

M.2 Accelerator Module Hardware Specification

V1.0

Author:

Hao Shen

Pavan Shetty

Yueming Li

Harsha Bojja

James Le

Ben Wei

Chengyu Xu

Jeremy Yang

Chris Petersen

1. License

Contributions to this Specification are made under the terms and conditions set forth in Open Compute Project Contribution License Agreement ("OCP CLA") ("Contribution License") by:

Facebook

Usage of this Specification is governed by the terms and conditions set forth in

Open Compute Project Hardware License – Permissive ("OCPHL Permissive")

Note: The following clarifications, which distinguish technology licensed in the Contribution License and/or Specification License from those technologies merely referenced (but not licensed), were accepted by the Incubation Committee of the OCP:

NOTWITHSTANDING THE FOREGOING LICENSES, THIS SPECIFICATION IS PROVIDED BY OCP "AS IS" AND OCP EXPRESSLY DISCLAIMS ANY WARRANTIES (EXPRESS, IMPLIED, OR OTHERWISE), INCLUDING IMPLIED WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, FITNESS FOR A PARTICULAR PURPOSE, OR TITLE, RELATED TO THE SPECIFICATION. NOTICE IS HEREBY GIVEN, THAT OTHER RIGHTS NOT GRANTED AS SET FORTH ABOVE, INCLUDING WITHOUT LIMITATION, RIGHTS OF THIRD PARTIES WHO DID NOT EXECUTE THE ABOVE LICENSES, MAY BE IMPLICATED BY THE IMPLEMENTATION OF OR COMPLIANCE WITH THIS SPECIFICATION. OCP IS NOT RESPONSIBLE FOR IDENTIFYING RIGHTS FOR WHICH A LICENSE MAY BE REQUIRED IN ORDER TO IMPLEMENT THIS SPECIFICATION. THE ENTIRE RISK AS TO IMPLEMENTING OR OTHERWISE USING THE SPECIFICATION IS ASSUMED BY YOU. IN NO EVENT WILL OCP BE LIABLE TO YOU FOR ANY MONETARY DAMAGES WITH RESPECT TO ANY CLAIMS RELATED TO, OR ARISING OUT OF YOUR USE OF THIS SPECIFICATION, INCLUDING BUT NOT LIMITED TO ANY LIABILITY FOR LOST PROFITS OR ANY CONSEQUENTIAL, INCIDENTAL, INDIRECT, SPECIAL OR PUNITIVE DAMAGES OF ANY CHARACTER FROM ANY CAUSES OF ACTION OF ANY KIND WITH RESPECT TO THIS SPECIFICATION, WHETHER BASED ON BREACH OF CONTRACT, TORT (INCLUDING NEGLIGENCE), OR OTHERWISE, AND EVEN IF OCP HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

2. Scope

M.2 is a standard format defined by PCI-SIG. In this document we defines accelerator hardware based on this standard form factor to target use cases need high performance and high density.

3. Contents

1.	License		2
2.	Scope		3
3.	Conten	ts	4
4.	Revisio	n History	5
5.	Overvie	ew	6
6.	System	Block Diagram	7
7.	Module	Hardware Spec	11
	7.1	Pin Definition	11
	7.2	Power Specification	14
	7.3	IO spec	16
	7.4	PCIe Description	17
	7.5	FRU spec	19
8.	PCB Spe	ecification	20
9.	Therma	ll and Heatsink	20
	9.1	Thermal Design Guidelines	20
	9.2	Integrated Heat Sink Requirements for M.2	20
	9.3	Thermal Requirements for M.2 Acceleration Module	23
10.	Quality	and Reliability:	23
	10.1	RDT	23
	10.2	Compliance	25
11.	Prescrib	ped Materials	26
	11.1	Disallowed Components	26
	11.2	Capacitors and Inductors	26
	11.3	Component De-rating	26
12.	Labels a	and Markings	26
	12.1	Data required	26
	12.2	Data format	27
	12.3	Agency Compliance Marks	. 28

4. Revision History

Ver	Description	Author	Date
0.1	Initial version	Нао	3/12/2019
0.2	5: add preference to use standalone EEPROM in module; update system from YV2 to YV2.50; update the PCle switch from PM8535 to PM8545. 7.1: Table 2, call out that JTAG pull-ups and isolations should be added on module. call out that UART isolation should be added on module. 7.2.2: Added slew rate and example to read peak power graph. 7.2.4: Add power down handling part in power section 7.3.1: Clarify that alert pin function is optional 7.3.2: Request SMBus to provide debug info during the early boot phase 7.4.4: Add maximum non-prefetchable bar size 10.2: Call out minimum label size 5x5mm	Team	12/12/2019
1.0	7.3.5: Add section to explain USB port 7.5: Add more descriptions in FRU table 12.2: fix the latch force to 1.0+-0,.15kg	Team	08/11/2020

5. Overview

The high-level hardware specifications are listed below:

Table 1. Hardware Specification Table

Outline	22 x 110mm		
Pin Definition	M.2 22110 Socket 3 key M Pin Definition with some NC pins redefined.		
Board Thickness	0.8mm +- 10%		
Board Layer Count	Maximum 12 layers		
Component Height	2.5mm on top layer and 1.5mm on bottom layer ¹		
Power	10W sustained RMS power, refer to chapter 6.2 for more details.		
PCIE	Gen3/Gen4, 4 lanes, refer to chapter 6.4 for more details		

- 1. Height keepout just defines SMT component. It does not include the heat sink or thermal materials.
- 2. PCIE shall be compliance to PCI Express Base Specification Revision 3.1/4.0

The module includes one ASIC, x2 64bit LPDDR4x DRAMs and supporting circuits. Whole system should contain all the circuits within the M.2 standard form factor and should not request any auxiliary circuit on the system mother board to meet the interface spec.

