
Open Composable API

Western Digital – Jeff Nicholson, Mark Miquelon
10.29.2018

Scale-out Data Center Challenges
Why we need an open, composable architecture

Stranded Capacity
• Standardized platforms don’t match application needs exactly
• Resources go underutilized (Idle CPU cores, unused DRAM or SSD capacity)
• Cannot reassign resources where they are needed as trapped in hyperconverged node

Unpredictable Growth
• Hardware deployment decisions must be made long before hardware is used
• Application growth is often unpredictable but hardware capabilities are fixed
• Cannot easily grow or shrink resources to adjust to growth rate

SKU Cancer
• Many unique or customized platforms with continual qualification efforts
• Different HW/BIOS/Firmware/Drivers/OS versions cripple interoperability matrix
• Management scripts constantly need to be adjusted for hardware specific handling

Scale-Out DAS Replacement
How NVMeoF addresses customer objectives

• Flexibility
– Add/Reduce/Reassign storage without reboot
– Applications can move within the rack
– All servers can see all drives
– Apps restart on different server if a server fails

• Simplicity
– Multiple server SKUs reduced to a single model
– Faster development time with less HW variants
– Reduced interoperability matrix to test

• Efficiency
– Partially populate compute & storage enclosures
– Grow compute & storage at predictable intervals
– Mix app types in the cluster (CPU or IO heavy)
– Maximize CPU cycle utilization
– No boot SSDs – Single R/O boot image

2 Ethernet Switches

1 NVMeoF JBOF

32 Servers
No Storage

32 Servers
With Storage

Today
Mix and Match

Tomorrow
NVMeoF + Microsever

Terms

Disaggregation

CPU

GPU
FPGA MEM

Flash

Disk

Pull hardware components from the server
so they can be efficiently pooled

Composability

CPU

GPU
FPGA MEM

Flash

Disk

Orchestrate virtual systems that can be
optimally sized to the task

Composable Device Tenets
All are required for a device to be classified as “Composable”

Self Partitioned • Has capability to partition its resource
• Abstracts the underlying hardware – e.g. SMR/MAMR/HAMR

Device Focus • Device focuses on a single function (i.e. not a system)
• Data services & orchestration happen at a higher level

Fabric Attached • Directly connected to the fabric – Has an address, WWN, etc.
• Ethernet, Infiniband, FC, Gen-Z, PCIe

Disaggregated Resource • Single type of pooled resource
• Storage, compute, network, memory, PDU

Multitenant Sharing • Can share resource partitions with many different initiators
• Enforces fairness / QoS to prevent noisy neighbor challenges

Logical Composability
Virtual systems composed of device partitions

• No physical systems – Only virtual systems – Procured from separate suppliers
• Each element provides a service that is offered over the network
• No established hierarchy – CPU doesn’t ‘own’ the GPU or the Memory
• All elements are peers on the network & they communicate with each other

CPU GPU FPGA MEM Flash Disk

Fabric

Logical Composability

1 1 2 3 4 52 3 4 5 1 2 31 2 3 4 5 1 2 3 4 5

Slices Slices Slices Namespaces Namespaces Namespaces

Virtual System #1

1 11

Virtual System #2

2 21 1

Virtual System #3

3 2 3

Virtual System #4

2 3 4

1 1 112 1 2 13 2 32 3 4

Virtualization VirtualizationVirtualization Virtualization Virtualization Virtualization

CPU GPU FPGA MEM Flash Disk

Open Composable API

• Simple URI patterns for all resources
• Enable rapid discovery of resources
• Reduce complexity in the model
• Aggregated responses from composed devices
• Interactive topology traversal (User at a browser)

REST Schema Guiding Principles

Open Composable API

• Compress the model in 3 ways:
– "Collections" are rolled into the Resource Type as "plural" of the type:
• GET /Volumes returns the full list of Volume Resources
• GET /Volumes/{id} returns the specific Volume instance

