Project Olympus
DX-88 Disk Expansion Power Supply Specification

Author:
Banha Sok, Power Engineer, Microsoft
Shaun Harris, Architect, Microsoft
Revision History

<table>
<thead>
<tr>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>11/2017</td>
<td>Version 1.0</td>
</tr>
</tbody>
</table>
As of November 1, 2017, the following persons or entities have made this Specification available under the Open Web Foundation Final Specification Agreement (OWFa 1.0), which is available at http://www.openwebfoundation.org/legal/the-owf-1-0-agreements/owfa-1-0

Microsoft Corporation.

You can review the signed copies of the Open Web Foundation Agreement Version 1.0 for this Specification at Project Olympus License Agreements, which may also include additional parties to those listed above.

Your use of this Specification may be subject to other third party rights. THIS SPECIFICATION IS PROVIDED "AS IS." The contributors expressly disclaim any warranties (express, implied, or otherwise), including implied warranties of merchantability, non-infringement, fitness for a particular purpose, or title, related to the Specification. The entire risk as to implementing or otherwise using the Specification is assumed by the Specification implementer and user. IN NO EVENT WILL ANY PARTY BE LIABLE TO ANY OTHER PARTY FOR LOST PROFITS OR ANY FORM OF INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES OF ANY CHARACTER FROM ANY CAUSES OF ACTION OF ANY KIND WITH RESPECT TO THIS SPECIFICATION OR ITS GOVERNING AGREEMENT, WHETHER BASED ON BREACH OF CONTRACT, TORT (INCLUDING NEGLIGENCE), OR OTHERWISE, AND WHETHER OR NOT THE OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

CONTRIBUTORS AND LICENSORS OF THIS SPECIFICATION MAY HAVE MENTIONED CERTAIN TECHNOLOGIES THAT ARE MERELY REFERENCED WITHIN THIS SPECIFICATION AND NOT LICENSED UNDER THE OWF CLA OR OWFa. THE FOLLOWING IS A LIST OF MERELY REFERENCED TECHNOLOGY: INTELLIGENT PLATFORM MANAGEMENT INTERFACE (IPMI); PC IS A TRADEMARK AND TECHNOLOGY OF NXP SEMICONDUCTORS; EPYC IS A TRADEMARK AND TECHNOLOGY OF ADVANCED MICRO DEVICES INC.; ASPEED AST 2400/2500 FAMILY PROCESSORS IS A TECHNOLOGY OF ASPEED TECHNOLOGY INC.; MOLEX NANOPITCH, NANO PICOBLADE, AND MINI-FIT JR AND ASSOCIATED CONNECTORS ARE TRADEMARKS AND TECHNOLOGIES OF MOLEX LLC; WINBOND IS A TRADEMARK OF WINBOND ELECTRONICS CORPORATION; NVLINK IS A TECHNOLOGY OF NVIDIA; INTEL XEON SCALABLE PROCESSORS, INTEL QUICKASSIST TECHNOLOGY, INTEL HYPER-THREADING TECHNOLOGY, ENHANCED INTEL SPEEDSTEP TECHNOLOGY, INTEL VIRTUALIZATION TECHNOLOGY, INTEL SERVER PLATFORM SERVICES, INTEL MANAGABILITY ENGINE, AND INTEL TRUSTED EXECUTION TECHNOLOGY ARE TRADEMARKS AND TECHNOLOGIES OF INTEL CORPORATION; SITARA ARM CORTEX-A9 PROCESSOR IS A TRADEMARK AND TECHNOLOGY OF TEXAS INSTRUMENTS; GUIDE PINS FROM PENCOM; BATTERIES FROM PANASONIC. IMPLEMENTATION OF THESE TECHNOLOGIES MAY BE SUBJECT TO THEIR OWN LEGAL TERMS.
Contents

1 Scope ... 9
2 Reference Documents ... 9
 2.1 Applicable Documents .. 10
 2.2 Order of Preference ... 11
3 General Functional Description ... 11
 3.1 System Implementations ... 12
 3.1.1 Sub-assembly Application ... 12
4 Electrical Specification ... 14
 4.1 AC Input ... 14
 4.1.1 Voltage, Current, and Frequency .. 14
 4.1.2 PSU Hold-Up Time ITIC Requirement .. 14
 4.1.3 The worst case under voltage (sag) recovery requirement .. 14
 4.1.4 The worst case over voltage (surge) recovery requirement .. 15
 4.1.5 AC Turn On Requirement ... 15
 4.1.6 AC Turn Off Brownout Requirement ... 15
 4.1.7 AC Line Fuses ... 16
 4.1.8 VAC Input fuse rating, interrupt capacity, maximum fuse rating ... 16
 4.1.9 AC Inlet Connector ... 16
 4.1.10 AC Inlet Connector Pinout .. 16
 4.1.11 Input Leakage Current ... 17
 4.1.12 Input Power Rating ... 17
 4.1.13 Dynamic Maximum Input Power Limit (DMIPL) ... 17
 4.1.14 Inrush Current ... 19
 4.1.16 Power Factor ... 19
 4.1.17 Harmonic Susceptibility ... 19
 4.1.18 Modified Sine Waves .. 20
 4.1.19 Harmonic Emissions ... 20
 4.1.20 Line Transient ... 20
Note 1: Pull up to 3.3V through 100K ohms

4.1.21 Electrostatic Discharge Susceptibility ... 20
4.1.22 Fast Transient Burst ... 21
4.1.23 Radiated Immunity... 21
4.1.24 Surge Immunity .. 21
4.1.25 Efficiency .. 21

4.2 DC Outputs, Signal Outputs, and Control Outputs ... 22
4.2.1 Output Power and Current ... 22
4.2.2 Output ORing/Output Capacitor isolation ... 22
4.2.3 Standby Output .. 22
4.2.4 Setpoint .. 22
4.2.5 Static Voltage Regulation .. 23
4.2.6 Ripple and Noise .. 23
4.2.7 Dynamic Load Step ... 23
4.2.8 Capacitive Loading ... 23
4.2.9 Closed Loop Stability ... 23
4.2.10 Grounding ... 24
4.2.11 Common Mode Noise ... 24
4.2.12 Soft Start ... 24
4.2.13 Zero Load Stability ... 24
4.2.14 Hot Swap Requirements ... 24
4.2.15 Load Sharing ... 24
4.2.16 Timing Requirements ... 25

5 PSU System Interconnect .. 29
5.1 Remote On/Off ... 29
5.2 I-Share .. 29
5.3 I2C/PMBus ... 30
5.4 PS_KILL .. 30
5.5 PSU Alert .. 30

Note 1: Pull up to 3.3V through 100K ohms ... 31
5.9 Protection Circuits... 34
 5.9.1 Over Current Limit (OCL)... 34
 5.9.2 Short Circuit Protection (SCP) ... 34
 5.9.3 Over Voltage Protection (OVP) ... 34
 5.9.4 Over Temperature Protection (OTP)... 34
6 FRU Requirements ... 35
7 Software Interface Requirements ... 35
8 LED Indicators .. 35
9 Mechanical Specifications ... 36
 9.1 Dimensions .. 36
 9.2 Lever Arm .. 37
 9.2.1 Over Rotation Prevention ... 38
 9.2.2 Handle Lock ... 38
 9.3 Connectors .. 38
 9.3.1 Placement ... 38
10 Operating Environment Requirements .. 39
11 Reliability, Warranty, and Service ... 40
 11.1 Reliability .. 40
 11.2 Serviceability ... 40
 11.3 Power Supply Returned for Repair ... 41
 11.4 Cooling ... 41
 11.4.1 Fan Speed Control ... 41
 11.4.2 Fan Redundancy ... 41
 11.5 Mechanical Shock .. 41
 11.5.1 Fixturing ... 41
 11.5.2 Operating ... 42
 11.5.3 Non-operating .. 42
 11.6 Vibration .. 42
 11.6.1 Fixturing ... 42
 11.6.2 Operating ... 42
 11.6.3 Non-Operating ... 42
11.7 Transportation and Handling Robustness .. 43
Table of Tables

