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1. License 
1.1 Open Web Foundation (OWF) CLA 
Contributions to this Specification are made under the terms and conditions set forth in Open 
Web Foundation Modified Contributor License Agreement (“OWF CLA 1.0”) (“Contribution 
License”) by:  

 Advanced Micro Devices, Inc  
 Dell, Inc.  
 Google LLC  
 Hewlett Packard Enterprise Company  
 Intel Corporation  
 Meta Platforms, Inc.  
 Microsoft Corporation  

 
Usage of this Specification is governed by the terms and conditions set forth in Open Web 
Foundation Modified Final Specification Agreement (“OWFa 1.0”) (“Specification 
License”).    
You can review the applicable OWFa1.0 Specification License(s) referenced above by the 
contributors to this Specification on the OCP website at 
http://www.opencompute.org/participate/legal-documents/. For actual executed copies of either 
agreement, please contact OCP directly. 
 Notes:  

1. The above license does not apply to the Appendix or Appendices. The 
information in the Appendix or Appendices is for reference only and non-
normative in nature.  

 
NOTWITHSTANDING THE FOREGOING LICENSES, THIS SPECIFICATION IS PROVIDED 
BY OCP "AS IS" AND OCP EXPRESSLY DISCLAIMS ANY WARRANTIES (EXPRESS, 
IMPLIED, OR OTHERWISE), INCLUDING IMPLIED WARRANTIES OF MERCHANTABILITY, 
NON-INFRINGEMENT, FITNESS FOR A PARTICULAR PURPOSE, OR TITLE, RELATED TO 
THE SPECIFICATION. NOTICE IS HEREBY GIVEN, THAT OTHER RIGHTS NOT GRANTED 
AS SET FORTH ABOVE, INCLUDING WITHOUT LIMITATION, RIGHTS OF THIRD PARTIES 
WHO DID NOT EXECUTE THE ABOVE LICENSES, MAY BE IMPLICATED BY THE 
IMPLEMENTATION OF OR COMPLIANCE WITH THIS SPECIFICATION. OCP IS NOT 
RESPONSIBLE FOR IDENTIFYING RIGHTS FOR WHICH A LICENSE MAY BE REQUIRED 
IN ORDER TO IMPLEMENT THIS SPECIFICATION.  THE ENTIRE RISK AS TO 
IMPLEMENTING OR OTHERWISE USING THE SPECIFICATION IS ASSUMED BY YOU. IN 
NO EVENT WILL OCP BE LIABLE TO YOU FOR ANY MONETARY DAMAGES WITH 
RESPECT TO ANY CLAIMS RELATED TO, OR ARISING OUT OF YOUR USE OF THIS 
SPECIFICATION, INCLUDING BUT NOT LIMITED TO ANY LIABILITY FOR LOST PROFITS 
OR ANY CONSEQUENTIAL, INCIDENTAL, INDIRECT, SPECIAL OR PUNITIVE DAMAGES 
OF ANY CHARACTER FROM ANY CAUSES OF ACTION OF ANY KIND WITH RESPECT TO 
THIS SPECIFICATION, WHETHER BASED ON BREACH OF CONTRACT, TORT 
(INCLUDING NEGLIGENCE), OR OTHERWISE, AND EVEN IF OCP HAS BEEN ADVISED OF 
THE POSSIBILITY OF SUCH DAMAGE. 
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Release 
Candidate 

Added security section 
Clarified width field refers to connector width and not AIC 
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Release 
Candidate2 
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Numerous minor rewordings based on feedback for 
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3. Introduction and Scope 
 
This Modular Peripheral Sideband Tunnelling Interface (M-PESTI) specification includes 

base requirements for electrical and protocol compatibility between components of a DC-MHS 
platform.  The M-PESTI protocol overloads a common PRSNT# signal with additional 
capabilities beyond simple presence/absence of a peripheral.  Many of the companion DC-MHS 
specifications require implementation of M-PESTI on I/O and power connectors at the Host 
Processor Module (HPM).  However, it is not a requirement for any peripheral to implement the 
M-PESTI target capability.  A peripheral that asserts a static low (present) on any 
*PRES_PESTI_N signal is supported and DC-MHS compliant.  This document specifies the 
electrical and protocol requirements for bi-directional communication between a M-PESTI 
initiator and target on top of that same presence signal. 
 

