

OCP Debug Card with LCD

Spec v1.0

Author:

Whitney Zhao, Hardware Engineer, Facebook

OCP LCD Debug Card Specification Open Compute Project

http://opencompute.org 2

/21/2017

OCP LCD Debug Card Specification Open Compute Project

http://opencompute.org 3

© 2016 Facebook.

As of July 26, 2016, the following persons or entities have made this Specification available
under the Open Compute Project Hardware License (Permissive) Version 1.0 (OCPHL-P), which is
available at http://www.opencompute.org/community/get-involved/spec-submission-process.

Facebook, Inc.

Your use of this Specification may be subject to other third party rights. THIS SPECIFICATION IS
PROVIDED "AS IS." The contributors expressly disclaim any warranties (express, implied, or
otherwise), including implied warranties of merchantability, non-infringement, fitness for a
particular purpose, or title, related to the Specification. The Specification implementer and user
assume the entire risk as to implementing or otherwise using the Specification. IN NO EVENT
WILL ANY PARTY BE LIABLE TO ANY OTHER PARTY FOR LOST PROFITS OR ANY FORM OF
INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES OF ANY CHARACTER FROM
ANY CAUSES OF ACTION OF ANY KIND WITH RESPECT TO THIS SPECIFICATION OR ITS
GOVERNING AGREEMENT, WHETHER BASED ON BREACH OF CONTRACT, TORT (INCLUDING
NEGLIGENCE), OR OTHERWISE, AND WHETHER OR NOT THE OTHER PARTY HAS BEEN ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE.

OCP LCD Debug Card Specification Open Compute Project

http://opencompute.org 4

1. Overview ... 5

2. Block Diagram ... 5

3. Debug card-baseboard Interface/cable .. 6
3.1. Remapped Pin .. 7
3.2. Signal Voltage level .. 7

4. LCD Debug card HW .. 8
4.1. Components .. 8
4.2. Placement .. 9

5. Baseboard HW .. 10
5.1. UART .. 10
5.2. I2C .. 10
5.3. Present Pin ... 10

6. FW design and Interface ... 11
6.1. Roles and communication ... 11

6.2. Communication process.. 13
6.3. LED Panel Content and Display .. 13
6.4. OEM Command Definition ... 21

7. Debug Card ME design .. 24

8. Appendix ... 28

OCP LCD Debug Card Specification Open Compute Project

http://opencompute.org 5

The specification defines the OCP LCD Debug Card.

The LCD Debug Card is intended to improve and replace the existing Bluetooth Debug card.
It carries all the features of the existing Bluetooth debug card. The major improvements
are:

 A text-rich user interface with an LCD

 More baseboard front I/O space

 Improved mechanical design for plug-in and removal

 The electric interface is serialized

Figure 2-1 below is the diagram for the baseboard to the LCD Debug Card. The baseboard
connects to the LCD Debug Card through a USB interface. Figure 2-2 illustrates the
functional block diagram of the LCD Debug Card.

OCP LCD Debug Card Specification Open Compute Project

http://opencompute.org 6

LCD Debug Card will be plugged to baseboard remapped USB3.0 connector through a
ribbon cable (see the picture below).

LXP L64U3005-SD-R or equivalent should be used as the USB cable.

OCP LCD Debug Card Specification Open Compute Project

http://opencompute.org 7

The USB debug connector remaps 5X USB3.0 signals to UART, Present and I2C signals. UART
will pass the console data to debug card; Present pin will tell it’s the debug card or USB
device plugged in; The I2C allows MCU to communicate with either BMC or access post
code through an I2C GPIO expander located on the baseboard. The detailed information for
the remapping is as below:

Pin Number Signal Name New Remapped Pin

1 VBUS VBUS

2 D- D-

3 D+ D+

4 GND Ground for power return

5 StdA_SSRX- SCL

6 StdA_SSRX+ SDA

7 GDN_DRAIN PRSNT

8 StdA_SSTX- UART TX

9 StdA_SSTX+ UART RX

The USB3.0 connector will downgrade to support USB2.0 speed only in order to support
the debug card.

