

Modular-Peripheral Sideband
Tunneling Interface (M-PESTI)

Base Specification

Part of the

DC-MHS (Data Center Modular Hardware System) Revision 1.0 family

 Version 1.0 Release Candidate 2

September 23, 2022

M‐PESTI Revision 1.0 Primary Editors/Contributors:

Dell, Inc: Jeff Kennedy, Tim Lambert, Shawn Dube, Charlie Ziegler

Intel Corporation: Javier Lasa, Eduardo Estrada, Clifford Dubay, Aurelio Rodriguez
Echevarria, Brian Aspnes

Microsoft Corporation: Priya Raghu, Priscilla Lam

Advanced Micro Devices, Inc: Greg Sellman

Table of Contents
M-PESTI Revision 1.0 Primary Editors/Contributors: ... 2

1. License .. 6

1.1 Open Web Foundation (OWF) CLA .. 6

1.2 Acknowledgements ... 7

2. Version Table .. 7

3. Introduction and Scope ... 8

Benefits of M-PESTI Protocol .. 8

Document Scope ... 9

3.1 Items not in Scope of Specification ... 10

3.2 M-PESTI Application Examples .. 10

3.3 Typical OCP Sections Not Applicable ... 11

4. M-PESTI Electrical Overview: ... 13

4.1 Example M-PESTI Circuit Topology (1 x8 source to 1 x8 destination): 13

4.2 Electrical Component Selection Factors: ... 13

4.3 Example Multi-interconnect M-PESTI topology ... 14

5. M-PESTI Protocol ... 15

5.1 M-PESTI Protocol Phases ... 15

5.2 Overview of Framing and Error detection .. 15

5.3 UART BREAK Definition ... 16

5.4 Discovery Phase Payload Options: ... 17

5.4.1 Optional Active Phase: ... 19

5.5 Example: System FPGA Control and Status Registers ... 19

5.6 M-PESTI Discovery ... 20

5.6.1 Target Presence Detection Rules ... 20

5.6.2 M-PESTI Discovery Status (DSTAT) Supported Transitions 21

5.6.3 Voltage Back feed Detection .. 21

5.6.4 M-PESTI Protocol Phase Diagram (Express) ... 22

5.6.4.1 Example (Express) Discovery Process Flow (Figure 7 above) 22

5.6.4.2 Discovery Command and Response Format ... 23

5.6.4.3 Discovery Payload Rules ... 24

5.6.4.4 Payload Format (Riser/Interposer) ... 24

5.6.4.5 HEADER (with example data for a 2 CEM slot Riser/Interposer):........................ 25

5.6.5 Source to Destination Detection Phase (Optional) ... 26

5.6.5.1 M-PESTI Protocol Phase Diagram (With Optional Source Detection) 26

5.6.5.2 Example of Source Discovery Process Flow.. 27

5.7 Target Reset and Fault Handling .. 28

5.8 Active Phase: Dynamic Virtual Wires .. 29

5.8.1 Virtual Wire Exchange Example (1 Byte Out/In) ... 29

5.8.2 Virtual Wire Exchange Example (N Byte Out/M Byte N) .. 29

5.8.3 Active Phase Rules ... 30

5.8.4.1 EXAMPLE DEVICE_CLASS = 00h (CEM Interposer/Riser) 31

5.9 Broadcast Commands ... 32

5.9.1 FPGA Logic Diagram .. 33

5.9.2 Example of Round Robin VWIRE exchange and Broadcast 35

5.10 Initiator Abort Mechanism .. 35

6. M-PESTI Fan Out ... 37

7. Electrical Specifications .. 39

7.1 DC Specifications .. 39

7.2 AC Specifications .. 40

8. Security Considerations .. 41

Supplemental Material .. 42

Supplemental Material A: 2 x16 CEM Slot Riser Payload Example .. 42

Payload Format .. 42

HEADER Definition .. 42

Endpoint Descriptor Bit fields ... 44

Source Wire Descriptors and Stimulus Response ... 46

Checksum .. 46

Supplemental Material B: Estimated latency for HW owned virtual wires 50

Nominal Latency .. 50

 Dedicated Initiator Only: .. 50

8 targets per Initiator: ... 50

Worst Case Latency .. 50

Dedicated Initiator Only: ... 50

8 targets per Initiator: ... 50

Supplemental Material C: Cable Topology Case Studies ... 51

Case 1: 2x8 Source to 1x16 End Point Block Diagram ... 51

Case 1: 2x8 Source to 1x16 Destination to 1x16 End Point Payload 52

Case 2: 1x16 Source to 2x8 Destination to 1x16 End Point .. 53

Case 2: 1x16 Source to 2x8 Destination to 1x16 End Point .. 54

1. License
1.1 Open Web Foundation (OWF) CLA
Contributions to this Specification are made under the terms and conditions set forth in Open
Web Foundation Modified Contributor License Agreement (“OWF CLA 1.0”) (“Contribution
License”) by:

 Advanced Micro Devices, Inc
 Dell, Inc.
 Google LLC
 Hewlett Packard Enterprise Company
 Intel Corporation
 Meta Platforms, Inc.
 Microsoft Corporation

Usage of this Specification is governed by the terms and conditions set forth in Open Web
Foundation Modified Final Specification Agreement (“OWFa 1.0”) (“Specification
License”).
You can review the applicable OWFa1.0 Specification License(s) referenced above by the
contributors to this Specification on the OCP website at
http://www.opencompute.org/participate/legal-documents/. For actual executed copies of either
agreement, please contact OCP directly.
 Notes:

1. The above license does not apply to the Appendix or Appendices. The
information in the Appendix or Appendices is for reference only and non-
normative in nature.

NOTWITHSTANDING THE FOREGOING LICENSES, THIS SPECIFICATION IS PROVIDED
BY OCP "AS IS" AND OCP EXPRESSLY DISCLAIMS ANY WARRANTIES (EXPRESS,
IMPLIED, OR OTHERWISE), INCLUDING IMPLIED WARRANTIES OF MERCHANTABILITY,
NON-INFRINGEMENT, FITNESS FOR A PARTICULAR PURPOSE, OR TITLE, RELATED TO
THE SPECIFICATION. NOTICE IS HEREBY GIVEN, THAT OTHER RIGHTS NOT GRANTED
AS SET FORTH ABOVE, INCLUDING WITHOUT LIMITATION, RIGHTS OF THIRD PARTIES
WHO DID NOT EXECUTE THE ABOVE LICENSES, MAY BE IMPLICATED BY THE
IMPLEMENTATION OF OR COMPLIANCE WITH THIS SPECIFICATION. OCP IS NOT
RESPONSIBLE FOR IDENTIFYING RIGHTS FOR WHICH A LICENSE MAY BE REQUIRED
IN ORDER TO IMPLEMENT THIS SPECIFICATION. THE ENTIRE RISK AS TO
IMPLEMENTING OR OTHERWISE USING THE SPECIFICATION IS ASSUMED BY YOU. IN
NO EVENT WILL OCP BE LIABLE TO YOU FOR ANY MONETARY DAMAGES WITH
RESPECT TO ANY CLAIMS RELATED TO, OR ARISING OUT OF YOUR USE OF THIS
SPECIFICATION, INCLUDING BUT NOT LIMITED TO ANY LIABILITY FOR LOST PROFITS
OR ANY CONSEQUENTIAL, INCIDENTAL, INDIRECT, SPECIAL OR PUNITIVE DAMAGES
OF ANY CHARACTER FROM ANY CAUSES OF ACTION OF ANY KIND WITH RESPECT TO
THIS SPECIFICATION, WHETHER BASED ON BREACH OF CONTRACT, TORT
(INCLUDING NEGLIGENCE), OR OTHERWISE, AND EVEN IF OCP HAS BEEN ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE.

1.2 Acknowledgements
The Contributors of this Specification would like to acknowledge the following companies for
their feedback:

With the hope of making this specification useful for the entire OCP community, we
acknowledge and appreciate the contributions, review, and feedback of various individuals and
companies that participated in DC-MHS.

2. Version Table
Date Version # Description
4/22/22 v0.84 Initial public release

6/22/22 v0.85 -Relaxed tAPTAR timing to align to M-CRPS requirements.
-Revised Source to Destination detection algorithm to
remove ‘misses.’
-Added Fanout support chapter

8/11/22 v0.90 Added Fanout dead lock handling guidance
General cleanup
Removed Future Work section
Added contributor name

9/19/22 V1.0
Release
Candidate

Added security section
Clarified width field refers to connector width and not AIC
Clarified fanout mode status and control

9/23/22 V1.0
Release
Candidate2

Added new intro section
Removed Supplemental B. It was M-XIO supported configs
unrelated to M-PESTI base spec
Numerous minor rewordings based on feedback for
clarifications.

3. Introduction and Scope

This Modular Peripheral Sideband Tunnelling Interface (M-PESTI) specification includes

base requirements for electrical and protocol compatibility between components of a DC-MHS
platform. The M-PESTI protocol overloads a common PRSNT# signal with additional
capabilities beyond simple presence/absence of a peripheral. Many of the companion DC-MHS
specifications require implementation of M-PESTI on I/O and power connectors at the Host
Processor Module (HPM). However, it is not a requirement for any peripheral to implement the
M-PESTI target capability. A peripheral that asserts a static low (present) on any
*PRES_PESTI_N signal is supported and DC-MHS compliant. This document specifies the
electrical and protocol requirements for bi-directional communication between a M-PESTI
initiator and target on top of that same presence signal.

Benefits of M‐PESTI Protocol
M-PESTI is a simple half-duplex protocol that can be implemented in a low-cost

Microcontroller Unit (MCU) or Complex Programmable Logic Device (CPLD.) Nearly all low-
cost MCUs implement a Universal Asynchronous Receiver-Transmitter (UART) as a
communication peripheral. UARTs have a long history as a serial communication interface
within and between compute systems. Although not required to be implemented in a PLD, its
simplicity enables a logic device on a HPM to detect presence of all M-PESTI peripherals and
collect physical attributes of those devices without any firmware or high-level processor
dependence. Presence detection and collection of attributes describes the M-PESTI discovery
phase of the protocol. Discovery can occur at initial power on of the system while the
Baseboard Management Controller (BMC) is still booting.

