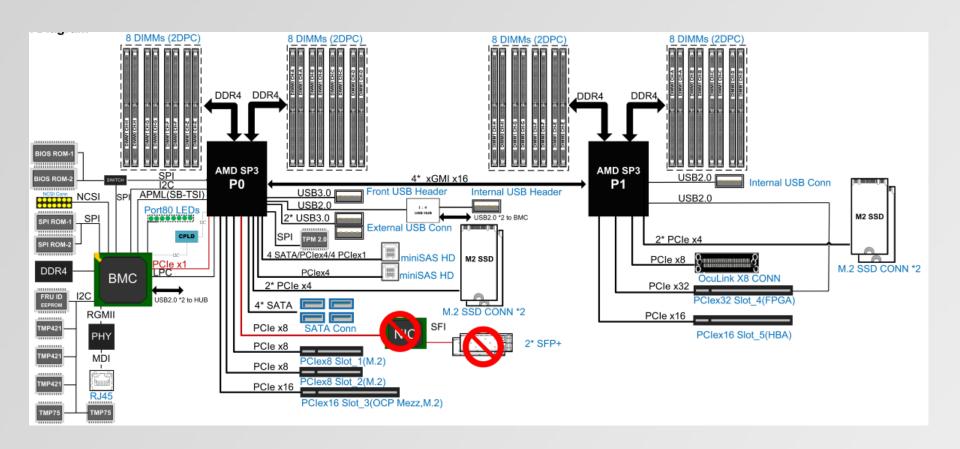
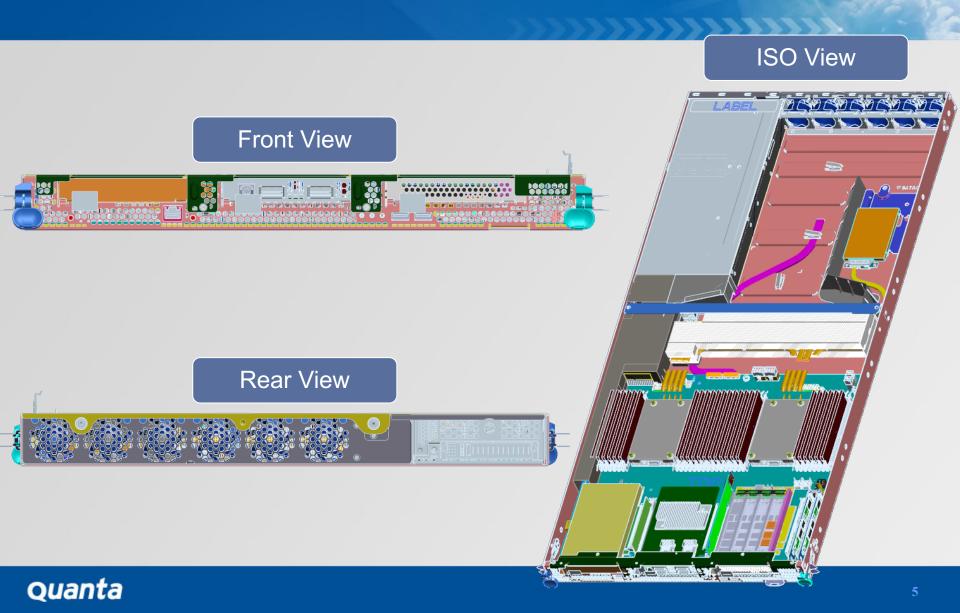