Fig. 1 dispalys a recommended placement of the M.2 module. The ASIC is expected to be sitting in the center area on top side for the best of thermal purpose. Vendor can adjust the placement based on the trade off between thermal and routing study.



Figure 1. M.2 key component placement drawing

A module is expected to include, but not limited to the following components:

- 1. ASIC to run the workload
- 2. LPDDR4x Chips
- 3. Power Circuits
- 4. SMBus EEPROM or on-chip memory to save FRU information, 8bit SMBus address 0xA6 as defined in NVMe Specification. We prefer standalone EEPROM chip that support at least 400kHz speed. It shall be accessible right way once 3.3V from golden finger is up.
- 5. Storage for boot firmware if needed but NAND Flash is not allowed.

6. System Block Diagram

In this section we describe one use case where M.2 Accelerator modules are plugged into the Glacier Point V2 (GPv2) card. It is a PCIE extension card defined in the Yosemite V2.50 (YV2.50) system. Yosemite V2.50 is a system that is modified from Yosemite V2. For more details you can refer Yosemite V2.50 hardware specification document.

Glacier Point V2 card is the carrier card inserted in the Yosemite V2.50 sled. The following figure shows the carrier card plugged into slots 1 and 3. The carrier card pairs with the twin lake server to form a subsystem. Slot 1 and slot 2 are paird each other. It is the same as slot 3 and slot 4.

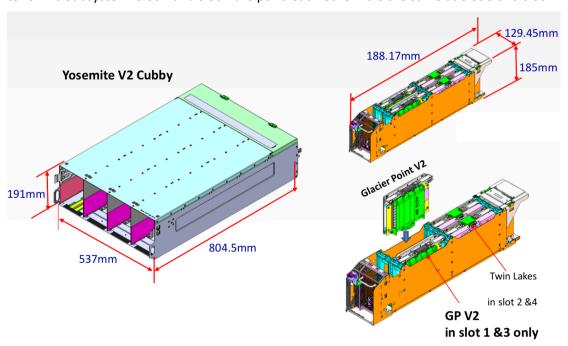


Figure 2. Yosemite V2.50 and Glacier Point V2

Previously we designed GPv1 card which is a M.2 carrier card in YV2 system which supports 6x M.2 cards. In GPv2 design, we have made the following changes to better support accelerator workload.

- Support for up to 12x M.2 cards for each GPv2 card
- Add an PCIe Switch to serve fanout function
- Include bridge micro-controller to manage the sideband of each M.2 card
- Include CPLD to mux UART and JTAG of each module to the debug interface
- Add power switch to each M.2 card to allow control software to perform complete power cycle of each cards, when system is in operation mode

PCIe block diagram is listed in Figure 3. There is a Microsemi PM8545 PCIe switch to fanout 16 PCIe lanes from USP to support up to 12 PCIe Gen3 x4 links at DSP.

Figure 3. PCIe Block Diagram on GPv2 Card

The block diagram of SMBus topology in GPv2 system is listed below. M.2_A through L represent the M.2 connectors. In this graph, SNOWFLAKE represents for bridge IC, which is a microcontroller that manage GPv2 board. INA231 is the voltage and current monitor. PCA9846PW is the SMBus Mux.

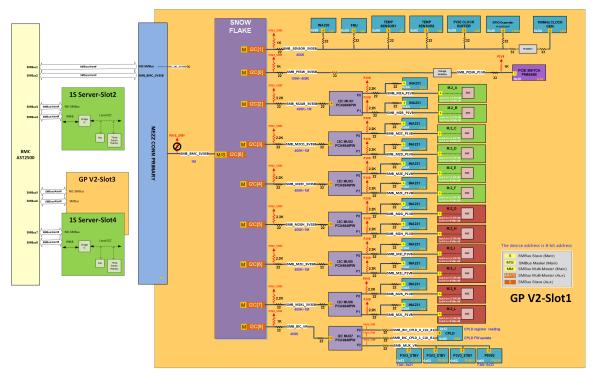


Figure 4. Typical GPv2 SMBus/I2C topology

Yosemite V2.50 design has defined the debug port on the front panel to ensure the accessibility. Meanwhile the remote debug capability is a feature that is useful in the fleet so that we can dump the error log once the system fails without the need for operator intervention.

GPv2 is designed with a common clock topology. The host CPU will provide the clock to all modules through a clock buffer on GPv2 card. PM8545 PCIE switch provides PCIE clock to all M.2 connectors.