Benefits of M‐PESTI Protocol 
M-PESTI is a simple half-duplex protocol that can be implemented in a low-cost 

Microcontroller Unit (MCU) or Complex Programmable Logic Device (CPLD.)  Nearly all low-
cost MCUs implement a Universal Asynchronous Receiver-Transmitter (UART) as a 
communication peripheral.  UARTs have a long history as a serial communication interface 
within and between compute systems.  Although not required to be implemented in a PLD, its 
simplicity enables a logic device on a HPM to detect presence of all M-PESTI peripherals and 
collect physical attributes of those devices without any firmware or high-level processor 
dependence.  Presence detection and collection of attributes describes the M-PESTI discovery 
phase of the protocol.  Discovery can occur at initial power on of the system while the 
Baseboard Management Controller (BMC) is still booting. 

A general-purpose modular system may have a variety of PCIe CEM risers and storage 
subsystem configurations. The multitude of configurations results in a large matrix of source to 
destination cabled couplings that may include independent data fabric and power cables.  In a 
modular system, a single I/O connector on the HPM may have a dozen or more possible 
destinations.  Traditionally, the number of configurations has been limited and it has been 
feasible to hard code the PCIe root port interface types and bifurcations for each configuration 
detected. It has been increasingly difficult for system firmware (e.g., BIOS) to uniquely identify 
one of many configurations and initialize the system accordingly.  With many HPM I/O 
connectors near one another, it is virtually impossible to impose specific/limited cable source to 
destination couplings based on physical cable length.  
M-PESTI discovery of attributes, including data fabric routing to one or more end points 
(destination) on a riser from a particular root port (source,) enable system FW components to 
configure and manage the system without requiring a-priori knowledge of peripherals and 
configurations to support them. 
 
Example1:  A storage backplane that directly describes the data fabric routing and bifurcations 
to multiple storage device slots can be supported by a BIOS that has not been previously 
introduced to that subsystem.  If those subsystems attributes are discoverable, the BIOS is not 



required to implement a table that matches a backplane identifier to a fixed set of configuration 
settings. 
 
Example2:  A cabled riser with multiple PCIe CEM slots may include support for one or more of 
those slots to be powered in the system standby or soft off state as defined by the Advanced 
Configuration and Power Interface (ACPI) standard.  Data Processing Unit (DPU,) Infrastructure 
Processing Unit (IPU) and Smart Network Interface Card (SmartNIC) are examples of AIC 
devices that may have independent compute resources and operating systems that do not 
require a traditional host processor to be on to function.  Because not every PCIe CEM Add-In-
Card (AIC) supports being powered in the system standby state, it becomes imperative to 
identify which power cable path is coupled to that device so that a power enable signal can be 
asserted by system management FW along that path when desired.   
 
M-PESTI bi-directional communication protocol has a command and response structure.  
In addition to discovery of peripherals and their cabled source to destination couplings, the M-
PESTI protocol supports the exchange of data.  Data exchange of virtual wires as well as 
control requests from an initiator and status responses from a target is possible during the 
active phase of the protocol.  The active phase is identified by the successful completion of the 
discovery phase.  Data exchange between initiator and target is not a requirement of the M-
PESTI active phase. 
 

Document Scope 
This document defines the base technical specification for the DC-MHS Peripheral 

Sideband Tunneling Interface (M-PESTI). Any supplier seeking OCP recognition for a hardware 
product based on this spec must be 100% compliant with any and all features or requirements 
described in this specification. 
Main objectives of this specification:  

● Establish a standard method for discovery of subsystem, self-describing attributes, and 
status (e.g., versus a priori knowledge, hard coding firmware and BIOS for fixed or limited 
configurations). Examples include a vendor/module class, physical bus connectivity 
descriptions, add-in card presence and precise source to destination cable coupling 
determination.  
● To make common and minimize the number of physical sideband signals between 
baseboards and various system interconnects, while extending potential 
applications/subsystem types via software-defined, real-time, multiplexed virtual wires. 
Exploit transistors and programmable hardware/firmware over wasted, static, near static or 
custom/form factor specific and non-scalable, physical connectors and cable pins/wires. The 
benefits include pay-as-you go models, greater density, higher quality, and message over 
only signal integrity. 
 

M-PESTI Is: 
● A generic and extensible 1-wire, bidirectional circuit, and protocol for applications such as 
cabled high speed I/O interposers, managed power distribution, cooling subsystems and 
control panels. 



