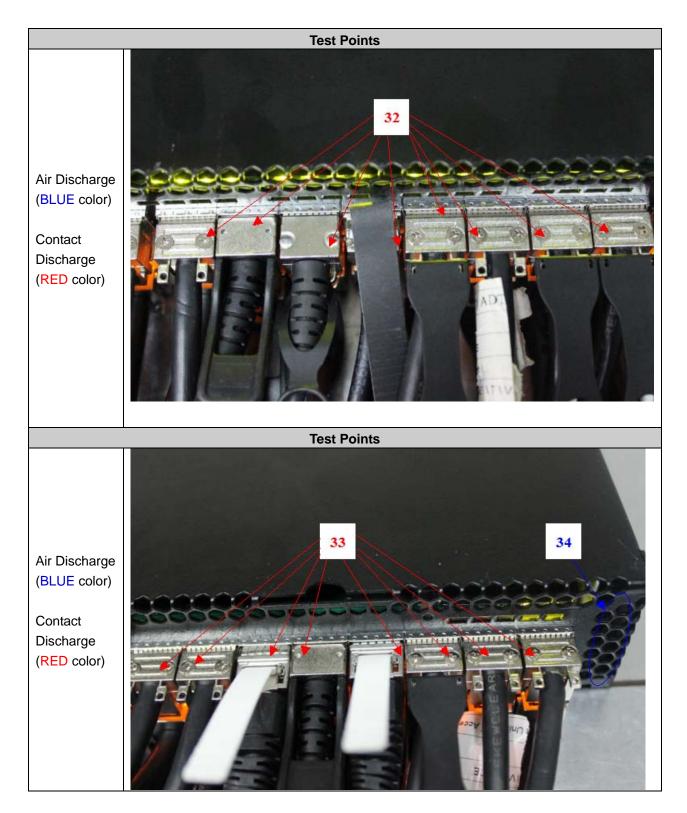


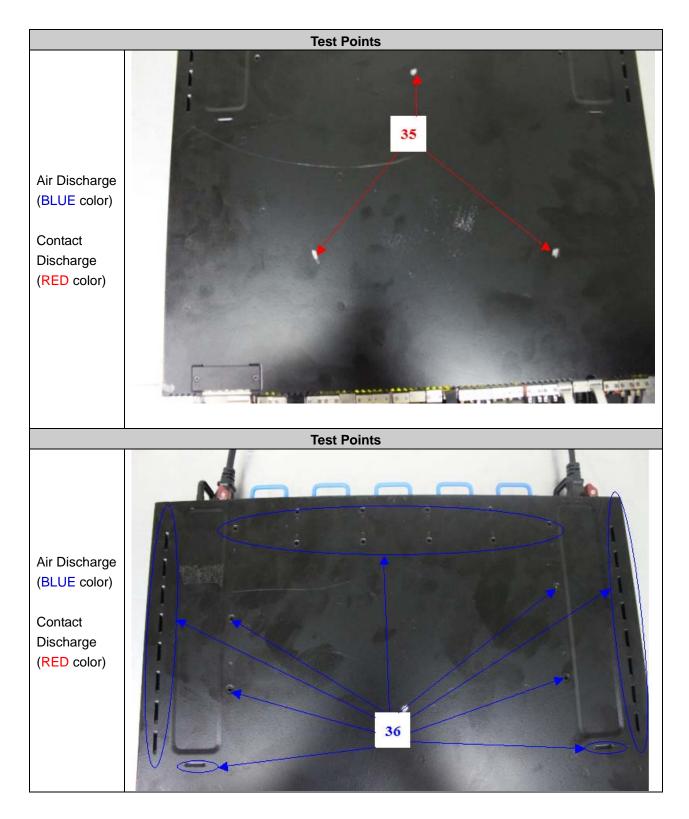




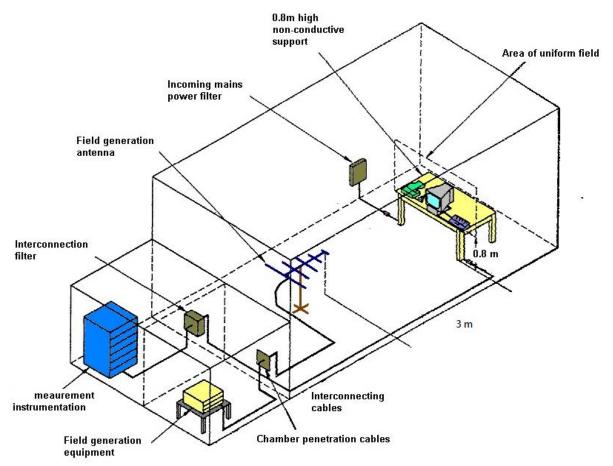

Test Mode: Mode 2







al Inc.



11. Radio Frequency Electromagnetic Field Immunity Test (RS)

11.1. Test Specification

Reference Standard	IEC 61000-4-3
Frequency Range	80 MHz to 1,000 MHz
Field Strength	3 V/m (un-modulated, r.m.s) 80% AM (1 kHz)
Frequency Step	1 %
Dwell Time	2.9 sec
Antenna Polarity	Vertical / Horizontal

11.2. Test Setup

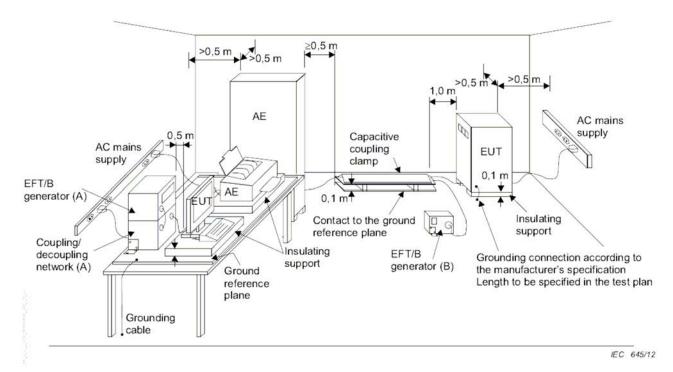
The procedure defined in this part requires the generation of electromagnetic fields within which the test sample is placed and its operation observed. To generate fields that are useful for simulation of actual (field) conditions may require significant antenna drive power and the resultant high field strength levels.

11.3. Test Procedure

- a. The equipment to be tested is placed in the center of the enclosure on a wooden table. The equipment is then connected to power and signal leads according to pertinent installation instructions.
- b. The bilog antenna which is enabling the complete frequency range of 80-1,000 MHz is placed 3m away from the equipment. The required field strength is determined by placing the field strength meter(s) on top of or directly alongside the equipment under test and monitoring the field strength meter via a remote field strength indicator outside the enclosure while adjusting the continuous-wave to the applicable antennae.
- c. The test is normally performed with the generating antenna facing each of four sides of the EUT. The polarization of the field generated by the broadband (bilog) antenna necessitates testing each position twice, once with the antenna positioned vertically and again with the antenna positioned horizontally.
- At each of the above conditions, the frequency range is swept 80-1,000 MHz, pausing to adjust the R.F. signal level or to switch oscillators and antenna. The rate of sweep is in the order of 1.5*10⁻³ decades/s. The sensitive frequencies or frequencies of dominant interest may be discretely analyzed.

Temperature	24°C	Humidity	52%	
Pressure	100 kPa	Test Engineer	Da Deng	
Test Mode	Mode 1~Mode 2 Test Date Apr. 07, 2016		Apr. 07, 2016	
Standard	Required Criteria A			
Test Recorded	There was no abnormal situation during the test compared with initial operation.			