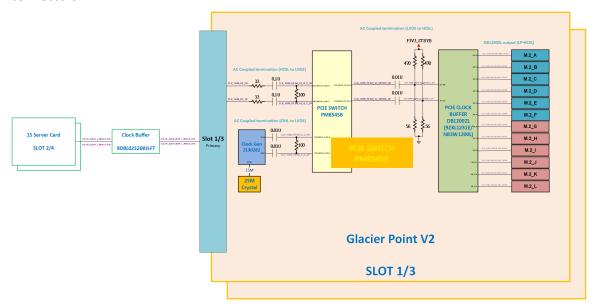


Figure 5: PCIE clock tree

JTAG and UART interfaces are muxed to the system through a CPLD chip. UART ports are connected to both BMC chip and front end debug port on YV2.50 baseboard. The block diagram is listed below:

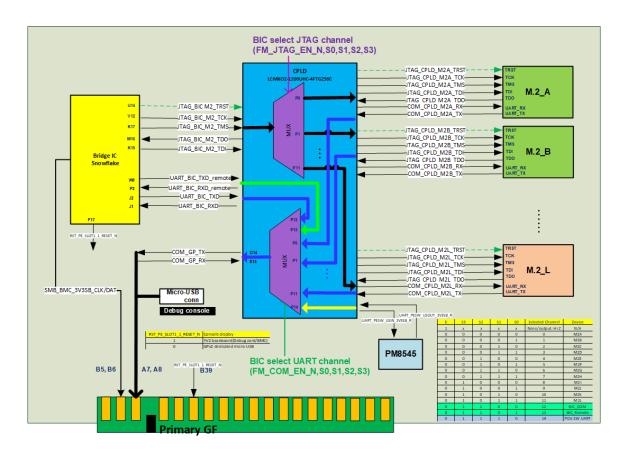


Figure 6. JTAG and UART block on GPv2 board

10

7. Module Hardware Spec

7.1 Pin Definition

M.2					
Signal	Signal Pin Pin Signal				
3.3V	2	1	GND		
3.3V	4	3	GND		
PWRDIS	6	5	PETn3		
PLN#	8	7	PETp3		
LED 1#(0)	10	9	GND		
3.3V	12	11	PERn3		
3.3V	14	13	PERp3		
3.3V	16	15	GND		
3.3V	18	17	PETn2		
TRST	20	19	PETp2		
VIO_1V8	22	21	GND		
TDI	24	23	PERn2		
TDO	26	25	PERp2		
TCK	28	27	GND		
PLA_S3#	30	29	PETn1		
GND	32	31	PETp1		
USB_D+	34	33	GND		
USB_D-	36	35	PERn1		
GND	38	37	PERp1		
SMB CLK (I/O)(0/1.8V)	40	39	GND		
SMB DATA (I/O)(0/1.8V)	42	41	PETn0		
ALERT# (O)(0/1.8V)	44	43	PETp0		
Reserved_UART_Rx	46	45	GND		
Reserved_UART_Tx	48	47	PERn0		
PERST# (I)(0/3.3V)	50	49	PERp0		
CLKREQ# (I/O)(0/3.3V)	52	51	GND		
PEWAKE#(I/O)(0/3.3V)	54	53	REFCLKn		
Reserved for MFG DATA	56	55	REFCLKp		
Reserved for MFG CLOCK	58	57	GND		
ADD IN CARD KEY M			ADD IN CARD KEY M		
ADD IN CARD KEY M			ADD IN CARD KEY M		
ADD IN CARD KEY M			ADD IN CARD KEY M		
ADD IN CARD KEY M			ADD IN CARD KEY M		
NC	68	67	TMS		
3.3V	70	69	NC		
3.3V	72	71	GND		
3.3V	74	73	VIO_CFG_GND		
		75	GND		

Figure 7. M.2 Module Pinout Table

This pinout table and I/O direction is defined in the perspective of module, not baseboard perspective. Pin definition is compatible to PCI-SIG M.2 specification and here we defined several

NC pins mainly for debug purpose. This feature is highly expected to improve the debug capability once hardware is deployed in large scale data center environment.

Table 2. M.2 Module Pinout description

Interfa	Signal Name	1/0	Description	Volta	Requirement
ce				ge	
Power	3.3V(9 pins)	I	3.3V running power source	3.3V	Required
Ground	GND(15 pins)		Ground	0V	Required
	VIO_1V8	I	Reserved 1.8V running power source for future PCI-SIG standard.	1.8V	NC in module, GPv2 platform leave this pin open.
PCle	PETp0/PETn0	0	PCIe TX/RX Differential signals		Required
	PETp1/PETn1	0	defined by the PCIe 3.1/4.0 specification. The Tx/Rx are		
	PETp2/PETn2	0	defined on module perspective.		
	PETp3/PETn3	0	PET is Tx on module and connects to Rx on host. PER is Rx		
	PERp0/PERn0	I	on module and connects to Tx on host		
	PERp1/PERn1	1			
	PERp2/PERn2	ı			
	PERp3/PERn3	1			
	REFCLKp/REFC LKn	I	PCIe Reference Clock signals (100 MHz) defined by the PCIe 3.0/4.0 specification		Required
	PERST#	I	PE-Reset is a functional reset to the card as defined by the PCI Express CEM Rev3.0	3.3V	Required
	CLKREQ#	I/O	Clock Request is a reference clock request signal as defined by the PCIe Mini CEM specification; Open Drain with pull up on Platform; Active Low; Also used by L1 PM Substates.	3.3V	Optional. GPv2 platform leave this pin open.
	PEWAKE#	I/O	Vendor do not need to support this feature	3.3V	Optional. GPv2 platform leave this pin open.
Specific Signals	Reserved for MFG DATA		Manufacturing Data line.		Optional. GPv2 platform leave
	Reserved for MFG CLOCK		Manufacturing Clock line.		this pin open.