● An enabler to maximize hardware leverage/re-use via a “plug-n-code” model (versus plug-
n-play) for new systems, configurations, and applications. Examples include vendor-defined 
virtual wires, and vendor/class code-based discovery. 
● A protocol that includes independent commands for static payloads during discovery, 
dynamic virtual wires and broadcast virtual wires that have error detection via byte parity 
and message checksum. 
● A protocol overlayed on a physical presence signal thereby avoiding a signal tax. 
● Frames are based on standard UARTs to support ubiquitous MCU targets. 
● Could optionally replace the need for a physical FRU SEEPROM in some applications 

 
 
M-PESTI Is not: 

● Replacing non-real-time interfaces such as SMBUS/I3C. 
● Intended to provide large static payloads to optimize hardware cost. 
● Ultra-fast or differential signaling 
● Teaching of M-PESTI target FW update, attestation, or encryption methods. 
● Explicitly defined for extension into standard end form factors.  
● Does not explicitly support peripheral card hot plug 
● Leveraging an existing standard (proprietary 1-wire or standard multi-wire).  
● Specific guaranteed latency when higher-level traffic patterns are used, such as a 
repeated discovery phase in between active phase and virtual wire exchanges. 
● Point-to-point with optional MUXed fanout support (via opcode snooping agent) 

 
 

3.1 Items not in Scope of Specification 
● The method and location for storage and retrieval of payload data by consumers 
● The method for asserting the source detection stimulus to each M-PESTI wire. 
● The method and location for storage and retrieval of source to destination information by 

consumers 
● Error handling and reporting of unassigned/missed sources due to a required cable not 

being coupled from source to destination. 
 
 

3.2 M‐PESTI Application Examples 
 

In typical applications, M-PESTI may be used for an interposer/riser/paddle card to self-describe 
its HW capabilities and tunnel virtual sideband wires between local logic and end form factor(s) 
with the base system. In the below diagrams M-XIO is a name for high speed I/O interconnect. 



 

Figure 1. Example M-PESTI Application 

 

Figure 2. Example M-PESTI applications in the DC-MHS context 

In this context, DC-SCM means Datacenter Secure Control Module. HPM is a Host Processor 
Module. eSPI is an enhanced SPI interface. M-XIO is a modular extensible I/O interconnect 
(i.e., cabled PCIe). PICPWR is a platform infrastructure connectivity power connector. PDB is a 
power distribution board. 

3.3 Typical OCP Sections Not Applicable 
This is a Base specification, requiring other DC-MHS specifications to fully define a design.  The 
following typical Sections of an OCP specification are not included because they are not 
applicable to this specification. 
 
Rack Compatibility 
Physical Spec 
Thermal Design 
Rear Side Power, I/O, Expansion 
Mechanical 
Onboard Power System 
Environmental Regulations/Requirements 



Prescribed Materials 
Software Support 
System Firmware 
Hardware Management 
  



4. M-PESTI Electrical Overview: 
 
Physical layer overview: 
- +3.3V LVCMOS signaling 
- Open-Drain drivers 
- Circuit provides voltage back feed detection 
- Optional local voltage bleed off circuit  

 
Physical Circuit: 

4.1 Example M-PESTI Circuit Topology (1 x8 source to 1 x8 destination): 
 

Baseboard Peripheral

M‐PESTI
Initiator
(e.g., FPGA)

SRCx
Conn.

DST1
Conn.

R2
127K

V_PU_BASEBRD

R1
22.1

M‐PESTI
Target

(e.g., MCU)
R3
22.1

R4
1.27K

V_PU_LOCAL

R5
1KCable

R6
8.25K

GPIO

M‐PESTI

GS

D

M‐PESTI

 
 

Figure 3. M-PESTI Electrical circuit 
 

4.2 Electrical Component Selection Factors: 
R1 & R3 are recommended series termination resistor values. They may need to be adjusted to 
the driver and transmission line characteristics.  

R2 must be selected with the following in mind 
● Select the maximum value to minimize the current sourced into an unpowered target 
● Logic high=1 must be guaranteed to meet the baseboard initiator logic Vin High 

Minimum when cable/M-PESTI target is not attached/present 

R4 & R5 must be selected with the following in mind 
● R4 &R5 (pull-down) and R2 (pull-up) must guarantee a logic low=0 at the baseboard 

initiator logic for voltage back feed detection 
● R4 value provides the rise time to a logic high at the MCU/FPGA for an open-drain 

interface. 
● R5 provides a path to GND for the current sourced by R2 on the source board to drain or 

bleed voltage accumulation at an unpowered target. 
 



