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Data Center Case Study ~50,000 square foot 
1. Independent Software 

– Asset Tracking/DCIM:  Rackwise 
– Modbus Power Monitoring:  Aperture 
– Infrastructure Management:  Infrastructure Manager 
– Motorola Scanning software 
– Manufacturer Specific Firmware Management: Servertech, Raritan, APC, etc 
– Remote Management:  UCS, ILO, DRAC, Various Blade Center Manager Software 
– Server Management: Altiris 
– Patch Management: Shavlik 
– Proprietary Custom Software 

2. Software Sharing Information 
– Ticketing/Discovery:  Remedy  
– Proprietary Configuration Management Database 
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Data center processes requiring data sharing 
1. Asset/Audit Management 
2. Change Management 
3. Workflow 
4. Incident Management 
5. Resource Management 
6. Capacity Planning 
7. Cost/Depreciation Tracking and Assignment 
8. Server Managment 
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Advantages to a common API 
1. Consistency 

– A common method makes it easy to store data in common or compatible locations 

2. Accuracy 
– Single input of information with fewer conversions makes for more accurate data  

3. Analysis 
– Analysis that is extremely difficult like predictive capacity management is simplified 

4. Efficiency 
– More comprehensive and timely access to sensor data and cooling controls 

5. Flexibility 
– Compatible software from a variety of vendors, and vendor lock in is limited greatly 

6. Security 
– A flexible API with role based permissions that can be granted or revoked as needed 
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Disadvantages to a common API 
1. Yet another management layer 

– If the management layer isn’t robust enough to replace existing tools, it will simply add 
yet another tool, another unused api and another protocol 

2. Security 
– The API will be a large attack surface for infrastructure information and/or control 

3. Flexibility 
– Asking OCP certified hardware to work with the API could slow down development if 

the API wasn’t developed quickly enough 
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What makes RESTful API? 
• The term RESTful has come to really mean Restful HTTP: 

– Uses standard http transport and methods, and stateless communication 
– Encodes data using JSON or XML 
– User can execute using normal OS http  APIs (eg curl…) – no client code required 

• Early RESTful APIs  
– Often just re-implemented commands using http transport 
– URI path, query string, http headers, body data was used various ad-hoc ways 

• More recent REST APIs (“V2”) embrace several ‘commonly accepted’ 
RESTful API principles and best practices---ex:  OpenStack V2 API 

– URI points to the resource or collection--not the action or command.   
– Uses IDs in URI to identify resources or collections (eg sleds, fans, servers)  
– Uses links to associated resources (eg serverNode to sled, dpendent PSUs…) 
– Uses standard http methods appropriately (http GET, POST, PUT, CREATE, DELETE) 
– Supports multiple data representations (json, xml) 
– Uses HTTP headers to negotiate capabilities or program versions 
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Existing state of agent vs agentless management 
1. Reliability 

– Agentless management is always installed, there is almost always exceptions with 
installation of agents 

– Agentless management can monitor internal computer systems invisibly and cleanly 
– Agentless management is normally on and functioning when the system is not. 

2. Flexibility 
– Agentless management can rarely be customized, upgraded, or expanded 
– Agentless management is often limited when not using vendor specific hardware 

3. Security 
– Agentless management is resistant to attacks from its host 
– Multiple external attacks against BMC’s were discovered in 2013 
– Most BMCs must store passwords in clear text  
– Most agentless management has passwords that cannot be easily be changed en 

mass, often leading to duplicate passwords unchanged through staff changes 
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Multiple management protocols will be required 
1. IPMI 

– IPMI is commonly deployed across multiple vendors 
– BMCs will remain in common use in the near term due to advantages in reliability 

2. SNMP 
– SNMP is commonly deployed in power and monitoring systems that will remain in place 

for much of the life of the data center 

3. Modbus 
– Crah and Crac units are commonly monitored and controlled with Modbus 

4. WBEM 
– Microsoft WMI is an implementation of WBEM that will be widely deployed for the 

foreseeable future 
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Options for a common API 
1. Create a new API from scratch 