Table 1: Applicable Documents ... 10
Table 2: AC Input Rating .. 14
Table 3: AC Inlet Connector Pinout .. 16
Table 4: Input Power Sharing .. 18
Table 5: Power Factor .. 19
Table 6: THD Requirements ... 20
Table 7: Efficiency .. 21
Table 8: Output Power and Current .. 22
Table 9: Setpoints ... 22
Table 10: Static Voltage ... 23
Table 11: Dynamic Load Step .. 23
Table 12: Capacitive Loading ... 23
Table 13: Droop Share .. 25
Table 14: Load Sharing ... 25
Table 15: Power On/Off .. 29
Table 16: I2C/PMBus .. 30
Table 17: PS_Kill .. 30
Table 18: PSU Alert .. 31
1 Scope
This document defines the functional requirements for a 1650W 12.25VDC output, power supply module operating off an AC Hi-Line three phase input, intended for worldwide use in the Project Olympus DX-88 Disk Expansion Chassis.

2 Reference Documents
This section lists the applicable reference documents and defines the order of preference.
2.1 Applicable Documents

Table 1 lists the documents that form a part of this specification to the extent specified herein.

Table 1: Applicable Documents

<table>
<thead>
<tr>
<th>Reference</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CISPR 32</td>
<td>“Limits and methods of measurement of radio interference characteristics of information technology equipment.” International Special Committee on Radio Interference (C.I.S.P.R.).</td>
</tr>
<tr>
<td>CISPR 24</td>
<td>“Information technology equipment - Immunity characteristics - Limits and methods of measurement”</td>
</tr>
<tr>
<td>GB 17625.1</td>
<td>Electromagnetic compatibility - Limits - Limits for harmonic current emissions (equipment input current < 16 A per phase)</td>
</tr>
<tr>
<td>GB 9254</td>
<td>Information technology equipment - Radio disturbance characteristics - Limits and methods of measurement</td>
</tr>
<tr>
<td>ICES-003</td>
<td>Information Technology Equipment — Limits and Methods of Measurement</td>
</tr>
<tr>
<td>CNS14336-1</td>
<td>“Information technology equipment – Safety – General requirements”, Bureau of Standard, Metrology and Inspection</td>
</tr>
<tr>
<td>EN 55032</td>
<td>Electromagnetic compatibility of multimedia equipment - Emission requirements</td>
</tr>
<tr>
<td>EN 55024</td>
<td>“Information technology equipment – Immunity characteristics – Limits and Methods of measurement.” European Committee for Electro technical Standardization (CENELEC)</td>
</tr>
</tbody>
</table>
Reference

<table>
<thead>
<tr>
<th>Reference</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEC/EN/UL/CSA 62368-1</td>
<td>Audio/video, information and communication technology equipment - Part 1: Safety requirements</td>
</tr>
<tr>
<td>IS 13252-1</td>
<td>“Safety of Information Technology Equipment – Safety – Part 1: General requirements”</td>
</tr>
<tr>
<td>EN 61000-3-2</td>
<td>“Electromagnetic Compatibility (EMC) Part 3-2 Limits – Limits for Harmonics Current Emissions (Equipment input current ≤16A per phase).”</td>
</tr>
<tr>
<td>EN61000-3-3</td>
<td>“Electromagnetic compatibility (EMC) – Part 3-3 Limits – Limitation of voltage fluctuations and flicker in low-voltage supply systems for equipment with rated current <= 16 A”</td>
</tr>
<tr>
<td>GB 4943.1</td>
<td>“Safety of Information technology equipment”, Standardization Administration of China</td>
</tr>
<tr>
<td>IEC 61000-4 Sections 2 – 6, 11</td>
<td>“Electromagnetic Compatibility (EMC) – Part 4: Testing and measurement techniques.”</td>
</tr>
<tr>
<td>Taiwan EMC Law</td>
<td>“Commodity EMC Regulation” (Taiwan EMC Law), Bureau of Standards, Metrology, and Inspection under auspices of the Ministry of Economic Affairs, URL:http://www.bsmi.gov.tw</td>
</tr>
</tbody>
</table>

2.2 Order of Preference

In the event of a conflict between this specification and references cited herein, this specification shall take precedence.

3 General Functional Description

This specification describes the Project Olympus DX-88 Power Supply Unit, DX-88 PSU. The power supply module shall be three single phase input and 1650W output. The power supply can be used in multiple Project Olympus systems/sub-assemblies. It may be standalone or used with up to four 1650W DX-88 PSU units in parallel. The system consists of inputs of three single phases (3 total) and three 550W power supply units (PSU’s) in parallel with a total maximum output of 1650W. Each PSU will be powered from one of the three phases. The power supply will be hot pluggable. Failure of a single PSU or loss of a single phase will not affect system operation for loads 1100W and below. With two phases loss, the lone phase shall be able to operate at 550W and below. Power supplies shall be hot swappable for up to four 4 in parallel. The power supply outer dimensions are below.
3.1 System Implementations

3.1.1 Sub-assembly Application
The DX-88 PSU will be installed in a sub-assembly chassis and will blind-mate to a sub-assembly chassis and then to the managed PDU (PMDU) for input AC power and signals and communications between the rack manager and the sub-assembly and PSU. Output Power and signals to the sub-assembly via power and signal harness.

Top Load DX-88 PSU (Iso-view)
Figure 2: DX-88
4 Electrical Specification

This section details the electrical specification.

4.1 AC Input

AC input to the rack will be either 3 phase 415/400VAC Wye or 208VAC Delta connection and partitioned such that 3 single phase rated 200-240VAC – derive from either the WYE or Delta. The power supply shall be able to power up each phase being of different voltage and frequency.

4.1.1 Voltage, Current, and Frequency

The individual phase power supplies shall operate within all specified limits over the following input voltage range as defined below and in Table 2: AC Input Rating. Each module inside the PSU shall be derived as a single phase from either WYE or Delta connection.

WYE: 311VAC-457VAC, 5 Wire 3L+N+PE, 47Hz-63Hz

Delta: 187VAC-228VAC, 4 Wire 3L+PE 47Hz-63Hz

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min</th>
<th>Rated</th>
<th>Max</th>
<th>550 WPSU max input current at min V<sub>rms</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage (240)</td>
<td>180 V<sub>rms</sub></td>
<td>200-240 V<sub>rms</sub></td>
<td>264 V<sub>rms</sub></td>
<td>3.85 A<sub>rms</sub></td>
</tr>
<tr>
<td>Frequency</td>
<td>47 Hz</td>
<td>63 Hz</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4.1.2 PSU Hold-Up Time ITIC Requirement

The power supply shall run without interruption when exposed to any of the power variations shown in the ITIC curve below. The transient portion of the chart depicted in red shall be instead as specified EN61000-4-4 Electrical Fast Transients and EN61000-4-5 Electrical Surge, 2000V L-PE, 1000V L-L.