P-FET (or equivalent) is enabled (drive gate low) by the M-PESTI target when the cable is 
detected to be “fully seated” and the device is ready to respond to a discovery request.  
Selecting a target GPIO that defaults to an input (high-Z) will meet the initial condition 
requirement.  The P-FET enablement results in a rising edge (BREAK release) to be observed 
at the initiator. BREAK is defined in the M-PESTI Protocol Section.  The method for 
determining “fully seated” is beyond the scope of this specification as it varies based on 
connector, latching schemes and cable assemblies. 
 
 

4.3 Example Multi-interconnect M-PESTI topology  
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Figure 4. Multi-Interconnect M-PESTI Circuit 

 
 

The SECONDARY_PESTI wire is not used for frame-based communication but is used 
to discover source to destination couplings and thus does not require the P-FET or series term 
elements.  The pull-up resistor is required to avoid a floating input at the M-PESTI target when 
the secondary cable is missing, and the pull-up/pull-down enables voltage back feed detection 
by system management firmware.  
If the cables are swizzled, then the M-PESTI Initiator connected to the secondary high speed 
data path enables system management firmware to detect a misconfiguration (see Source to 
Destination Detection Phase section.) If only the secondary destination(s) is coupled to a 
source, then the circuit aids system management firmware to determine if something is coupled 
but unsure what, thereby indicating a misconfiguration. 
 
  



5. M-PESTI Protocol 
5.1 M‐PESTI Protocol Phases 

● Discovery Phase 
o The presence and discovery of the attached peripheral must occur prior to the 

active phase.  During discovery, a payload of static attributes is captured from a 
M-PESTI target (i.e., MCU) to the M-PESTI initiator (i.e., baseboard FPGA). 

● Active Phase 
o The active phase is characterized by a repetitive exchange of virtual wires 

between the initiator (Baseboard FPGA) and the target (MCU, CPLD or other). 

5.2 Overview of Framing and Error detection 
● Simple, multi-byte read/write byte-level commands. 
● 250,000 BAUD +/- 3% (Chosen as max supportable BAUD across diverse channels and 

low-cost MCU and PLD families) 
● 8-O-1 (8 data bits, Odd Parity, 1 stop bit) 
● Discovery Payload checksum (CRC-8). RX error detection via parity of frames & 

checksum of payloads. Inbound error detection responses defined. 
● System Command / Target Response protocol. No async interrupt.  
● Broadcast support for cases where a single initiator UART is shared with a group of 

targets AND very low latency virtual wires are required. 
● Optional Source & Destination connector instance coupling determination method 

 

 
Figure 5. M-PESTI Frame 

 
  



Property M-PESTI 

Extended Peripheral Data & Power Path(s)  

Initially targeted use cases: High Speed 
I/O connections, internal power distribution 
management, control panels, cooling 
subsystems. 

Peripheral Card (Target) TX Protocol  Frame Based  

Planar Logic (Initiator) TX Protocol  Frame Based 

Initial Discovery  
M-PESTI target issues a BREAK pulse 
(Rising edge observed at Initiator) 

Voltage Back-feed Circuit  Yes 

Target Pin Function  UART RX/TX + GPI (Initiator Abort) 

Initiator/Target TX Driver Type  Open-Drain 

Payload Data Types  
Discovery (Static) & Active (Dynamic) 
protocol phases 

Control/Status Support  Yes 

8-bit Checksum (Discovery Payload Only*)  CRC-8 

Checksum Validator  Initiator and Target 

*Active phase CRC-8 is excluded in M-PESTI 1.0. From physical testing, a multi-bit error has 
never been observed during the active phase.  As we speed up the interface (> rev 1.0), a PEC 
byte will become more important. Additionally, START=0. PARITY=ODD and STOP=1 are 3 of 
the 11 bits per frame that are predictable.  STOP=0 is detected as a framing error.  
 