Frequency Range MHz	Field V/m	Antenna Polarization	EUT Face Exposed	Performance Criteria
80~1,000	3	Vertical	Front/Back/Right/Left	А
80~1,000	3	Horizontal	Front/Back/Right/Left	A


12. Electrical Fast Transient/Burst Immunity Test (EFT/BURST)

12.1. Test Specification

Reference Standard	IEC 61000-4-4	
	AC Power Line: ± 1 kV	
Test Voltage	Telecommunication/Signal Line: ± 0.5 kV	
Polarity	Positive / Negative	
Rise time of the pulses	5 ns	
Impulse duration	50 ns	
Burst duration	15 ms for 5 kHz	
Burst period	300 ms	
	Power: 5 kHz	
Impulse Frequency	Telecommunication/Signal:	
	5 kHz (Except xDSL equipment)	
Duration	1 min	

CE EMC TEST REPORT

12.2. Test Setup

The EUT was placed on a ground reference plane and was insulated from it by an insulating support about 0.1m thick. If the EUT is table-top equipment, it was located approximately 0.8 m above the GRP. The GRP. Was a metallic sheet (copper or aluminum) of 0.25 mm ,minimum thickness; other metallic may be used but they shall have at least 0.65 mm thickness. It shall project beyond the EUT by at least 0.1 m on all sides and connected to the protective earth. In the SPORTON EMC LAB. We provided 1 mm thickness aluminum ground reference plane or 1 mm thickness stainless steel ground reference plane. The minimum size of the ground reference plane is 1 m x 1 m, the exact size depending on the dimensions of the EUT. It was connected to the protective grounding system. The EUT was arranged and connected according to its functional requirements. The minimum distance between the EUT and other conductive structures, except the GRP. Beneath the EUT, was more than 0.5 m. Using the coupling clamp, the minimum distance between the COUPLING CLAB. The MINIMUM distance between the COUPLING CLAB. We provide according to its functional requirements. The minimum distance between the EUT and other conductive structures, except the GRP. Beneath the EUT, was more than 0.5 m. Using the coupling clamp, the minimum distance between the coupling clamp, the minimum distance between the COUPLING CLAB. Beneath the EUT, was more than 0.5 m. The length of the signal and power lines between the coupling device and the EUT was 0.5m or less.

12.3. Test Procedure

- a. In order to minimize the effect of environmental parameters on test results, the climatic conditions when test is carrying out shall comply with the following requirements:
 - ambient temperature: 15°C to 35°C;
 - relative humidity : 45% to 75%;

- atmospheric pressure : 86 kPa (860 mbar) to 106 kPa (1060 mbar).

- b. In order to minimize the effect of environmental parameters on test results, the electromagnetic environment of the laboratory shall not influence the test results.
- c. The variety and diversity of equipment and systems to be tested make it difficult to establish general criteria for the evaluation of the effects of fast transients/bursts on equipment and systems.
- d. The test results may be classified on the basic of the operating conditions and the functional specification of the equipment under test, according to the following performance criteria :
 - Normal performance within the specification limits.
 - Temporary degradation or loss of function or performance which is self-recoverable.
 - Temporary degradation or loss of function or performance which requires operator intervention or system reset.
 - Degradation or loss of function which is not recoverable due to damage of equipment (components).

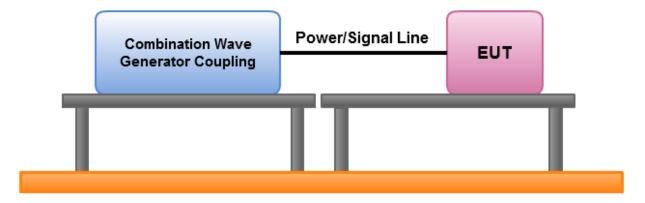
12.4. Test Result

Temperature	19°C	Humidity	65%	
Pressure	100 kPa	Test Engineer	Hank Yang	
Test Mode	Mode 1~Mode 4 Test Date Mar. 31, 2016			
Standard	Required Criteria B			
Test Recorded	There was no abnormal situation during the test compared with initial operation.			

AC Power Port :

	Test Voltage (kV)	
AC Phase	±1 kV	
L	А	
Ν	А	
PE	А	
L-N-PE	А	

Telecommunication Port:


	Test Voltage (kV)	
Telecommunication Port	±0.5 kV	
LAN 1	А	
DAC Port 1	А	
DAC Port 49	А	

13. Surge Immunity Test

13.1. Test Specification

Reference Standard	IEC 61000-4-5
Test Voltage AC Power Port: ± 0.5, 1, 2 kV	
Polarity Positive / Negative	
Ware Ober	1.2/50 us Open-circuit voltage
Wave Shape	8/20 us Short-circuit current
Phase Angle 0°, 90°, 180°, 270°	
Time between successive pulses	60 sec.
Number of test	5 positive and 5 negative

13.2. Test Setup

13.3. Test Procedure

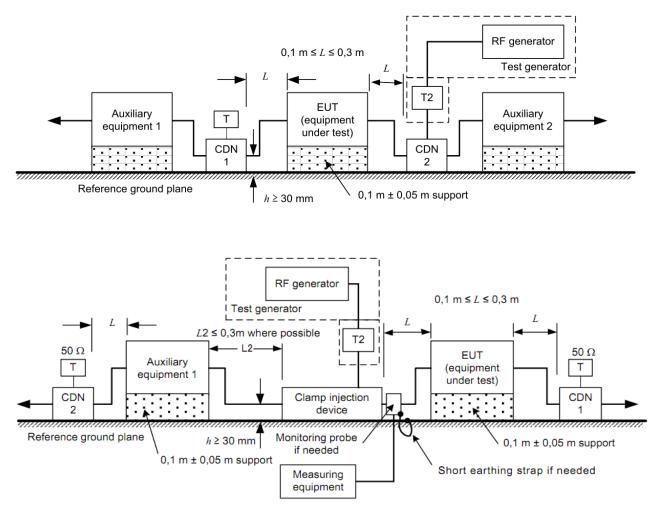
- a. Climatic conditions
 - The climatic conditions shall comply with the following requirements :
 - -- ambient temperature : 15 °C to 35 °C
 - -- relative humidity : 10 % to 75 %
 - -- atmospheric pressure : 86 kPa to 106 kPa (860 mbar to 1060 mbar)
- Electromagnetic conditions
 The electromagnetic environment of the laboratory shall not influence the test results.
- c. The test shall be performed according the test plan that shall specify the test set-up with
 - -- generator and other equipment utilized;
 - -- test level (voltage/current);
 - -- generator source impedance;
 - -- internal or external generator trigger;
 - -- number of tests: at least five positive and five negative at the selected points;
 - -- repetition rate: maximum 1/min.
 - -- inputs and outputs to be tested;
 - -- representative operating conditions of the EUT;
 - -- sequence of application of the surge to the circuit;
 - -- phase angle in the case of a.c. power supply;
 - -- actual installation conditions, for example : AC : neutral earthed.
 - DC: (+) or (-) earthed to simulated the actual earthing conditions.
- d. If not otherwise specified the surges have to be applied synchronized to the voltage phase at the zero-crossing and the peak value of the a.c. voltage wave (positive and negative).
- e. The surges have to be applied line to line and line(s) and earth. When testing line to earth, the test voltage has to be applied successively between each of the lines and earth, if there is no other specification.
- f. The test procedure shall also consider the non-linear current-voltage characteristics of the equipment under test. Therefore the test voltage has to be increased by steps up to the test level specified in the product standard or test plan.
- g. If the actual operating signal sources are not available, the may be simulated. Under no circumstances may the test level exceed the product specification. The test shall be carried out according the a test plan.
- h. To find all critical points of the duty cycle of the equipment, a sufficient number of positive and negative test pulses shall be applied. For acceptance test a previously unstressed equipment shall be used to the protection devices shall be replaced.

13.4. Test Result

Temperature	19°C	Humidity	65%	
Pressure	100 kPa	Test Engineer	Jimmy Chen / Ryo Fan	
Test Mode	Mode 1~Mode 4	Test Date	Mar. 31, 2016	
Standard	Required Criteria B			
Test Recorded	There was no abnormal situation during the test compared with initial operation.			