	_				
	LED1# (O)	0	LED pin	3.3V	Optional. GPv2 platform leave this pin open.
	ALERT#	0	Alert notification to master; Open Drain with pull up on Platform; Active Low.	1.8V	Required. Refer to Sec 7.3 for more details.
	SMB_CLK	1/0	SMBus clock; Open Drain with pull up on Platform, slave on module	1.8V	Required
	SMB_DATA	1/0	SMBus DATA; Open Drain with pull up on Platform, slave on module	1.8V	Required
USB	USB_D+	1/0	USB 2.0 bus reserved for future application.	N/A	Optional
	USB_D-	1/0	USB 2.0 bus reserved for future application.	N/A	Optional
UART	Reserved_UA RT_RX	I	UART Receiver Pin. It shall connect to the Tx pin on the host side. IO isolation shall be added on module side to prevent leakage	1.8V	Required. Please refer section 7.3 for details.
	Reserved_UA RT_TX	О	UART Transmitter Pin. It shall connect to the Rx pin on the host side.	1.8V	Required. Please refer section 7.3 for details.
JTAG	TDI	1	Refer to JTAG Specification (IEEE	1.8V	Required.
	TDO	0	1149.1), Test Access Port and	1.8V	Please refer section 7.3 for
	TCK	1	Boundary Scan Architecture for definition. The definition is also	1.8V	details.
	TMS	ı	based on module perspective. All pull-ups and isolations (if	1.8V	
	TRST	I	needed) should be implemented on module.	1.8V	
Reserv ed New IOs	PWRDIS	I	Reserved for power disable pin. High: disable power on module. This pin shall be NC on module.	3.3V	GPv2 platform does not support these
	PLN#	I	Reserved for Power Loss notification. NC in module.	3.3V	features.
	PLA_S3#	0	Reserved for Power loss Assert. NC in module.	3.3V	
	VIO_CFG_GN D	0	Reserved for IO configure pin. Connected to ground in module.	OV	

7.2 Power Specification

This section defines the power requirements.

7.2.1 Operating (steady state) Conditions

The M.2 module utilizes a single regulated power rail of 3.3V provided by the platform. The following table specifies the power requirements:

Table 3. Operation Mode Rating

Norminal supply Voltage	3.3V
Supply Voltage Tolerance	+/-5%
ASIC Junction Temperature	7% lower than the lowest throttle temperature specified at Max TDP operating case (e.g. if the throttle temp is 70C then the operating temp would be 65C)

The module shall support Target Performance and higher performance levels in Table 4. Highest performance mode is optional. Module will determine operating TDP mode during power on stage from firmware. This is a static power level. It is not changed during run time through software. It defines the maximum sustained power drawn from the system during normal operation. The module components should be designed to support the highest power level that the module can be used in.

Table 4. Module TDP table

	Target	Higher Perf	Highest Perf
Module TDP*	10W	12W	14.85W
Module Absolute Peak Powe (20μs	18W	20W	24W
on time Duration)			
Module Performance	100% of the	>= 110%	>= 120%
	performance		
(assuming DRAM ECC ebabled)	listed in the SOW		

^{*}TDP: Thermal Design Power, is the sustained average power that the module dissipates while under any work load including synthetic and application work load, 50C local ambient temperature and the ASIC junction temperature defined above.

7.2.2 Peak (instantaneous) conditions

Transient/Instantaneous power spikes allowed in operation are defined by the absolute peak power specification in Table 4. Absolute peak power can vary based on the duration time of the peak power transient load step. Fig.8 represents the curve that defines the peak power vs. load step duration time based on the GPv2 card design and Yosemite V2.50 platform peak power budget. The peak power pulse shorter than $5\mu s$ shall be supported by the capacitor on the module . Fig.8 does not specify for power virus condition, but for peak instantaneous power observed while running application workloads and DRAM ECC is enabled.

Figure 8. M.2 Peak power specification details across load step

For example if the module is configured to operate at 12W TDP, it is allowed to draw 20W peak power for 20us duration. If the peak power duration is expected to last for 40us, the peak power drawn across this should be limited to 17W.

The peak power here is defined at the 3.3V connector input. The decoupling capacitors and PMIC/VR on the module are expected to suppress transients shorter than 5us to peak power of 40W. If higher transient is expected for these short durations at module input, peak power limiting loop shall be fast enough to limit the instantaneous peak power to less than 40W.

The carrier card is designed to support upto 1A/us slew rate per module on the connector input.

7.2.3 Input Capacitance and undervoltage specification

Input capacitance on the 3.3V connectors should be limited to less than 1mF per M.2 module. Device UVLO (minimum voltage for M.2 VR to turn on) should be set to greater than 2.8V to ensure power on ramp time meets PCIE ramp spec and does not stress load switch in addition to inrush. Power tree to derive the 3.3V from 12V is described in Fig.9. Power sensors used here are capable of sensing only sustained load (>100ms sampling after averaging).