Project Olympus US1-EPYC Feature Summary

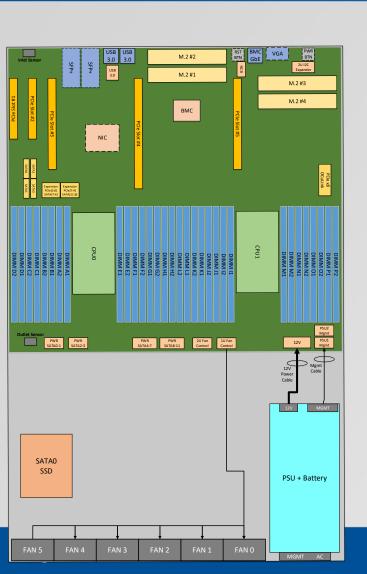
2018/01/18 Quanta

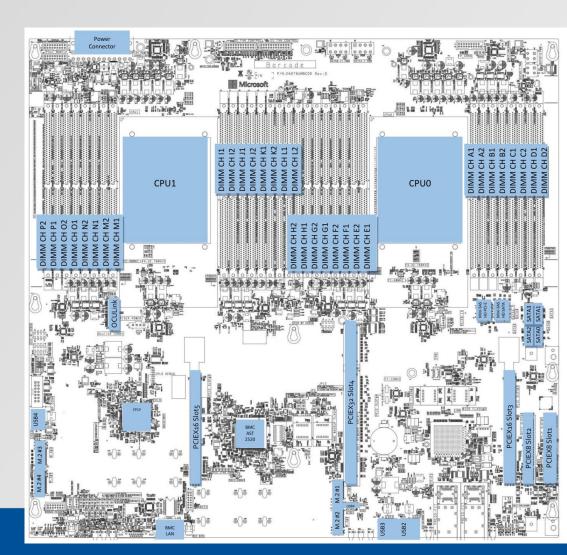

Overview

- ➤ This specification describes the Project Olympus AMD Server design as US1-EPYC. This presentation covers as below:
 - High level feature list
 - block diagram
 - Mechanical View
 - System & Motherboard Layout
 - US1-EPYC Design Files
 - OCP Tenets for US1-EPYC


High Level Feature List

Items	Description
Techno	Description
Processor	AMD EPYC processors, Dual sockets, Up to 180W (Support for all server class SKUs)
	32 total DIMM slots, 16 DIMMs per CPU, 2 DIMMs per channel,
Memory	DDR4/LRDIMM/NVDIMM RDIMM type support
	DDR4 transfer rates of 1333MT/s to 2667MT/s are supported
	SATA interface:
Storage	-4 local ports @ 6.0 Gb/s (SATA x1)
	-4 expansion ports @ 6.0Gb/s (MiniSAS HD)
Front IO Ports	2 xUSB3.0 connectors
	2 PCIe x8 Slots: Supports PCIe M.2 Riser Cards
DCI Eveness	2 PCIe x16 Slots: Supports standard PCIe x16 cards for AVA card and LAN card
PCI-Express	1 PCIe x32 Slot: Supports standard PCIe x16 or custom PCIe x32 cards for FPGA
Expansion	4 M.2 Slots: Supports 60mm, 80mm, and 110mm M.2 Cards
	1 PCIe x8 Expansion: 1 OCuLink x8 for Slot4 FPGA card
	2 PCle x4 Expansion: 2 MiniSAS HD PCle x4
Server	BMC Aspeed AST2520 with 1xRJ45 connector
Management	Divide Aspecta AS12320 With TXIO+3 confliction
Security	Trusted Platform Module (TPM 2.0) to support Secure Boot
Networking	Ethernet transportation with FGA card
	MGMT:1x 1GbE from BMC to RJ45 Connector


Block Diagram



Mechanical View

System & Motherboard Layout

OCP Tenets for US1-EPYC

> Efficiency

- > This system is designed with 32x DIMM, 3x Full height add-in cards and maximal 32 cores to be suitably adapted for different workloads
 - This is first 32 DIMM base system, especially for larger in-memory database
 - Support up to 3x full height add-in cards to increase the expandability, for example, storage card with PCIe x16 bandwidth requirement, and extra 2x PCIe slots for flexible usage
 - Per watt/per core of CPU is better than current x86 architecture
 - Optimization of power consumption and architecture cost(better heatsink to lower the power consumption requirement of FAN duty)

Scalability

 Comply with Microsoft Olympus design criteria to be easily adapted for deployment with Olympus 42U or 48U rack

Openness

➤ The system builds to be compatible with Microsoft Olympus architecture 19′′ EIA rack and also compatible with Olympus 1U server chassis, to re-use the PSU, FAN, and leverage the mechanical design as much as possible

> Impact

- > This is first AMD x86 CPU architecture for Microsoft Olympus project, it expands the diversification of architecture for heterogeneous application
- > This is first 8 DIMM channels/CPU socket to expand the memory capacity to 2TB
- > Integrate I/O chipset to CPU directly to expand the flexibility of component placement in PCB layout
- > Rich 128x PCIe lanes/CPU to enable more I/O devices and throughput

Thanks!!!