

Specification of the Data Center IT Pod

Rob Bunger / Director of Data Center Standards Schneider Electric

OPEN HARDWARE. OPEN SOFTWARE. OPEN FUTURE.

What is a data center IT pod?

It has existed and been talked about for a number of years.

Most people know it when they see it.

There are several definitions for it.

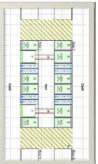
A Pod is an increment of deployment between rack and room

Data Center facility, comprised of

IT Rooms, comprised of

IT Pods, comprised of

IT racks, comprised of


IT devices

IT pod is a group of IT racks either in a row or (more typically) a pair of rows, that share some common infrastructure elements like PDU, network router, containment system, air handlers, security, etc.

Pod footprint is made up of individual device footprints

Why care about a pod?

- It is a manageable increment for design, deployment and operation in large data centers.
 - The ability to more easily vary power and cooling architectures by pod in the same room.
- Organizing the IT space into pods brings operational efficiency and reduces human error.
 - Power down maintenance, tracing power & network cabling, etc

There is no standard way to specify an IT pod

- Best practices exist at individual org level, but there's no industry standard.
- If you wanted to deploy a pod,
 - How big should it be? How many racks?
 - How much power should it consume?
 - What attributes describe it?

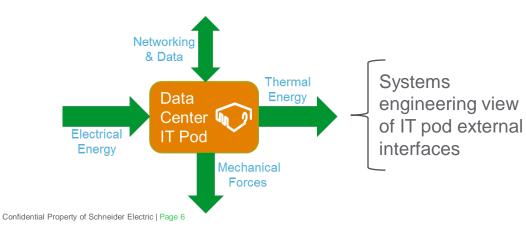


Image courtesy of DPR construction and Facebook

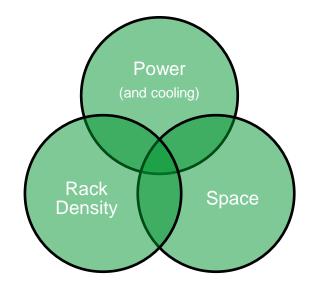


Image courtesy of eWeek and Vapor IO

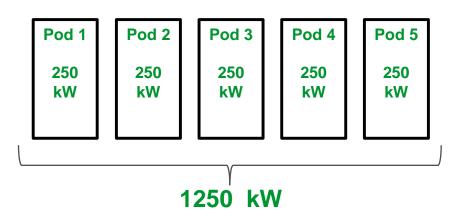
Three major variables define a pod size

- 1. Total power delivered to the pod
- 2. Physical size / number of racks
- 3. Rack density

We will examine the constraints and best practices for specifying a pod size, as well as other required attributes.

Power to the pod

- The size of the incoming feeder ultimately determines the total power available.
- Matching the pod IT load to the feeder size and/or corresponding transformer mitigates wasted capacity.
- Examining commonly available breaker and panel sizes reveals there are two common categories for pod kW capacity:
 - Low Power Pod: ~ 150kW
 - High Power Pod: ~ 250kW
- These are manageable deployment increments for larger data centers.


Voltage	Breaker size (amperes)	Available power (kW)*
400/230	400	275
400/230	250	170
480/277	400	260
400/277	250	165
208/120	400	150
208/120	250	70

- Available kW is rounded down for simplicity. 400V assumes fully rated breakers. 480V and 208V are derated to 80%.
- Distribution amperages > 400A (e.g. 600, 800) can be appropriate for higher density applications

Common example of 1.2MW data center hall

480V, 3000A Switchgear ~ 2.4mW



Balancing efficient use of space with density and modularity

- A pod's length, or contiguous row, is theoretically limited by the length of the room, obstructions and accessibility requirements.
 - e.g. OSHA requires rows with 1 exit to be no longer than 6.2m (20')
- Typical continuous row lengths for large data centers 20 – 25 racks. (although longer do exist!)
- Best practice deploy the largest pod possible for the room size and shape, accessibility, rack density and accounting for required scalability.
 - Uncertain / slow growth requires more modularity to reduce risk and preserve capital

Rack density

- The average rack density is determined by the overall pod power and the number of racks.
- The maximum rack density is determined by the rack's specific branch circuit.
 - A pod with well-engineered air containment, can have a large mix of densities