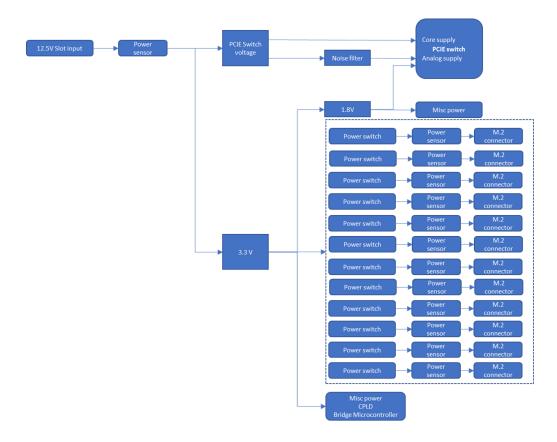


Figure 9. M.2 Power supply configuration on GPv2 carrier card

7.2.4 Power Up/Down Sequence

Module and platform shall follow the standard M.2 power up/down sequence at interface. Module shall manage the power up and power down sequence of SOC, DRAM and other ctirical components by its own. Module shall not expect any special signal from inband or out of band to help manage the power up or power down sequence.

7.3 IO spec

7.3.1 ALERT#

The ALERT# pin connects individually to the Bridge IC as shown in Fig.4. It is optional requirement that ASIC could assert this pin to low once the catastrophic failure happens. Noted that system will not trigger any interrupt event that powers off ASIC module based on this pin.

7.3.2 SMBus

Module shall be SMBus/I2C slave to the host with 7 bit address 0x6A which is defined in NVMe base command part. FRU information shall be stored in either an EEPROM on PCB or a on-chip memory in ASIC, at 8 bit address 0xA6. This bus shall support 100kHz, 400kHz and 1MHz mode. The ASIC could run at either 400kHz or 1MHz by default depends on system and module design.

ASIC SMBus shall be active at the early boot phase so system BMC can access this interface without needing to wait for driver loading.

7.3.3 **UART**

We define 1.8V signaling level UART. Baud rate is 57600. Module shall have isolation circuit to this port to avoid current leakage once IC is not powered.

7.3.4 JTAG

JTAG interface should be compliant to IEEE standard 1149.1. Module shall buffer this interface to avoid current leakage once IC is not powered. All the pull-ups shall be added on Module side.

7.3.5 USB

USB port is an optional debug port in accelerator design. The requirement for USB port is same as M.2 spec. The USB interface supports USB 2.0 in all three modes (Low Speed, Full Speed, and High Speed). Because there is not a separate USB-controlled voltage bus, USB functions implemented on a PCI Express M.2 Adapter are expected to report as self-powered devices. All enumeration, bus protocol, and bus management features for this interface are defined by Universal Serial Bus Specification, Revision 2.0. Module shall isolate this interface to avoid current leakage once IC is not powered.

7.4 PCle Description

7.4.1 Physical interface

Module PCIe physical interface shall be compliant to PCI-SIG CEM specification 3.0. If the module is capable to run at Gen4 speed, the interface shall be compliant to PCI-SIG CEM Specification 4.0.

Module shall also support x4 bifurcation (lane 0-3) automatically once plug in to the system.

Module shall support PCIe lane and polarity reversal. Module should support 0->3 to 3->0 lane reversal.

Module PCIe interface shall support common clock topology with Spread Spectrum Clocking (SSC). SSC's modulation frequency is from 30-33KHz with -0.5%-0% deviation. Separate Reference clock topology support is a preferred but not required.

Module PCIe link loss, including the package loss and trace loss on PCB, shall be less than 5dB at 4GHz for Gen3 case. Link loss for Gen4 case is defined to be less than 7.5dB at 8GHz. PCIe line shall target 85ohm impedance which is the same as platform. Module could be placed very closely to upstream port. So module shall support very short channels and long channels.

7.4.2 PCle power-up timing

The power-up timing of PCIe functions shall follow CEM specification 3.0. Here is the drawing copying from CEM spec:

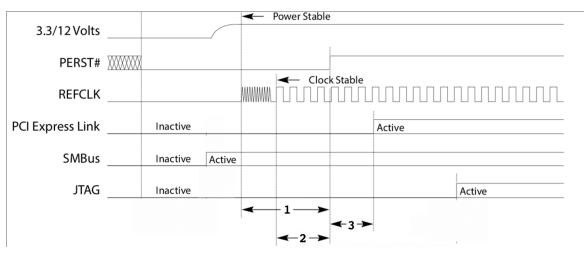


Figure 10: PCIE Power Up Timing

Timing Notes:

- 1- Minimum time from power rails within specified tolerance to PERST# inactive (T_{PVPERL}): T_{PVPERL} >100ms
- 2- Minimum clock valid to PERST# inactive(T_{PERST-CLK}): T_{PERST-CLK} > 100us
- 3- Minimum PERST# inactive to PCI Express link out of electrical idle:
 - a. Link LTSSM must enter detect state within 20ms from PERST# being deasserted. This implies that any PHY settings need to be applied to the PCIe PHY before this timing requirement has been exceeded. Caution should be taken here as this may require a boot ROM to execute and/or information to be loaded from SPI flash as well as a reset sequence applied to the logic for it to take effect.
 - Link must be ready for configuration request within 120ms from PERST# being deasserted.