A general-purpose modular system may have a variety of PCIe CEM risers and storage
subsystem configurations. The multitude of configurations results in a large matrix of source to
destination cabled couplings that may include independent data fabric and power cables. In a
modular system, a single I/O connector on the HPM may have a dozen or more possible
destinations. Traditionally, the number of configurations has been limited and it has been
feasible to hard code the PCIe root port interface types and bifurcations for each configuration
detected. It has been increasingly difficult for system firmware (e.g., BIOS) to uniquely identify
one of many configurations and initialize the system accordingly. With many HPM I/O
connectors near one another, it is virtually impossible to impose specific/limited cable source to
destination couplings based on physical cable length.
M-PESTI discovery of attributes, including data fabric routing to one or more end points
(destination) on a riser from a particular root port (source,) enable system FW components to
configure and manage the system without requiring a-priori knowledge of peripherals and
configurations to support them.

Example1: A storage backplane that directly describes the data fabric routing and bifurcations
to multiple storage device slots can be supported by a BIOS that has not been previously
introduced to that subsystem. If those subsystems attributes are discoverable, the BIOS is not

required to implement a table that matches a backplane identifier to a fixed set of configuration
settings.

Example2: A cabled riser with multiple PCIe CEM slots may include support for one or more of
those slots to be powered in the system standby or soft off state as defined by the Advanced
Configuration and Power Interface (ACPI) standard. Data Processing Unit (DPU,) Infrastructure
Processing Unit (IPU) and Smart Network Interface Card (SmartNIC) are examples of AIC
devices that may have independent compute resources and operating systems that do not
require a traditional host processor to be on to function. Because not every PCIe CEM Add-In-
Card (AIC) supports being powered in the system standby state, it becomes imperative to
identify which power cable path is coupled to that device so that a power enable signal can be
asserted by system management FW along that path when desired.

M-PESTI bi-directional communication protocol has a command and response structure.
In addition to discovery of peripherals and their cabled source to destination couplings, the M-
PESTI protocol supports the exchange of data. Data exchange of virtual wires as well as
control requests from an initiator and status responses from a target is possible during the
active phase of the protocol. The active phase is identified by the successful completion of the
discovery phase. Data exchange between initiator and target is not a requirement of the M-
PESTI active phase.

Document Scope
This document defines the base technical specification for the DC-MHS Peripheral

Sideband Tunneling Interface (M-PESTI). Any supplier seeking OCP recognition for a hardware
product based on this spec must be 100% compliant with any and all features or requirements
described in this specification.
Main objectives of this specification:

● Establish a standard method for discovery of subsystem, self-describing attributes, and
status (e.g., versus a priori knowledge, hard coding firmware and BIOS for fixed or limited
configurations). Examples include a vendor/module class, physical bus connectivity
descriptions, add-in card presence and precise source to destination cable coupling
determination.
● To make common and minimize the number of physical sideband signals between
baseboards and various system interconnects, while extending potential
applications/subsystem types via software-defined, real-time, multiplexed virtual wires.
Exploit transistors and programmable hardware/firmware over wasted, static, near static or
custom/form factor specific and non-scalable, physical connectors and cable pins/wires. The
benefits include pay-as-you go models, greater density, higher quality, and message over
only signal integrity.

M-PESTI Is:
● A generic and extensible 1-wire, bidirectional circuit, and protocol for applications such as
cabled high speed I/O interposers, managed power distribution, cooling subsystems and
control panels.

● An enabler to maximize hardware leverage/re-use via a “plug-n-code” model (versus plug-
n-play) for new systems, configurations, and applications. Examples include vendor-defined
virtual wires, and vendor/class code-based discovery.
● A protocol that includes independent commands for static payloads during discovery,
dynamic virtual wires and broadcast virtual wires that have error detection via byte parity
and message checksum.
● A protocol overlayed on a physical presence signal thereby avoiding a signal tax.
● Frames are based on standard UARTs to support ubiquitous MCU targets.
● Could optionally replace the need for a physical FRU SEEPROM in some applications

M-PESTI Is not:

● Replacing non-real-time interfaces such as SMBUS/I3C.
● Intended to provide large static payloads to optimize hardware cost.
● Ultra-fast or differential signaling
● Teaching of M-PESTI target FW update, attestation, or encryption methods.
● Explicitly defined for extension into standard end form factors.
● Does not explicitly support peripheral card hot plug
● Leveraging an existing standard (proprietary 1-wire or standard multi-wire).
● Specific guaranteed latency when higher-level traffic patterns are used, such as a
repeated discovery phase in between active phase and virtual wire exchanges.
● Point-to-point with optional MUXed fanout support (via opcode snooping agent)

3.1 Items not in Scope of Specification
● The method and location for storage and retrieval of payload data by consumers
● The method for asserting the source detection stimulus to each M-PESTI wire.
● The method and location for storage and retrieval of source to destination information by

consumers
● Error handling and reporting of unassigned/missed sources due to a required cable not

being coupled from source to destination.

3.2 M‐PESTI Application Examples

In typical applications, M-PESTI may be used for an interposer/riser/paddle card to self-describe
its HW capabilities and tunnel virtual sideband wires between local logic and end form factor(s)
with the base system. In the below diagrams M-XIO is a name for high speed I/O interconnect.

Figure 1. Example M-PESTI Application

Figure 2. Example M-PESTI applications in the DC-MHS context

In this context, DC-SCM means Datacenter Secure Control Module. HPM is a Host Processor
Module. eSPI is an enhanced SPI interface. M-XIO is a modular extensible I/O interconnect
(i.e., cabled PCIe). PICPWR is a platform infrastructure connectivity power connector. PDB is a
power distribution board.

3.3 Typical OCP Sections Not Applicable
This is a Base specification, requiring other DC-MHS specifications to fully define a design. The
following typical Sections of an OCP specification are not included because they are not
applicable to this specification.

Rack Compatibility
Physical Spec
Thermal Design
Rear Side Power, I/O, Expansion
Mechanical
Onboard Power System
Environmental Regulations/Requirements

Prescribed Materials
Software Support
System Firmware
Hardware Management

4. M-PESTI Electrical Overview:

Physical layer overview:
- +3.3V LVCMOS signaling
- Open-Drain drivers
- Circuit provides voltage back feed detection
- Optional local voltage bleed off circuit

Physical Circuit:

4.1 Example M-PESTI Circuit Topology (1 x8 source to 1 x8 destination):

Baseboard Peripheral

M‐PESTI
Initiator
(e.g., FPGA)

SRCx
Conn.

DST1
Conn.

R2
127K

V_PU_BASEBRD

R1
22.1

M‐PESTI
Target

(e.g., MCU)
R3
22.1

R4
1.27K

V_PU_LOCAL

R5
1KCable

R6
8.25K

GPIO

M‐PESTI

GS

D

M‐PESTI

Figure 3. M-PESTI Electrical circuit

4.2 Electrical Component Selection Factors:
R1 & R3 are recommended series termination resistor values. They may need to be adjusted to
the driver and transmission line characteristics.

R2 must be selected with the following in mind
● Select the maximum value to minimize the current sourced into an unpowered target
● Logic high=1 must be guaranteed to meet the baseboard initiator logic Vin High

Minimum when cable/M-PESTI target is not attached/present

R4 & R5 must be selected with the following in mind
● R4 &R5 (pull-down) and R2 (pull-up) must guarantee a logic low=0 at the baseboard

initiator logic for voltage back feed detection
● R4 value provides the rise time to a logic high at the MCU/FPGA for an open-drain

interface.
● R5 provides a path to GND for the current sourced by R2 on the source board to drain or

bleed voltage accumulation at an unpowered target.

P-FET (or equivalent) is enabled (drive gate low) by the M-PESTI target when the cable is
detected to be “fully seated” and the device is ready to respond to a discovery request.
Selecting a target GPIO that defaults to an input (high-Z) will meet the initial condition
requirement. The P-FET enablement results in a rising edge (BREAK release) to be observed
at the initiator. BREAK is defined in the M-PESTI Protocol Section. The method for
determining “fully seated” is beyond the scope of this specification as it varies based on
connector, latching schemes and cable assemblies.

4.3 Example Multi-interconnect M-PESTI topology

Baseboard Peripheral

M‐PESTI
Initiator
(e.g., FPGA)

SRCx
Conn.

DST1
Conn.

R2
127K

V_PU_BASEBRD

R1
22.1

M‐PESTI
Target

(e.g., MCU)
R3
22.1

R4
1.27K

V_PU_LOCAL

R5
1KCable

R6
8.25K

GPIO

M‐PESTI

SRCy
Conn.

DST2
Conn.

CableR8
127K

V_PU_HPM

R7
22.1

R9
1.27K

V_PU_LOCAL

R10
1K

GPIO

SECONDARY_PESTI

GS

D

PRIMARY_PESTI

M‐PESTI

M‐PESTI

Figure 4. Multi-Interconnect M-PESTI Circuit

The SECONDARY_PESTI wire is not used for frame-based communication but is used
to discover source to destination couplings and thus does not require the P-FET or series term
elements. The pull-up resistor is required to avoid a floating input at the M-PESTI target when
the secondary cable is missing, and the pull-up/pull-down enables voltage back feed detection
by system management firmware.
If the cables are swizzled, then the M-PESTI Initiator connected to the secondary high speed
data path enables system management firmware to detect a misconfiguration (see Source to
Destination Detection Phase section.) If only the secondary destination(s) is coupled to a
source, then the circuit aids system management firmware to determine if something is coupled
but unsure what, thereby indicating a misconfiguration.

5. M-PESTI Protocol
5.1 M‐PESTI Protocol Phases

● Discovery Phase
o The presence and discovery of the attached peripheral must occur prior to the

active phase. During discovery, a payload of static attributes is captured from a
M-PESTI target (i.e., MCU) to the M-PESTI initiator (i.e., baseboard FPGA).