AC Power Port:

	Test Location	n Belerity	Phase Angle			
Voltage (kV)	Test Location	Polarity	0 °	90°	180°	270°
		+	А	А	А	А
0.5 kV, 1 kV	L - N	_	А	А	А	А
	L - PE	+	А	А	А	А
0.5 kV, 1 kV, 2 kV		_	А	А	А	А
	N - PE	+	А	А	А	А
		_	А	А	А	А


Remark : PE = Earth reference

14. Conducted Disturbances Induced by Radio-Frequency Field Immunity Test (CS)

14.1. Test Specification

Reference Standard	IEC 61000-4-6
Frequency Range	150 kHz~80 MHz
Field Strength	3 Vr.m.s (un-modulated, r.m.s) 80% AM (1 kHz)
Frequency Step	1 %
Dwell Time	2.9 sec
Coupling mode	CDN016(M3), CDN T8-10, Clamp

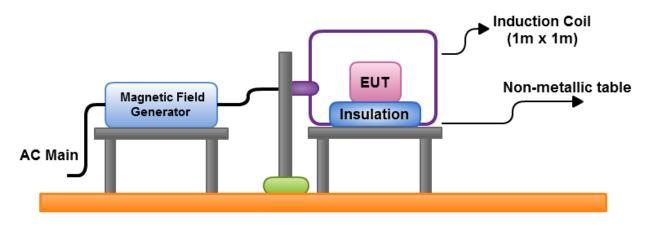
14.2. Test Setup

14.3. Test Procedure

- a. The EUT shall be operated within its intended climatic conditions. The temperature and relative humidity should be recorded.
- b. This test method test can be performed without using a self-shielded enclosure. This is because the disturbance levels applied and the geometry of the setups are not likely to radiated a high amount of energy, especially at the lower frequencies. If under certain circumstances the radiated energy is too high, a shielded enclosure has to be used.
- c. The test shall be performed with the test generator connected to each of the coupling and decoupling devices in turn while the other non-excited RF-input ports of the coupling devices are terminated by a 50 ohm load resistor.
- d. The frequency range is swept from 150 kHz to 80 MHz, using the signal levels established during the setting process, and with the disturbance signal 80% amplitude modulated with a 1kHz sinewave, pausing to adjust the RF-signal level or to switch coupling devices as necessary. The rate of sweep shall no exceed 1.5 x 10⁻³ decades/s. Where the frequency is swept incrementally, the step size shall no exceed 1% of the start and thereafter 1% of the preceding frequency value.
- e. The dwell time at each frequency shall not be less than the time necessary for the EUT to be exercised, and able to respond. Sensitive frequencies e.g. clock frequency(ies) and harmonics or frequencies of dominant interest shall be analyzed separately.
- f. In cases of dispute, the test procedure using a step size not exceeding 1% of the start and thereafter 1% of preceding frequency value shall take precedence.
- g. Attempts should be made to fully exercise the EUT during testing, and to fully interrogate all exercise modes selected for susceptibility.
- h. The use of special exercising programs is recommended.
- i. Testing shall be performed according to a Test Plan, which shall be included in the test report.
- j. It may be necessary to carry out some investigatory testing in order to establish some aspects of the test plan.

14.4. Test Result

Temperature	19°C	Humidity	65%	
Pressure	100 kPa	Test Engineer	Hank Yang	
Test Mode	Mode 1~Mode 4 Test Date Mar. 31, 2016		Mar. 31, 2016	
Standard	Required Criteria A			
Test Recorded	There was no abnormal situation during the test compared with initial operation.			


Frequency Range MHz	V (r.m.s)	CDN	Coupling port	Performance Criteria
0.15 ~ 80	3	M016(M3) AC		А
0.15 ~ 80	3	T8-10	LAN 1: 1Gbps	А
0.15 ~ 80	3	Clamp	DAC Port 1: 10Gbps	А
0.15 ~ 80	3	Clamp	DAC Port 49: 40Gbps	А

15. Power Frequency Magnetic Field Immunity Tests

15.1. Test Specification

Reference Standard	IEC 61000-4-8
Frequency Range	50 Hz
Field Strength	1 A/m
Observation type	1 min
Inductance Coil	1 m x 1 m

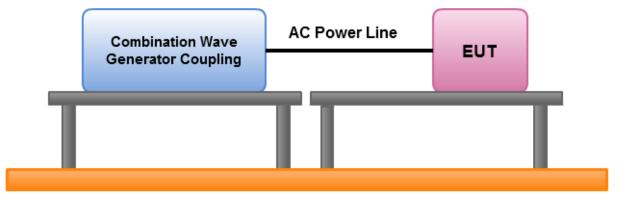
15.2. Test Setup

15.3. Test Procedure

- a. The equipment is configured and connected to satisfy its functional requirements.
- b. The power supply, input and output circuits shall be connected to the sources of power supply, control and signal.
- c. The cables supplied or recommended by the equipment manufacturer shall be used. 1 meter of all cables used shall be exposed to the magnetic field.

15.4. Test Result

Temperature	19°C	Humidity	65%		
Pressure	100 kPa	Test Engineer	Jimmy Chen / Ryo Fan		
Test Mode	Mode 1~Mode 2	Test Date	Mar. 31, 2016		
Standard	Required Criteria A				
Test Recorded	There was no abnormal situation during the test compared with initial operation.				


Power Frequency Magnetic Field	Testing duration	Coil Orientation	Performance Criteria
50 Hz, 1 A/m	1.0 Min	X-axis	А
50 Hz, 1 A/m	1.0 Min	Y-axis	А
50 Hz, 1 A/m	1.0 Min	Z-axis	A

16. Voltage Dips and Voltage Interruptions Immunity Tests

16.1. Test Specification

Reference Standard	IEC 61000-4-11	
	Voltage Dip:	
	1. >95%, Reduction, 0.5 period	
Test Voltage	2. 30%, Reduction, 25 period	
	Voltage interruptions	
	3. >95%, Reduction, 250 period	
Test Duration Time	3 times	
Intervals between event	10 sec.	
Test Angle	0, 180°	

16.2. Test Setup

16.3. Test Conditions

- 1. Source voltage and frequency: 100/230/240V / 50Hz, Single phase.
- 2. Test of interval: 10 sec.
- 3. Level and duration: Sequency of 3 dips/interrupts.
- 4. Voltage rise (and fall) time: 1 \sim 5 $\mu s.$

16.4. Test Result

Temperature	19 ℃	Humidity	65%		
Pressure	100 kPa	Test Engineer	Jimmy Chen / Ryo Fan		
Test Mode	Mode 1/Mode 3	Test Date	Mar. 31, 2016		
Standard	Required Criteria B/C/C				
Test Recorded	The EUT had " Left of a power outage " situation happened during the test, but it will automatically return to normal conditions after the test.				

Voltage Dip & Interruption :

Voltage (V)	Frequency (Hz)	% Reduction	Periods	ms	Performance Criteria
	100 50	>95 %	0.5	10	А
100		30 %	25	500	А
		>95%	250	5,000	В

Voltage (V)	Frequency (Hz)	% Reduction	Periods	ms	Performance Criteria
	50	>95 %	0.5	10	A
230		30 %	25	500	А
		>95%	250	5,000	В

Voltage (V)	Frequency (Hz)	% Reduction	Periods	ms	Performance Criteria
	240 50	>95 %	0.5	10	A
240		30 %	25	500	А
		>95%	250	5,000	В

Temperature	19 ℃	Humidity	65%			
Pressure	100 kPa	Test Engineer	Jimmy Chen / Ryo Fan			
Test Mode	Mode 2/Mode 4	Test Date	Mar. 31, 2016			
Standard	Required Criteria B/C/C					
Toot Dependent	The EUT had "Right of a power outage" situation happened during the test, but it					
Test Recorded	will automatically return to nor	mal conditions after	the test.			

Voltage Dip & Interruption :

Voltage (V)	Frequency (Hz)	% Reduction	Periods	ms	Performance Criteria
100 50		>95 %	0.5	10	A
	30 %	25	500	А	
		>95%	250	5,000	В

Voltage (V)	Frequency (Hz)	% Reduction	Periods	ms	Performance Criteria
230 50		>95 %	0.5	10	А
	30 %	25	500	А	
		>95%	250	5,000	В

Voltage (V)	Frequency (Hz)	% Reduction	Periods	ms	Performance Criteria
	>95 %	0.5	10	А	
240	240 50	30 %	25	500	А
		>95%	250	5,000	В