7.4.3 Reset Mechanisms

The module shall support the following reset mechanisms when the module POWER GOOD indicates that power supplies are stable.

Out of band:

Cold Reset: Signaled by module power good transition from low to high, followed by PCIe PERST# transition from low to high (refer Fig. 10). This is the cold boot scenario for the module and a fundamental reset as defined by the PCIe specification.

Warm Reset: This is signaled by a transition in PERST# without any transition on module POWER GOOD. Warm Reset behavior shall follow PCIe specification.

In Band:

PCIe hot reset: This is signaled in band as per the PCIe specification and the device should respond as per the specification.

PCIe Function level reset: This reset is also signaled in-band and the device should meet all the requirements of the PCIe specification.

In addition, as this module will be used in light out datacenters, we need to have the ability to monitor device health and status using the out of band interface. To meet this requirement the module needs to be able to respond to reads over the OOB interface while it is under all resets (except COLD RESET). The accelerator shall respond in one of two ways:

- Return valid data
- Signal device not ready over the SMBus/i2c protocol

7.4.4 PCIe Configuration

The module shall be configured as a PCIe end-point device. Additionally, the ASIC PCIe controller shall support the following:

- 1. PCIe class ID shall be set as 0x12
- 2. A Max Payload Size (MPS) of >= 256 Bytes
- A Max Read Request Size (MRRS) of >= 512 Bytes
- 4. At least one BAR shall be pre-fetchable, 64bits, and configurable to be at least 1GB in size
- 5. Maximum non-prefetchable BAR size shall not exceed 128MB in total
- 6. The DMA engine shall be capable of saturating at least the PCIe gen4 x4 connection and ideally the full PCIe BW.
- The DMA engine shall be capable of mapping to all of host memory and the ability to map
 the majority of the memory on the module with certain memory regions mapped out due
 to security concerns.
- 8. The DMA engine shall support a link latency of >= 1us.
- The DMA engine shall support the ability for software/firmware to enable/disable PCIe MSI/MSI-X interrupts per DMA command and programmatically map the interrupts to either the host or internal CPU cores so that it is possible to chain multiple PCIe commands together.

7.5 FRU spec

Vendor's FRU is stored in an EEPROM or memory area within the ASIC that can be accessed from sideband SMBus line at 8bit address 0xA6. The FRU format should follow *IPMI Platform Management FRU Information Storage Definition 1.0, Version 1.2.* FRU shall support two byte address and FRU content shall start from 0x0000. The FRU template is listed in table 5.

Table 5. FRU Required Fields

Organization	String
Board Info Area	
Language Code	19h (english)
Board Mfg Date	[Generate build time]
Board Mfg	Defined by vendor
Board Product	Project Code Name
Board Serial Number	Defined by vendor
Board Part Number	Defined by vendor

Fru File ID	Defined by vendor
Custom Field 2	Accelerator M.2
Product Info Area	
Language Code	19h (English)
Product Manufacturer	Defined by vendor
Product Name	Defined by vendor
Part/Model Number	Defined by vendor
Product Version	Defined by vendor
Product Serial Number	Defined by vendor
Product Asset Tag	Defined by vendor
Product Build	EVT (or DVT, PVT)

8. PCB Specification

Refer to PCI Express M.2 Specification Revision 1.1 for PCB outline mechanical specification.

HDI type PCB manufacturing is expected here to support high density routing and high density BGA package of ASICs. Vendor could use OSP or ENIG surface finishing on PCB except the golden finger area. Latch pad should be plated. Solder cover is not allowed on latch pad.

9. Thermal and Heatsink

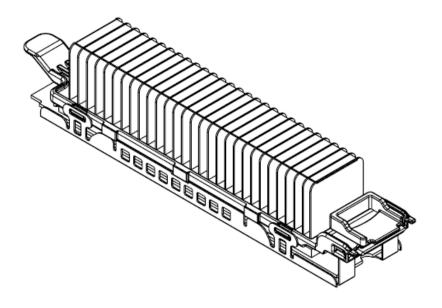
This section defines the thermal and heatsink design guidelines and specifications.

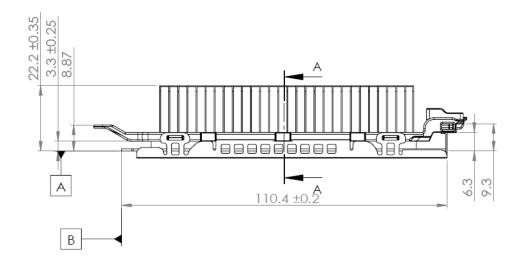
9.1 Thermal Design Guidelines

To improve thermal efficiency, the module shall be fully enclosed by a metal case with a module-level heat sink on the ASIC side. Heat sink dimensions and the associated thermal design requirements need to comply with platform that take the module. Both the module and the heat sink solution for the module shall be provided by the module supplier.

9.2 Integrated Heat Sink Requirements for M.2

This section specifies the dimensions for the integrated heat sink solution for the M.2. A reference design is shown in Fig.11. Latch material is PA9T. The supplier is encouraged to use their own module design which meets the mechanical dimension requirements. We define a latch design in this spec where the latch actuation must be 1.0±0.15 kfg when the latch is fully pressed with 2.5mm travel distance.