Signal Voltage level

USB3 RX/TX 0.8-1.2v

UART 3.3v

SCL/SDA 3.3v

OCP LCD Debug Card Specification Open Compute Project

http://opencompute.org 8

 Modules

o 7 segment LED

o LCD panel: VO12864T-GFW-B601A from Vitek display is used for the debug
card. It has 128x64 dots and can display 8 rows and 16 letters on each row.

o Bluetooth module RN42

 Chips

o Micro controller. Micro controller communicates with BMC and GPIO
expander on baseboard

o FDTI, UART to USB chip

 Human interface

o Power/Reset/UART select button

o 5-way switch: The 5 way switch allows the user to page up or page down
through the debug information on LED panel as well as switch to different
debug information frames (for example, post code details system
information BMC critical SEL critical sensor user settings).

o Bluetooth on/off switch: turn the battery power on/off to enable/disable
Bluetooth module.

 LED

o MCU HB

 Green, Heartbeat for the micro controller on debug card, blink at 1hz

o Bluetooth LED

 Green, blink at 2Hz if Bluetooth module enabled and no link

 Solid Green when Bluetooth connecting or when data transfer

o Low Battery LED: red LED on when battery lower than 10%; it’s off otherwise

 Connectors

o Micro USB

o USB 2.0 type A connector

o USB3.0 connector to baseboard

 Coin battery: The LCD Debug Card also have chargeable coin battery to supply
power for bluetooth module while debug card is not plugged on a system. The
battery can sustain ~2 hours if fully charged. The LCD Debug Card battery can be

OCP LCD Debug Card Specification Open Compute Project

http://opencompute.org 9

charged through any usb2.0/3.0 port.

OCP LCD Debug Card Specification Open Compute Project

http://opencompute.org 10

UART signal goes to baseboard BMC or Host UART. UART select button is used to switch
between host or BMC UART.

The I2C shall connects to baseboard one of BMC I2C ports and the GPIO expander I2C.

5.3.1. Support LCD Debug Card Only

The present pin has weak pull down at 100K on the baseboard side. Present pin status in
the table below describes which device is plugged to baseboard.

Present pin Status Device plugged to baseboard Implementation on device side

0 USB3 GND

1 LCD Debug Card PU to 10K

0 USB2 or None Weak PD on baseboard side

The baseboard design should disconnect of I2C/UART when the USB3.0 device is plugged in
so different voltage of UART/I2C will not affect the USB3 device. A reference design is
below by using debug card present pin:

OCP LCD Debug Card Specification Open Compute Project

http://opencompute.org 11

5.3.2. Support Both Debug Cards

When the baseboard is designed to support both Bluetooth Debug Card V1 and the debug
card with LCD, besides the usage of the present pin to disconnect the I2C/UART, the
baseboard design should also consider to prioritize the UART paths to/from both debug
cards in case of any confliction. A reference design is below:

There are three roles in this scope: BMC, Debug Card MCU, and GPIO-I2C expander.

OCP LCD Debug Card Specification Open Compute Project

http://opencompute.org 12

6.1.1. BMC (0x20h)

(1) Response the message after receiving the request from MCU (via IPMB).
(2) Send Post Code to GPIO-I2C expander (via GPIOs).
(3) Configure GPIO-I2C expander to input when Debug Card is removed.

*All I2C addresses in this document are stated as 8-bit address.

6.1.2. MCU (0x60h)

(1) Handshake with BMC (via IPMB) to get the post code description, GPIO signal
description, number of Frames.

(2) Query System Post Code from GPIO-I2C expander (via I2C, be an I2C master) and
update ‘POST Frame’ content.