4.1.3 The worst case under voltage (sag) recovery requirement

The worst case under voltage % is shown below. Due to the wide array of data center distribution and back types the power supply shall operate with zero voltage for 20ms, 140VAC for 500ms, 160VAC for 10seconds before the input voltage return the minimum voltage of 190VAC.
4.1.4 The worst case over voltage (surge) recovery requirement
In the event of an overvoltage input the power supply shall attempt to operate normally until input voltage returns to nominal input range. For guidance the ITIC Curve defines a 110% as upper nominal range with surges of up to 140% for 3mS and 120% for 500mS.

4.1.5 AC Turn On Requirement
The power supply shall return to normal power up state after a slow recovery condition. The recovery shall be tested in all valid redundant power system configurations. With the test loads configured for 1650W system DC output in resistive mode, the AC line voltage shall be increased from 0VAC to 180VAC/60Hz at a constant rate over 30 minutes. When VAC input is within proper range the PSU shall turn on and assume full load consistent with the soft start requirements.

4.1.6 AC Turn Off Brownout Requirement
The power supply shall return to normal power up state after a slow brownout condition. The brownout condition shall be tested with all valid redundant power system configurations using the end use system/s. While the power system is operating at full rated DC load, the AC line voltage shall be reduced from 180VAC/60Hz to 0VAC at a constant rate over a period of 30 minutes. The power shall be then reapplied at 180VAC/60Hz.

When VAC input is within proper range the PSU shall turn on and assume full load consistent with the soft start requirements. This requirement applies to single power supplies only.
4.1.7 AC Line Fuses
The AC Line Fuses shall be acceptable for all safety agency requirements. The fuse shall be fast blow type. The fuse shall not blow unless component failure is encountered. The fuses shall not blow under all line and load conditions.

The AC Line Fuses shall be rated appropriately to prevent nuisance blows.

4.1.8 VAC Input fuse rating, interrupt capacity, maximum fuse rating.
The input fuse shall be a fast blow with greater than 1.5KAIC interrupt capacity no greater than 5A maximum.

4.1.9 AC Inlet Connector
AC inlet connector shall be an FCI PwrBlade 10106262-260001 or equivalent. Mating connector: FCI PwrBlade 10106268-260001

![AC Inlet Connector Diagram]

Figure 4: AC Inlet Connector

4.1.10 AC Inlet Connector Pinout
AC inlet connector pinout is listed below:

<table>
<thead>
<tr>
<th>Pin Number</th>
<th>Description</th>
<th>WYE</th>
<th>Delta</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>Safety Ground</td>
<td>Safety Ground</td>
<td></td>
</tr>
<tr>
<td>P2</td>
<td>Not Used</td>
<td>Not Used</td>
<td></td>
</tr>
<tr>
<td>P3</td>
<td>Feed A Neutral</td>
<td>Feed A Phase A</td>
<td></td>
</tr>
</tbody>
</table>
4.1.11 Input Leakage Current
Maximum input leakage for a single power supply shall be less than 2.0mA at 240VAC.

4.1.12 Input Power Rating
The power supply shall be rated for 1800W input power (efficiency and fan loss) at 200VAC input max system output 1650W (all three PSM’s combined).

4.1.13 Dynamic Maximum Input Power Limit (DMIPL)
DMIPL feature is preferred but optional. The goal is to have the lowest recovery current possible after an AC dropout. One method of DMIPL implementation is described below.

The power supply shall monitor input or output power to determine maximum input current allowed in order to meet the spec in section “Timing Requirements”.

Below is one way to implement DMIPL is described below. Other methods may be used with Microsoft approval.

Please refer to flow chart below

1. PSU primary side will have three registers
 1. Maximum Average Power (MAP) Register 1 which stores the maximum power measured in the last 60 minutes.
 2. MAP Register 2 is the maximum power measured since Register 1 was updated.
 3. Latest Power Measurement (LPM) Register 3 is the current power measured over the last 100ms.

2. The flow chart should be self-explanatory but basically, the PSU will use the MAPR1 *130% to set maximum input current.

3. If the input power does not exceed this for 60 minutes, MAPR1 is lowered to the highest power in the last 60 minutes.

4. If LPM exceeds MAPR1, this value is loaded immediately into MAPR1 and 60-minute counter is reset.
4.1.14 Input Power Sharing
The three input modules shall share the load so that input current sharing among the modules meets the requirements in the table below:

<table>
<thead>
<tr>
<th>Total Input Power</th>
<th>Input currents share accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-330W</td>
<td>< 100mA</td>
</tr>
<tr>
<td>330W-660W</td>
<td>+/- 5%</td>
</tr>
<tr>
<td>>660W</td>
<td>+/- 3%</td>
</tr>
</tbody>
</table>

Notes
Power supply PFC maximum input power is always set to 140% of latest value in MAP register 1.
- MAP Register 1: Hourly Max
- MAP Register 2: Rolling Max
- LPM Register 3: Latest measurement

MAC = Maximum Average Current
LPM = Latest Power measurement
4.1.15 Inrush Current
AC line inrush current to each 550W module shall not exceed 8A peak at all line and load conditions for maximum of 5 msec. after application of AC input. Measurement shall be taken 0.2ms after application of AC input. The inrush current shall not exceed the 50% I2t derating of any component in series with the inrush current.

The power supply shall meet the inrush requirements for any rated AC voltage, during turn on at any phase of AC voltage, during hot plug, during any AC dropout condition, over the specified temperature range (Top), and during AC power cycling. The AC power cycling test condition is defined as cycling the AC power off and back on after the power supply has been operating at maximum load and has reached thermal stability.

The period between the AC power cycles could be anywhere between 20 ms to 10 seconds. During a line drop out situation the peak inrush current may be violated but no damage or reliability reduction may occur to any components the power supply.

4.1.16 Power Factor
The power factor shall be equal to or greater than 0.98 when measured at 240VAC, 47Hz to 63 Hz input. Measurement shall be performed with maximum output load and with source impedance of less than 0.1 Ω. It is expected that power factor shall be greater than 0.98 at line voltages less than 240VAC at maximum output load condition.

Power factor shall also meet requirements in table below (at 230V, 60Hz):

<table>
<thead>
<tr>
<th>Output Current</th>
<th>Minimum Power Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>10%</td>
<td>NA</td>
</tr>
<tr>
<td>20%</td>
<td>.9</td>
</tr>
<tr>
<td>50%</td>
<td>.95</td>
</tr>
<tr>
<td>100%</td>
<td>.98</td>
</tr>
</tbody>
</table>

4.1.17 Harmonic Susceptibility
Harmonic distortion of up to 10% THD must not cause the power supply to go out of specified limits. The power supply shall be capable of start-up (power-on) with full rated power load, at line input as low as 180VAC.

The power supply internal circuitry shall limit maximum input current to 150% max rated at all input and operating ambient conditions and output fault conditions.
4.1.18 Modified Sine Waves
The power supply shall operate when the AC input is a variant of a sine wave such as from a UPS. The output shall remain within regulation under all load conditions under modified sine wave. Under conditions below the power supply may disable the output:

- Rise time on the input exceeding 2V/us
- Input voltage zero crossing lasting greater than 4 ms.
- Peak of the modified sine wave voltages consistently exceeding 375V

Under modified sine wave conditions the power supply does not need to meet conducted EMI limits and harmonics.

4.1.19 Harmonic Emissions
The power supply shall incorporate universal input with active power factor correction, which shall reduce line harmonics in accordance with IEC EN61000-3-2 and JEIDA MITI standards. It is desired that the power supply also meet the THD requirements across the input voltage range shown in Table 6 below.