Table 1 M-PESTI Protocol Overview 
 

5.3 UART BREAK Definition 
A UART BREAK event is defined as the wire being driven/held low for a time greater 

than the entire frame length. Example: At 250 KBAUD, the M-PESTI frame length is nominally 4 
us * 11-bit positions which is 44 us. FPGA logic may detect a BREAK condition by starting a 
timer at the falling edge of the signal. A valid BREAK assertion does not require a falling edge to 
be detected. Some UART receivers do not include a BREAK_DETECT detect status register. 
Depending upon the UART implementation in the MCU or other device, the BREAK event may 
appear as an abnormal frame with a data value = 00h that has both a Parity Error and a 
Framing Error (Stop bit = 0.)  



Target Implementation Options 
Target Implementation 
Options 

Simple 
Presence 

Discovery 
Only Discovery+ 

Discovery & 
Active Phase 

Discovery Phase No Yes Yes Yes 

Source/Destination 
Detection 

No No Yes Yes 

Virtual Wire Exchange No No No Yes 

FW Target Device Required No Yes Yes Yes 

 

5.4 Discovery Phase Payload Options:  
 

The discovery payload is typically consumed by baseboard logic, system firmware and 
BIOS.  The payload contents can be streamlined to only contain the minimum required fields to 
describe the format and size of the payload itself along with peripheral characteristics (static 
attributes) to consumers. 
 

Payload contents include description of supported virtual wires, and OEM defined fixed 
attributes like payload version, vendor ID, module class, module Unique ID and checksum. 
Some bits may be able to change but another Discovery Phase is required to capture them 
(e.g., source/destination coupling determination method utilizing the stipulated 
stimulus/response scheme). Note: If M-PESTI is extended into other industry form factors, then 
the discovery and active phase bit definitions need to be applied to the respective device 
classes.  
 
M-PESTI Discovery 
Payload Content Options None Minimum Maximum 
Presence Detection 
Mechanism 

Simple 
Presence 

BREAK 
Release 

BREAK 
Release 

Discovery Payload Content None Header Only Complete 

Virtual-Wire Support No Yes Yes 
Self-describing Physical 
Routing No No Yes 
Source/Destination 
Detection No No Yes 

 
 
A) Simple Presence: 
‐ M-PESTI wire is held static low to indicate simple presence 
‐ No device identity or precise source/destination instance coupling identification needed.  
‐ System firmware reads FRU SEEPROM, or hard codes config. 
‐ Use when limited programmable resources exist or attributes not needed (purpose-built 

system). 
B) Minimum:  
‐ System firmware uses vendor class, module class and/or unique ID to look up in a BMC 

store’s extended attributes library, Source/destination couplings. e.g., Source Conn#2 
coupled to Riser#1 conn#1. 

‐ Locally readable attributes (e.g., MCU firmware version) or locally read inputs (e.g., non-hot 
plug slot presence). 



C) Maximum: 
‐ Plug-N-Play where peripheral is fully self-describing and baseboard BMC+BIOS needs no 

prior knowledge of the peripheral. 
‐ May be preferred when BIOS-BMC interactions are limited. 
‐ Example attributes: Physical PCIe, I2C and Power routing/MUXing/switching topologies, 

physical or thermal characteristics of the module or elements therein. Although transferring a 
full FRU SEEPROM image is possible, the header should be limited to critical items needed 
before 2-wire reads are possible. 

 
  



5.4.1 Optional Active Phase:  
‐ To optimize latency, dynamic virtual wires should be latency appropriate real-time signals and 

not static attributes that could be carried in the discovery phase payload or a FRU SEEPROM. 
The dynamic phase includes simple send and receive of all virtual wires at once (by M-PESTI 
initiator and target). 

 
System side logic may source or sink status & controls to multiple domains (such as BMC, BIOS 
or HW controls).  
 
 

5.5 Example: System FPGA Control and Status Registers 
 
Prior to describing discovery and active phase state transitions, it is useful to define 

some fundamental M-PESTI target status fields that are implemented within the initiator for 
system management FW consumption.  Shortened names are included that are used to 
reference these fields in subsequent sections of this specification.  See Target Reset and Fault 
Handling for additional information 
 
DISCOVERY_STATUS[1:0] (RO) [AKA: DSTAT] 
00b : No BREAK detected, and M-PESTI wire is static HIGH=1 
01b : M-PESTI wire is static LOW=0 (simple presence) 
10b : Discovery payload has been received with a good checksum 
11b : BREAK release detected, but payload has not been successfully received 
 
DISCOVERY_PAYLOAD_ENABLE (R/W) [AKA: DPEN] 
0b : Initiator will not send payload request command  
1b : Initiator will send payload request command, with retries, until DISCOVERY_STATUS[1:0] 
= 10b   
 