– “Management Services" are rolled into the Resource Type:
• Create, Modify, and Delete are executed on the Resource:
• Create: POST /Volumes (params)
• Modify: PUT /Volumes/{id} (params)
• Delete: DELETE /Volumes/{id}

– "Associations" inherently provided by the Resource Type:
• Media contains links to Storage Pools
• Storage Pools contain links to Media that makes up the Pool; contains links to Volumes exported by the Pool
• Volumes contain links to Storage Pools that make up the Volume; contains the links to Storage Endpoints exposing

the Volume
• Storage Endpoints contain links to attached Volumes; contains links to Paths to remote/consuming Hosts
• Paths contain links to Storage Endpoints; contains links to Host Endpoints

CIM Model – Enhancement Opportunities

Open Composable API

• Simplified URI patterns based on Resource-Oriented Architecture (ROA):
– All resources have an address; specific URI to directly get to the resource representation

– All resources provide linkable navigation or associations to other resources

– All resources provide a uniform interface; HTTP GET, POST, PUT, DELETE (HEAD, OPTIONS)

– All resources operate statelessly; no prior or post state requirements (i.e. no sessions)

REST-Based Resource-Oriented Architecture

• HTTP Methods for the “verbs” • HTTP Responses
– 404 Not Found
– 405 Method Not Allowed
– 409 Conflict
– 412 Precondition Failed
– 415 Unsupported Media Type
– 500 Internal Server Error
– 501 Not Implemented
– 502 Service Unavailable
– 503 Gateway Timeout

– 200 OK
– 201 Created
– 202 Accepted
– 204 No Content
– 302 Found
– 304 Not Modified
– 400 Bad Request
– 401 Unauthorized
– 403 Forbidden

– GET (Retrieve)
– POST (Create or Add)
– PUT (Update or Modify)
– DELETE (or Remove)
– HEAD (Ping)
– OPTIONS (Report which Methods are Allowed per Resource Type)

• Also returns Resource Schema in Response Body

Open Composable API

• Uniform Resource Identifiers (URI) are built with the following pattern:
– scheme, host, domain, resources, resourceId, …
– Generic Example:
• GET http(s)://ip:port/domain/resources/resourceID[/resources/resourceID]...

• Physical Storage Platform Example for a specific Platform instance:
– GET https://10.20.30.40/Storage/Devices/5000cca232178670

• Logical/Virtual Storage Volume Example for a specific Open Composable API
instance:
– GET https://10.20.30.40/Storage/Volumes/85023099407f9ac0

• System, Platform, Device, and Component-Level Resource Identifiers
– Noun-based URIs that uniquely identify the managed elements with a domain prefix
– Prefix Types:

• /Storage – Storage Resource Management domain (Platforms, Enclosures, Arrays, HDDs, SSDs, SCMs, Volumes, Pools, Paths, Hosts, Endpoints)
• /Compute – Server Resource Management domain (Compute Server devices, Processors, Endpoints)
• /Network – Network Resource Management domain (Ethernet and Fabric Switches, Ports, Endpoints)
• /System – Physical & Virtual System Resource and Grouping Lists, Overall Converged System Resource Disaggregation Information

URI Structure

scheme host domain resources resource instance ID

Open Composable API

• Needed a way for a composable device to be easily discovered without authentication

• Use REST verbs for discovery

• GET http://<ip>/Query

• Doorbell response provides current API information including the status and version

• Doorbell response provides the "next level" links to go further into the device

• Client walks network subnet with a GET request to each IP Address (very fast)

Fabric Device Discovery (WIP)

{
"Self":"http://<ip>/Query/",
"SchemaInformationStructure":{

"Description":“Open Composable API",
"Version":"0.9.2",
"URI":"/Query/",
"OwningOrganization":“TBD",
"Status":"Preliminary“
},

"SystemPlatforms":{
"Self":"http://<ip>/System/Platforms/",
"Members":[{. . .}]

}
}

