

OCP OPENEDGE BBU FOR 5G / IOT / EDGE PROPOSAL

HOWIE GRANAT – Director Business Development / Critical Power

February 2020

CRITICAL POWER SOLUTIONS

Telecom

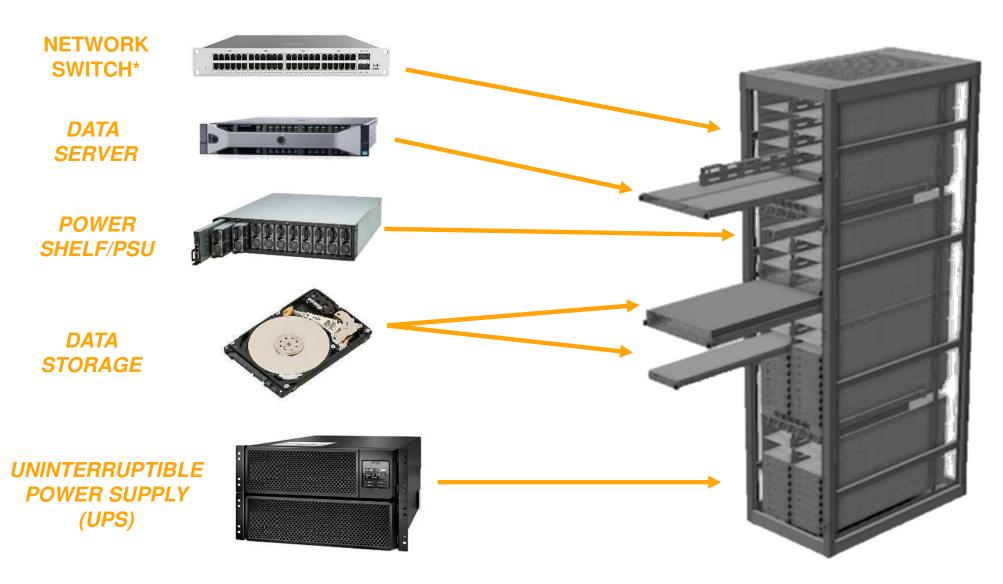
Energy Storage

Data Storage

UPS / Battery Backup

CRITICAL POWER PORTFOLIO

SMALL TO MEDIUM FORMAT, HIGH RELIABILITY


- Typical Applications
 - BBU (Battery Backup Onboard)
 - PSU (Power Shelf Units In Chassis)
 - BBU/PS (Battery Backup/Power Supply)
 - UPS Battery (System Component of UPS System)
- Over 20 programs in production today
 - Builds mostly in China, Malaysia & Mexico
- Voltages from 4V to 48V (Nominal)
- Power range 100 5kW (3kW in production today)
- Current production configurations from 1S1P to 14S6P (Larger configurations in development)
- Predominant construction metal sleds & full metal enclosures
- Volume Ranges (Per SKU) 2.5K to 50K+

TYPICAL VIRTUALIZED SYSTEM

*BATTERY BACKUP OPTIONS IN ALL EXCEPT THE NETWORK SWITCH

OPENEDGE BBU

MARKET OPPORTUNITY AND DETAILS

MARKET INSIGHTS FOR 5G / EDGE / IOT

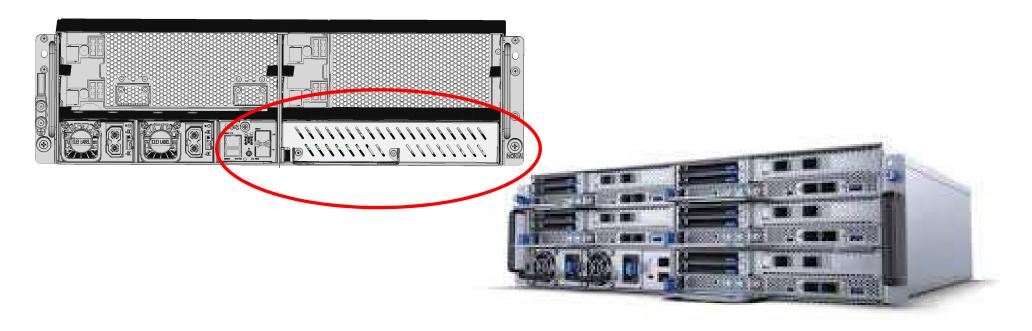
\$700 BILLION BY 2030 (ANNUAL TSP 5G REVENUE)