17. List of Measuring Equipment Used

<EMI>

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
EMI Receiver	Agilent	N9038A	My52260123	9kHz ~ 8.45GHz	Jan. 27, 0216	Conduction (CO01-CB)
LISN	F.C.C.	FCC-LISN-50- 16-2	04083	150kHz ~ 100MHz	Dec. 08, 2015	Conduction (CO01-CB)
LISN	Schwarzbeck	NSLK 8127	8127647	9kHz ~ 30MHz	Dec. 23, 2015	Conduction (CO01-CB)
Impedance Stabilization Network	Teseq	ISN T800	24557	150kHz ~ 230MHz	Oct. 27, 2015	Conduction (CO01-CB)
COND Cable	Woken	Cable	01	150kHz ~ 30MHz	May 25, 2015	Conduction (CO01-CB)
Software	Audix	E3	6.120210n	-	N.C.R.	Conduction (CO01-CB)
10m Semi Anechoic Chamber	TDK	NSA	10CH01-CB	30MHz~1GHz 10m	Mar. 30, 2016	Radiation (10CH01-CB)
10m Semi Anechoic Chamber	TDK	VSWR	10CH01-CB	1GHz ~40GHz 3m	Nov. 24, 2015	Radiation (10CH01-CB)
Pre-Amplifier	Agilent	8447D	2944A10783	9kHz ~ 1.3GHz	Mar. 24, 2016	Radiation (10CH01-CB)
Pre-Amplifier	Agilent	8447D	2944A10784	9kHz ~ 1.3GHz	Mar. 09, 2016	Radiation (10CH01-CB)
Low Cable	Woken	SUCOFLEX 104	-	25MHz ~ 1GHz	Nov. 30, 2015	Radiation (10CH01-CB)
High Cable	Woken	SUCOFLEX 104	-	25MHz ~ 1GHz	Nov. 30, 2015	Radiation (10CH01-CB)
Bilog Antenna with 6dB Attenator	Chase & EMCI	CBL6111A &N-6-06	1543 &AT-N0604	30MHz ~ 1GHz	Jan. 13, 2016	Radiation (10CH01-CB)
Log Antenna	Schwarzbeck	VUSLP 9111	247	200MHz ~ 1GHz	Apr. 23, 2015	Radiation (10CH01-CB)
EMI Test Receiver	Rohde&Schwarz	ESCI	100186	9kHz ~ 3GHz	Jul. 14, 2015	Radiation (10CH01-CB)
Spectrum Analyzer	Rohde&Schwarz	FSV30	101026	9kHz ~ 30GHz	Jan. 04, 2016	Radiation (10CH01-CB)
Horn Antenna	ESCO	3117	00081283	1GHz ~ 18GHz	Nov. 25, 2015	Radiation (10CH01-CB)
Amplifier	Agilent	8449B	3008A02660	1GHz ~ 26.5GHz	May 25, 2015	Radiation (10CH01-CB)
CABLE(1~40G)	Woken	SUCOFLEX 104	-	1GHz ~ 40GHz	Nov. 30, 2015	Radiation (10CH01-CB)

Page Number: 86 of 98Issued Date: May 06, 2016Version: Rev. 01

Software	Audix	E3	6.120210m	-	N.C.R.	Radiation (10CH01-CB)
----------	-------	----	-----------	---	--------	--------------------------

 $\,\,\%\,$ Calibration Interval of instruments listed above is one year.

※ N.C.R. means Non-Calibration required.

CE EMC TEST REPORT

Report No.: EC633006

<EMS>

EMS>						
Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
Harmonic/Flicker	Schaffner	CCN 1000-1	1306A00130	N/A	Mar. 23, 2016	Harmonic/Flicker
Software	Teseq	WIN2100V3	-	-	N.C.R.	Harmonic/Flicker
ESD Simulator	Teseq QG	NSG 437	314	Air: 0 kV ~ 30 kV, Contact: 0 kV ~ 30kV	Mar. 25, 2016	ESD
Integrated Measurement System	R&S	IMS	100002	9kHz ~ 3GHz	Apr. 24, 2015	RS
Average Power Sensor	R&S	NRP-Z91	101117	9kHz ~ 6GHz	Mar. 29, 2016	RS
RF Power Amplifier	AR	250W1000A	0323202	80MHz ~1GHz, 250W	Mar. 31, 2016	RS
Log-Periodic Antenna	AR	AT1080	0323130	80MHz ~ 1GHz	N.C.R.	RS
Software	R&S	EMC32	5.20.1	-	N.C.R.	RS
Surge/EFT/Dip Generator	Teseq AG	NSG 3060	1534	Surge 0 ~ 6kV EFT 0 kV ~ 4.4 kV Dip 100~240V/ 50Hz /60Hz	Mar. 14, 2016	Surge EFT Dip
Burst/EFT Dataline Coupling Clamp	Teseq AG	CDN 3425	1776	0.25kV~4kV	Jan. 28, 2016	EFT
Surge Coupling Decoupling Network	Teseq AG	CDN HSS-2	34283	0.25kV~4kV	Jun. 08, 2015	Surge
Software	Teseq AG	NSG3000	-	-	N.C.R.	Surge/ EFT/Dip
Conducted Immunity Test System	SCHAFFNER	NSG2070	1091	100kHz ~ 250MHz, AM 1kHZ 80%	Mar. 06, 2016	CS
Coupling decoupling network	Teseq GmbH	CDN M016	34635	150kHz~80MHz	Mar. 30, 2016	CS
Coupling decoupling network	Teseq GmbH	CDN T8-10	38993	150kHz~230MHz	Jan. 29, 2016	CS
Clamp EM-Koppelzange	SCHAFFNER	KEMZ 801	17029	150kHz~230MHz	Aug. 31, 2015	CS
Software	Tesq	NSG4070	030593.V1.28	-	N.C.R.	CS
Magnetic field Immunity Loop	FCC	F-1000-4-8/9/ 10-L-1AM	04014,04017	30A//CONTINUOUS , 100A/2Hrs, 230A/30SEC	Jul. 29, 2015	Magnetic

 $\,\,\%\,$ Calibration Interval of instruments listed above is one year.

※ N.C.R. means Non-Calibration required.

Page Number: 88 of 98Issued Date: May 06, 2016Version: Rev. 01

18. Uncertainty of Test Site

Test Items	Uncertainty	Remark
Conducted Emissions	3.2 dB	Confidence levels of 95%
Radiated Emissions below 1GHz	4.0 dB	Confidence levels of 95%
Radiated Emissions above 1GHz	4.7 dB	Confidence levels of 95%

Immunity Test Measurement Uncertainty

Electrostatic Discharge Immunity (ESD)

Negative Discharge Current

Fro	om Stan	dard		
	First			
	Peak	Current	Current	
2kV	Current	at 30ns	at 60ns	
Nominal	7.5	4.0	2.0	Positive
Min.	6.4	2.8	1.4	Negative
Max.	8.6	5.2	2.6	Min.
Tolerance in %	0.2	0.3	0.3	Max.

From calibration certificate										
Measured	1st Peak	Measured	30ns	Measured	60ns					
First Peak	Worst	Current at	Worst	Current at	Worst					
Current	case +5%	30ns	case +5%	60ns	case +5%					
6.9	7.2	3.6	3.8	1.9	2.0					
7.3	7.7	3.7	3.9	1.9	2.0					
	6.4		2.8		1.4					
	8.6		5.2		2.6					
	First Peak Current 6.9	Measured1st PeakFirst PeakWorstCurrentcase +5%6.97.27.37.76.4	Measured1st PeakMeasuredFirst PeakWorstCurrent atCurrentcase +5%30ns6.97.23.67.37.73.76.46.4	Measured1st PeakMeasured30nsFirst PeakWorstCurrent atWorstCurrentcase +5%30nscase +5%6.97.23.63.87.37.73.73.96.42.8	Measured1st PeakMeasured30nsMeasuredFirst PeakWorstCurrent atWorstCurrent atCurrentcase +5%30nscase +5%60ns6.97.23.63.81.97.37.73.73.91.96.42.82.8300					

	First		
	Peak	Current	Current
4kV	Current	at 30ns	at 60ns
Nominal	15.0	8.0	4.0
Min.	12.8	5.6	2.8
Max.	17.3	10.4	5.2
Tolerance in %	0.2	0.3	0.3

	Measured	1st Peak	Measured	30ns	Measured	60ns
	First Peak		Current at	Worst	Current at	Worst
	Current	case +5%	30ns	case +5%	60ns	case +5%
Positive	14.4	15.1	7.6	7.9	3.8	4.0
Negative	14.1	14.8	7.4	7.8	4.0	4.2
Min.		12.8		5.6		2.8
Max.		17.3		10.4		5.2

	First			
	Peak Current Curre			
6kV	Current	at 30ns	at 60ns	
Nominal	22.5	12.0	6.0	
Min.	19.1	8.4	4.2	
Max.	25.9	15.6	7.8	
Tolerance in %	0.2	0.3	0.3	