(3) Query GPIO status and update ‘GPIO Frame’ content.
(4) Read the content for all available frames from BMC.
(5) Periodically(every 5s) check with BMC on availability of updated frames and update

content.
(6) MCU will retry 5 times if BMC has no response to the query. After 5 times, it will time

out and MCU will have System Info/Critical SEL/Critical Sensor Frames to display “BMC
disconnected” under the frame title.

6.1.3. GPIO-I2C Expander (0x4Eh)

(1) Get Post Code from BMC (via GPIOs).
(2) Response Post Code or GPIOs status to MCU (via I2C, be an I2C slave).
(3) When debug card is removed, BMC will reset expander and configure all GPIO pins to

input. Only when there is activity for UART select/ Reset / Power buttons, these 3
GPIOs will be configured as output and send the signals out. After that, GPIO pins will
be configured as input again.

OCP LCD Debug Card Specification Open Compute Project

http://opencompute.org 13

6.2.1. Initial process when debug card is plugged in to system

(1) Get Frame Information (01h).
(2) Get GPIO expander IOs description (04h).
(3) Get POST code description (03h).
(4) Get Frame content. Note: Might have to send multiple times for multi-page frames.
(5) Get platform information.

6.2.2. MCU polling BMC run time process: (Loop)

(1) Get update frame status (02h)
a. If it has update frame, send command to get latest content.

(2) Back to 1.

The MCU maintains cached content for all the frames that needs to be displayed on the LED
panel. The user can cycle through all frames by using Detector Switch’s left and right
buttons. Some of the frames might have multiple pages of content, and the user can cycle
through these pages by using up and down buttons.

The MCU handles the pre-defined frames as described below:

The user can view various frames by onboard detector switch that provides four direction
functions: up, down, left, right and one selection function: Select.

6.3.1. Left or Right

The left or right function uses to rotate different frame information to be shown on LED

OCP LCD Debug Card Specification Open Compute Project

http://opencompute.org 14

panel: POST code -> System Info -> BMC Critical SEL -> Critical sensors -> GPIO status ->
User Settings.

6.3.2. Up or Down

The up or down function uses to view multiple pages (if available) in the same frame for
more content.

6.3.3. Select

The select function will be only useful in “User Settings” page to identify user selection.
“User Settings” frame is described in more detail in a later section. In Figure 1 (above), the
arrow from A frame to B frame means that user can switch frame from A to B by controlling
correspond function of detector switch.

The following list shows proposed property and display format of the frame:

 Maximum rows: 8
 First row displays title of subjects and page information with bold character
 Other rows display content

6.3.4. Display Frames

Post code frame and GPIO status frame is defined through MCU as MCU will get the post
code and GPIO status from GPIO expander.

User Setting frame is the only frame that MCU will get the content from BMC to see which
user settings that will be open to user to change.

This spec defines the other frame examples such as Sys-info frame, Critical SEL frame and
Critical Sensor frame. The baseboard BMC FW can define any frames by the needs of each
project.

POST Code Frame

The content of this frame contains 5 pages of POST codes and user readable string

U

5way

2.4
m

9.54

OCP LCD Debug Card Specification Open Compute Project

http://opencompute.org 15

representation for those codes. Since the POST codes are specific to a given platform, MCU
sends IPMB request to BMC to get the look table that shows the association of POST code
and corresponding user readable string. Based on number of POST codes to be shown, this
frame might contain multiple pages of information. MCU will periodically poll the GPIO-I2C
expander and update this frame content (with possibly multiple pages). To provide better
use case, it is suggested to keep the recent POST code at the top of the frame i.e. maintain
reverse-chronological list of POST codes.

Some post code may have different description during different post phases. When debug
card MCU gets post code description from BMC, byte4 will indicate the post code is for
which phase. Pls refer to the command sectin for the details. MCU will based on the phase
information to decide which description should be shown on LCD.