● Active Phase
o The active phase is characterized by a repetitive exchange of virtual wires

between the initiator (Baseboard FPGA) and the target (MCU, CPLD or other).

5.2 Overview of Framing and Error detection
● Simple, multi-byte read/write byte-level commands.
● 250,000 BAUD +/- 3% (Chosen as max supportable BAUD across diverse channels and

low-cost MCU and PLD families)
● 8-O-1 (8 data bits, Odd Parity, 1 stop bit)
● Discovery Payload checksum (CRC-8). RX error detection via parity of frames &

checksum of payloads. Inbound error detection responses defined.
● System Command / Target Response protocol. No async interrupt.
● Broadcast support for cases where a single initiator UART is shared with a group of

targets AND very low latency virtual wires are required.
● Optional Source & Destination connector instance coupling determination method

Figure 5. M-PESTI Frame

Property M-PESTI

Extended Peripheral Data & Power Path(s)

Initially targeted use cases: High Speed
I/O connections, internal power distribution
management, control panels, cooling
subsystems.

Peripheral Card (Target) TX Protocol Frame Based

Planar Logic (Initiator) TX Protocol Frame Based

Initial Discovery
M-PESTI target issues a BREAK pulse
(Rising edge observed at Initiator)

Voltage Back-feed Circuit Yes

Target Pin Function UART RX/TX + GPI (Initiator Abort)

Initiator/Target TX Driver Type Open-Drain

Payload Data Types
Discovery (Static) & Active (Dynamic)
protocol phases

Control/Status Support Yes

8-bit Checksum (Discovery Payload Only*) CRC-8

Checksum Validator Initiator and Target

*Active phase CRC-8 is excluded in M-PESTI 1.0. From physical testing, a multi-bit error has
never been observed during the active phase. As we speed up the interface (> rev 1.0), a PEC
byte will become more important. Additionally, START=0. PARITY=ODD and STOP=1 are 3 of
the 11 bits per frame that are predictable. STOP=0 is detected as a framing error.

Table 1 M-PESTI Protocol Overview

5.3 UART BREAK Definition
A UART BREAK event is defined as the wire being driven/held low for a time greater

than the entire frame length. Example: At 250 KBAUD, the M-PESTI frame length is nominally 4
us * 11-bit positions which is 44 us. FPGA logic may detect a BREAK condition by starting a
timer at the falling edge of the signal. A valid BREAK assertion does not require a falling edge to
be detected. Some UART receivers do not include a BREAK_DETECT detect status register.
Depending upon the UART implementation in the MCU or other device, the BREAK event may
appear as an abnormal frame with a data value = 00h that has both a Parity Error and a
Framing Error (Stop bit = 0.)

Target Implementation Options
Target Implementation
Options

Simple
Presence

Discovery
Only Discovery+

Discovery &
Active Phase

Discovery Phase No Yes Yes Yes

Source/Destination
Detection

No No Yes Yes

Virtual Wire Exchange No No No Yes

FW Target Device Required No Yes Yes Yes

5.4 Discovery Phase Payload Options:

The discovery payload is typically consumed by baseboard logic, system firmware and
BIOS. The payload contents can be streamlined to only contain the minimum required fields to
describe the format and size of the payload itself along with peripheral characteristics (static
attributes) to consumers.

Payload contents include description of supported virtual wires, and OEM defined fixed
attributes like payload version, vendor ID, module class, module Unique ID and checksum.
Some bits may be able to change but another Discovery Phase is required to capture them
(e.g., source/destination coupling determination method utilizing the stipulated
stimulus/response scheme). Note: If M-PESTI is extended into other industry form factors, then
the discovery and active phase bit definitions need to be applied to the respective device
classes.

M-PESTI Discovery
Payload Content Options None Minimum Maximum
Presence Detection
Mechanism

Simple
Presence

BREAK
Release

BREAK
Release

Discovery Payload Content None Header Only Complete

Virtual-Wire Support No Yes Yes
Self-describing Physical
Routing No No Yes
Source/Destination
Detection No No Yes

A) Simple Presence:
‐ M-PESTI wire is held static low to indicate simple presence
‐ No device identity or precise source/destination instance coupling identification needed.
‐ System firmware reads FRU SEEPROM, or hard codes config.
‐ Use when limited programmable resources exist or attributes not needed (purpose-built

system).
B) Minimum:
‐ System firmware uses vendor class, module class and/or unique ID to look up in a BMC

store’s extended attributes library, Source/destination couplings. e.g., Source Conn#2
coupled to Riser#1 conn#1.

‐ Locally readable attributes (e.g., MCU firmware version) or locally read inputs (e.g., non-hot
plug slot presence).

C) Maximum:
‐ Plug-N-Play where peripheral is fully self-describing and baseboard BMC+BIOS needs no

prior knowledge of the peripheral.
‐ May be preferred when BIOS-BMC interactions are limited.
‐ Example attributes: Physical PCIe, I2C and Power routing/MUXing/switching topologies,

physical or thermal characteristics of the module or elements therein. Although transferring a
full FRU SEEPROM image is possible, the header should be limited to critical items needed
before 2-wire reads are possible.

5.4.1 Optional Active Phase:
‐ To optimize latency, dynamic virtual wires should be latency appropriate real-time signals and

not static attributes that could be carried in the discovery phase payload or a FRU SEEPROM.
The dynamic phase includes simple send and receive of all virtual wires at once (by M-PESTI
initiator and target).

System side logic may source or sink status & controls to multiple domains (such as BMC, BIOS
or HW controls).

5.5 Example: System FPGA Control and Status Registers

Prior to describing discovery and active phase state transitions, it is useful to define

some fundamental M-PESTI target status fields that are implemented within the initiator for
system management FW consumption. Shortened names are included that are used to
reference these fields in subsequent sections of this specification. See Target Reset and Fault
Handling for additional information

DISCOVERY_STATUS[1:0] (RO) [AKA: DSTAT]
00b : No BREAK detected, and M-PESTI wire is static HIGH=1
01b : M-PESTI wire is static LOW=0 (simple presence)
10b : Discovery payload has been received with a good checksum
11b : BREAK release detected, but payload has not been successfully received

DISCOVERY_PAYLOAD_ENABLE (R/W) [AKA: DPEN]
0b : Initiator will not send payload request command
1b : Initiator will send payload request command, with retries, until DISCOVERY_STATUS[1:0]
= 10b

ACTIVE_PHASE_ENABLE (R/W) [AKA: APEN]
0b : Initiator will not enter command/response phase for that M-PESTI instance
1b : Initiator will enter command/response phase if DISCOVERY_STATUS[1:0] = 10b

ACTIVE_PHASE_ERROR (R/W1C) [AKA: APERR]
0b : Response RX error (i.e., parity, framing) or timeout has NOT occurred.
1b : Response RX timeout or byte receive error has occurred since last cleared. Sticky bit.
System management FW must write a ‘1’ to this bit to clear the error once it has been
acknowledged.

5.6 M‐PESTI Discovery

Discovery of a M-PESTI target that is capable of frame-based communication begins
with presence detection. A rising edge (UART BREAK release) observed at the initiator
indicates that a M-PESTI target is present and available for frame-based discovery. G3 (AC
Off) and S5 (System Standby or Soft Off) in the diagrams below refer to system power states as
defined in the ACPI specification.

G3‐‐>S5

M‐PESTI_1

M‐PESTI_4

Discovery Phase

M‐PESTI_3

Target BREAK event

DSTAT = 00b
Not Present

DSTAT = 01b
Simple Presence (Not PESTI)

M‐PESTI_2
BREAK release

DSTAT = 11b (Present)
DSTAT = 11b (Present)

DSTAT = 11b (Present)

Payload

DSTAT = 10b (Payload Good)Payload

Rediscovery Request

Initiator TX
Target TX
Hi‐Z

Payload Request

Figure 6. Discovery Phase

5.6.1 Target Presence Detection Rules
● Initiator shall not attempt communication while M-PESTI is held low by the target
● Minimum target discovery BREAK low assertion width required to guarantee detection =

50 us
o If minimum assertion width is met, BREAK shall always be detected by the

initiator.
o This infers the use of parallel circuits for each M-PESTI wire regardless of

whether a single initiator UART is shared among multiple targets.
● The target must not release BREAK until:

o Aux power is good
o M-PESTI Peripheral is fully seated/mated
o M-PESTI target is ready to respond to the payload request command.

● Any time a BREAK condition is detected, communication with that device will be halted
until the condition is released.

● A device may request a re-start of the discovery process by asserting and releasing
BREAK at any time.

NOTE: The discovery mechanism infers that V_PU_BASEBOARD on the planar and
V_PU_LOCAL at the module are enabled simultaneously and that the initiator presence
detection circuit does not come out of reset until V_PU_LOCAL at the module is “Good.”

This prevents the power up ramp on the module to appear as a break condition at the
initiator logic. System dependent delay within the M-PESTI initiator logic guarantees this
timing is met. See Figure 4 for the circuit diagram.

5.6.2 M-PESTI Discovery Status (DSTAT) Supported Transitions
Case DSTAT Current

State
DSTAT Future State State Input

1 XXb = Any State 00b = Absent Power on Reset (POR)
2 Absent 01b = Present/Simple BREAK asserted following POR de-assertion
3 Present/Simple 11b = Present /

 M-PESTI
BREAK release by the target

4 Present/Simple 11b = Present /
 M-PESTI

Simple presence or M-PESTI device removal
prior to target BREAK release while system
power is on.

5 Present/M-PESTI 10b = Payload Good Payload received with good checksum
6 Payload Good 11b = Present /

 M-PESTI
BREAK assertion and release by target if not
in active phase. Payload Good is
protected/locked during the active phase
against target resets. This transition also
occurs if DPEN is toggled from 0 to 1 while
the device is still in the discovery phase
(APEN=0.)