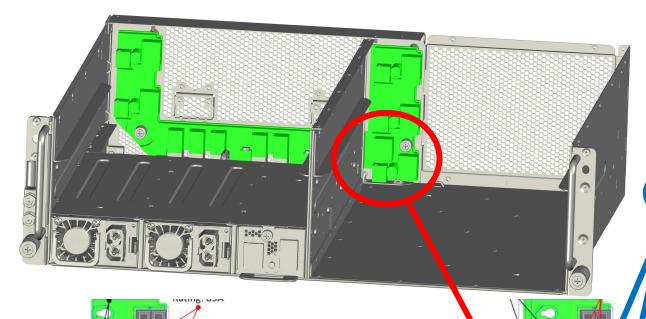
(ERICSSON AND ARTHUR D. LITTLE REPORT)

Industry	MRKT %	CAGR %	Primary Application	Other Applications
Healthcare	21%	75%	Telemedicine	Hospitals
Manufacturing	19%	76%	Automation, A/R	Robotics
Energy / Utilities	12%	67%	Power Generation	Smart Buildings
Automotive	12%	71%	Autonomous Cars	In-Car Entertain
Public Safety	10%	78%	Surveillance	Public Safety
Media / Entertain	10%	86%	Gaming	Advertising
Financial Services	5%	76%	Banking	Securities
Public Transport	5%	65%	Mass Transit	Goods Delivery
Retail	4%	76%	E-Commerce	Stores
Agriculture	2%	85%	Farming, Livestock	Fishing, Hunting

OPTIMIZED APPLICATIONS FOR BBU

FAR EDGE / MISSION CRITICAL / UNRELIABLE POWER


- Minimal Power infrastructure
- Minimal space availability
- Frequent power interruptions
 - Developing Nations
- Challenged Environments
 - Geophysical
 - Nautical
 - Weather
- Graceful Shutdown needs
 - Communication
 - System Auto-Reboot capability
- Multi-Prong deployments
 - Factories, Warehouses, Healthcare/Hospital
- Tower/Pole Mounted Applications


SYSTEM DETAILS

- Systems are physically 3U (5.25") high 19" wide and designed with "sleds" that are 1U or 2U (1.75" or 3.5") high x 8.5" wide and 17.5" deep
- There are effectively 6 sleds in the system, with 1 sled location for the twin (redundant) power supplies (PSU) and a rack management controller (RMC)
- The proposed BBU sled will be 8.45"w x 1.7"h x 17.5" deep
- If incorporated the BBU will reside in the lower right sled location.

OPEN EDGE - CHASSIS

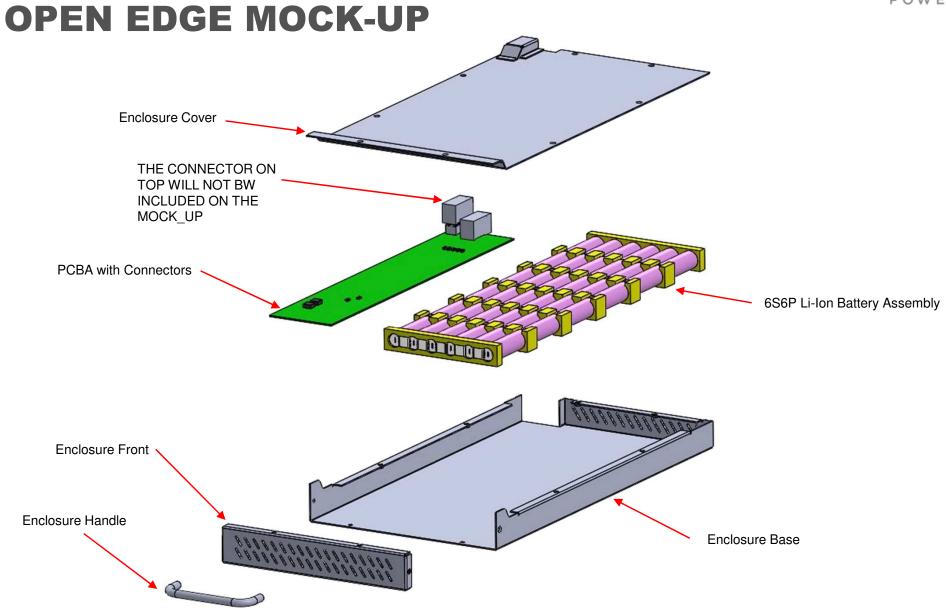
AirMax VS2 (To PDB)

2 power connectors (FCI 10078768-001LHLF)

1 guiding pin (Ostracon D11402-200000-Z1)

1 signal connectors (FCI 10130665-102LF)