Post Code Frame and buffer will be cleared when the system powered off. MCU gets system
power status by polling Get_Chassis_Status command to BMC. If system status is on MCU
will turn on 7 segment LED otherwise 7 segment LED will be off. If BMC somehow does not
response power status to MCU, MCU will consider the system power status is on by default.

System Info Frame

The content of this frame contains pre-defined key information as below:

 Serial Number
 Part Number
 BMC IP
 BMC FW ver.
 BIOS FW ver.
 ME status
 Board ID
 Sys Conf. info: CPU/Mem/HDD etc. info. An example is :
o CPU: Type/Frequency/Cores
o MEM: Vendor/Frequency/Total memory Capacity
o HDD: Vendor/Model number

 Battery charging status and percentage
 MCU boot loader version
 MCU FW version

OCP LCD Debug Card Specification Open Compute Project

http://opencompute.org 16

Critical SEL Frame

The content of this frame contains all pre-defined BMC critical SELs. The format will not be
same as BMC SEL. It will be short and with extra information for debug. Some pre-defined
critical SEL examples is shown below:

Name Messages

P0 Temp UCR P0 Temp UCR XXC – Assert/Deassert

P1 Temp UCR P1 Temp UCR XXC – Assert/Deassert

Memory loop code DIMM XX initial fails

CATERR/IERR CPUx IERR Ex: CPU0/1 IERR/CATERR or MSMI

Machine Check Error MACHINE_CHK_ERR,Uncorrectable/C
orrectable bank Number XX

XX: total 60 Machine Check Bank
Register Table

Other IIO Error CPU X, Error ID 0xYY – Source X:0/1, YY: Refer to Skylake
EDS, Source: IRP0, IRP1, IIO-
Core, VT-d, Intel Quick Data,
Misc, Reserved
Ex: IIO_ERR CPU 0, Error ID
0x41 – Reserved

PROCHOT# CPU FPH by XXX Assert/Deassert Trigger source:

UV, OC, timer exp, pmbus alert

Memory ECC/UECC DIMMxx ECC/UECC err

Fan Fail Fan0/1 fail

PCIe ECC error XXXX PCIe err Indicate which PCIe slot number

Power Fail XXXX power rail fails Indicate which power rail

OCP LCD Debug Card Specification Open Compute Project

http://opencompute.org 17

Critical Sensor Frame

The content of this frame contains all pre-defined BMC critical sensors. Some pre-defined
critical sensor examples is shown below:

AC lost AC lost

Sys Fan Fan0/1 UCR xxRPM Assert/Deassert Report the fan speed when SEL
logged

CPU0/1 thermtrip CPU0/1 thermtrip Assert/Deassert

Voltage low/high
critical

PXXV lower/upper critical Report the voltage when SEL
logged, Ex: P3V_BAT UCR XXV –
Assert/Deassert

Sensor Name Messages

CPU0 temp P0_TEMP:XXC show “P0_temp XXC/UCT” If out of range and
invert the font

CPU1 temp P1_TEMP:XXC show “P1_temp XXC/UCT” If out of range and
invert the font

HSC Power HSC_PWR:XXX.XW Show “HSC Pwr XXX.Xw/UCT” If out of range
and invert the font

HSC voltage HSC_VOL:XX.XXV show “XX.XXV/LCT” or “XX.XXV/UCT” If out of
range and invert the font

Fan0/1 speed Fan0/1:XXXXRPM Show ”XXXXRPM/UCT” or “XXXXRPM/LCT” if out
of range and invert the font

Inlet Temp Intel_TEMP:XXC Show ”XXC/UCT” if out of range and invert the
font

CPU0/1 VR temp P0/P1_VR_TEMP:X
XC

Show “XXC/UCT” if out of range and invert the
font

CPU0/1 VR PIN P0/P1_VR_Pwr:XX.
XW

Show “XXW/UCT” if out of range and invert the
font

DIMM Temp DIMMXX_TEMP:XX
C

Show ”XXC/UCT” if out of range and invert the
font

Base on platform sensors it will show a group of

OCP LCD Debug Card Specification Open Compute Project

http://opencompute.org 18

If any sensor is out of the threshold, the whole screen should blink and invert the color for
the sensors which out of the threshold. An example is as below:

GPIO Status Frame

The content of this frame contains all the GPIO signal information with user readable GPIO
signal name and its status i.e. ‘CPU_CARERR_MSMI_LVT3_N’. Since GPIO signals are specific
to a given platform, MCU sends IPMB request to BMC to get the look up table that shows
the association of GPIO signal and corresponding user readable string. Based on number
GPIO signals to be shown, this frame might contain multiple pages of information. MCU will
periodically poll GPIO-I2C expander and update this frame content (with possibly multiple
pages).

The following table shows the GPIO pin definitions on I2C expander on platform Tioga Pass:

Bit Usage Messages Direction (In the
perspective of PCA9555)

IO1_0 RST_BTN_N IO1_0:
FM_DBG_RST_BTN

Output

IO1_1 PWR_BTN_N IO1_1: FM_PWR_BTN Output

IO1_2 PWRGD_SYS_PWROK IO1_2: SYS_PWROK Input

IO1_3 RST_PLTRST_N IO1_3: RST_PLTRST Input

IO1_4 PWRGD_DSW_PWROK IO1_4: DSW_PWROK Input

IO1_5 FM_CPU_CATERR_MS
MI_LVT3_N

IO1_5:
FM_CATERR_MSMI

Input

DIMM sensors, eg:

DIMMA_Temp: XXC

DIMMB_Temp: XXC

OCP LCD Debug Card Specification Open Compute Project

http://opencompute.org 19

IO1_6 FM_SLPS3_N IO1_6: FM_SLPS3_N Input

IO1_7 FM_SOL_UART_CH_SE
L

IO1_7:
FM_UART_SWITC

Output

User Setting Frame

The content of this frame contains some boot options for user configuration. Tioga Pass
implements two boot options: power policy and boot order:

Besides the above pre-defined frames, MCU will check with BMC on any other frames to be
displayed. This process involves MCU to get the number of different frames to be displayed
and requesting content for each frame. Since each frame can contain multiple pages, the

OCP LCD Debug Card Specification Open Compute Project

http://opencompute.org 20

MCU shall request the content for all pages for a multi-page frame.

BMC Error Code Frame

If BMC defines some error code for debugging, BMC can also add BMC error code Frame
and let MCU to display. It will show current BMC error code and the description of the
code. It is similar to the Post code frame for host. Each project may implement this frame
accordingly.

6.3.5. ANSI Escape codes

ANSI escape codes (or escape sequences) are a method using in-band signaling to control
the formatting, color, and other output options on video text terminals. To encode this
formatting information, certain sequences of bytes are embedded into the text, which the
terminal looks for and interprets as commands, not as character codes.

The below table shows the detail information of this debug card’s escape sequences (ESC,
ASCII decimal 27 / hex 0x1B) and CSI codes that will be used in this debug:

Escape sequence description example
LCD FW Non-CSI codes
Start with the characters ESC the final byte is technically any character in the range 64–
95 (hex 0x40–0x5F, ASCII @ to ~)
ESC 'B' Battery power percentage;

overwrite the following data

ESC 'U' MCU Bootloader version;
overwrite the following data

ESC 'R' MCU Runtime firmware
version; overwrite the following
data

CSI codes - reference: https://en.wikipedia.org/wiki/ANSI_escape_code
Start with the characters ESC and [(left bracket/0x5B), the final byte is technically any
character in the range 64–126 (hex 0x40–0x7E, ASCII @ to ~)

ESC '[' n 'm' n can be zero or more SGR
parameters separated with ';'.
With no parameters, n is
treated as 0 (Reset)

ESC [5 ; 7 m represent the
following data are Blink and
Reversed;
ESC [m represent the following
data are Reset to normal

SGR (Select Graphic Rendition) parameters
0 Reset / Normal

OCP LCD Debug Card Specification Open Compute Project

http://opencompute.org 21

5 Blink

7 Reverse; swap foreground and
background

The Debug Card sends the IPMB request to BMC, and BMC response the brief message
back according to the request command.