Figure 11. Reference Design for M.2 Integrated heatsink

The heat sink's dimensional requirements for M.2 accelerator module are listed as below:

- Norminal height from PCB top surface to heat sink top is 21.4mm, which consists of height
 of heat sink, TIM (thermal interface material) and SMT components on top side.
- Norminal height from PCB bottom surface to bottom case is 2.4mm, which consists of thickness the metal case, TIM and SMT components on bottom side (if any).
- To provide easy access to connector side and platform integration, the heat sink base of the module shall be die-cast and follow latch design requirement.
- Norminal width of the integrated heatsink shall be kept at 23.4mm for a M.2 module.

The heatsink should follow below tolerance requirements to allow easy installation into the chassis as shown in Fig. 12.

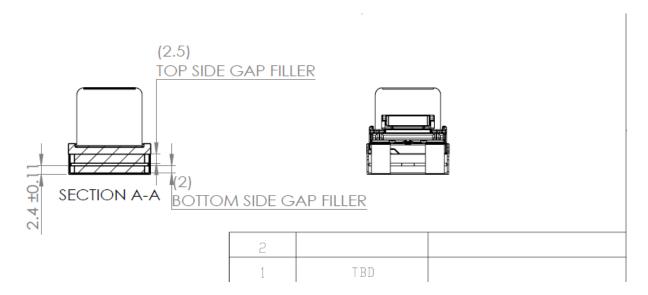


Figure 12. Integrated heatsink dimensions

22

9.3 Thermal Requirements for M.2 Acceleration Module

The module shall meet the thermal requirement that is defined by the platform. The module shall meet the thermal requirement that as defined by the platform. Specific requirements such as airflow and approach air temperature will be platform specific.

All the temperature values reported by module shall hold at least $\pm 2^{\circ}$ C accuracy. $\pm 1^{\circ}$ C accuracy is recommended. The ASIC's module-to-module temperature reporting variation shall be $\pm 2^{\circ}$ C with $\pm 1^{\circ}$ C recommended. Two different modules shall not report temperature greater than 4° C apart under the same environmental conditions, slot location, and workload.

10. Quality and Reliability:

Module and ASIC are expected to demonstrate RDT, Compliance, Robustness, Environmental specifications, and Component qualification. A mix of industry product quality standards (JESD, ASTM, EIA, ISTA etc.) that go above and beyond industry standards are required to be completed and demonstrated as part of product quality reliability, and performance.

10.1 RDT

10.1.1 Quality RDT

Hardware component validation, firmware functionality check, as well as product reliability are the key aspects of Reliability Demonstration Test (RDT). The module is expected to demonstrate MTBF (Mean Time Between Failure) of minimum 2.5 million hours in order to assess product early-life quality and potential failure modes. System integrator is expected to be provided with demonstrated MTBF estimates to include sample size, allowable functional failures (1), stress profile (per JESD218A, JESD219A workloads and temperature conditions) at 60%, and 90% confidence level Weibull modeling. Planned and Un-planned power loss scenarios are to be accounted as part of MTBF demonstration.

10.1.2 Performance RDT

Module should run work load that can stress the ASIC, DRAM, and PCIE interface. Module vendor would be required to provide the work load for this purpose. Associated test conditions, performance criteria, and duration for this test depends on project requirements.

10.1.3 Environmental, and Compliance Specifications

Environmental, compliance specifications, and product robustness requirements are listed below so as to ensure that the module/FRU (with Integrated Heat Sink) level requirements are met, and the product functions as expected with no allowable failures post testing.

Table 6. Q&R testing requirement

Module Stress Test	Test Criteria	Standards (As applicable)	Sample Size
Operational Vibration	2.17 G _{rms} , 5-700-5 Hz, all three axes	EIA-364-28	22
Non- Operational Vibration	3.13 G _{rms} , 5-1500-5 Hz, all three axes	EIA-364-28	22
Non- Operational Shock	1250G, 0.5ms, 6 drops, all three axes	EIA-364-27	22
Insertion	300 cycles (plating and power on check every 50 cycles)	EIA-364-09	5
EMC Emission and Immunity		CISPR 22/24, EN55022:2010 +AC:2011, ENTT032:2012 +AC:2013, EN55024:2010 EN 6100-3-2:2014 EN 6100-3-3: 2013 Class B	6
Electrostatic Discharge	± 4kV Contact Discharge ± 8kV Air Discharge	EN55024:2010	6

Module FRU Stress Test (with IHS)	Test Criteria	Standards (Applicable)	Sample Size
Operational Vibration	0.5 G _{rms} , 5-500-5 Hz, all three axes	EIA 364-28	22
Non- Operational Vibration	1.5 G _{rms} , 5-500-5 Hz, all three axes	EIA 364-28	22
Operational Shock	6G, 0.5ms, 6 drops, all three axes	EIA 364-27	22
Non- Operational Shock	70G, 0.5ms, 6 drops, all three axes	MIL-510	22