Table 6: THD Requirements

<table>
<thead>
<tr>
<th>Output load (% of max output load)</th>
<th>Maximum ITHD (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-15</td>
<td>20</td>
</tr>
<tr>
<td>15-30</td>
<td>10</td>
</tr>
<tr>
<td>30-100</td>
<td>5</td>
</tr>
</tbody>
</table>

4.1.20 Line Transient
The power supply shall operate within specifications under the following conditions:

- Transients as defined in IEC 61000-4-4.
- Transients as defined in IEC 61000-4-5.
 (Up to and including ±2 kV limits and phases 0°, 90°, 180°, and 270°.

4.1.21 Electrostatic Discharge Susceptibility
The power supply shall withstand the following ESD conditions at any point on the power supply enclosure.

- ±15 kV air discharge with regards to Criteria C
- Transients as defined in IEC 801-2

The storage capacitance shall be 150 pF and the discharge resistance shall be 330 ohms. The power supply shall meet all discharge requirements for the CE Mark designation.

Refer to section 11.8 for full compliance/if there is inconsistency
4.1.22 Fast Transient Burst

4.1.23 Radiated Immunity

4.1.24 Surge Immunity
The power supply shall be tested with the system for immunity to AC Unidirectional wave; 2kV line to ground and 1kV line to line, per EN 55024: 1998/A1: 2001/A2: 2003, EN 61000-4-5: Edition 1.1:2001-04. The pass criteria include: No unsafe operation is allowed under any condition; all power supply output voltage levels to stay within proper spec levels; No change in operating state or loss of data during and after the test.

4.1.25 Efficiency
The power supply shall meet the efficiency requirements given in Table 7.

** Efficiency is important and cost effective efficiency improvements shall be evaluated before the power supply design is finalized. The typical load range will be 50%- 80% PSU loading and 95% under system fault conditions. Special consideration will be given for efficiency improvements in this area of operation. Fan can be powered externally for efficiency test and for factory ATE/CPK value, we can use 93.8% (230V and 240V 50% loading) as spec for fan losses.

Table 7: Efficiency

<table>
<thead>
<tr>
<th>Input voltage (VAC RMS)</th>
<th>Output load (A)</th>
<th>Minimum efficiency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>13.5 (10%)</td>
<td>85</td>
</tr>
<tr>
<td>200</td>
<td>27 (20%)</td>
<td>92</td>
</tr>
<tr>
<td>200</td>
<td>67.5 (50%)</td>
<td>93</td>
</tr>
<tr>
<td>200</td>
<td>135 (100%)</td>
<td>91</td>
</tr>
<tr>
<td>208</td>
<td>13.5 (10%)</td>
<td>85</td>
</tr>
<tr>
<td>208</td>
<td>27 (20%)</td>
<td>92</td>
</tr>
<tr>
<td>208</td>
<td>67.5 (50%)</td>
<td>93</td>
</tr>
<tr>
<td>208</td>
<td>135 (100%)</td>
<td>91</td>
</tr>
<tr>
<td>230</td>
<td>13.5 (10%)</td>
<td>85</td>
</tr>
<tr>
<td>230</td>
<td>27 (20%)</td>
<td>92</td>
</tr>
</tbody>
</table>
4.2 DC Outputs, Signal Outputs, and Control Outputs

This section describes the DC outputs.

4.2.1 Output Power and Current
Across the typical input voltage range, the PSU output power shall be as specified in Table 8. The power supply shall meet static and dynamic voltage regulations requirements across the load range.

*e.g if we have 2 PSU in parallel, max would be 269.4A

Table 8: Output Power and Current

<table>
<thead>
<tr>
<th>Output</th>
<th>Min</th>
<th>Max per working module</th>
<th>Max (3 modules) N+1</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.25VDC</td>
<td>1</td>
<td>44.9 A</td>
<td>134.7*</td>
<td>A</td>
</tr>
</tbody>
</table>

4.2.2 Output ORing/Output Capacitor isolation
Not required

4.2.3 Standby Output
The power supply shall not provide a standby output.

4.2.4 Setpoint
The voltage set-point shall be as specified in Table 9.

Table 9: Setpoints

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min</th>
<th>Set point</th>
<th>Max</th>
<th>Units</th>
<th>Iout (A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>+12V</td>
<td>12.305</td>
<td>12.32</td>
<td>12.335</td>
<td>Vrms</td>
<td>40.41</td>
</tr>
</tbody>
</table>
4.2.5 Static Voltage Regulation
The output voltage regulation output must stay within the following voltage limits when operating at all load and input line voltages across the ambient temperature limits under steady state conditions.

Table 10: Static Voltage

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min</th>
<th>Set point</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>12V Output</td>
<td>12.00</td>
<td>12.25</td>
<td>12.5</td>
<td>Vrms</td>
</tr>
</tbody>
</table>

4.2.6 Ripple and Noise
The maximum allowed ripple/noise output of the power supply is defined in 120mVp-p. This is measured over a bandwidth of 10Hz to 20MHz at the power supply output connectors. A 10uF tantalum capacitor in parallel with a 0.1uF ceramic capacitor is placed at the point of measurement.

4.2.7 Dynamic Load Step
The output voltages shall remain within Dynamic voltage limits specified for the step loading and capacitive loading specified below. The load transient repetition rate shall be tested between 50Hz and 5kHz at duty cycles ranging from 10%-90%. The load transient repetition rate is only a test specification. The delta step load may occur anywhere within the MIN load to the MAX load conditions. Dynamic voltage limits are 11.70VDC-12.8VDC.

Table 11: Dynamic Load Step

<table>
<thead>
<tr>
<th>Output</th>
<th>Delta step load</th>
<th>Transient load rate</th>
<th>Capacitance test load</th>
</tr>
</thead>
<tbody>
<tr>
<td>+12V</td>
<td>60% of maximum rated load 1%-61% and 40% to 100%</td>
<td>0.1 - .5 A/usec</td>
<td>3500uF +/-5%</td>
</tr>
</tbody>
</table>

4.2.8 Capacitive Loading
The power supply shall be stable and meet all requirements with the following capacitive loading ranges.

Table 12: Capacitive Loading

<table>
<thead>
<tr>
<th>Output</th>
<th>Min</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>+12V</td>
<td>2200uF</td>
<td>11000</td>
<td>uF</td>
</tr>
</tbody>
</table>

4.2.9 Closed Loop Stability
The power supply shall be unconditionally stable under all line/load/transient load conditions including capacitive load ranges specified in Section 4.6. A minimum of: 45 degrees phase margin and -10dB-gain margin is required. The power supply manufacturer shall provide proof of the unit’s closed-loop stability with local sensing through the submission of Bode plots. Closed-loop stability must be ensured at the maximum and minimum loads as applicable.
4.2.10 Grounding
The output ground of the pins of the power supply provides the output power return path. The output connector ground pins shall be connected to the safety ground (power supply enclosure). This grounding should be well designed to ensure passing the max allowed Common Mode Noise levels.

The power supply shall be provided with a reliable protective earth ground. All secondary circuits shall be connected to protective earth ground. Resistance from the input receptacle to chassis shall not exceed 100 mΩs. This shall be tested 100%.

4.2.11 Common Mode Noise
The Common Mode noise on any output shall not exceed 350mV pk-pk over the frequency band of 10Hz to 20MHz. The measurement shall be made across a 100Ω resistor between each of DC outputs, including ground at the DC power connector and chassis ground (power subsystem enclosure).

** PSU output return may be connected to the chassis ground inside the PSU. Common mode noise requirement shall not be applicable to PSU design with output connector ground pins connected to safety ground

4.2.12 Soft Start
The Power Supply shall contain control circuit which provides monotonic soft start for its outputs without overstress of the AC line or any power supply components at any specified AC line or load conditions.