IPMB data format between BMC and MCU:

6.4.1. Request

rsAddr
NetFn /
rsLun

Header
checksum

rqAddr rqSeq cmd
Request data
bytes

(0 or more)

Data
checksum

6.4.2. Response

rqAddr
NetFn
/ rqLun

Header
checksum

rsAddr rqSeq cmd
Completion
code

Response
data bytes

(0 or more)

Data
checksum

Net Function = 3Ch LUN = 00b

Code Command Request, Response Data Description

01h Get Frame
Information

Request:

Byte [0:2] – IANA ID
Response:

Byte 0 - completion code

Byte [1:3] – IANA ID
Byte 1 – Number of Frames

02h Get update Frame
status

Request:

Byte [0:2] – IANA ID

Response:
Byte 0 - Completion Code

Byte [1:3] – IANA ID

Byte 4 –

00h : no update

OCP LCD Debug Card Specification Open Compute Project

http://opencompute.org 22

Net Function = 3Ch LUN = 00b

 01h: the total number of updated frames
Byte 5:N – updated frame number(s)

03h Get POST code
description

Request:

Byte [0:2] – IANA ID

Byte 3 – POST code index
Byte 4 – Post code Phase.

 01h: Phase 1

 02h: Phase 2

Response:
Byte 0 - completion code

Byte [1:3] – IANA ID

Byte 4 – current Post code index

Byte 5 – next Post code index
Byte 6 – Post code Phase

 01h: Phase 1

 02h: Phase 2
Byte 7 – check if it is the last one post code

 00h : this is not the last one of Post code

 01h : The last one available Post code

Byte 8 – length (n)
Byte 9:(n+ 1) - human readable string (ASCII format)

MCU get POST code
description from BMC.
Post code description
definition refer to
BIOS spec.

04h Get GPIO
expander IOs
description

Request:

Byte [0:2] – IANA ID

Byte 3 – GPIO IO index,
10h: PCA9555 P10

11h: PCA9555 P11

12h: PCA9555 P12

13h: PCA9555 P13
14h: PCA9555 P14

15h: PCA9555 P15

16h: PCA9555 P16

17h: PCA9555 P17
FFh: first available pin.

Response:

Byte 0 - completion code
Byte [1:3] – IANA ID

Byte 4 – current GPIO IO index

Byte 5 – next GPIO IO index

Byte 6 – Pin active level
0: low level active

MCU to get GPIO
expander IO pins
definition and
description

OCP LCD Debug Card Specification Open Compute Project

http://opencompute.org 23

Net Function = 3Ch LUN = 00b

1: high level active
Byte 7 – function pin define

 00h: input pin only

 01h: Power button
 02h: Reset button

 03h: UART switch button

 04h~FFh: reserved

Byte 8 – length (n)
Byte 9:(n+ 4) - human readable string (ASCII format)

06h Control Panel
Operation

Request:

Byte [0:2] – IANA ID

Byte 3 – Control Panel Number

 1-based number, 01h is top Control Panel

Byte 4 – Operation

 00h: Get Description

 01h: Select Item

 02h: Back

Byte 5 – Item Number

 00h: Title of Contorl Panel

 Others: Items

Response:

Byte 0 – Completion Code

 C9h: Parameter out of range

Byte [1:3] – IANA ID

Byte 4 – Control Panel Number

 When Operation is 00h, return requested Panel

 Otherwise, return new Control Panel Number

Byte 5 – Item Number

Byte 6 – Length of description

Byte 7:N – human readable description string

MCU only get 1
Control Panel
information at a
time, fetch all items
from item 00h(title)
in the panel, until
Completion Code
C9h(no more item).
BMC will return new
Panel when MCU
send “Select Item”
or “Back” operation,
then MCU can get
the items of new
panel.