7 Absent 01b = Present/Simple Target asserts all 1WIREs low that are not
used for communication at the transition to
the active phase

Note: It is not recommended for a user to disconnect a cable while system input power is
enabled/connected (Case #4.) If the cable becomes disconnected prior to a payload being
received, system management FW can recognize that discovery did not complete successfully.
If a cable becomes disconnected during the active phase, ASTAT would indicate that the target
is unresponsive.

M-PESTI wires that are not used for frame-based communication fall into two categories.

● Case 2 (table above) when simple cable presence is sufficient and source to destination
discovery is not required.

o BREAK asserted and not released since power on reset de-assertion
● Case 7 (table above) at the completion of source to destination coupling discovery for

that wire.
o Transition to the active phase will cause the target to assert all wires not used for

communication to low=0 (simple presence.)

5.6.3 Voltage Back feed Detection
Note that when the power path is different from the data path (e.g., separate cables), it is
possible that the data cable is present, but the power is missing. This is a detectable condition.
A general algorithm for a possible voltage back feed condition is the following

● A M-PESTI signal is LOW=0 (DSTAT = 01b) at the baseboard initiator logic

● System management firmware did not account for that M-PESTI instance during the
source to destination stimulus & response discovery phase

● The wire with DSTAT=01b is not expected or allowed to use “simple presence.”

5.6.4 M-PESTI Protocol Phase Diagram (Express)

Figure 7 below depicts an autonomous transition from the discovery phase to the active phase
without any source/destination coupling detection. With APEN=1 and the discovery payload
received successfully; the default exchange of virtual wires occurs without any firmware
intervention.

G3‐‐>S5

Primary
M‐PESTI

Discovery Phase

PAYLOAD

Static Payload
Request CMD

Target
Break

Initiator TX
Target TX

Active Phase

VWIRE
OUT/IN

DPEN=1
APEN=1

DSTAT=00b

DSTAT=11b

DSTAT=10b

VWIRE
OUT/IN

VWIRE
OUT/IN

Hi‐Z

Figure 7. Discovery and Active Phase

5.6.4.1 Example (Express) Discovery Process Flow (Figure 7 above)

1. Initial Conditions:
● DISCOVERY_STATUS[1:0] = 00b : Not present (reset value)
● DISC_PAYLOAD_ENABLE = 1
● ACTIVE_PHASE_ENABLE = 1

2. Following the transition from G3 to S5 power state, once M-PESTI target devices have
initialized, all M-PESTI communication signals will be asserted low and released (low to
high) to indicate presence of a M-PESTI target to the initiator.

● DISCOVERY_STATUS will transition from 00b (not present) to 01b (simple presence
during the BREAK event, then to 11b : M-PESTI target present with available
payload upon request once the BREAK event is released.

● Initiator sends payload request command to the target
● Target responds with the static payload
● DISCOVERY_STATUS = 10b : Payload received with a good checksum and is

available for consumption by system management firmware
3. Initiator enters hardware controlled virtual WIRE exchange with the target

● Hardware and firmware may control and query status of virtual wires via vendor
defined methods

5.6.4.2 Discovery Command and Response Format

CMD=00hIDLE PAYLOAD_BYTE0

tDPTAR

... CHECKSUM[7:0] IDLE

Figure 8. Discovery Command and Response Format

tDPTAR: Discovery Phase Turnaround time between initiator completing transmission of the
command and the payload response beginning to be received.

5.6.4.3 Discovery Payload Rules

● Turnaround time minimum is 100 ns.
● Target must complete the discovery payload response within the payload RX timeout of

1 sec.
● Target shall not transition to the active phase until a successful discovery payload is

received.
o “Successful” = Within the RX timeout period with no byte parity or framing errors

and a verified checksum.
● Initiator continuously attempts to retrieve a discovery payload from a M-PESTI target

that is present unless DISC_PAYLOAD_ENABLE = 0.
o Example: Round robin servicing by a single initiator to multiple targets:

If the discovery payload is not successfully received after an Initial attempt plus
two retries per target, the next target in the round-robin rotation will be serviced.
When servicing returns to the target, the discovery request command is sent
again as a set (initial + two retries) until successful.

● Initially, the target must release (tri-state) all “additional” source wire GPIOs indicating
simple presence following power on or reset

● Target must assert all M-PESTI wire sources that are not used for frame-based
communication after the FIRST response to a virtual wire exchange in the active phase

● Target must release all M-PESTI wire sources that are not used for frame-based control
after a discovery payload request if that payload request has occurred during the active
phase.

o Infers module is in the discovery phase until the next virtual wire command
occurs.

5.6.4.4 Payload Format (Riser/Interposer)
Number
of Bytes

Description

12 Header Information

5 Destination 1: Data Fabric and SMBus Physical Routing Description

5 …

5 Destination N: Data Fabric and SMBus Physical Routing Description

2 Destination Wire Descriptors

Varies Misc. Vendor Specific Region

Varies *Padding (0 – 7 Bytes)

1 Checksum

 Minimum Required Payload Regions

*Payload size must be padded to be a multiple of 8 bytes including the checksum byte.
Other/future device classes may have different descriptor groups between the header and the
vendor specific region.

5.6.4.5 HEADER (with example data for a 2 CEM slot Riser/Interposer):
Byte/Bi

t
7 6 5 4 3 2 1 0

00h PAYLOAD_VERSION[7:0] = 00h

01h DEVICE_CLASS[7:0] = 00h (CEM Riser)

02h STATIC_PAYLOAD_SIZE[7:0]= 04h (32 Bytes)

03h
NUM_VIRTUAL_WIRE_OUTPUT BYTES[3:0] = 0001b (1

Out Byte)
NUM_VIRTUAL_WIRE_INPUT BYTES[3:0] = 0001b (1 In

Byte)

04h DEVICE_ID[15:8] = 00h

05h DEVICE_ID[7:0] = 27h

06h VENDOR_ID[15:8] = 80h

07h VENDOR_ID[7:0] = 86h

08h DEVICE_VERSION[7:0] = A0h

09h AFU = FFh

0Ah NUM_DST_WIRES[3:0]= 0100b (4 CBL_PRES signals)
AFU =

0b
NUM_PICPWR_DST_WIRES[2:0] = 001b (1

PWR)

0Bh AFU = 0b AFU = 0b AFU = 0b NUM_EP_DESCRIPTORS[3:0] = 00010b (Two Slots)

0Ch
AFU = 0b AFU = 0b AFU = 0b AFU = 0b AFU =

0b
AFU = 0b AFU = 0b AFU = 0b

Minimum Required Fields

See Appendix A which includes definitions and a two-slot riser payload example.

5.6.5 Source to Destination Detection Phase (Optional)

System management firmware can provide a stimulus to a M-PESTI target by asserting
the corresponding M-PESTI instance LOW=0. Once the stimulus is asserted, an updated static
payload can be queried for a corresponding response to that stimulus by that target. This
stimulus and response method can be used to govern source to destination couplings and
provide end-to-end data fabric physical mapping from a root port to the destination through any
source connection.

5.6.5.1 M‐PESTI Protocol Phase Diagram (With Optional Source Detection)

The example below depicts a target destination with two source wires through two x8 or

a single x16 destination connector. The first row of the wave diagram below shows the primary
M-PESTI used for frame-based communication. The primary source wire is associated with a
specific set of data fabric lanes that is described to be physically routed to a destination in the
initial discovery payload. This results in the additional source wires requiring a stimulus
response mechanism to discover the physical routing of those data fabric lanes to the
destination. It is preferred to move this function up the stack to system firmware to simplify the
target device hardware and firmware (e.g., avoids multiple UARTs).
The second wave diagram below depicts that a stimulus to a wire not associated with that target
did not result in a corresponding response. Because it was a stimulus/response “MISS”, a third
and successful stimulus and response was required to discover the physical cable source.

G3‐‐>S5

Primary
M‐PESTI

Secondary
M‐PESTI

Discovery Phase

PAYLOAD

Static Payload
Request CMD

BMC asserts stimulus that causes
LOW=0 on wires that affect the payload

NA
M‐PESTI

Target
Break

PAYLOAD

Static Payload
Request CMD

PAYLOAD

Static Payload
Request CMD

Active Phase

DPEN=1
APEN=0

DPEN=0
APEN=0

DPEN=1
APEN=1

VWIRE
OUT/IN

VWIRE
OUT/IN

VWIRE
OUT/IN

Stimulus/
Response
MISS

Stimulus/
Response HIT

Initiator TX
Target TX
Hi‐Z

Figure 9. Discovery Command and Response Format with Optional Source Detection

5.6.5.2 Example of Source Discovery Process Flow

Initial Conditions:
● G3 to S5 power state transition
● DSTAT[1:0] = 00b : Not present
● DPEN = 1
● APEN = 0

Shortly after the transition from G3 to S5 power state, all M-PESTI targets will de-assert BREAK
to indicate presence to the system.

● DSTAT = 11b : M-PESTI target present with a payload that is available upon request.
With DPEN=1, the platform FPGA will retrieve initial discovery payloads from each M-PESTI
target while the BMC may be booting.

Once booted, the BMC can perform source to destination discovery for any target that includes
multiple source couplings in the discovery payload (NUM_DST_WIRES,
NUM_PICPWR_DST_WIRES)
1. Set APEN=1. This will cause the initiator to send the v-wire exchange command. In

response, the target will drive all secondary wires low (simple presence) prior to responding
with platform v-wire inputs. The BMC can observe that simple presence/break is active on
all secondary wires attached to that target. DSTAT = 01b (Present) that were previously
DSTAT=00b (Empty)

2. Set APEN=0 to prevent target transition to the active phase during destination discovery
iterations.

3. BMC writes DPEN=0, then DPEN=1
● The rising edge of DPEN causes the initiator to send payload request command. As

a result, the target tri-states all secondary wires because it is in the discovery phase
and responds to the payload request after it samples the input state of those wires.

4. The BMC enables a low=0 stimulus to an individual secondary M-PESTI wire and clears any
previous stimulus that was asserted.