	Measured	1st Peak	Measured	30ns	Measured	60ns
	First Peak	Worst	Current at	Worst	Current at	Worst
	Current	case -5%	30ns	case +5%	60ns	case +5%
Positive	21.2	22.2	11.2	11.7	5.8	6.1
Negative	20.7	21.7	11.1	11.7	6.0	6.2
Min.		19.1		8.4		4.2
Max.		25.9		15.6		7.8

	First				Measured	1st Peak	Measured	30ns	Measured	60ns
	Peak	Current	Current		First Peak	Worst	Current at	Worst	Current at	Worst
8kV	Current	at 30ns	at 60ns		Current	case -5%	30ns	case +5%	60ns	case +5%
Nominal	30.0	16.0	8.0	Positive	27.8	29.1	14.7	15.4	7.6	8.0
Min.	25.5	11.2	5.6	Negative	28.4	29.8	15.0	15.7	7.8	8.1
Max.	34.5	20.8	10.4	Min.		25.5		11.2		5.6
Tolerance in %	0.2	0.3	0.3	Max.		34.5		20.8		10.4

Negative Discharge Voltage

Standard Parameters						Calculated Range		
Indicated Voltage (kV)	Polarity	Tolerance (%)	Max. (kV)	Min. (kV)		Calibration (kV)	Max. (kV)	Min. (kV)
	Positive	15.0	2.3	1.7		2.0	2.0	2.0
2	Negative	15.0	2.3	1.7		2.1	2.6	2.6
4	Positive	15.0	4.6	3.4		4.0	4.0	4.0
4	Negative	15.0	4.6	3.4		4.1	4.1	4.1
C	Positive	15.0	6.9	5.1		6.0	6.0	6.0
6	Negative	15.0	6.9	5.1		6.1	6.1	6.1
o	Positive	15.0	9.2	6.8		8.0	8.0	7.9
8	Negative	15.0	9.2	6.8		8.1	8.1	8.1
15	Positive	15.0	17.3	12.8		15.2	15.2	15.2
15	Negative	15.0	17.3	12.8		14.9	14.9	14.9

It has been demonstrated that the ESD generator meets the specified requirements in the standard with at least a 95% confidence.

CE EMC TEST REPORT

Report No.: EC633006

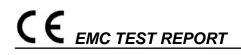
Radio Frequency Electromagnetic Field Immunity (RS)

Frequency 10MHz Output Check						
Standard	Reading					
10 MHz	9,999,985.8 Hz					

Frequency Accuracy/offset : 1.4E-07 Frequency Stability : 5E-09/1.0S Uncertainty: 4.0E-06

Gain Flatness Measurement (For 80 MHz to 1 GHz Amp.)						
		Expected				
(MHz)	(dB)	(dB)				
80.0	62.6	> 54				
100.0	62.4	> 54				
200.0	61.6	> 54				
300.0	62.0	> 54				
400.0	58.8	> 54				
500.0	60.4	> 54				
600.0	58.4	> 54				
700.0	58.8	> 54				
800.0	59.3	> 54				
900.0	58.3	> 54				
1000.0	55.8	> 54				

Freq. (GHz)	Reading (dB)	Expected (dB)
0.8	47.6	> 40
1.0	48.0	> 40
1.5	47.9	> 40
2.0	47.8	> 40
2.5	46.4	> 40
3.0	46.3	> 40


VSWR Measurement (input port)						
Freq.	Actual	Hige Range				
(MHż)	(dB)	(dB)				
80.0	1.7	< 2.00				
100.0	1.5	< 2.00				
200.0	1.6	< 2.00				
300.0	1.5	< 2.00				
400.0	1.5	< 2.00				
500.0	1.4	< 2.00				
600.0	1.4	< 2.00				
700.0	1.4	< 2.00				
800.0	1.4	< 2.00				
900.0	1.5	< 2.00				
1000.0	1.4	< 2.00				

	Power Linearly Measurement									
Freq.	Reading	Standard	Freq.	Reading	Standard	Freq.	Reading	Standard		
(MHz)	(Watts)	(Watts)	(MHz)	(Watts)	(Watts)	(MHz)	(Watts)	(Watts)		
80.0	20.0	23.2	200.0	200.0	226.9	800.0	100.0	97.7		
80.0	50.0	63.9	200.0	250.0	279.7	800.0	150.0	147.2		
80.0	100.0	122.4	500.0	20.0	21.3	800.0	200.0	196.1		
80.0	150.0	173.4	500.0	50.0	52.6	800.0	250.0	244.9		
80.0	200.0	234.7	500.0	100.0	103.8	1000.0	20.0	16.5		
80.0	250.0	302.2	500.0	150.0	155.4	1000.0	50.0	45.2		
200.0	20.0	22.4	500.0	200.0	206.8	1000.0	100.0	87.3		
200.0	50.0	58.3	500.0	250.0	258.1	1000.0	150.0	131.9		
200.0	100.0	107.6	800.0	20.0	19.1	1000.0	200.0	175.9		
200.0	150.0	166.7	800.0	50.0	48.6	1000.0	250.0	220.0		

Standard Power Measurement							
F	For 80 MHz to 1 GH	Z	For 80 MHz to 1 GHz				
Freq.	Expected (WATTS)	Standard (WATTS)	Freq.	Expected (WATTS)	Standard (WATTS)		
80.0	> 250	348.0	0.8	> 30	30.3		
100.0	> 250	335.0	1.0	> 30	34.2		
200.0	> 250	340.0	1.5	> 30	39.9		
300.0	> 250	329.0	2.0	> 30	36.7		
400.0	> 250	324.0	2.5	> 30	34.0		
500.0	> 250	282.0	3.0	> 30	34.3		
600.0	> 250	318.0					
700.0	> 250	329.0					
800.0	> 250	306.0					
900.0	> 250	294.0					
1000.0	> 250	271.0					

Uncertainty: 3%

It has been demonstrated that the RS generator meets the specified requirements in the standard with at least a 95% confidence.

Electrical Fast Transient/Burst Immunity (EFT/BURST)

Voltage								
Impedance	Voltage Setting(V)	Expected (kV)	Actual (kV)	Uncertainty (%)	T1	Uncertainty (%)	T2	Uncertainty (%)
50Ω	500	250	253	8.2	5.39	4.4	46.49	4.4
50Ω	1000	500	504	8.2	5.7	4.4	45.98	4.4
50Ω	2000	1000	971	8.2	5.57	4.4	44.89	4.4
50Ω	4000	2000	1972	8.2	5.38	4.4	46.07	4.4
50Ω	-500	-250	-248	8.2	4.66	4.4	88.31	4.4
50Ω	-1000	-500	-496	8.2	5.23	4.4	86.25	4.4
50Ω	-2000	-1000	-962	8.1	5.11	4.4	85.48	4.4
50Ω	-4000	-2000	-1960	8.2	5.04	4.4	87.83	4.4
1kΩ	500	500	476	8.2	5.81	4.4	87.87	4.4
1kΩ	1000	1000	933	8.2	5.42	4.4	88.38	4.4
1kΩ	2000	2000	1814	8.2	5.35	4.4	89.78	4.4
1kΩ	4000	4000	3674	8.2	5.98	4.4	85.91	4.4
1kΩ	-500	-500	-460	8.2	6.03	4.4	37.78	4.4
1kΩ	-1000	-1000	-918	8.2	6.24	4.4	36.86	4.4
1kΩ	-2000	-2000	-1777	8.2	6.16	4.4	37.23	4.4
1kΩ	-4000	-4000	-3599	8.2	6.42	4.4	37.53	4.4

EFT Repetition Frequency (Voltage @ 1 kV)

Setting	Actual	Uncertainty	Tolerance
(kHz)	(kHz)	(%)	(%)
5	5	4.4	20%
100	100.01	4.4	20%

Burst Duration (Voltage @ 1 kV)

Setting (ms)	Repetition Freq. (kHz)	Actual (ms)	Uncertainty (%)	Tolerance (%)	
15	5	14.82	4.4	20%	
0.75	100	0.74	4.5	20%	

Burst Period (Voltage @ 1 kV)

Setting (ms)	Repetition Freq. (kHz)	Actual (ms)	Uncertainty (%)	Tolerance (%)	
300	5	300	4.4	20%	
300	100	300	4.4	20%	

It has been demonstrated that the EFT/BURST generator meets the specified requirements in the standard with at least a 95% confidence.