4.2.13 Zero Load Stability
When the power subsystem operates in a no load condition, it does not need to meet the output regulation specification, but it must operate without any tripping of over-voltage or other fault circuitry. When the power subsystem is subsequently loaded, it must begin to regulate and source current without fault. Continuous operation at no load shall not damage or reduce reliability of the power supply.

4.2.14 Hot Swap Requirements
The PSU shall be hot swappable. Out ORing is not required. On power supply capacitance may require a series FET to enable clean hot swap. 12V main limits are the same as dynamic loading

4.2.15 Load Sharing
The 1650W power supply shall current share using voltage droop share. The failure of a module inside the PSU should not affect the load sharing or output voltages of the other supplies still operating. The supplies must be able to load share in parallel and operate in a hot-swap / redundant 1+1 configurations. Must fall within the specification of section 4.2.7 Dynamic Load step.
Open Compute Project ● Project Olympus DX-88 Power Supply Specification

Table 13: Droop Share

| Droop Slope per module | 350mV/44.9A |

Table 14: Load Sharing

<table>
<thead>
<tr>
<th>Total output load</th>
<th>Max current difference between 2 PSU’s</th>
</tr>
</thead>
<tbody>
<tr>
<td><54A/660W</td>
<td>+/- 8.1A</td>
</tr>
<tr>
<td>660W-1320W</td>
<td>+/- 15%</td>
</tr>
<tr>
<td>>1320W</td>
<td>+/- 10%</td>
</tr>
</tbody>
</table>

4.2.16 Timing Requirements

![Figure 6: AC Start Up](image-url)
Figure 7: PS_ON Start Up

Vin (high) → V12 → Alert → PS_ON

Start up waveform (cold start):
- T1A = PS_ON → V12 high
 - min: 80 ms
 - max: 120 ms
- T1B = V12 rise time [10% to 90%]
 - min: 40 ms
 - max: 50 ms
- T1C = PS_ON → Alert high
 - min: N/A
 - max: N/A

Figure 8: Dropout

Vin → V12 → Alert

Hold up time (without battery):
- T2a: AC loss to 120mAmin goes to 11.7V
 - All loading ≤20mA
- T2b: 12V - Alert dips because bulk completely discharged
 - T2c: refer to AC start-up waveform
Figure 9: Re-rush Current Dropout Recovery

Requirements:
- First 2 cycles (10ms) <50% of steady state input current max allowable.
- Next 2 cycles (next 40ms) <150% max allowable
- Next 2 cycles return to steady state

Figure 10: AC Turn Off

Turn off waveform (without battery)

TSA = Vin → V12, until V12 drops to 11.6V
see dropout/hot plug timing

T3B = V12 fall time (voltage must fall monotonically)
min: N/A
nom: 40 ms
max: N/A (within reasonable timing manner)

T3C = V12 – Alert
 timing spec: 4A (or TBD)
Figure 11: PS_ON Turn Off

Figure 12: PS_Kill

Turn off waveform (without battery)

- T3a = PS_ON – V12, until V12 drops to 11.6V (last at 50% loading)
 - min: 30 ms
 - norm: 50 ms
 - max: 100 ms

- T3b = V12 fall time (voltage must fall monotonically)
 - min: 1 ms
 - norm: 60 ms
 - max: NA

- T3c = V12 – Alert timing is NA
5 PSU System Interconnect

This section describes the PSU system interconnect.

5.1 Remote On/Off

The PSU shall be ON when PS_ON is pulled low below 0.8VDC at 1mA or less source current. The PSU shall be powered off when driven to 2.06VDC or higher. Toggling PS_ON will reset the latched fault that held 12V low. However, PS_ON will not reset the latched bits in the PMBUS register after 12V returns. PSON shall be 5V tolerant.

Table 15: Power On/Off

<table>
<thead>
<tr>
<th>Signal name</th>
<th>Input/output to PSU</th>
<th>Open collector</th>
<th>3V3 logic</th>
<th>Signal pull up resistor value</th>
<th>Logic low max (V)</th>
<th>Logic high min (V)</th>
<th>Sink/source current max</th>
<th>Rise time max (usec)</th>
<th>Fall time max (nsec)</th>
<th>Cmax external to PSU</th>
<th>Peak noise (mVpk-pk)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PS_On</td>
<td>In</td>
<td>NO</td>
<td>YES</td>
<td>49.9K</td>
<td>0.8</td>
<td>2.06</td>
<td>N/A</td>
<td>50</td>
<td>100</td>
<td>no</td>
<td>NA</td>
</tr>
</tbody>
</table>

5.2 I-Share

Not available – PSU shall be using voltage droop sharing.
5.3 I2C/PMBus

The I2C address of the PSU shall be 0x80 when address is LOW (at default/open Address pin) and shall be 0xB2 when Address is pulled High (pull up to a 3.3V with a 1K resistor at the system board side).

Table 16: I2C/PMBus

<table>
<thead>
<tr>
<th>Signal name</th>
<th>Input/output to PSU</th>
<th>Open collector</th>
<th>3V3 logic</th>
<th>Signal pull up resistor value</th>
<th>Logic low max (V)</th>
<th>Logic high min (V)</th>
<th>Sink/source current max (mA)</th>
<th>Rise time max (usec)</th>
<th>Fall time max (nsec)</th>
<th>Cmax external to PSU (pF)</th>
<th>Peak noise (mVpk-pk)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SDA</td>
<td>I/O</td>
<td>NO</td>
<td>YES</td>
<td>1K +/-20%</td>
<td>0.8</td>
<td>2.0</td>
<td>6</td>
<td>1</td>
<td>250</td>
<td>120</td>
<td>250mV</td>
</tr>
<tr>
<td>SCL</td>
<td>I/O</td>
<td>NO</td>
<td>YES</td>
<td>1K +/-20%</td>
<td>0.8</td>
<td>2.0</td>
<td>6</td>
<td>1</td>
<td>250</td>
<td>120</td>
<td>250mV</td>
</tr>
<tr>
<td>Alert</td>
<td>Out</td>
<td>YES</td>
<td>YES</td>
<td>100k +/-20% (pull-down)</td>
<td>0.8</td>
<td>2.0</td>
<td>N/A</td>
<td>50</td>
<td>250</td>
<td>250mV</td>
<td></td>
</tr>
<tr>
<td>Address</td>
<td>Input</td>
<td>No</td>
<td>Yes</td>
<td>20K +/-20% (pull-down)</td>
<td>0.8</td>
<td>2.0</td>
<td>6</td>
<td>50</td>
<td>250</td>
<td>NA</td>
<td></td>
</tr>
</tbody>
</table>

5.4 PS_KILL

The power supply shall default to 12V being disabled within 5ms of PS Kill going high. It will be pulled low with 100 Ohm in the system board.