– No problems with backwards compatibility 
– Complete control of the API 
– Extremely difficult to do correctly out of the box 

2. Adopt an existing open source API 
– Experience gained since the creation of the API is immediately available 
– Must work with existing standards body 
– Inherit limitations due to backwards compatibility 

3. Fork an existing API 
– Benefits of adopting with some of the flexibility of creating your own 
– Possible merge headaches in the future 

4. Open source an existing proprietary API 
– Benefits of forking, but without the problems and benefits of an existing community 
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Rack Management 
• Models for Rack Management in Use  Today 
• Example of Rack Management: Dell DCS G5 
• REST API Analysis 

Paul Vancil 
Dell Data Center Solutions, Architecture Group 
Systems Management Architect 
 



Engineering Workshop 

Topics 
• Three Models for Rack Management in Use 

• Example Rack Management – Dell DCS G5 Rack Management 

• Rack Management RESTful API Analysis 
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Three models for shared Infrastructure management 
1. Shared Infrastructure managed via IPMI BMCs 

– Chassis or rack has shared power supplies, and shared fans 
– Servers have BMCs managed via shared or dedicated NIC on each blade 
– Chassis controller “pushes” shared fan / PSU sensor data to BMCs (via internal chassis bus) 

– User monitors and manages servers and shared resources via BMC (IPMI++) 

2. Central Management – via rack-level management MC 
– Rack has shared power supplies, shared fans 
– Rack has a “Rack Management Controller” 
– All servers and shared components can be managed from the single Rack MC.  

(including console redirect) 

3. Central Management + 1:1 management to BMCs 
– Central Mgt used for automation control and monitoring (model-2) 
– Direct connect to BMC  (model-1)   used for 1:1 server node debug 

▪              1:1 management functions like iKVM, serial console redir 
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Variants to models 1 and 3—IPMI interfaces to BMCs 

• Internal Rack Management Network 
– Rack infrastructure has internal L2 switch that connects to dedicated management port 

for each blade BMC.    
– One uplink out of the rack/chassis provides mgt access to all BMCs in rack. 
– Experience: 

▪ Addresses model-1 cable issues, but 
▪ Most customers don’t like to expose BMCs behind an integrated L2 switch on their DC networks 

• Dedicated vs Shared Network Interfaces: 
– Some customers require dedicated Mgt Network 
– Some customers require shared Mgt Network  

▪ to minimize cabling or TOR port usage 
▪ a lot of problems and workarounds with 10GbE shared interfaces 
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G5 Rack Physical Concept 
• 1-10 blocks with multiple compute or storage sleds 

– 4 (full-width) sleds/block to 12 (1/3rd width) sleds/block 

• 1-2 Power Bays w/ shared PSUs for rack/domain 

• Shared fans in each block 

• Rack Management Controller (RMC) 
– Located in PowerBay 
– Single point of management interface for each rack/domain 
– Rack/domain level management features 

– Rack power-on/off,  power capping 
– Rack Power capping  (rack has a budget) 
– Access to AC sockets, TORs.. From RMC 
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Top-Level G5 Management Architecture 
• Three Level Management Architecture 

• Rack/Domain Level – provides central point of management for rack/domain 

• Block Level – per-block  fan control  +  interface to sleds within the block 

• Sled Level  – sleds may have a BMC for individual per-sled management via front-end network 
− or sleds can be managed from the central management MC   



Engineering Workshop 

G5 Rack Level Management Functions 
• RMC provides basic management of sleds and shared power/fan infrastructure: 

• Sled Power-on/off/reset, serial console redirect, power consumption, FRU inventory, sensor data 
• Shared fan and power supply monitoring and control  
• Rack-level power capping (rack level budget) 

• RMC Interfaces via:    serial port CLI,   telnet/SSH CLI,   SNMP,   and future REST API 
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G5 RMC Software Stack 