Surge Immunity

Open Circuit Output Voltage Waveform check:

Impedance	Voltage Setting(V)	Actual (kV)	Uncertainty (%)	Т3	Uncertainty (%)	T4	Uncertainty (%)
L-N 2Ω	500.0	503.0	3.9	1.3	3.7	54.0	3.7
L-N 2Ω	4000.0	4020.0	3.9	1.2	3.7	51.2	3.7
L-N 2Ω	-500.0	-503.0	3.9	1.3	3.7	50.8	3.7
L-N 2Ω	-4000.0	-4068.0	3.9	1.1	3.7	50.3	3.7
L-G 2Ω	500.0	485.0	3.9	1.3	3.7	29.7	3.7
L-G 2Ω	4000.0	3948.0	3.9	1.0	3.7	28.2	3.7
L-G 2Ω	-500.0	-480.0	3.9	1.3	3.7	28.3	3.7
L-G 2Ω	-4000.0	-3900.0	3.9	1.1	3.7	28.0	3.7
N-G 2Ω	500.0	490.0	3.9	1.3	3.7	29.5	3.7
N-G 2Ω	4000.0	3900.0	3.9	1.2	3.7	27.9	3.7
N-G 2Ω	-500.0	-478.0	3.9	1.3	3.7	28.4	3.7
N-G 2Ω	-4000.0	-3900.0	3.8	1.2	3.7	28.2	3.7
Impulse	500.0	511.0	3.9	1.5	3.7	53.4	3.7
Impulse	1000.0	1041.0	3.9	1.3	3.7	51.9	3.7
Impulse	2000.0	2022.0	3.9	1.2	3.8	53.3	3.7
Impulse	4000.0	4044.0	3.9	1.3	3.6	53.3	3.7
Impulse	-500.0	-503.0	3.9	1.5	3.7	52.6	3.7
Impulse	-1000.0	-1023.0	3.9	1.3	3.7	51.9	3.7
Impulse	-2000.0	-2022.0	3.9	1.2	3.7	51.4	3.7
Impulse	-4000.0	-4044.0	3.9	1.3	3.7	51.4	3.7

Short Circuit Output Voltage Waveform check:

Impedance	Voltage Setting(V)	Actual (kV)	Uncertainty (%)	Т5	Uncertainty (%)	Т6	Uncertainty (%)
L-N 2Ω	500.0	231.0	2.5	7.7	2.1	19.6	2.1
L-N 2Ω	4000.0	1854.0	2.5	7.4	2.1	19.9	2.1
L-N 2Ω	-500.0	-228.0	2.5	7.7	2.1	19.8	2.1
L-N 2Ω	-4000.0	-1818.0	2.5	7.6	2.1	19.9	2.1
L-G 2Ω	500.0	42.0	3.0	2.6	2.1	25.3	2.1
L-G 2Ω	4000.0	326.0	2.5	2.5	2.1	25.1	2.1
L-G 2Ω	-500.0	-42.0	2.8	2.6	2.1	25.0	2.1
L-G 2Ω	-4000.0	-337.0	2.5	2.4	2.1	25.0	2.1
N-G 2Ω	500.0	41.0	3.0	2.8	2.1	26.4	2.1
N-G 2Ω	4000.0	325.0	2.5	2.7	2.1	25.9	2.1
N-G 2Ω	-500.0	-41.0	2.7	2.9	2.1	26.1	2.1
N-G 2Ω	-4000.0	-323.0	2.5	2.6	2.1	25.8	2.1
Impulse	500.0	243.0	2.5	6.8	2.1	22.2	2.1
Impulse	1000.0	494.0	2.5	6.9	2.1	22.3	2.1
Impulse	2000.0	999.0	2.5	6.8	2.1	22.3	2.1
Impulse	4000.0	2022.0	2.5	7.1	2.1	22.3	2.1
Impulse	-500.0	-251.0	2.5	7.2	2.1	22.6	2.1
Impulse	-1000.0	-497.0	2.5	7.0	2.1	22.3	2.1
Impulse	-2000.0	-987.0	2.5	6.9	2.1	22.3	2.1
Impulse	-4000.0	-1986.0	2.5	7.0	2.1	22.4	2.1

It has been demonstrated that the Surge generator meets the specified requirements in the standard with at least a 95% confidence.

RF Frequency Me	RF Generator Second Harmonic Check	
Reading	Standard	Harmonic (dBc)
9.000 kHz	8.99997282 kHz	-45.6
50.000 kHz	49.998570 kHz	-42.3
100.000 kHz	99.9997118 kHz	-43.5
1.000000 MHz	0.999997073 MHz	-45.6
5.000000 MHz	4.99998552 MHz	-47.8
10.000000 MHz	9.99997043 MHz	-48.4
50.000000 MHz	49.9998556 MHz	-47.1
100.000000 MHz	99.9997100 MHz	-46.2
500.000000 MHz	499.998548 MHz	-49.9
1000.000000 MHz	999.997093 MHz	-52.6

Conducted Disturbances Induced by Radio-Frequency Field Immunity (CS)

RF Generator AM Modulation Measurement Check (1 kHz ; 80 %)					
Frequency	Mod. Freq.	Reading	Standard		
100.000 kHz	1 kHz	80.0%	81.4%		
1.000000 MHz	1 kHz	80.0%	81.3%		
5.000000 MHz	1 kHz	80.0%	81.2%		
10.000000 MHz	1 kHz	80.0%	81.1%		
50.000000 MHz	50.000000 MHz 1 kHz 80.0% 81.3%				
100.000000 MHz 1 kHz 80.0% 81.1%					
500.000000 MHz 1 kHz 80.0% 81.5%					
1000.000000 MHz	1 kHz	80.0%	80.8%		

RF Generator Response and Accuracy						
Ме	Measurement Check					
Fraguanay	Reading	Standard				
Frequency	(dBm)	(dBm)				
9.000 kHz	0	-43.0				
50.000 kHz	0	0.0				
100.000 kHz	0	-0.1				
1.000000 MHz	0	0.1				
5.000000 MHz	0	0.1				
10.000000 MHz	0	0.1				
50.000000 MHz	0	-0.2				
50.000000 MHz	-10	-10.2				
50.000000 MHz	-20	-20.3				
50.000000 MHz	-30	-30.3				
50.000000 MHz	-40	-40.3				
50.000000 MHz	-50	-50.3				
100.000000 MHz	0	0.1				
500.000000 MHz	0	0.0				
1000.000000 MHz	0	-0.3				

RF Power Meter Measurement Check					
Freq	Frequency		Reading		
(M	Hz)	(dBm)	(dBm)		
CH 1	50	10	9.7		
CH 1	50	0	-0.3		
CH 1	50	-10	-10.3		
CH 1	50	-15	-15.3		
CH 2	50	10	9.7		
CH 2	50	0	-0.3		
CH 2	50	-10	-10.3		
CH 2	50	-15	-15.3		
CH 3	50	10	9.7		
CH 3	50	0	-0.4		
CH 3	50	-10	-10.3		
CH 3	50	-15	-15.3		

Power Amplifier Gain Flatness Measurement		Power Amplifier Standard Measurement (Input: 10 dBm)		Power Amplifier Second Harmonic Measurement Check
Frequency	Reading	Result	Spec.	Reading
Frequency	(dB)	(dBm)	(dBm)	(dBc)
150.000 kHz	50.1	48.1	> 44.77	-48.6
1.000000 MHz	51.2	48.3	> 44.77	-47.8
5.000000 MHz	51.2	48.4	> 44.77	-53.6
10.000000 MHz	51.1	48.4	> 44.77	-48.7
50.000000 MHz	50.4	48.4	> 44.77	-49.2
100.000000 MHz	49.6	48.2	> 44.77	-44.7
200.000000 MHz	49.4	47.0	> 44.77	-54.3
2300.000000 MHz	49.6	46.4	> 44.77	-57.5

Uncertainty: Frequency: 1.9x10⁻⁹

Linear: 0.9 dB

RF Power Level: 1.2 dB

Harmonic: 2.0 dB

It has been demonstrated that the CS generator meets the specified requirements in the standard with at least a 95% confidence.