Table 17: PS_Kill

<table>
<thead>
<tr>
<th>Signal name</th>
<th>Input/output to PSU</th>
<th>Open collector</th>
<th>3V3 logic</th>
<th>Signal pull up resistor value</th>
<th>Logic low max (V)</th>
<th>Logic high min (V)</th>
<th>Sink/source current max (mA)</th>
<th>Rise time max (usec)</th>
<th>Fall time max (usec)</th>
<th>Cmax external to PSU (pF)</th>
<th>Peak noise (mVpk-pk)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PS_Kill_EPO</td>
<td>In</td>
<td>NO</td>
<td>yes</td>
<td>10KOhm</td>
<td>0.4</td>
<td>2.0V or NC</td>
<td>0.5</td>
<td>250</td>
<td>2.5</td>
<td>0</td>
<td>NA</td>
</tr>
</tbody>
</table>

5.5 PSU Alert

The signal shall be high until status change of the PSU. The signal shall remain low until the port is read or contents of register returns to original state. Note that PSU Alert shall remain low until Clear_fault commands are sent via i2c to reset it (cycle AC or PS_ON doesn’t clear it) even if fault goes away. For more information, refer to the “Project Olympus Power Supply Software Interface Specification”
Table 18: PSU Alert

<table>
<thead>
<tr>
<th>Signal name</th>
<th>Input/output to PSU</th>
<th>Open collector</th>
<th>3V3 logic</th>
<th>Signal pull up resistor value</th>
<th>Logic low max (V)</th>
<th>Logic high min (V)</th>
<th>Sink current max (mA)</th>
<th>Rise time max (usec)</th>
<th>Fall time max (usec)</th>
<th>Cmax external to PSU (pF)</th>
<th>Peak noise (mVpk-pk)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alert</td>
<td>Out</td>
<td>YES</td>
<td>YES</td>
<td>100k +/-20%</td>
<td>0.8V</td>
<td>2.0V</td>
<td>Note 1</td>
<td>50usec</td>
<td>250nsec</td>
<td>250mV</td>
<td></td>
</tr>
</tbody>
</table>

Note 1: Pull up to 3.3V through 100K ohms

5.6 Power Supply Present (PRESENT#)

It will be pulled low/grounded with 100 ohm internal of PSU. The system board will be pulled up to a 10Kohm resistor.

5.7 Remote Sense

The power supply shall provide positive and negative voltage sense pins.
5.8 Output Connector Pinout

DC outlet and signal connector shall be an FCI PwrBlade 10106262-8004005LF 4HP + 16S +4HP or equivalent.

Figure 14: Output Connector
Open Compute Project • Project Olympus DX-88 Power Supply Specification

Figure 15: Pin Outs

PDF Dwg for connector

PDF Dwg chasis mating connector

Table 19: Output Connector Pinout

<table>
<thead>
<tr>
<th>Pin Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>12.2VDC</td>
</tr>
<tr>
<td>P2</td>
<td>12.2VDC</td>
</tr>
<tr>
<td>P3</td>
<td>12.2VDC</td>
</tr>
<tr>
<td>P4</td>
<td>12.2VDC</td>
</tr>
<tr>
<td>P5</td>
<td>12_RTN</td>
</tr>
<tr>
<td>P6</td>
<td>12_RTN</td>
</tr>
<tr>
<td>P7</td>
<td>12_RTN</td>
</tr>
<tr>
<td>P8</td>
<td>12_RTN</td>
</tr>
<tr>
<td>A1</td>
<td>I2C_SCL</td>
</tr>
<tr>
<td>A2</td>
<td>Analog Return</td>
</tr>
<tr>
<td>A3</td>
<td>I2C_SDA</td>
</tr>
<tr>
<td>A4</td>
<td>PSU_ALERT# Reserved</td>
</tr>
<tr>
<td>B1</td>
<td>I2C Address</td>
</tr>
<tr>
<td>B2</td>
<td>Analog Return</td>
</tr>
<tr>
<td>B3</td>
<td>Reserved</td>
</tr>
<tr>
<td>B4</td>
<td>PSU_PRESENT#</td>
</tr>
<tr>
<td>C1</td>
<td>PS_ON#</td>
</tr>
<tr>
<td>C2</td>
<td>Not Populated</td>
</tr>
<tr>
<td>C3</td>
<td>PSKILL (Short Pin)</td>
</tr>
<tr>
<td>C4</td>
<td>Reserved</td>
</tr>
<tr>
<td>D1</td>
<td>VS(-)</td>
</tr>
<tr>
<td>D2</td>
<td>Not Populated</td>
</tr>
<tr>
<td>D3</td>
<td>VS(+)</td>
</tr>
</tbody>
</table>
5.9 Protection Circuits

Protection circuits inside the power supply shall cause only the power supply’s main outputs to shutdown. The PSU shall continue operating under a fault protection condition and provide communication via I2C to the system and be reported out to the BMC. Loss of internal communication shall be a condition for latching off the output.

When a protection circuit shuts down the power supply, green LED shall change to solid yellow if able otherwise unlighted status.

5.9.1 Over Current Limit (OCL)
The power supply shall provide limited output current to the load for protecting the power supply from damage under indefinite over load conditions. OCL shall be set between 115% and 130% of rated output current. Under an overcurrent condition for over 200ms, the power supply shall employ hiccup mode (200ms on and 2 seconds off) for 5 cycles and if overcurrent isn’t cleared after the 5th cycle, the power supply shall latch off (All timing accuracy above is +/- 20%). For short circuit situations, the power supply may latch off immediately – Alert shall assert within 10mS when short circuit protection (SCP) happens.

5.9.2 Short Circuit Protection (SCP)
For short circuit situations, the power supply may latch off immediately – Alert shall assert right away when short circuit is detected.

5.9.3 Over Voltage Protection (OVP)
The power supply over voltage protection shall be shutdown in a latch off mode upon an over voltage condition. Over voltage is range is 13.6VDC to 15VDC.

5.9.4 Over Temperature Protection (OTP)
The power supply shall be protected against over temperature conditions caused by loss of fan cooling or excessive ambient temperature which could cause internal part failures. In an over temperature condition the PS shall shutdown protecting itself. When the temperature drops to within safe operating limit for internal parts, the power supply shall restore power automatically. The OTP circuit shall incorporate built in hysteresis such that the power supply does not oscillate on and off due to temperature recovering condition. The OTP event shall be reported as a fault condition.
6 FRU Requirements

NA

7 Software Interface Requirements

The power supply shall meet the requirements of Microsoft document: Project Olympus Series PSU Software Interface Specification

Bootloader: Note that PSU shall be capable of bootloading new primary and secondary firmware without interruption of the 12V output. PSU output loading during bootloading shall be 1000W or less. If bootloading while loading is greater than 1000W, PSU may shutdown/12V go low.

8 LED Indicators

The PSU will have 1 dual color LED mounted on the PSU top panel. Following are the LED drivers and power supply LED States:

• Power supply LED states
 Single bi-colored LED configuration (orders by priorities):

 1) Yellow-Green-Yellow-green-repeat(Yellow1Hz, Green1Hz rate): Primary side fault/bad AC input
 2) Blinking Yellow @ 4Hz frequency: Bootloading
 3) Solid Yellow: Secondary/Fan/bootloading Failure and/or loss of 12V
 • (refer to PSU PMbus registers for specific failures)
 4) Solid Green: AC_OK & DC_OK (PSU operating normally)
 5) No LED: Complete loss of AC power

• NOTE: toggling PS_ON/AC input power will reset the solid/blinking yellow fault light but will come up again if faults re-occur.

• Only one of the 5 conditions will be applied at ALL time.

Refer to the mechanical drawing for the location of the LED
9 Mechanical Specifications

This section describes the mechanical specifications.

9.1 Dimensions

The power supply outer dimensions are 40mm X 130mm X 330mm. These dimensions shall include any blind mate, guide, handle or removal feature.
9.2 Lever Arm

The lever arm should be a single piece with the point of rotation near the center of the canister. A standoff on the lever arm will be used to transfer the insertion or removal force.
9.2.1 Over Rotation Prevention
The canister will prevent over-rotation of the lever arm, limiting it to 90° of travel.

9.2.2 Handle Lock
The canister will have snap lock feature to retain the handle in the closed position. The lock will require no additional action to lock other than the closing motion of the lever arm. It is permitted to require an additional action to unlock the handle.

