

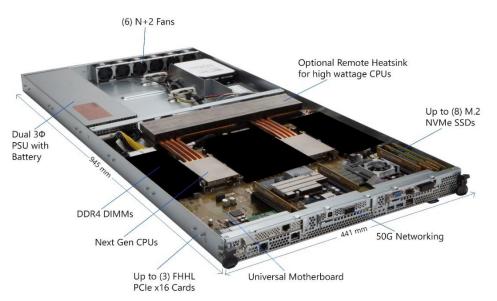
Announcing Project Olympus

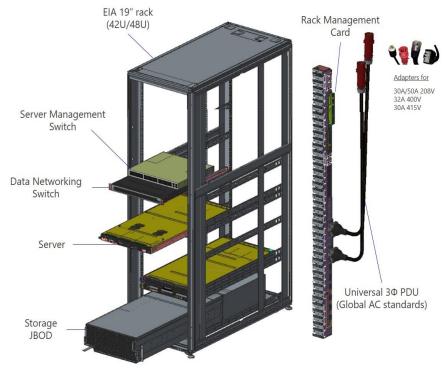
Next-gen Hardware

Open sourcing leading edge Hyperscale cloud hardware currently under development at Microsoft

Development Model

New collaboration model with OCP community – codevelop open hardware at cloud speed



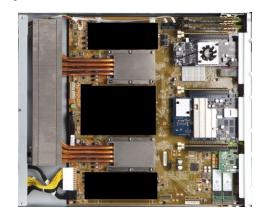

Industry Ecosystem

Bootstrap a vibrant ecosystem in OCP for the next generation of datacenter hardware

Project Olympus design

Modular building blocks

High Power Efficiency Cost Optimized Global Datacenter Standards Solution delivery agility


Project Olympus universal components

Universal Motherboard

Optimized for maximum CPU and I/O performance

Standards based management (IPMI or Redfish)

Multi-rack compatibility (EIA 19", OCP 21", Other 19"/21")

Universal PDU (rack power distribution)

Dual 3Φ AC inputs for power redundancy

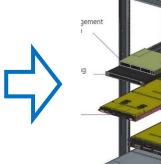
Supports all global datacenter electrical standards

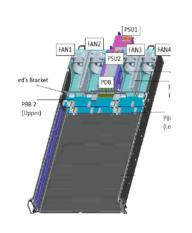
Out-of-Band server and rack management

Global Adapters

30A/50A 208V

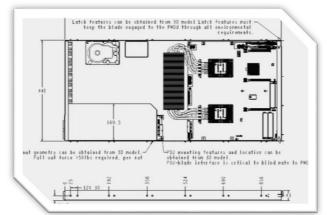
32A 400V


30A 415V



Universal Motherboard potential adoption

Universal Motherboard Project Olympus Rack Rack & Stack 19"


Other 19" and 21" Racks

Project Olympus OCP contribution

Mechanical CAD

Schematics & Board Files

Available on OCP Github page

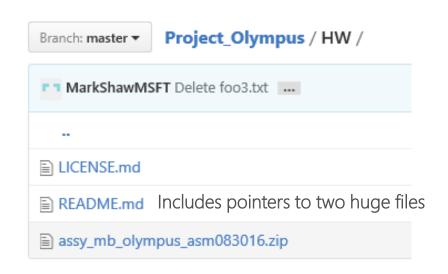
Source Code

/// Gets Fan speed in RPM
/// <param name="fanId">target fan Id</param>
/// <returns>Fan speed in RPM</returns>
internal FanSpeedResponse GetFanSpeed(byte fanId)

https://github.com/opencomputeproject/Project_Olympus

Specifications

Project Olympus on github


opencomputeproject / Project_Olympus

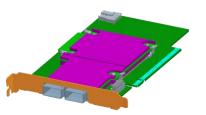
https://github.com/opencomputeproject/Project_Olympus

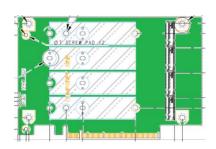
Specifications

Branch: master ▼ Project_Olympus / Specs / ■ MarkShawMSFT Add files via upload ... ■ LICENSE.md ■ Project_Olympus_Server_Mechanical.pdf ■ Project_Olympus_Universal_Motherboard.pdf ■ README.md

Mech & Elec

OCP Support


Changes driven by OCP Feedback from March 2016 Summit


- Management support for VGA and NCSI via BOM population changes
 - ASPEED BMC AST2400 with PCle x1
 - VGA and NCSI cable connectors
 - Support verified and consistent with Facebook servers
- Creation of NIC Mezz Adapter with NCSI cable header

OCP Collaboration – Quad M.2 Carrier

- Supports 4 M.2s (per carrier)
- Enables configuration with up to 16 M.2s in 1U
 - 16TB NVMe flash today, soon 32TB or more

https://github.com/opencomputeproject/Project_Olympus

Project Olympus timeline

Learn More

Visit Microsoft booth for live demos

Project Olympus hardware SONiC networking Project Olympus Technical Overview

Brandon Rubenstein

Wed 14:45

Project Olympus Specification Deep-Dive

Mark A. Shaw

Wed 16:00