RACK 
MANAGEMENT 
REST API 
ANALYSIS 

Topics: 
• Motivation / Objective 
• What is a RESTful API 
• Example APIs 



Engineering Workshop 

Motivation—Addressing Customer Needs  

• Need “Open” API with Rack-level features  not in IPMI 
– Customers currently using proprietary APIs (cli and oem ipmi commands) 

• Need Better API to interface with automation infrastructures 
– Customers currently using CLIs mostly (G5CLI, NCLI, ipmitool) 

• Customer’s prefer a RESTful http API  vs  SMASH2.0, or proprietary 
HTTP-based API 
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Dell DCS RESTful API Objective 

• Embrace Well-accepted RESTful http principles 
• Make it easy to understand and use  -- everything in one online spec 
• Support across multiple platform types and rack mgt models 

– Model-1:  BMCs in shared infrastructure  
– Model-2:  G5 RMC rack-level management (all rack-level mgt features) 
– Model-3:  Consistent resource IDs/links between BMC and RMC interfaces 
– Monolithic servers via BMC 

• Easily extended and  customized for OEM features 
• Open, and industry standard 
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Example APIs – similar to OpenStack v2 APIs 
BaseURI = ^ =  http[s]://<ipAddr>[:<port>]/OcpRest/[<oem>/]v1/Server/1 

APIs: 
• GET ^/servers         # lists server collection: IDs, names, status 
• GET ^/server/<n>         # Get server-<n> details (status/properties) 
• POST ^/server/<n>/action    # execute server action eg power-on 
RqData:  { “ACTION”=“PowerOn” }  #   PowerOn, PowerOff, PowerCycle, Reseat, … 

• PUT ^/server/<n>         #  set config data 
RqData:  { “ASSET_TAG”=“1234”..} #   config data 

• GET ^/fans          # list fan collection:  IDs, name, status . 
• GET ^/fan/<n>         # Get fan<n> details 

• GET ^/psus                  # list Power Supply collection: IDs, status,… 
• GET ^/psu/<n>         # Get PSU<id> details 

• GET ^/rmc/1         # Get RMC properties 
• PUT ^/rmc/1                 #  Set config data 
RqData:  { “property”=”value”,…} #   config data 

• GET ^/sleds                 # List Sled collection: IDs, type, status 
• GET ^/sled/<id>             # Get sled details 
• … 

    <Mgt Access Point >          <program>         <namespace>       <ResourceId > 
                                                                               < & version  >         <MgtDomain> 

Presenter
Presentation Notes
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Options for a API adoption or fork 
1. IPMI 

– IPMI should be fast to develop, and RESTful capabilities would be valuable in IPMI 
– IPMI is widely supported and currently cheap to implement 
– IPMI may not be able to be expanded to suit all use cases. 
– Current BMC’s require backwards compatibility for a long period of time, slowing 

implementation 

2. SNMP 
– Wide adoption in embedded systems 
– Limited capabilities, MIBs are currently problematic 
– Slow implementation of changes due to embedded systems 

3. DMTF CIM compatible standards 
– DMTF standards are paywalled 
– DMTF is slow to implement changes 
– DMTF has a set of APIs that cover a large portion of what we are trying to accomplish 
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Advocacy 
1. Fork DMTF standards and expand to serve our needs 

– CIM is an established standard that can be made RESTful 
– CIM compatible standards WBEM, SMI-S, VMAN, have already done much of the work 

that we will need to accomplish 
– There are already established adapters for IPMI, SNMP, and other protocols 
– WBEM is already supported in both Windows and Linux/Unix. 

2. Submit the OCP Infrastructure API changes upstream to DMTF 
– The standard could be available openly on the Open Compute site and licensed freely 
– Changes could be made quickly, and DMTF adoption wouldn’t slow development 
– Increased compatibility with alternative DMTF standards 

3. Create several discrete compatible APIs for varied functions 
– API is easier to understand and faster to develop 
– Libraries are faster and smaller for embedded systems 
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