9.3 Connectors

9.3.1 Placement

The placement of the AC and DC connectors should follow the PCB drawing below. The connectors should be recessed within the canister to prevent damage during installation.
10 Operating Environment Requirements

Table 20: Operating Environment Requirements

<table>
<thead>
<tr>
<th>Specification</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inlet Temperature</td>
<td></td>
</tr>
<tr>
<td>Operating</td>
<td>• 35 °F to 113 °F (10 °C to 45 °C)</td>
</tr>
<tr>
<td></td>
<td>• Maximum Rate of change: 18 °F (10 °C) / hour</td>
</tr>
<tr>
<td></td>
<td>• Allowable Derating guideline of 1 °F / 550 ft (0.55 °C / 168 m) above 3000 ft</td>
</tr>
<tr>
<td>Non-Operating</td>
<td>• -40 °F to 140 °F (-40 °C to 60 °C)</td>
</tr>
<tr>
<td></td>
<td>• Rate of change less than 36 °F (20 °C) / hour</td>
</tr>
</tbody>
</table>
Specification

<table>
<thead>
<tr>
<th>Specification</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exhaust Temperature</td>
<td>• Maximum values measured with an air-duct to prevent mixing of air from other sources.</td>
</tr>
<tr>
<td></td>
<td>• 115 °F (46 °C), inlet <= 85 °F (29 °C)</td>
</tr>
<tr>
<td></td>
<td>• 120 °F (49 °C), inlet 85 °F (29 °C) to 90 °F (32 °C)</td>
</tr>
<tr>
<td></td>
<td>• 125 °F (52 °C), inlet 90 °F (32 °C) to 95 °F (35 °C)</td>
</tr>
<tr>
<td>Humidity</td>
<td>• 10% to 90% non-condensing</td>
</tr>
<tr>
<td></td>
<td>• Yearly weighted average: < 80% RH</td>
</tr>
<tr>
<td></td>
<td>• 90% of year: < 80%</td>
</tr>
<tr>
<td></td>
<td>• 10% of year: 80% to 90%</td>
</tr>
<tr>
<td></td>
<td>• Maximum dewpoint: 85 °F (29.4 °C)</td>
</tr>
<tr>
<td>Altitude</td>
<td>• 10000 ft (3050 m) maximum</td>
</tr>
<tr>
<td></td>
<td>• Rate of change less than 1500 ft/min (457 m/min)</td>
</tr>
<tr>
<td></td>
<td>• 30000 ft (9144 m) maximum</td>
</tr>
<tr>
<td></td>
<td>• Rate of change less than 1500 ft/min (457 m/min)</td>
</tr>
</tbody>
</table>

11 Reliability, Warranty, and Service

The following component de-rating guidelines shall be follow an approved Derating Guideline.

The life calculated with the environmental inlet temperature and cycle at power loads of 750W continues load at a nominal of 230VAC input line voltage.

11.1 Reliability

The power supply shall have a minimum reliability at continuous operation of:

- For one power module: 1,000,000 hours MTBF at 275W load with one power supply fault and 30C. Use Telcordia Issue 3 Method 1 case 3 for the calculation.

- Six (6) years operation life.

11.2 Serviceability

Field replacement of power supply unit is required.
Open Compute Project • Project Olympus DX-88 Power Supply Specification

11.3 Power Supply Returned for Repair

Power supplies returned to the vendor for repair, are returned for full credit.

Power supplies returned from vendor repair will be accepted by customer only after the vendor has performed an additional burn-in of 4 hours min. at 45°C ± 5°C at maximum load and has re-tested the power supply following the burn-in.

11.4 Cooling

11.4.1 Fan Speed Control

The PSU shall incorporate a fan(s) for PSU cooling. The Fan will operate at the minimum speed needed to keep all components within the thermal derating levels for all loading and ambient conditions.

11.4.2 Fan Redundancy

If a single fan failure occurs the PSU shall be able to operate up to 1100W. Reliability and derating requirements do not have to be met while operating with one fan.

11.5 Mechanical Shock

11.5.1 Fixturing

The power supply subassembly may be rigidly clamped directly to the shock equipment surface.
11.5.2 Operating
Half sine wave shock ± 5 G, 11 ms duration, half sine wave shock in each direction of three mutually perpendicular axes. There shall be one shock input in each direction of three mutually perpendicular axes for a total of six shock inputs.

11.5.3 Non-operating

11.5.3.1 Half sine wave shock
- 140 G, 2 ms duration, half sine wave shock in each direction of three mutually perpendicular axes. There shall be one shock input in each direction of three mutually perpendicular axes for a total of six shock inputs.

11.5.3.2 Square wave shock
- 40 G, 166 in/sec velocity change, square wave shock in each direction of three mutually perpendicular axes. There shall be one shock input in each direction of three mutually perpendicular axes for a total of six shock inputs.

11.6 Vibration

11.6.1 Fixturing
The power supply subassembly may be rigidly clamped directly to the shock equipment surface.

11.6.2 Operating

11.6.2.1 Sinusoidal Vibration
- 0.25 G zero-to-peak, 10 to 500 Hz, 0.25 oct/min in each of three mutually perpendicular axes. The test duration shall be one sweep from 10 to 500 to 10 Hz in each of three mutually perpendicular axes.

11.6.2.2 Random Vibration
- 0.002 G2/Hz, 10 to 500 Hz, nominal 1.0 Grms in each of three mutually perpendicular axes. The test duration shall be one hour/axis for a total test duration of three hours.

11.6.3 Non-Operating:

11.6.3.1 Sinusoidal Vibration
- 0.75 G zero-to-peak, 10 to 500 Hz, 0.5 oct/min. The test duration shall be one sweep from 10 to 500 to 10 Hz in each of three mutually perpendicular axes.
11.6.3.2 Random Vibration

- 0.008 G2/Hz, 10 to 500 Hz, nominal 2.0 Grms in each of three mutually perpendicular axes. The test duration shall be one hour/axis for a total test duration of three hours.

11.7 Transportation and Handling Robustness

The power supply must have the ability to successfully pass shock and vibration tests. These tests are meant to simulate normal transportation and handling conditions that the blade might encounter.

<table>
<thead>
<tr>
<th>Specification (if applicable)</th>
<th>Packaged/unpackaged</th>
<th>Details</th>
<th>Pass criteria</th>
</tr>
</thead>
</table>
| NA | unpackaged | • Non-operational
• Random vibration, 10-500Hz, 1.87Grms
• 15min/side, 6 sides tested | No visible damage
Blade operational when tested after vibration |
| NA | unpackaged, | • Non-operational
• Square wave
• 32g peak
• 6.85 m/s velocity change
• 6 sides | No visible damage
Blade operational when tested after shock |
| Telcordia GR-63-CORE, Section 5.3.1 | packaged, | • Non-operational
• 1000mm drop
• 13 drops on sides, edges and corners | No visible damage
Blade operational when tested after all shocks |
| NA | packaged | • Non-operational
• 1.146 Grms
• Single blade package
 o 15 mins/side
 o 6 sides tested
• If bulk packaged
 o 1 hour on normal rest surface | No visible damage
Blade operational when tested after vibration |

11.8 Electrostatic Discharge

The power supply shall withstand the following ESD conditions at any point on the power supply enclosure.

- ±8 kV with no abnormal operation, air discharge.
- ±8 kV with no damage to the power supply, air discharge.
• Transients as defined in IEC 801-2, Level 4

The storage capacitance shall be 150 pF and the discharge resistance shall be 330 Ω. The supply shall meet all discharge requirements for the CE Mark designation.

12 Agency Approvals and Product Regulatory Requirements

Components of OCP Project Olympus shall be designed to comply with regulatory requirements mandated by countries where they are deployed.