ACTIVE_PHASE_ENABLE (R/W) [AKA: APEN] 
0b : Initiator will not enter command/response phase for that M-PESTI instance 
1b : Initiator will enter command/response phase if DISCOVERY_STATUS[1:0] = 10b 
 
ACTIVE_PHASE_ERROR (R/W1C) [AKA: APERR] 
0b : Response RX error (i.e., parity, framing) or timeout has NOT occurred. 
1b : Response RX timeout or byte receive error has occurred since last cleared. Sticky bit.   
System management FW must write a ‘1’ to this bit to clear the error once it has been 
acknowledged. 
 

  



5.6 M‐PESTI Discovery 
 

Discovery of a M-PESTI target that is capable of frame-based communication begins 
with presence detection.  A rising edge (UART BREAK release) observed at the initiator 
indicates that a M-PESTI target is present and available for frame-based discovery.  G3 (AC 
Off) and S5 (System Standby or Soft Off) in the diagrams below refer to system power states as 
defined in the ACPI specification. 
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Figure 6. Discovery Phase 

 
 

5.6.1 Target Presence Detection Rules 
● Initiator shall not attempt communication while M-PESTI is held low by the target 
● Minimum target discovery BREAK low assertion width required to guarantee detection = 

50 us 
o If minimum assertion width is met, BREAK shall always be detected by the 

initiator. 
o This infers the use of parallel circuits for each M-PESTI wire regardless of 

whether a single initiator UART is shared among multiple targets. 
● The target must not release BREAK until: 

o Aux power is good 
o M-PESTI Peripheral is fully seated/mated 
o M-PESTI target is ready to respond to the payload request command. 

● Any time a BREAK condition is detected, communication with that device will be halted 
until the condition is released.   

● A device may request a re-start of the discovery process by asserting and releasing 
BREAK at any time. 

 
NOTE:  The discovery mechanism infers that V_PU_BASEBOARD on the planar and 
V_PU_LOCAL at the module are enabled simultaneously and that the initiator presence 
detection circuit does not come out of reset until V_PU_LOCAL at the module is “Good.”  



This prevents the power up ramp on the module to appear as a break condition at the 
initiator logic. System dependent delay within the M-PESTI initiator logic guarantees this 
timing is met. See Figure 4 for the circuit diagram. 
 

5.6.2 M-PESTI Discovery Status (DSTAT) Supported Transitions 
Case DSTAT Current 

State 
DSTAT Future State State Input 

1 XXb = Any State 00b = Absent Power on Reset (POR) 
2 Absent 01b = Present/Simple BREAK asserted following POR de-assertion 
3 Present/Simple 11b = Present /  

          M-PESTI 
BREAK release by the target 

4 Present/Simple 11b = Present /  
          M-PESTI 

Simple presence or M-PESTI device removal 
prior to target BREAK release while system 
power is on. 

5 Present/M-PESTI 10b = Payload Good Payload received with good checksum 
6 Payload Good 11b = Present /  

          M-PESTI 
BREAK assertion and release by target if not 
in active phase.  Payload Good is 
protected/locked during the active phase 
against target resets.  This transition also 
occurs if DPEN is toggled from 0 to 1 while 
the device is still in the discovery phase 
(APEN=0.) 

7 Absent 01b = Present/Simple Target asserts all 1WIREs low that are not 
used for communication at the transition to 
the active phase 

Note: It is not recommended for a user to disconnect a cable while system input power is 
enabled/connected (Case #4.)  If the cable becomes disconnected prior to a payload being 
received, system management FW can recognize that discovery did not complete successfully.  
If a cable becomes disconnected during the active phase, ASTAT would indicate that the target 
is unresponsive. 
 
M-PESTI wires that are not used for frame-based communication fall into two categories.   

● Case 2 (table above) when simple cable presence is sufficient and source to destination 
discovery is not required. 

o BREAK asserted and not released since power on reset de-assertion 
● Case 7 (table above) at the completion of source to destination coupling discovery for 

that wire. 
o Transition to the active phase will cause the target to assert all wires not used for 

communication to low=0 (simple presence.)  