Power Frequency Magnetic Field Immunity

AC Current Accuracy Check

Freq.(Hz)	Range (A)	Standard (A)	Reading (A)	Uncertainty (%)
50	0~10	1.003	1	0.3
50	0~10	3.002	3	0.3
50	0~10	5.006	5	0.3
50	0~10	10.008	10	0.3
50	10~125	9.92	10	0.3
50	10~125	30.01	30	0.3
50	10~125	50.08	50	0.3
50	10~125	100.2	100	0.3
60	0~10	0.989	1	0.3
60	0~10	2.985	3	0.3
60	0~10	4.988	5	0.3
60	0~10	9.982	10	0.3
60	10~125	9.89	10	0.3
60	10~125	29.92	30	0.3
60	10~125	49.93	50	0.3
60	10~125	100.03	100	0.3

Magnetic Measurement Check : (@50Hz)

	· · · · · ·		
Range (A)	Standard (A/m)	Reading (A)	Uncertainty (%)
0~10	1	1.0	1
0~10	3	3.2	1
0~10	10	10.8	1
10~125	10	11.1	1
10~125	30	33.1	1
10~125	100	109.8	1

It has been demonstrated that the PFMF the specified requirements in the standard with at least a 95% confidence.

Voltage Dips and Voltage Interruptions Immunity

PQF Measurement: (Input Voltage: 230V/50Hz)

Level	Load	Actual (V)	Uncertainty (mV/V)	Tolerance (%)
80%	100Ω	182.5	17	184 +/- 5%
70%	100Ω	161.7	17	161 +/- 5%
40%	100Ω	93.2	17	92 +/- 5%
0%	100Ω	5.3	17	-

VAR Check: (Input Voltage: 230V/50Hz)

Level	Load	Actual (V)	Uncertainty (mV/V)	Tolerance (%)
80%	100Ω	182.5	17	184 +/- 5%
70%	100Ω	161.7	17	161 +/- 5%
40%	100Ω	93.2	17	92 +/- 5%
0%	100Ω	5.3	17	-

It has been demonstrated that the Dip generator meets the specified requirements in the standard with at least a 95% confidence.

Appendix A. Test Photos

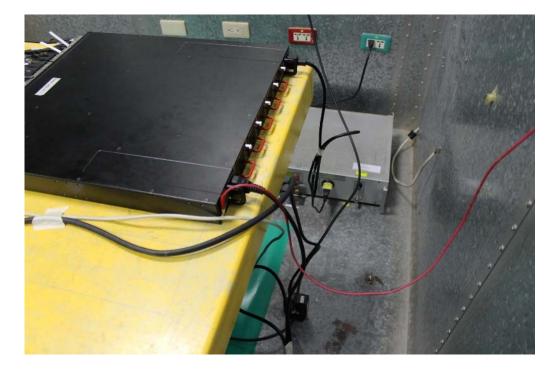
1. Photographs of Conducted Emissions Test Configuration

Test Mode: Mode 1

FRONT VIEW

Test Mode: Mode 4

FRONT VIEW

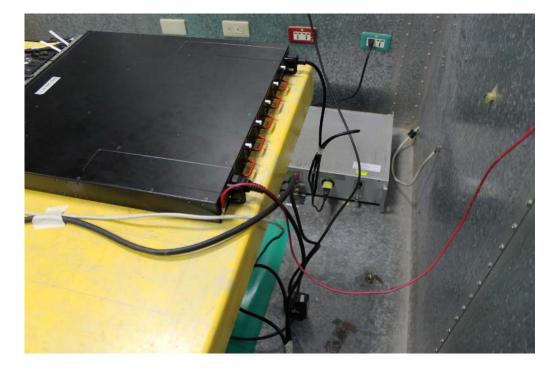

CE EMC TEST REPORT

2. Photographs of Telecommunication Line Conducted Emissions Test Configuration

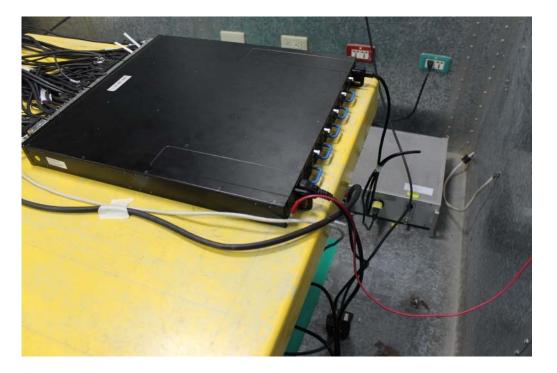
Test Mode: Mode 1 and Mode 2

FRONT VIEW

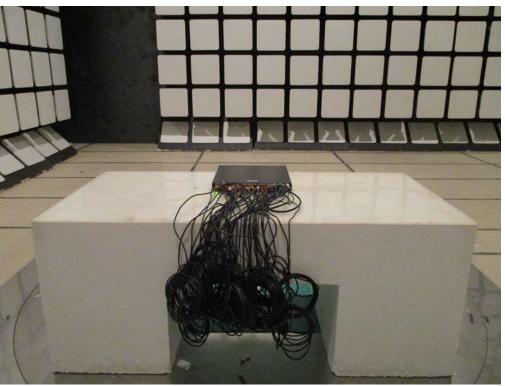
Test Mode: Mode 3

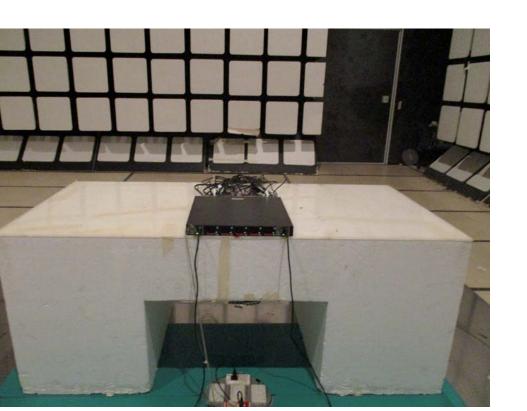

FRONT VIEW

Test Mode: Mode 6 and Mode 7

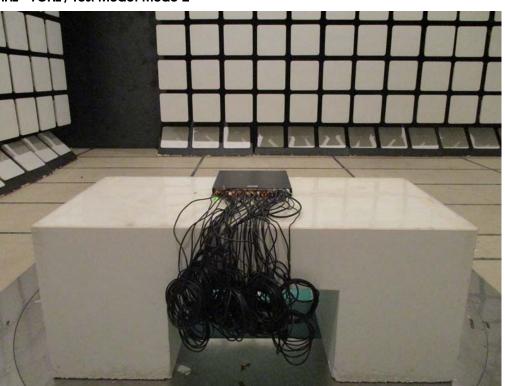

FRONT VIEW

Test Mode: Mode 8


FRONT VIEW

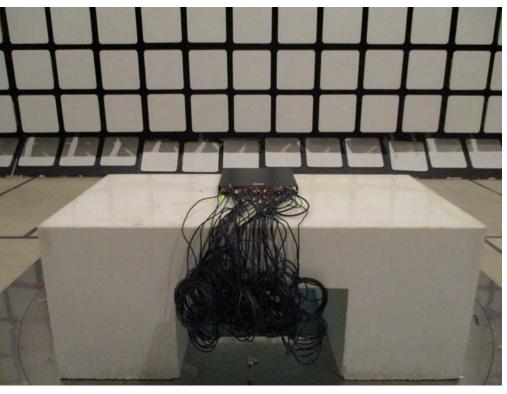


CE EMC TEST REPORT

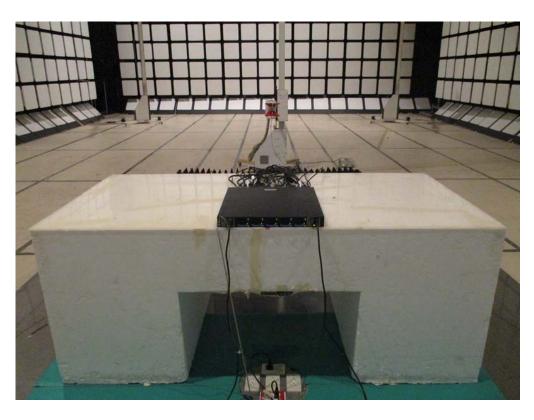

3. Photographs of Radiated Emissions Test Configuration

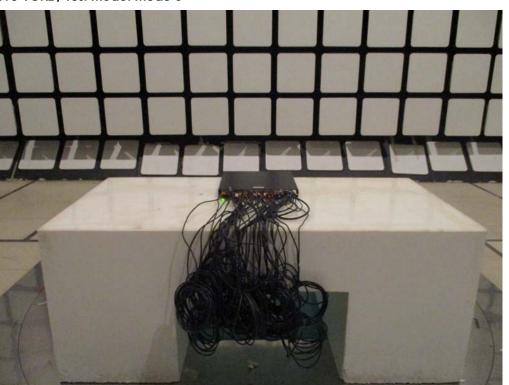
Test Configuration: 30MHz~1GHz / Test Mode: Mode 1