• Safety Compliance: Components shall be designed to comply with safety requirements outlined in IEC 60950-1 and IEC 62368-1 (mandatory from 2019/6/20) standards, and applicable national deviations (i.e. EN, CSA, UL, etc.).

• EMC Compliance: Components shall be designed to comply with Class A emission limits and immunity requirements outlined in CISPR 32 and CISPR 24 standards, and applicable national regulations (i.e. FCC CFR 47, part 15 in the USA, ICES-003 in Canada, EN 55032 and EN 55024 in Europe, KN 32 and KN 35 in South Korea, etc.).

• Environmental Compliance: Components shall be designed to comply with all worldwide regulations that ban, restrict, or require reporting of hazardous substances (i.e. RoHS Directive 2011/65/EU, REACH Directive 2006/1907/EC (Annex XVII) and Battery Directive 2006/66/EC in Europe, California Proposition 65 in the USA) applicable to server finished goods.

Energy Efficiency Compliance: Components shall be designed to comply with energy efficiency regulations (i.e. Ecodesign regulation 617/2013/EU, annex II, clause 5.2, as applicable to server power supply in Europe).

12.1 Safety Requirements

The following are the minimum product safety compliance regulations that must be met, refer to section 11.8 for full compliance:

• NRTL certificate to UL/CSA 60950-1 and UL/CSA 62368-1 (USA / Canada)
• CB Certificate & Report, IEC/EN60950-1 and IEC/EN 62368-1 (CB report to include all country national deviations)
• GB4943.1- CNCA Certification (China)

Note: Certifications shall be done to the most recent standard editions

In addition to the above mentioned standards, relevant safety certifications must be obtained according to the Country List separately provided by Microsoft.

Each supplier to provide Microsoft with official test reports and certificates.
12.2 Energy Compliance

The power supply and LES shall meet energy requirements set in European regulation 617/2013, annex II, clause 5.2.

In addition to the above mentioned standards, relevant safety certifications must be obtained according to the Country List separately provided by Microsoft.

Each supplier to provide Microsoft with either an internal or third party test report.

12.3 Component Requirements

Following are the component regulation requirements:

- All Fans shall have the minimum certifications: UL and TUV or VDE.
- All current limiting devices shall have UL and TUV or VDE certifications and shall be suitable rated for the application where the device in its application complies with IEC60950.
- All printed wiring boards shall be rated UL94V-0 and be sourced from a UL approved printed wiring board manufacturer.
- All connectors shall be UL recognized and have a UL flame rating of UL94V-0.
- All wiring harnesses shall be sourced from a UL approved wiring harness manufacturer. SELV Cable to be rated minimum 80V, 130C.
- Product safety label must be printed on UL approved label stock and printer ribbon. Alternatively labels can be purchased from a UL approved label manufacturer.
- The product must be marked with the correct regulatory markings to support the certifications that are specified in this document.

12.4 EMC Compliance

The product is required to comply with Class A emission requirements as the end system that it is configured into is intended for a commercial environment and market place. The power supply is to have minimum of 6db margin to Class A.

- FCC /ICES-003 - Emissions (USA/Canada) Verification
- CISPR 32 – Emissions (International) and CISPR 24 (Immunity)
- EN55032 - Emissions (Europe)
- EN55024 - Immunity (Europe)
 - EN61000-4-2 Electrostatic Discharge
 - EN61000-4-3 Radiated RFI Immunity
 - EN61000-4-4 Electrical Fast Transients
 - EN61000-4-5 Electrical Surge
 - EN61000-4-6 RF Conducted
- EN61000-4-8 Power Frequency Magnetic Fields
- EN61000-4-11 Voltage Dips and Interruptions
- *EN61000-3-2 - Harmonics (Europe)
- *EN61000-3-3 - Voltage Flicker (Europe)
- VCCI (Japan)
- KN 32 and KN35 (South Korea)

The EMC standards and regulations mentioned above shall be considered during the course of the design of the component power supply. The latest issued standards and amendments should be referred to in all cases.

While formal government, regulatory certification agency, or third party EMC test lab issued proof of compliance (i.e. certificate, license, etc.) is not required for items such as component power supplies that are not available off of the shelf, proof of compliance might be required for spare parts or components power supply shipped standalone; The component power supply shall not contribute any noncompliant conditions to the end-use product. If at any time it is found that a supplier’s component power supply causes the Microsoft end-use product to fail emissions and/or immunity testing, the supplier will be instructed to investigate and resolve the problem.

Each supplier to provide Microsoft with an official test report containing passing test results for the applicable emission and immunity standards.

12.5 Environmental Compliance

The finished product must comply with the latest editions of Microsoft specifications:

- H00594 MICROSOFT RESTRICTED SUBSTANCES FOR HARDWARE PRODUCTS, and
- H00642 MICROSOFT RESTRICTED SUBSTANCES CONTROL SYSTEM FOR HARDWARE PRODUCTS.

This Finished product must not contain lead, mercury, cadmium, hexavalent chromium, polybrominated biphenyls (PBB) and polybrominated diphenyl ethers (PBDE) in excess of the limits specified in the EU Directive, 2011/65/EU, “Restriction of the use of Certain Hazardous Substances in Electrical and Electronic Equipment” and will not exceed a maximum unintentional or trace allowance defined by the EU Directive 2011/65/EU).

12.6 Markings and Identification

The power supply module nameplate label(s) shall have the following markings at a minimum.

- Supplier’s Company
• Regulatory Model Number (RMN)
• supplier’s Generic Part Number:
• supplier’s Part Number:
• supplier’s Spares Part Number:
• Supplier Revision level
• Supplier Date Code of manufacture
• Commodity Tracking Label, OEM Sub-Assemblies
• Assembly Codes for this supply Country of Manufacture
• All Required AGENCY MARKINGS
• Multi-Lingual Hazardous Cautionary marking
• Electrical Rating: Output rating, Input rating in Volts, Amps, Hertz.
• Hipot marking
• Electric shock warning (lightning bolt marking)
• Crossed out screw driver marking
• All required environmental markings

Table 22: Label

<table>
<thead>
<tr>
<th>Max input current and input voltage per phase</th>
<th>200-240V derive from 346-415V, 3Ø Y, 3W+N+PE, 50/60Hz, 3.5A</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>200-240V derive from 3Ø Δ, 3W+PE, 50/60Hz, 3.5A</td>
</tr>
</tbody>
</table>

13 Quality Assurance and Reliability Provisions
Following are the provisions for quality assurance and reliability.

13.1 AC Inlet and Exterior Face

13.2 Chassis and Chassis Finish

13.3 Power Supply Fan/Location/Orientation
The fan can be located anywhere in the PSU. Airflow will be from the front of the rack to the back end.
13.4 Acoustic Requirement

Fan noise as measured from one-meter distance from the power supply shall be 50 dBA typical, 58 dBA maximum. The test setup shall be as follows: The PS is a desktop module with bystander locations only. The PS is to be placed on a table 28 to 36 inches high with the position of four-(4) bystander microphones. The microphones will be one-(1) meter away, centered on each side, 1.5 meters high, as measured from the floor, and placed at a 30° down angle. The A-weighted (100 -10 kHz) sound pressure must be measured at the four-(4) bystander positions. Sound pressure is a measurement of the total noise at the specified microphone location in the room.

13.5 Materials

All polymeric parts within the enclosure shall be molded from Underwriters Laboratories, Inc. “Recognized” QMFZ2 polymeric material minimally rated 94 V-2.

13.6 Weight

The PSU shall not exceed 7 lbs 0 oz.