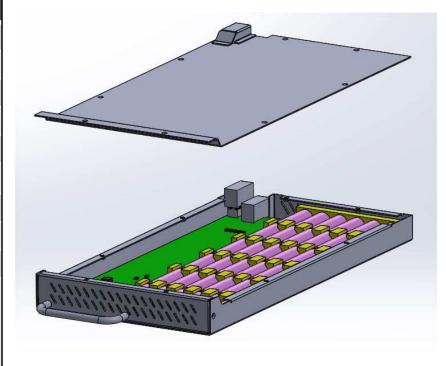
Figure 16 3U backplane connector placement


Guide Pin

13 FEBRUARY 2020 ©2019 INVENTUS POWER

AirMax Power (To PDB) Rating: 40A

PG 10



OPEN EDGE BATTERY BACKUP UNIT SPECS (REV 1.0) **INVENTUS**

ELECTRICAL	
Cell Chemistry	NMC/NCA
Voltage (Nom/Max)	12.0V +/- 0.1V
Energy (Total/Usable)	260 / 220 Whr
Contin. Power / Current	1.6kW / 133A
Peak Power	TBD
Run Time	8 Minutes @ 1600W (Initial – 5 Years = 5 minutes)
Communication Protocol	SMBus
Cycle Life (@25°C)	750 @ 70% of Initial Capacity 5 Year Est'd Life
Scalability	N/A
BMS	Intelligent Microprocessor, Pre-charge, Cell Balancing, Over Voltage, Under Voltage, Over- current, Short circuit, Temperature Monitoring, Data Logging

MECHANICAL				
Dimensions (LxWxH) mm / (in)	427.5(D) x 215(W) x 44.45(H) mm (16.83 x 8.46 x 1.75 in)			
Weight (kg / lbs)	TBD			
Interface	Amphenol ICC (FCI) Airma	x VS2 Power/Signal		
Enclosure	Steel			
Shipping Classification	UN3480, Class 9, UN38.3			
Cooling	Fanless Design			
Contact	Howie Granat – hgranat@i	nventuspower.com		

OPERATIONAL TEMPERATURE RANGE		
Charge	32°F to 113°F (0°C to 45°C)	
Discharge	23°F to 140°F (-5°C to 60°C)	
Storage	-4°F to 140°F (-20°C to 60°C)	

CERTIFICATIONS (Planned)		
North America	UN38.3, UL1973	
EMEA	IEC62619	
Global	UL1642, RoHS, WEEE	

TIMELINE

PROTOTYPE / PILOT / PRODUCTION

- July 2019
 - Preliminary Specifications presented to OCP community
- September 2019
 - Proto Zero / Physical mockup presented at OCP Regional Summit in Amsterdam
 - Preliminary Specifications presented to Open Network Foundation summit
- October 2019
 - Preliminary Quotes presented to Nokia/Asus/Wiwynn
- November 2019
 - Proto Zero / Physical mockup presented at Telecom Network Foundation in Amsterdam
- March 2020
 - OCP Global Summit Request to have a working Proto-One to be able to power an OpenEDGE system (2-3 Units)
- September 2020
 - OCP Regional Summit Prague Proto-One to power an openEDGE system (3 Units)
- January 2021 Agency Certifications in process Pilot Builds
- Q2 2021 Production Ready

ADDITIONAL INFORMATION

- Nokia Airframe application for Smart City Norway
 - https://www.thefastmode.com/technology-solutions/14129-norways-miris-selects-nokia-airframe-open-edge-data-center-for-delivery-of-smart-city-services
- Wiwynn releases EP100 System
 - http://www.wiwynn.com/english/company/newsinfo/2078
- Asus description of their OpenEDGE server offering
 - https://www.youtube.com/watch?v=40X7VdI1Ko8
- Microsoft Nokia collaboration on 5G and IoT
 - https://www.thefastmode.com/technology-solutions/15829-microsoft-nokiacollaborate-on-cloud-ai-and-iot-solutions-for-csps-and-enterprises
- Nokia presentation of OpenEDGE Ecosystem to Open Network Foundation
 - https://www.opennetworking.org/wp-content/uploads/2019/09/2pm-Mike-MooreopenEDGE-Ecosystem-Opportunities.pdf
- Ericsson report on 5G Growth Business segments
 - ..\Open Compute\OpenEdge\the-5g-for-business-a-2030-compass-report-2019.pdf

LET'S DRIVE TOWARD THE EDGE!

FOR SPECIFIC PROJECTS – CONTACT US FOR MORE DETAILS AT HGRANAT@INVENTUSPOWER.COM

13 FEBRUARY 2020 ©2019 INVENTUS POWER PG 15