5. BMC repeats steps 3,4 until all source to destination couplings are identified
6. BMC sets APEN = 1
7. Initiator and target enter HW controlled V-WIRE exchange

● Firmware sends commands and reads the responses via the OEM command register
interface.

8. Target asserts simple presence on all secondary M-PESTI wires which can be ignored
during source to destination discovery for additional targets.

5.7 Target Reset and Fault Handling
If the target resets during the active phase, it would be observed as temporary
unresponsiveness at the initiator. This would be reflected in the ACTIVE_PHASE_ERROR
(APERR) register described above if any RX timeout or parity error occurred. Following target
reset, a BREAK assertion and release would be observed by the initiator. During the active
phase, the discovery status must be protected (locked) at a value of 10b=Payload Good.
Locking the discovery status and payload data is required so that the host can safely consume
the contents at any warm or cold reset. Since the discovery has already occurred, the initiator
would resume sending the virtual wire exchange command and the target would not observe a
discovery request command. Once a device has transitioned to the active phase, the only
method to unlock the discovery payload and status is by system management firmware clearing,
then setting DPEN.

If the target resets during the discovery phase prior to the entry to the active phase (e.g.,
APEN=0), the DISCOVERY_STATUS value would revert to 11b (Payload not received.) The
initiator would autonomously send the payload request command if DISC_PAYLOAD_ENABLE
= 1. The target device would not be transitioned to the active phase until
DISCOVERY_STATUS=10b. If discovery had not previously completed or DPEN=0, the device
would not be discovered and transition to the active phase.

5.8 Active Phase: Dynamic Virtual Wires

Once the target transitions to the active phase, the initiator autonomously exchanges virtual
wires with each target device. The HW controlled virtual wire inputs and outputs are target
device class specific. The total (HW controlled + firmware controlled) number of bytes in and out
are advertised within the static discovery payload.

5.8.1 Virtual Wire Exchange Example (1 Byte Out/In)

tAPBI

CMD=01h

tAPTAR

VWOUT_0

tIIDLE

VWIN_0
Initiator TX
Target TX
Hi‐Z

tAPBI

Figure 10. Single Byte Virtual Wire Exchange

5.8.2 Virtual Wire Exchange Example (N Byte Out/M Byte N)

CMD=01h VWOUT_0

tAPTAR

... VWOUT_N VWIN_0 ... VWIN_M

tAPBItAPBI
tTIDLEtIIDLE tIIDLE

Figure 11. Multi-byte Virtual Wire Exchange

5.8.3 Active Phase Rules
● Minimum Initiator M-PESTI idle period between RX of the previous target response & TX

of the next target command is tAPBI
● A target must wait tAPTAR minimum before beginning to transmit the response.
● A target must complete a response to the initiator within the RX timeout of tAPRTO.
● The maximum period between commands sent from an initiator to that same target is not

bound by this specification.
● If the target device does not support virtual wires (active phase is not required) in either

direction:
o Target shall ignore the virtual wire out value and respond with a virtual wire input

value=00h
o Target shall drive any/all secondary M-PESTI wires low after receiving

CMD=01h.
o The BMC may clear APEN to disable the active phase for a device once the

secondary M-PESTI wires are driven low by the target.
▪ Even though the primary M-PESTI wire is static high=idle, the discovery

payload and status would be locked until the next power cycle of the
target or until DPEN is cleared, then set by system management FW.

● Number of out bytes and in bytes can be asymmetrical as suited for the application.

The method to route virtual wires to/from internal system logic or other entities and the M-PESTI
wire is outside the scope of this document. The usage of the virtual wires (internal
commands/policies or connections to local physical signals) by the target is also outside the
scope of this document.

5.8.4 Virtual Wire (HW) Definitions by Device Class

5.8.4.1 EXAMPLE DEVICE_CLASS = 00h (CEM Interposer/Riser)

VWOUT_0 (System Output Virtual Wires)
7 6 5 4 3 2 1 0

AFU AFU AFU AFU AFU AFU S0_RUN PWR_BRK

PWR_BRK : Active high (1=Assert, 0=De-assert) virtual wire

S0_RUN : Active high (1=True, 0=False) virtual wire indicating system power
state is ACPI S0_RUN.

AFU : Available for Future Use

VWIN_0 (System Input Virtual Wires)

7 6 5 4 3 2 1 0
AFU AFU AFU AFU AFU AFU AFU WAKE

WAKE : Active high (1=Assert, 0=De-assert) virtual wire that indicates the target
device is requesting entry to the ACPI S0_RUN state.

AFU : Available for Future Use

All other device classes are vendor specific until a point where such standardization occurs

5.9 Broadcast Commands

To reduce the amount of baseboard logic required, it may be desirable to utilize a single initiator
UART that is shared (multiplexed) among multiple targets. This has a limitation that commands
and responses cannot be in progress to multiple targets simultaneously. If initiator sharing is
implemented at the baseboard logic, each target that shares a common initiator must be
serviced in a round-robin rotation.

Following is a simplified FPGA logic diagram of a M-PESTI target group that shares a single M-
PESTI initiator. It depicts the parallel break detectors required for each M-PESTI wire and logic
that acts as an internal MUX. The internal MUX can be directed to select/focus on a single M-
PESTI wire at a time or enable the UART TX traffic to be forwarded to every target within the
group

5.9.1 FPGA Logic Diagram

Baseboard

FPGA

PESTI Initiator Group Logic

...

UART
RX

PESTI
Initator
SM

Payload
Data

VWireIn

VWireOut

DSTAT
Logic

UART
TX

ASTAT
Logic

N BREAK
Detectors

M‐PESTI_1

M‐PESTI_2

M‐PESTI_3
M‐PESTI_N

P
ES
TI_

SE
LE
C
TE
D

SELECT
BROADCAST_EN

Registers

HSIO SRC1 HSIO SRC2 HSIO SRC3 HSIO SRCN

Pseudo‐MUX

Figure 12. Example PESTI Initiator Logic

PWR_BRK is an example low latency output virtual wire required to be communicated to
all applicable M-PESTI targets within ~400 us (system specific). To meet this requirement while
allowing implementation flexibility to share an initiator among multiple targets, a special
broadcast command is required.

This following broadcast command is required to be supported by applicable targets. It is
required to be implemented in the baseboard logic if an initiator is shared with multiple targets.

CMD=FFh
(BROADCAST)

IDLE IDLE00h=(Assert
PWR_BRK)

tAPBI tAPBI
tIIDLE

Figure 13. Example Broadcast Command

There is no response to this command, so that it can optionally be repeated to ensure that it
was received by the target

CMD=FFh
(BROADCAST)

IDLE IDLE00h=(Assert
PWR_BRK)

CMD=FFh
(BROADCAST)

00h=(Assert
PWR_BRK)

Optional Repeat

tAPBI tAPBI

IDLE

tAPBItIIDLE tIIDLE

Figure 13. Example Broadcast Command Retransmission

A benefit is that PWR_BRK would be set in the next virtual wire exchange to each applicable
target if the triggering system event remains active. Round robin servicing naturally staggers
PWR_BRK de-assertion (which is a common system preference to avoid excessive inrush
current from high power loads). Additional delay between PWR_BRK de-assertion to multiple
targets is implementation specific and controlled via system firmware via baseboard logic that
feeds into the appropriate M-PESTI channel.

5.9.2 Example of Round Robin VWIRE exchange and Broadcast

Initiator TX
Target TX
Hi‐Z

S5‐‐>S0

VWIRE
OUT/IN

SYS_PWR_BRK_EVENT

BROADCAST
PWRBRK=1 VWIRE

PWRBRK =1

VWIRE
PWRBRK=0

Figure 14. Example Round Robin and Broadcast Transitions

SYS_PWR_BRK_EVENT (Active high) in the diagram above represents the logical combination
of any hardware or firmware triggers that request assertion of PWRBRK# (Active-low,
Emergency Power Reduction State Request) as defined in the PCI Express Base Specification.

5.10 Initiator Abort Mechanism

In some examples low latency commands needs to be sent and thus an abort mechanism is
required. In these examples, PWRBRK is the example low latency command for illustration
purposes.
To limit a PWRBRK command insertion latency, the initiator may abort any communication
exchange by asserting the M-PESTI wire low. There are two general cases for the initiator
abort sequence.

1. Case 1 : While the initiator is transmitting or about to transmit.
2. Case 2 : While the target is transmitting or about to transmit.

Case 1 : The abort sequence while the initiator is transmitting is synchronous to the START of
a frame. The initiator abort assertion (tABREAK) will begin at the same instant that the falling
edge of START would begin. The assertion width is guaranteed to encompass the START bit, 8
data bits, parity bit and STOP bit. There is additional margin of the assertion width beyond the
STOP bit to allow the target to capture the BREAK as an invalid frame with both a parity (even)
and framing (STOP=0) error. The worst-case insertion latency occurs when the system
PWRBRK event occurs just after the beginning of a normal START condition. In this case, the
tABREAK assertion does not begin until after the STOP bit of the previous frame.