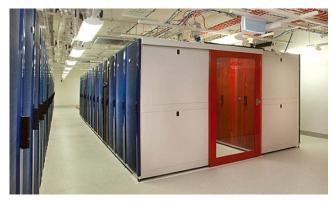


Image courtesy of VMvault Australia

	Available Power (kW)	Avg Rack Density (kw)	Pod size
Low		6	2 x 12
Power	~ 150	12	2 x 6
pod		20	2 x 3
High	~ 250	6	2 x 20
Power		12	2 x 10
pod		20	2 x 6

Pod deployments scenarios of 1.2MW (IT) data center hall

OCP

480V, 3000A Switchgear

Pod 1	Pod 2	Pod 3	Pod 4	Pod 5
250kW	250kW	250kW	250kW	250kW
2 x 15				

8 kW / rack average

Research HPC

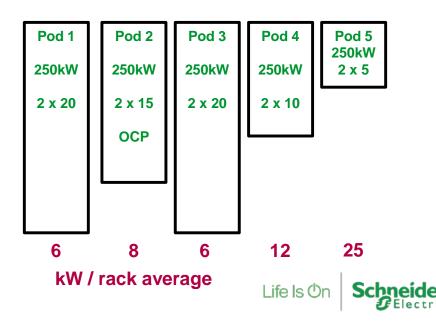
480V, 3000A Switchgear

Pod 1 Pod 2 Pod 3 Pod 4 Pod 2 250kW 250

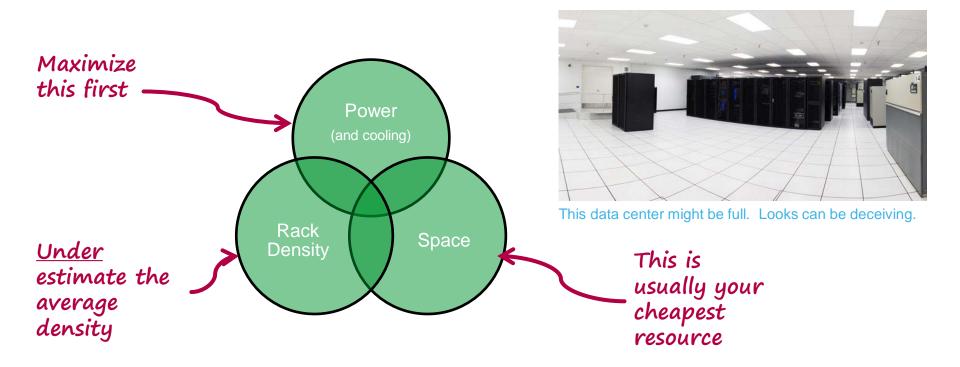
25 kW / rack average

Pod deployments scenarios of 1.2MW (IT) data center hall

Colocation 1


480V, 3000A Switchgear

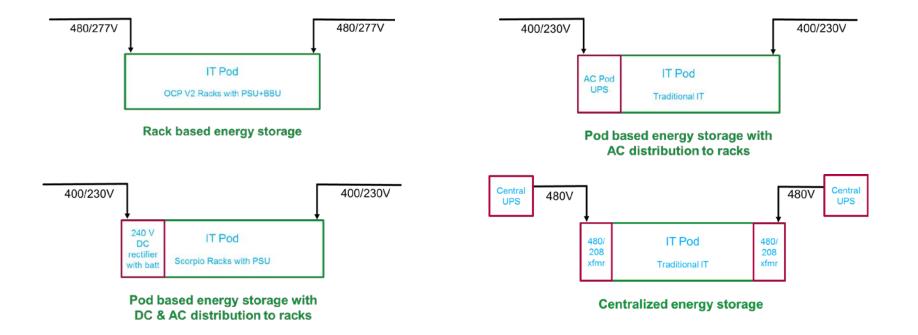
Pod 1	Pod 2	Pod 3	Pod 4	Pod 5
250kW	250kW	250kW	250kW	250kW
2 x 20				


6 kW / rack average

Colocation 2

480V, 3000A Switchgear

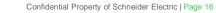
Best practice to optimize pod size



Life Is On

But size is not everything. Other attributes are needed to fully specify a pod...

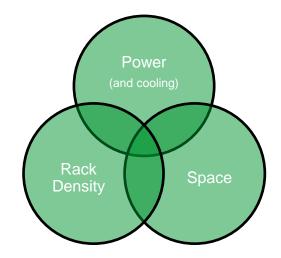
Example Pod Power Configurations


Pod Frame Structural Support System

- Services to the racks are traditionally under a raised floor and hung overheard from the ceiling.
- Pod support frames can simplify room design and aid in modularity
 - Facilitates mounting of all cabling, power, busway, copper, fiber.
 - Options for frame mounting switch allowing the network to be configured before racks arrive.
 - All services can be installed before racks arrive, allowing pre-integrated racks to be 'plugged into" the pod.