FRONT VIEW

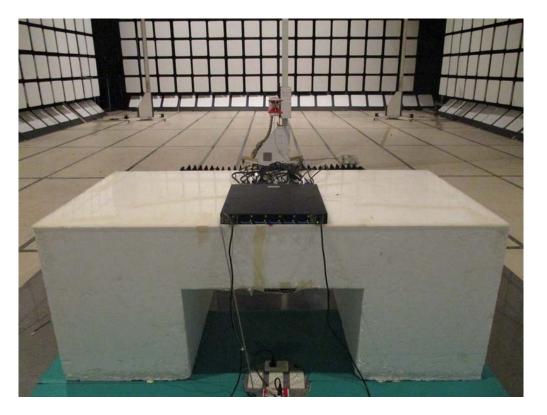


Test Configuration: $30MHz \sim 1GHz$ / Test Mode: Mode 2


FRONT VIEW



Test Configuration: Above 1GHz / Test Mode: Mode 2


FRONT VIEW

Test Configuration: Above 1GHz / Test Mode: Mode 3

FRONT VIEW

4. Photographs of Harmonic, Flicker Test Configuration

Test Mode: Mode 1

FRONT VIEW

Test Mode: Mode 2

5. Photographs of ESD Immunity Test Configuration

Test Mode: Mode 1

REAR VIEW

Test Mode: Mode 2

FRONT VIEW

CE EMC TEST REPORT

6. Photographs of RS Immunity Test Configuration

Test Mode: Mode 1

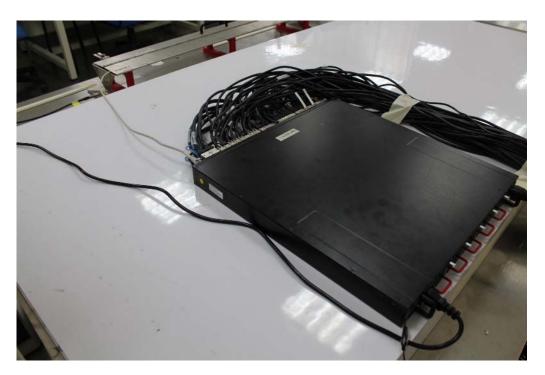
FRONT VIEW

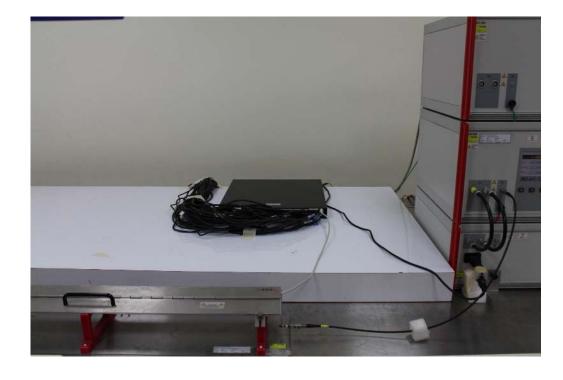
Test Mode: Mode 2

FRONT VIEW

7. Photographs of EFT Test Configuration

Test Mode: Mode 1


FRONT VIEW


Test Mode: Mode 2

FRONT VIEW

Test Mode: Mode 3

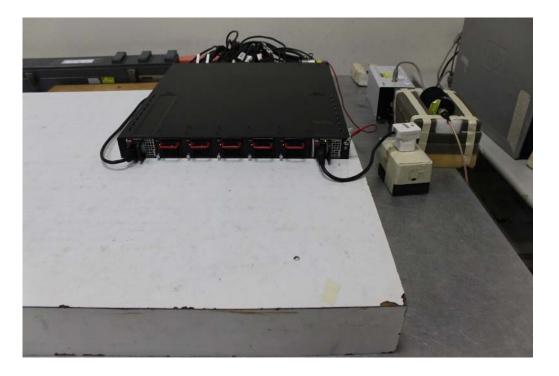
FRONT VIEW

Test Mode: Mode 4

FRONT VIEW

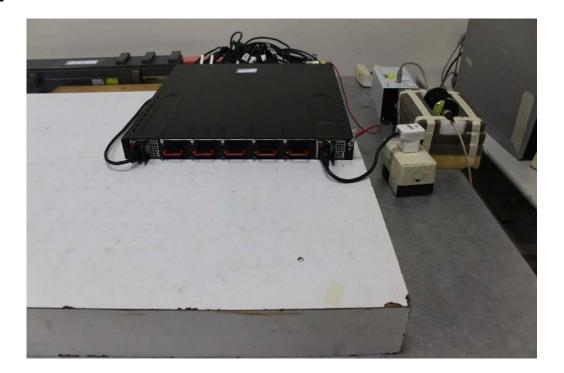
8. Photographs of Surge Test Configuration

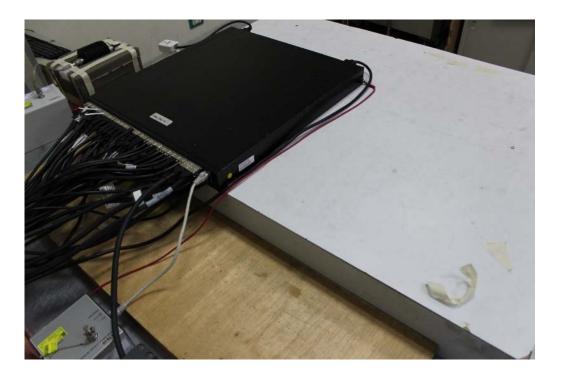
Test Mode: Mode 1~Mode 2

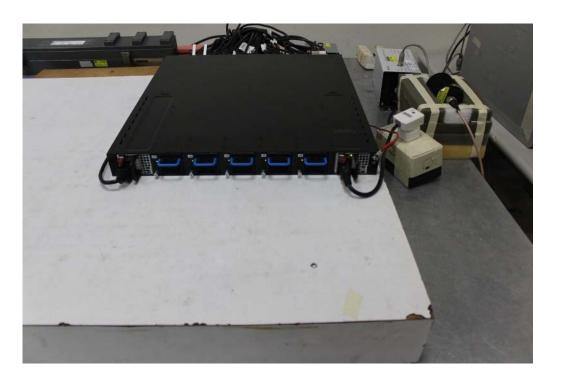

FRONT VIEW

Test Mode: Mode 3~Mode 4

9. Photographs of CS Immunity Test Configuration


Test Mode: Mode 1


FRONT VIEW


Test Mode: Mode 2

FRONT VIEW

Test Mode: Mode 3

FRONT VIEW

Test Mode: Mode 4

FRONT VIEW

REAR VIEW

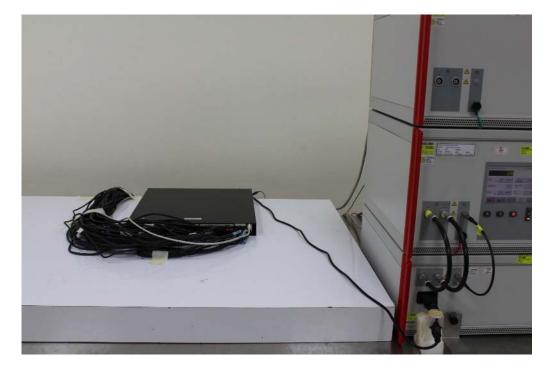
Report No.: EC633006

10. Photographs of MF Immunity Test Configuration

Test Mode: Mode 1

FRONT VIEW

Test Mode: Mode 2


11. Photographs of DIP Test Configuration

Test Mode: Mode 1~Mode 2

FRONT VIEW

Test Mode: Mode 3~Mode 4