Initiator TX
Target TX
Hi‐Z

S5‐‐>S0

SYS_PWR_BRK_EVENT

ZOOM

CMD=XXh

tFRAME

tABREAK
CMD=FFh
(Broadcast)

CMD=00h
(PWRBRK)

tAPBI

tFRAME

Maximum PWRBRK insertion latency
 = 3*tFRAMEMAX + tABREAKMAX + tMARKMAX

= 195.1 us

CASE 1 : PWRBRK Insertion Latency During Initiator TX Phase

Worst case is event asserting
just after initiator start of frameVWIRE

OUT/IN

VWIRE
OUT/IN

M‐PESTI

tMARK

Figure 15. PWRBRK Insertion Latency During Initiator TX Phase

Case 2 : The abort sequence while the target is transmitting is asynchronous to the START of
a frame. The initiator abort assertion (tABREAK) will occur at any point within the target
transmitted frame. The assertion width is guaranteed to encompass the START bit, 8 data bits,
parity bit, STOP bit, tTAR and tTIDLE. Because there is sufficient margin, the TARGET is only
required to sample for the abort just prior to the START of any frame. The worst-case insertion
latency occurs when the system PWRBRK event occurs just after the beginning of a normal
START condition. In this case, the abort is not recognized by the target until just before the
following START of a response frame.

tMARK

Initiator TX
Target TX
Hi‐Z

S5‐‐>S0

SYS_PWR_BRK_EVENT

ZOOM

RSP=XXh

tFRAME tMARK

CMD=FFh
(Broadcast)

CMD=00h
(PWRBRK)

tAPBI

tFRAME

Maximum PWRBRK insertion latency
 = 2*tFRAMEMAX + tBREAKMAX + tMARKMAX

= 150 us

CASE 2 : PWRBRK Insertion Latency During Target TX Phase

Worst case is event asserting
just after target start of frameVWIRE

OUT/IN

tABREAK CMD=FFh
(Broadcast)

CMD=00h
(PWRBRK)

tAPBIINITIATOR

TARGET

VWIRE
OUT/IN

Figure 16. PWRBRK Insertion Latency During Target TX Phase

6. M-PESTI Fan Out

Applications exist where the ability to fan out a M-PESTI bus to multiple targets exist.
One such example is a motherboard or Host Processor Module (HPM) connection to a Power
Distribution Board (PDB) with N number of target subsystems such as backplanes or risers.
Since the number N is not a priori known by the motherboard, and pre-plumbing for a maximum
quantity requires additional interconnects, M-PESTI fan out support helps scale the ability to
support M-PESTI type features.

This specification version includes the scope of fanout from between 2 to 8 downstream

busses. Although out of scope, nesting of multiple tiers of fan out within a single hierarchy is
possible with additional CMD codes and circuitry. In all fanout cases, it is left to the designer to
understand the latency effects of fanout width (and depth). Two methods are shown where the
MUX method is for typical fanout needs and the Switch method is targeted for applications that
require the ability to broadcast commands simultaneously with all targets.

Two fanout methods of operation include the MUX and Switch methods (see circuits below).
 MUX method: Typical 1-to-many fanout. Broadcast commands are ineffective.
 Switch method: For applications requiring broadcast commands to all attached targets.

Two modes of operation for a fanout controller include Target Mode & Snoop Mode

 Target Mode (Default):
o Controller acts as a target supporting discovery and active phases
o Only the fanout controller may be attached to the initiator bus

 MUX Method: No channels are selected
 Switch Method: Fanout controller on Ch0 is always enabled; all others default

disabled
o Shall support >=1 status command for the initiator reading information from the

fanout controlling PESTI target such as:
 The current MUX/switch settings
 If an issue was observed such as a closed switch bus hang watchdog timeout
 Live status of downstream subsegments (when the MUX is not focused or

switch closed on a particular subsegment)

 Snoop Mode: Fanout controllers must:
o Enter snoop mode any time any other target(s) are attached to a bus
o May process broadcast commands if application relevant
o Listen/Process only special fanout control commands (MUX Select or Switch channel

enable), thereby ignoring discovery and target mode active phase commands
intended for other targets
Example MUX Select commands may include:

 Go to Target Mode and de-select all subsegments

 Select specific subsegment(s) as connected, which may comprise of 1, all or
select groups.

Fan‐out
BoardSource

Fan‐out
Source

PESTI
Initiator

22
127K

+3.3VAUX

FET
MUX

PESTI
Target/
Snooper

PESTI_N
…

MUXSEL[N:1]

PESTI_Target_Snoop

B1

Bn

End Target 1

End Target 2

SEL
EN MUXEN

Switch

PESTI
Target/
Snooper

PESTI_N
…

B1

Bn

End Target 1

End Target 2

SWITCH_EN[N]ENn
EN1

A

Switch Method (for applications requiring Broadcast)

MUX Method

EN0

B0 PESTI_N

Strap High

PESTI
Initiator

22
127K

+3.3VAUX

A

Figure 17. Example M-PESTI FANOUT Methods

Designer note: Buffer(s) may be necessary if the Target/Snooper and the FET MUX or Switch

have significant layout stubs. The designer may choose a switch with active buffers versus a FET

switch to avoid reflection effects.

Since any downstream interface may have a strap (such as a strong presence pulldown
resistor) or be in a stuck state driving high or low, it is imperative to not create a deadlock
condition where the Fanout controller cannot observe new commands to change the MUX or
switch settings. Therefore, it is recommended to have the fanout controller implement a
watchdog timer of at least 20ms after closing 1 or more channels to see any signaling activity. If
no such activity (rising or falling edges), open the just selected channel(s) and set a status to
inform the PESTI initiator why the channel(s) automatically opened.

An alternative option is for the fanout controller to always be able to observe and report
upstream the state of any downstream subchannel so that the PESTI initiator can choose to not
close a suspect channel.

7. Electrical Specifications

7.1 DC Specifications

Symbol Parameter Min Max Units Comments

VDD Bus Voltage 3.135 3.465 V 3.3 +/-5%

VIH
HIGH level input

voltage 2.0 V 3.3V LVCMOS

VIL
LOW level input

voltage 0.8 V 3.3V LVCMOS

7.2 AC Specifications
Symbol Parameter Min Max Units Comments

tBAUD BAUD rate 242500 257500 kHz 250000 +/- 3%

tFRAME Start + 8b Data + Parity +
Stop

42.7 45.3 us 1/tBAUD * 11 bits

tF Fall Time - 120 ns Same as 1MHz SMBus (VIH,MIN +
0.15 V) to (VIL,MAX - 0.15 V)

tR Rise Time - 120 ns Same as 1MHz SMBus (VIL,MAX -
0.15 V) to (VIH,MIN + 0.15 V)

tSPIKE Noise Spike suppression
time

0 50 ns Same as 400kHz SMBus. Noise
suppression is recommended, but
not required

tABREAK Initiator Abort BREAK
assertion time

50 55 us Initiator abort BREAK assertion
falling edge is synchronous to a
normal START of frame when the
initiator is transmitting. It is
asynchronous to START when the
target is transmitting. MAX spec.
reduces worst case PWRBRK
insertion latency

tDBREAK Target Discovery BREAK
assertion time

50 - us M-PESTI target BREAK can be
persistent.

tIIDLE Initiator End of STOP to
START

0 - ns STOP is typically sampled at the
midpoint of the bit, so there is
approximately 2 us of time to the
next START.

tTIDLE Target End of STOP to
START

- 1000 ns This is required for the target to
sample for initiator abort prior to
START of target TX.

tMARK End of BREAK to START
time

3.88 4.12 us MARK time is 1 BAUD period
between end of initiator abort
BREAK and START of new
command

tDPTAR Discovery Phase
Turnaround Time

100 - ns MAX not specified. It is bound by
payload size and tDPRTO.

tAPTAR Active Phase Turnaround
Time

0.1 20 us Between Target RX and Target TX
of a response. MAX reduces time
to sample initiator BREAK/Abort
signal just before START. Target
MCU should not have trouble
meeting minimum time required to
allow the initiator to prepare for RX
following TX.

tDPRTO Discovery payload
receive timeout

- 250 ms Allows for 150 ms tDPTAR + 2048
byte payload size.

tAPRTO Active Phase receive
timeout

- 500 us Includes margin beyond
tAPTARMAX + 8*tFRAMEMAX +
7*tTIDLEMAX = 389 us

tAPBI Active phase bus IDLE
time

10 - us Between initiator RX from target
and initiator TX to same target

8. Security Considerations
Although M-PESTI is a basic, low level messaging and virtual wire tunnel, the following threats
are identified with possible mitigations.
It is believed that necessary mitigations can be implemented on top of the base specification or
if necessary may be included in future revisions of this base specification.
Revision 1.0 does not explicitly teach the mitigations due to needing further analysis on the
often application specific impacts to latency, complexity and implementation costs.

Threats

1) Physical implant / signal re-routing: Assurance, where applicable, that the PESTI target
is on the same HW (or same target) as other management interfaces. SPDM types of
security capabilities are the likely current art in which to address this treat.

2) Physical implant, man-in-the-middle snooping or alteration of payloads or virtual wires in
flight. Potentially mitigated with encrypted payloads most likely using SPDM defined
methods.

Supplemental Material
Supplemental Material A: 2 x16 CEM Slot Riser Payload Example

Payload Format
Number
of Bytes

Description

12 Header Information

5
End Point 1: Data Fabric, Power and SMBus Physical Routing

Description
5 …

5
End Point N: Data Fabric, Power and SMBus Physical Routing

Description
2 Destination Wire Descriptors

Varies Misc. Vendor Specific Region
Varies *Padding (0 – 7 Bytes)

1 Checksum

Minimum Required Payload Regions *Payload size must be a multiple of 8 including
checksum

HEADER Definition
Byte/Bi

t
7 6 5 4 3 2 1 0

00h PAYLOAD_VERSION[7:0]
01h DEVICE_CLASS[7:0]
02h STATIC_PAYLOAD_SIZE[7:0]
03h NUM_VIRTUAL_WIRE_OUTPUT BYTES[3:0] NUM_VIRTUAL_WIRE_INPUT BYTES[3:0]
04h DEVICE_ID[15:8]
05h DEVICE_ID[7:0]
06h VENDOR_ID[15:8]
07h VENDOR_ID[7:0]
08h DEVICE_VERSION[7:0]
09h AFU = FFh
0Ah NUM_DST_WIRES[3:0] AFU NUM_PICPWR_DST_WIRES[2:0]
0Bh AFU AFU AFU NUM_EP_DESCRIPTORS[4:0]

0Ch AFU AFU AFU AFU AFU AFU AFU AFU

Minimum Required

PAYLOAD_VERSION[7:0] :
Indicates the format version of the payload. Future revisions may relocate, remove or add
additional bit-fields beyond the first four bytes. Any alteration of the definitions to bytes 0-3 must
be avoided for backward compatibility to bit fields that are directly consumed by FPGA logic.

DEVICE_CLASS[7:0] : Indicates the device class of the M-PESTI target peripheral

00h : Riser/Interposer
All others reserved.