Package	1.146 G _{rms} , 2-200-2 Hz, all	ISTA 3E 06-06	10 per tray,
Vibration	three axes	13177 32 00 00	4 trays
Package Drop	8-inch drop	ISTA 3E 06-06	10 per tray, 4 trays
Package Compression	Maximum compression loading on a bulk pack	ASTM D 642-94	1
Thermal Shock (Non- Operational)	-40°C to 85°C, 500 cycles (1 Cycle = 5°C to -40°C at ramp 5°C/min, dwell at -40°C for 30 min, -40°C to 85°C at 5°C/min ramp, dwell at 85°C for 30 min, and ramp down to 5°C)	EIA 364-32	22
High Temperature Humidity (Operational)	50°C(local ambient temperature at the module), 90% RH, 500 hours	EIA 364-31	22
Temperature/V oltage Characterizatio n (Operational)	5°C to 50°C (local ambient temperature at the module), Vcc ±x% (per spec), 500 hours		22
Operational Altitude	0 ft to 10,000 ft		12
Non- Operational Altitude	0 ft to 30,000 ft		12
Power Cycle (AC, DC, Reset)	500 cycles each		22

Note: We recommend using of at least 3 units from the sample size listed above to be subjected to waterfall model reliability testing (using select few tests from above).

10.2 Compliance

North America

- FCC: Verification tests only per FCC Part 15 standard. No FCC certification is needed
- **UL:** RU mark is preferred

EU

• CE mark: Add CE mark on the accelerator module

• **EMC Directive**: 2014/30/EU- Test partially as applicable

• ROHS Directive: 2011/65/EU

• **WEEE mark:** WEEE mark on the accelerator module

APAC

No specific certification is needed

11. Prescribed Materials

11.1 Disallowed Components

The following components shall not be used in the design of PCB board:

- Components disallowed by the European Union's Restriction of Hazardous Substances
 Directive RoHS 2 Directive (2011/65/EU)
- Trimmers and/or potentiometers
- Dip switches

11.2 Capacitors and Inductors

The following limitations apply to the use of capacitors:

- Only aluminum organic polymer capacitors made by high-quality manufacturers are used; they must be rated 105°C.
- All capacitors have a predicted life of at least 50,000 hours at 45°C inlet air temperature, under the worst conditions.
- Tantalum capacitors using manganese dioxide cathodes are forbidden.
- SMT ceramic capacitors with case size > 1206 are forbidden (size 1206 are still allowed when
 installed far from the PCB edge and with a correct orientation that minimizes the risk of
 cracking).
- Ceramic material for SMT capacitors must be X5R or better (COG or NP0 type are used in critical portions of the design). Only SMT inductors may be used. The use of through-hole inductors is disallowed.

11.3 Component De-rating

For inductors, capacitors, and FETs, de-rating analysis is based on at least 20% de-rating.

12. Labels and Markings

This specification describes label requirements for SSD/Accelerator components used in systems. SSD/Accelerator products include PCIE add-in cards, flash drives in 2.5" form factor, flash drives in M.2 form factor and accelerator hardware in M.2/Dual M.2 form factor.

12.1 Data required

- Manufacturer name
- Country of Origin

- Date code of manufacture, includes year & work week
- Product number = same number used to order product from supplier
- Serial number: unique to each product
- Firmware revision
- Hardware revision
- Capacity of card (GB): total data space (system + user), total user space, or user space less OP. (This request is for storage product only)
- PCB Vendor name

We might need to apply TIM (gap pad) material on top of high heat dissipating components such as ASIC, NAND flash and controller on either side of the card. Any standard product labels applied on those parts will be obscured by the TIM, so the supplier should install additional labels that contain the Serial Number and the Product Number (same PN used for ordering and stored in the SMART data table. The additional labels can use 2D barcodes to save space. 2D bar codes should have human readable text placed in the margin. 2D barcodes should not have any spaces, but dashes are acceptable.

In another case we may have integrated heat sink that encloses module. In this case the label should be attached on bottom of integrated heat sink.

12.2 Data format

- Human-readable. Font size: 10 or larger. Some data on 2D labels can be size 6
- Barcode. 1D and 2D acceptable. Minimum feature (line width): 10 mils. Minimum bar code size is 5x5mm.
- Electronically readable, e.g. SMART data table
- Motorola/Zebra readers
 - Motorola CS4070
 - Motorola Symbol DS3578-SR
 - Zebra DS3678-DP

Table 7. Label Requirements

	Requirement		
Data	Human Readable	Barcode	Electronic
Product name	Х	Х	Х
Capacity ()			
Serial Number (Human Readable)	Х		Х
Serial Number (Barcode)		Х	
Sub-assembly No. (Human Readable)			
Sub-assembly number (Barcode)		Х	
PCBA Number			
LBA			
Country of Manufacture	Х		

Model String	х	Highly Wanted	Х
Warranty Disclaimer			
WWN Worldwide Name (human Readable)			
WWN Worldwide Name (Barcode)			
Firmware Version	x		Х
Canadian String			
Manufacturer Name	х	X	X
PCB Vendor		X	Х
Date code		Х	Х
PSID Human readable			
PSID Barcode			
Production Date Code	Х		Х

12.3 Agency Compliance Marks

Module supplier should ensure its products comply with all applicable certificate(s) or verification among the following requirements.

EMC/Safety

- NRTL component level certification
- CE mark based on Directive 2014/35/EC and 2014/30/EU
- FCC verification
- VCCI
- Korea KCC certification
- Taiwan BSMI

Environment regulations

- ROHS Must be free from hazardous substances prohibited by the RoHS Directives of the EU (European Union)
- China RoHS
- Taiwan RoHS
- WEEE mark
- Halogen Free