

OCP STORAGE : THERMAL WORK GROUP THERMAL METHODOLOGY FOCUS PROPOSAL

Paul Gwin, Sr. Thermal Architect

7-30-2020

OCP Storage Thermal – Original Problems to Solve

• 2019: What form factor? (E1.S example but not limited to)

What does it mean to system???

NVM Solutions Group

OCP Storage Thermal – the result?

- Through system level methodology this led to 15mm E1.S
 - + understanding of extensibility in the system (# drives, max pwr, T-rise to downstream components, impedance implications, fan power sensitivities, how a system "sees" the drive)

OCP Storage Thermal – Goals?

• We can choose which level to think at, but the result is very different??

SSD

Without system context, were very limited ~ support 2CFM at 35C

System

System + Methodology Used: Meet system efficiency requirements Requirements that help SSD vendors design Collaboration System OEM/SSD vendor Is this the right direction for a form factor?

OCP Storage – So what level do we want to think at?

- The OCP Storage methodology is how we get there.
- The characterization is a subpart of it, needed, but how we measure it.
- System analysis (methodology) 2 key parts
 - Allows us to be sure about what were proposing as a form factor. An example E.1S 15mm
 - Allows good requirements, collaboration, meeting efficiency requirements now to future.

We need to "keep this methodology"

Backup

Comparison Metrics: T-inlet and Flowrate - How do Designs Compare @ fixed 20W SSD PWR

				Ļ	Ļ	Ļ	Ļ		Ļ
	Width	SSDs / Platform	CFM/SSD	T-inlet "max air temp allowed"	dP SSD (in-H2O)	Platform CFM	PWR/SSD*	Total SSD PWR	Air T-rise
A	9.5	32	2.4	45	.62	76.8	20	640	16.3
В	15	24	3.6	57	.5	86.4	20	480	10.8
С	25	16	6.0	62	.24	96	20	320	6.5

 Metrics provide understanding of an SSD form factor's ability to scale capacity, performance, and cooling when integrated to a platform.

 It also provides insight to which form factor may benefit a platform thermally and or achieve fan power efficiency targets.

NVM Solutions Group