STATIC_PAYLOAD_SIZE[7:0] : Indicates the total static payload size. The value of this bit
field represents the SIZE/8.
Example: STATIC_PAYLOAD_SIZE = 04h indicates the size as 4 * 8 = 32 Bytes

NUM_VIRTUAL_WIRE_OUTPUT_BYTES[3:0] :
Indicates the number of output bytes (from target to initiator) supported for future system
management firmware interaction.
NUM_VIRTUAL_WIRE_INPUT_BYTES[3:0] :
Indicates the number of output bytes (from initiator to target) supported for future system
management firmware interaction.
NOTE: The number of HW controlled Virtual wire bytes in and out of a target device and their
meaning is defined to be DEVICE_CLASS specific

VENDOR_ID leverages PCIe VENDOR_ID table
The formats of DEVICE_ID and DEVICE_VERSION are vendor specific.

NUM_DST_WIRES[3:0] :
Indicates the total number of M-PESTI destinations (required per x8 data fabric segment) that
are connected to this device.
Examples:

● A single x8 target requires only one (primary) M-PESTI wire
● A four-slot riser with x16 routed to each slot requires 8 source wires

NUM_PICPWR_DST_WIRES[2:0] : Indicates the total number of PICPWR M-PESTI sources
supported

NUM_EP_DESCRIPTORS[4:0] : Indicates the number of End Point descriptor groups. 5-bits
accommodate more than 16 end points to be described with 1-indexing.
Examples:

● A two-slot riser would populate NUM_EP_DESCRIPTORS = 00010b (two)
● A device that does not require any physical routing description would populate

NUM_EP_DESCRIPTORS = 00000b (None)

Endpoint Descriptor Bit fields
BYT
E/BI

T
7 6 5 4 3 2 1 0

0 SMB_UP_CH[2:0] SMB_MUX_DCH[2:0]
SMB_MUX_PR

ES
EP_PRES

1 EP_TYPE[2:0] PICPWR_DST_INDEX[2:0] AFU HOT_PLUG

2 EP_LANE_WIDTH[2:0] INDIRECT_DISC_ORDER[3:0] INDIRECT

4 AFU DST_INDEX_A[2:0] EP_LANE_OFFSET_A[3:0]

5 AFU DST_INDEX_B[2:0] EP_LANE_OFFSET_B[3:0]

SMB_MUX_PRES :
 1 : indicates that a SMBus MUX exists between the connector and the destination
 0 : there is no MUX present, and the physical routing is described by SMB_UP_CH

SMB_MUX_DCH[2:0] : When SMB_MUX_PRES=1, this field indicates which downstream
channel (up to 8) of the MUX is physically routed to this end point.

SMB_UP_CH[2:0] : Indicates the physical connector index that sources SMBus to the end point
(SMB_MUX_PRES=0) or to the upstream channel of a MUX (SMB_MUX_PRES=1)
 000b = D1A (Destination Connector1, I2C_A)
 001b = D1B (Destination Connector1, I2C_B)
 010b = D2A
 011b = D2B
 100b = D3A
 101b = D3B
 110b = D4A
 111b = D4B (Destination Connector4, I2C_B)

AFU : Available for Future Use

EP_TYPE[2:0] : Indicates the end point type that is being described to be attached to this lane
group. Note: This bit field definitions for EP_TYPE may be specific to a DEVICE_CLASS
Examples (CEM Riser/Interposer):
 000b = PCIe CEM Slot
 001b = Embedded (Device Down) End Point
 010b = Upstream port of a PCIe Switch
 Others = AFU
Examples (Storage Class)
 000b = NVMe Slot
 001b = SAS/SATA Slot
 001b = Universal Slot
PICPWR_DST_INDEX[2:0] :
Indicates which PICPWR destination connector provides power to this EP (End Point)

HOT_PLUG : Applicable to NVME direct attach storage or similar EP. Physical presence of the
device is communicated via an out-of-Band mechanism, data fabric in-band method or dynamic
virtual wire.

EP_PRES :

1 = Device is present
 static=1 for embedded devices
 downstream cable presence for cabled sources downstream of a switch
0 = Device such as an Add-In Card or downstream cable is not present

Not applicable to a hot plug EP.

EP_LANE_WIDTH[2:0] : //Note this is the connector width and not the slot installed add-in card.

000b = x1
001b = x2
010b = x4
011b = x8
100b = x16 (infers two sources required, all others only require one source)
All others reserved

Note: When EP_TYPE describes a PCIe CEM slot, the EP_LANE_WIDTH attribute describes
the number of lanes routed to the slot. It does not describe the width of the Add In Card (AIC)
that may be inserted into the slot.

INDIRECT :
 0 = EP’s data fabric physical routing is direct from the destination connector
 1 = EP is downstream of a PCIe switch

INDIRECT_DISC_ORDER[3:0] :
Applicable when INDIRECT = 1 indicating that this destination is downstream of a PCIe switch.
The discovery order index requires depth-first traversal during enumeration of the switch’s
downstream ports.
 0000b = First
 0001b = 2nd
 …
 111b = 15th

DST_INDEX_x[2:0] :
Indicates which destination connector(s) source data fabric lanes connect to this end point.
 000b = Destination 1A
 001b = Destination 1B
 …
 110b = Destination 4A
 111b = Destination 4B

EP_LANE_OFFSET_x[3:0] : This field indicates the starting lane offset of the destination
connector that the end point consumes.

EP_LANE_OFFSET_A[3:0] indicates which destination connector segment and lane are
physically routed to lane 0 of the end point.
X8 Example: Natural order routing would indicate an offset of 0 from the High Speed I/O
destination to lane 0 of the EP. Reverse order routing would indicate an offset of 7 from the
destination to lane 0 of the EP.
EP_LANE_OFFSET_B[3:0] is only applicable to a EP with EP_LANE_WIDTH[2:0] = 100b (x16).
All other end points only require physical routing description from a single DST_INDEX.

Source Wire Descriptors and Stimulus Response

BYTE/BIT 7 6 5 4 3 2 1 0

0 P_D4 P_D3 P_D2 P_D1 COMM_SRC_TYPE COMM_SRC_INDEX[2:0]

1 M_D4B M_D4A M_D3B M_D3A M_D2B M_D2A M_D1B M_D1A

COMM_SRC_INDEX[2:0] :
Indicates which source index is being used for frame-based communication. The physical
routing of this wire is not able to be discovered through the stimulus response method. The
corresponding destination index will always appear as ‘1b’ in the discovery payload.

COMM_SRC_TYPE : 0b = High Speed I/O (aka M-XIO)

 1b = Power (aka PICPWR)

M_DXY :

X = Destination connector index
 Y = Destination connector sub-Index (1 per x8)
These fields will change state during the source discovery stimulus phase so that system
management firmware can map the data fabric and I2C physical routing from the end point back
to the planar.

P_DX :

X = PICPWR destination index
These fields will change state during the source discovery stimulus phase so that system
management firmware can map the power path to this end point. This is useful for optional
enablement to a DPU EP in the ACPI S5 power state.

Checksum
BYT
E/BI

T
7 6 5 4 3 2 1 0

0 CHECKSUM[7:0]

CHECKSUM[7:0] : CRC-8 checksum with polynomial = 0x07, Seed = 0x00

Example 2-slot Riser Block Diagram

Baseboard

SRC_5 (x16)

CPLD

MS6_CBL_PRESA_PESTI_N

MS5_CBL_PRESA_PESTI_N

CPU0

P0[15:0] P1[15:0]

2 x16 Riser

MCU

SRC_6 (x16)

CEM SLOT2
0 15

MD1_CBL_PRESA_PESTI_N

MD2_CBL_PRESA_PESTI_N

[15:0]

[15:0][15:0]

DST_2 (x16)DST_1 (x16)

CEM SLOT1
0 15

[0:15]
Reversal

MS6_CBL_PRESB_PESTI_N

MS5_CBL_PRESB_PESTI_N

MD1_CBL_PRESB_PESTI_N

MD2_CBL_PRESB_PESTI_N

BMC

MD1_I2CA
MD2_I2CA

I2C_B

I2C_A

SPI
I2C_C
I2C_D

The above example depicts an M-PESTI riser with two x16 CEM slots attached to two x16
cabled High Speed source connectors on the baseboard. All four of the M-PESTI wires are
connected between the riser destination connectors and the target MCU so that it natively
supports all valid source connections to the baseboard. Valid source connection topologies
include one x16 or two x8 sources per x16 destination connector.