Life Is Or

Pod Specification table

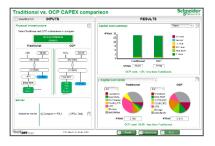

Category	ltem	Notes	OCP Example
	Pod power capability	Based on feeder circuit, panelboard, or pod UPS	250kW
Power	Input voltage & circuit(s)	208/400/415/480; Required feeder circuit to the pod	480/277 VAC 5-wire 400A
	Number of feeds to rack and Redundancy	1N or 2N	2N
	UPS location & type	Location of UPS: Upstream, Pod, Rack, none	Rack BBU with 2N PSU
	Transformer	If a pod based/ PDU transformer exists	none
	Final dist voltage & type	Voltage to the rack	480/277 5-wire, panelboard + cables
	Total racks and row length	Total racks in pod	30: 2 rows of 15
	Rack type / size	OCP V2, 600mm, 800mm, etc	OCP: 24" wide x 47" deep x 90" tall
Rack / Space	Inner aisle width	Width of the hot or cold aisle	26"
Requirement	Clearance	Required clearance in front of racks and end of pod	48" in front of racks. Can be shared.
	Average rack density	Based on total pod power and # racks	8.3kW
	Max rack density	Based on max circuit to racks	25kW based on 40A 480/277 feed
letwork	Method	e.g. Leaf and Spine, etc	TBD
Services Support Structure	Method	racks, pod frame, ceiling, underfloor, etc	Pod frame to support overhead power, network, air duct
Cooling	Architecture	Air cooled; Water cooled: in-row, overhead, rear door; DX; Liquid	Hard floor, flooded room, ducted hot air
	Air / water flow	Volumetric flowrate required to remove pod heat	30,000 - 40,000 CFM
	Containment type	Hot Aisle, Cold Aisle, Rack, none	Hot Aisle
Environment & Security	Physical security	Locked doors, cage, proximity sensor, room	Room security, pod security cameras
	Monitoring	Pod monitoring via IP network / BMS, etc	Pod sensors aggregated at pod, IP connection to supervisory
onfidential Property of Schneider E	Electric Page 17		Life Is On Schneid

Pod Specification table

Category	ltem	Notes	OCP Example
Power	Pod power capability	Based on feeder circuit, panelboard, or pod UPS	250kW
	Input voltage & circuit(s)	208/400/415/480; Required feeder circuit to the pod	480/277 VAC 5-wire 400A
	Number of feeds to rack and Redundancy	1N or 2N	2N
	UPS location & type	Location of UPS: Upstream, Pod, Rack, none	Rack BBU with 2N PSU
	Transformer		
	Final dist voltage & type	Voltage to the rack	480/277 5-wire, panelboard + cables
	Total racks and row length	Total racks in pod	30: 2 rows of 15
	Rack type / size		
Rack / Space Requirement	Inner aisle width		
	Clearance		
	Average rack density	Based on total pod power and # racks	8.3kW
	Max rack density	Based on max circuit to racks	25kW based on 40A 480/277 feed
letwork	Method		
ervices Support structure	Method	racks, pod frame, ceiling, underfloor, etc	Pod frame to support overhead power, network, air duct
Cooling	Architecture	Air cooled; Water cooled: in-row, overhead, rear door; DX; Liquid	Hard floor, flooded room, ducted hot air
	Air / water flow		
	Containment type		
Environment & Security	Physical security		
	Monitoring		
onfidential Property of Schneider E	Electric Page 18		Life Is On Schneid

Summary

- Specifying at the pod level within the IT space
 - Brings design efficiency and flexibility to large data centers
 - Provides operational efficiency and reduced risk
- Designs can be based on two common simplified pod power sizes:
 - 150kW and 250kW
- In design & deployment, under estimate density to minimize underutilized infrastructure. Space is typically the cheapest resource!



Freely available resources to help with planning decisions

Reference Designs

- Designs to support OCP
- One-line diagrams, bill of materials, layout drawings
- www.schneider-electric.com/datacenterdesigns

TradeOff Tools

- Data Center IT Pod Specification Calculator
- Traditional vs Open Compute Capital Cost
- www.tools.apc.com

White Papers

- WP160, Specification of Modular Data Center Architecture
- WP260, Specification of the Data Center IT Pod
- <u>www.whitepapers.apc.com</u>

OPEN Compute Project