05h Get frame from
BMC

Request:

Byte [0:2] – IANA ID

Byte 3 – Frame Number

Byte 4 – Page Number, start from 01h

Response:

Byte 0 - Completion Code

Byte [1:3] – IANA ID

Byte 4 – Frame Number

Byte 5 – Page Number, start from 01h

Byte 6 – Next page number

 FFh: no next page need to be updated

OCP LCD Debug Card Specification Open Compute Project

http://opencompute.org 24

Net Function = 3Ch LUN = 00b

Byte 7 – length

Byte 8:N – frame buffer data (ASCII format), the
max data is 128 bytes for 1 page

Here are some usage scenarios for command o6h:

Get Main panel

Req: Panel 1 Operation 0 Item 0 Res: Panel 1 item 0 “User Setting”

Req: Panel 1 Operation 0 Item 1 Res: Panel 1 item 1 “Power Policy”

Req: Panel 1 Operation 0 Item 2 Res: Panel 1 item 2 “Boot Sequence”

Req: Panel 1 Operation 0 Item 3 Res: No more items (Completion Code: C9h)

User Press button on item 1, Power Policy

Req: Panel 1 Operation 1 Item 1 Res: Panel 2 item 0 “Power Policy”

Req: Panel 2 Operation 0 Item 0 Res: Panel 2 item 0 “Power Policy” (Optional command,
previous response already return the title)

Req: Panel 2 Operation 0 Item 1 Res: Panel 2 item 1 “ Always Power On”

Req: Panel 2 Operation 0 Item 2 Res: Panel 2 item 2 “*Last Power Status”

Req: Panel 2 Operation 0 Item 3 Res: Panel 2 item 3 “ Always Power Off”

Req: Panel 2 Operation 0 Item 4 Res: No more items (Completion Code: C9h)

User Press button on item 3, Always Power Off

Req: Panel 2 Operation 1 Item 3 Res: Panel 2 item 0 “Power Policy” (BMC change the
internally setting)

Req: Panel 2 Operation 0 Item 0 Res: Panel 2 item 0 “Power Policy” (Optional command,
previous response already return the title)

Req: Panel 2 Operation 0 Item 1 Res: Panel 2 item 1 “ Always Power On”

Req: Panel 2 Operation 0 Item 2 Res: Panel 2 item 2 “ Last Power Status”

Req: Panel 2 Operation 0 Item 3 Res: Panel 2 item 3 “*Always Power Off”

Req: Panel 2 Operation 0 Item 4 Res: No more items (Completion Code: C9h)

User Press Left Button, Back to upper control panel

Req: Panel 2 Operation 2 Item 3 Res: Panel 1 item 0 “User Setting” (BMC don’t care the
Item number when Operation is 2h, Back)

Req: Panel 1 Operation 0 Item 0 Res: Panel 1 item 0 “User Setting” (Optional command,

OCP LCD Debug Card Specification Open Compute Project

http://opencompute.org 25

previous response already return the title)

Req: Panel 1 Operation 0 Item 1 Res: Panel 1 item 1 “Power Policy”

Req: Panel 1 Operation 0 Item 2 Res: Panel 1 item 2 “Boot Sequence”

Req: Panel 1 Operation 0 Item 3 Res: No more items (Completion Code: C9h)

Dimension

Back side design: for bluetooth area, there should be a transparent area to let end user to
check the MAC for the bluetooth module.

OCP LCD Debug Card Specification Open Compute Project

http://opencompute.org 26

Color proposal

Art work

OCP LCD Debug Card Specification Open Compute Project

http://opencompute.org 27

OCP LCD Debug Card Specification Open Compute Project

http://opencompute.org 28

 Schematic

 CAD file

 DXF for debug card

 2D/3D drawing for covers