Payload Example (Initial Discovery Payload)

Byte/Bit 7 6 5 4 3 2 1 0
Valu

e
00h PAYLOAD_VERSION[7:0] = 00h 00h
01h DEVICE_CLASS[7:0] = 00h (CEM Riser) 00h
02h STATIC_PAYLOAD_SIZE[7:0]= 04h (32 Bytes) 04h

03h
NUM_VIRTUAL_WIRE_OUTPUT BYTES[3:0]

= 0000b
NUM_VIRTUAL_WIRE_INPUT BYTES[3:0] = 0000b

00h

04h DEVICE_ID[15:8] = 00h 00h
05h DEVICE_ID[7:0] = 27h 27h
06h VENDOR_ID[15:8] = 80h 80h
07h VENDOR_ID[7:0] = 86h 86h
08h DEVICE_VERSION[7:0] = A0h A0h

09h
NUM_DST_WIRES[3:0] = 0100b (4

CBL_PRES signals)
AFU = 0b

NUM_PICPWR_DST_WIRES[2:0] =
001b

41h

0Ah
AFU =

0b
AFU =

0b
AFU =

0b
NUM_DST_DESCRIPTORS[4:0] = 00010b (Two Slots) 02h

0Bh
AFU =

0b
AFU =

0b
AFU =

0b
AFU = 0b AFU = 0b AFU =

0b
AFU = 0b AFU = 0b 00h

0Ch
010b (I2C Source is D2A

Connector)
000b (NA, No Mux)

0b (No
Mux)

1b
(Present)

41h

0Dh 000b (CEM slot) 001b (P_D1 power) 0b (AFU) 0b (not HP) 04h

0Eh 100b (x16 EP) 000b (NA, Direct) 0 (Direct) 80h

0Fh
0b

(AFU)
011b (D2A Destination) 0111b (Lane 7 Dest. to EP Lane 0, reversed)

37h

10h
0b

(AFU)
010b (D2B Destination) 0111b (Lane 7 Dest. to EP Lane 8, reversed)

27h

11h 000b (D1A Connector) 000b (NA, No Mux)
0b (No
Mux)

0b (Absent)
00h

12h 000b (CEM slot) 001b (P_D1 power) 0b (AFU) 0b (not HP) 04h

13h 100b (x16 EP) 000b (NA, Direct) 0 (Direct) 80h

14h
0b

(AFU)
000b (D1A Destination) 0000b (Lane 0 Dest. to EP Lane 0, natural order)

00h

15h
0b

(AFU)
001b (D1B Destination) 0000b (Lane 0 Dest. to EP Lane 8, natural order)

10h

16h 0b (NA) 0b (NA) 0b (NA) 1b (valid)
0b = Data

Comm
000b (D1A Connector)

10h

17h 0b (NA) 0b (NA) 0b (NA) 0b (NA) 1b (valid) 1b (valid) 1b (valid) 1b (valid) 0Fh

18h 00h (Padding) 00h

19h 00h (Padding) 00h

1Ah 00h (Padding) 00h

1Bh 00h (Padding) 00h

1Ch 00h (Padding) 00h

1Dh 00h (Padding) 00h

1Eh 00h (Padding) 00h

1Fh 31h (Checksum) 31h

Supplemental Material B: Estimated latency for HW owned virtual wires
Assumptions:

● 242500 BAUD (250000 -3%); 8-O-1
● Worst case 8 device group with round robin servicing to each. This is if the source

device wishes to reduce logic count by implementing for example 1 UART servicing 8X
M-PESTI instances. Such an implementation would need a parallel BREAK detect circuit
to not miss signaling from a not currently in use M-PESTI instance.

Nominal Latency

 Dedicated Initiator Only:

Single VWIRE byte in each direction
tAPBI2MIN + [2* tFRAMEMAX TX (90.6 us)] + tAPTARTYP (1.0 us) + [1 * tFRAMEMAX RX
(45.3 us)] = 145.9 us

Note: tAPBIMAX is not specified and is system dependent

8 targets per Initiator:

Single VWIRE byte in each direction
[[2* tFRAMEMAX TX (90.6 us)] + tAPTARTYP (1.0 us) + [1 * tFRAMEMAX RX (45.3 us)]]
= 136.9 us * 8 devices
= 1167.2 us

Worst Case Latency

Dedicated Initiator Only:

For a dedicated initiator per target, the active phase RX timeout (tAPRTO) will add to the
latency between each successive attempt to send the command and receive a valid response.
The RX timeout period is much greater than (tAPTAR + 1 * tFRAMEMAX RX) and would affect
latency the most.
A single RX timeout would increase the nominal latency to:

2* [2* tFRAMEMAX TX (90.6 us)] + tAPRTO = 681 us

8 targets per Initiator:

With 3 attempts (initial + 2 retries) per M-PESTI, the max latency with a single target not able to
respond successfully adds significant latency to the nominal value of 1167.2 us

= 1167.2 us - tAPTAR + tAPRO + 2* [135.9 us + tAPRTO] = 2.802 ms
Note: Firmware disablement (APEN=0) of one or more misbehaving M-PESTI wires would
remediate the latency increase for the other devices within the group.

Supplemental Material C: Cable Topology Case Studies

Case 1: 2x8 Source to 1x16 End Point Block Diagram

Baseboard

SRC_5 (x8)

CPLD

MS6_CBL_PRESA_PESTI_N

MS5_CBL_PRESA_PESTI_N

CPU0

P0[15:0] P1[15:0]

SRC_6 (x8)

[15:0][15:0]BMC

I2C_6A

SPI
I2C_5A

X16 Module

MCU

DST_1 (x16)

CEM SLOT
015

DST1_CBL_PRESA_PESTI_N

DST1_CBL_PRESB_PESTI_N

[15:0]

DST1_I2CB

Case 1: 2x8 Source to 1x16 Destination to 1x16 End Point Payload

Byte/Bit 7 6 5 4 3 2 1 0
Valu

e
00h PAYLOAD_VERSION[7:0] = 00h 00h
01h DEVICE_CLASS[7:0] = 00h (CEM Riser) 00h
02h STATIC_PAYLOAD_SIZE[7:0]= 03h (24 Bytes) 03h

03h
NUM_VIRTUAL_WIRE_OUTPUT BYTES[3:0]

= 0000b
NUM_VIRTUAL_WIRE_INPUT BYTES[3:0] = 0000b

00h

04h DEVICE_ID[15:8] = 00h 00h
05h DEVICE_ID[7:0] = 27h 27h
06h VENDOR_ID[15:8] = 80h 80h
07h VENDOR_ID[7:0] = 86h 86h
08h DEVICE_VERSION[7:0] = A0h A0h

09h
NUM_DST_WIRES[3:0] = 0010b (2

CBL_PRES signals)
AFU = 0b

NUM_PICPWR_DST_WIRES[2:0] =
000b

20h

0Ah
AFU =

0b
AFU =

0b
AFU =

0b
NUM_DST_DESCRIPTORS[4:0] = 00001b (One Slot) 02h

0Bh
AFU =

0b
AFU =

0b
AFU =

0b
AFU = 0b AFU = 0b AFU =

0b
AFU = 0b AFU = 0b 00h

0Ch
010b (I2C Source is D2A

Connector)
000b (NA, No Mux)

0b (No
Mux)

1b
(Present)

41h

0Dh 000b (CEM slot) 000b (No discoverable power) 0b (AFU) 0b (not HP) 00h

0Eh 100b (x16 EP) 000b (NA, Direct) 0 (Direct) 80h

0Fh
0b

(AFU)
000b (D1A Destination) 0000b (Lane 0 Dest. to EP Lane 0, reversed)

00h

10h
0b

(AFU)
001b (D1B Destination) 0000b (Lane 0 Dest. to EP Lane 8, reversed)

10h

11h 0b (NA) 0b (NA) 0b (NA) 0b (NA)
0b = Data

Comm
000b (D1A Connector)

00h

12h 0b (NA) 0b (NA) 0b (NA) 0b (NA) 0b (NA) 0b (NA) 1b (valid) 1b (valid) 03h

13h 00h (Padding) 00h

14h 00h (Padding) 00h

15h 00h (Padding) 00h

16h 00h (Padding) 00h

17h 39h (Checksum) 39h

Case 2: 1x16 Source to 2x8 Destination to 1x16 End Point

Baseboard

CPLD

SRC11_CBL_PRESA_PESTI_N

SRC11_CBL_PRESB_PESTI_N

CPU0

P0[15:0]

[15:0]

BMC

I2C_11A

SPI
I2C_11B

X16 Module

MCU

SRC_11 (x16)

CEM SLOT
015

DST1_CBL_PRESA_PESTI_N

DST2_CBL_PRESA_PESTI_N

[7:0] D2_I2CA

DST_1 (x8) DST_2 (x8)

[7:0]

Case 2: 1x16 Source to 2x8 Destination to 1x16 End Point

Byte/Bit 7 6 5 4 3 2 1 0
Valu

e
00h PAYLOAD_VERSION[7:0] = 00h 00h
01h DEVICE_CLASS[7:0] = 00h (CEM Riser) 00h
02h STATIC_PAYLOAD_SIZE[7:0]= 03h (24 Bytes) 03h

03h
NUM_VIRTUAL_WIRE_OUTPUT BYTES[3:0]

= 0000b
NUM_VIRTUAL_WIRE_INPUT BYTES[3:0] = 0000b

00h

04h DEVICE_ID[15:8] = 00h 00h
05h DEVICE_ID[7:0] = 27h 27h
06h VENDOR_ID[15:8] = 80h 80h
07h VENDOR_ID[7:0] = 86h 86h
08h DEVICE_VERSION[7:0] = A0h A0h

09h
NUM_DST_WIRES[3:0] = 0010b (2

CBL_PRES signals)
AFU = 0b

NUM_PICPWR_DST_WIRES[2:0] =
000b

20h

0Ah
AFU =

0b
AFU =

0b
AFU =

0b
NUM_DST_DESCRIPTORS[4:0] = 00001b (One Slot) 02h

0Bh
AFU =

0b
AFU =

0b
AFU =

0b
AFU = 0b AFU = 0b AFU =

0b
AFU = 0b AFU = 0b 00h

0Ch
010b (I2C Source is D2A

Connector)
000b (NA, No Mux)

0b (No
Mux)

1b
(Present)

41h

0Dh 000b (CEM slot) 000b (No discoverable power) 0b (AFU) 0b (not HP) 00h

0Eh 100b (x16 EP) 000b (NA, Direct) 0 (Direct) 80h

0Fh
0b

(AFU)
000b (D1A Destination) 0000b (Lane 0 Dest. to EP Lane 0, reversed)

00h

10h
0b

(AFU)
010b (D2A Destination) 0000b (Lane 0 Dest. to EP Lane 8, reversed)

20h

11h 0b (NA) 0b (NA) 0b (NA) 0b (NA)
0b = Data

Comm
000b (D1A Connector)

00h

12h 0b (NA) 0b (NA) 0b (NA) 0b (NA) 0b (NA) 1b (valid) 0b (NA) 1b (valid) 05h

13h 00h (Padding) 00h

14h 00h (Padding) 00h

15h 00h (Padding) 00h

16h 00h (Padding) 00h

17h 66h (Checksum) 66h

Note: The only bytes that change relative to Case 1 are payload offsets 0x10 and 0x12 to
account for two PRESA wires from 2x8 destination connectors versus PRESA and PRESB
wires connecting through a 1x16 destination connector.