5.6.3 Voltage Back feed Detection 
Note that when the power path is different from the data path (e.g., separate cables), it is 
possible that the data cable is present, but the power is missing. This is a detectable condition.  
A general algorithm for a possible voltage back feed condition is the following 

● A M-PESTI signal is LOW=0 (DSTAT = 01b) at the baseboard initiator logic 



● System management firmware did not account for that M-PESTI instance during the 
source to destination stimulus & response discovery phase 

● The wire with DSTAT=01b is not expected or allowed to use “simple presence.”  
 
 

5.6.4 M-PESTI Protocol Phase Diagram (Express) 
 
Figure 7 below depicts an autonomous transition from the discovery phase to the active phase 
without any source/destination coupling detection. With APEN=1 and the discovery payload 
received successfully; the default exchange of virtual wires occurs without any firmware 
intervention.  
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Figure 7. Discovery and Active Phase 

 

5.6.4.1 Example (Express) Discovery Process Flow (Figure 7 above) 

1. Initial Conditions: 
● DISCOVERY_STATUS[1:0] = 00b : Not present (reset value) 
● DISC_PAYLOAD_ENABLE = 1 
● ACTIVE_PHASE_ENABLE = 1 

2. Following the transition from G3 to S5 power state, once M-PESTI target devices have 
initialized, all M-PESTI communication signals will be asserted low and released (low to 
high) to indicate presence of a M-PESTI target to the initiator. 

● DISCOVERY_STATUS will transition from 00b (not present) to 01b (simple presence 
during the BREAK event, then to 11b : M-PESTI target present with available 
payload upon request once the BREAK event is released. 

● Initiator sends payload request command to the target 
● Target responds with the static payload 
● DISCOVERY_STATUS = 10b : Payload received with a good checksum and is 

available for consumption by system management firmware 
3. Initiator enters hardware controlled virtual WIRE exchange with the target 

● Hardware and firmware may control and query status of virtual wires via vendor 
defined methods  

  



5.6.4.2 Discovery Command and Response Format 

CMD=00hIDLE PAYLOAD_BYTE0

tDPTAR

... CHECKSUM[7:0] IDLE

 
Figure 8. Discovery Command and Response Format 

 
tDPTAR: Discovery Phase Turnaround time between initiator completing transmission of the 
command and the payload response beginning to be received. 
  



5.6.4.3 Discovery Payload Rules 

● Turnaround time minimum is 100 ns. 
● Target must complete the discovery payload response within the payload RX timeout of 

1 sec. 
● Target shall not transition to the active phase until a successful discovery payload is 

received. 
o “Successful” = Within the RX timeout period with no byte parity or framing errors 

and a verified checksum. 
● Initiator continuously attempts to retrieve a discovery payload from a M-PESTI target 

that is present unless DISC_PAYLOAD_ENABLE = 0. 
o Example: Round robin servicing by a single initiator to multiple targets: 

If the discovery payload is not successfully received after an Initial attempt plus 
two retries per target, the next target in the round-robin rotation will be serviced.  
When servicing returns to the target, the discovery request command is sent 
again as a set (initial + two retries) until successful. 

● Initially, the target must release (tri-state) all “additional” source wire GPIOs indicating 
simple presence following power on or reset 

● Target must assert all M-PESTI wire sources that are not used for frame-based 
communication after the FIRST response to a virtual wire exchange in the active phase 

● Target must release all M-PESTI wire sources that are not used for frame-based control 
after a discovery payload request if that payload request has occurred during the active 
phase. 

o Infers module is in the discovery phase until the next virtual wire command 
occurs. 

 
 

5.6.4.4 Payload Format (Riser/Interposer) 
Number 
of Bytes 

Description 

12 Header Information 

5 Destination 1: Data Fabric and SMBus Physical Routing Description 

5 … 

5 Destination N: Data Fabric and SMBus Physical Routing Description 

2 Destination Wire Descriptors 

Varies Misc. Vendor Specific Region 

Varies *Padding (0 – 7 Bytes) 

1 Checksum 

 Minimum Required Payload Regions 

*Payload size must be padded to be a multiple of 8 bytes including the checksum byte. 
Other/future device classes may have different descriptor groups between the header and the 
vendor specific region.  



5.6.4.5 HEADER (with example data for a 2 CEM slot Riser/Interposer): 
Byte/Bi

t 
7 6 5 4 3 2 1 0 

00h PAYLOAD_VERSION[7:0] = 00h 

01h DEVICE_CLASS[7:0] = 00h (CEM Riser) 

02h STATIC_PAYLOAD_SIZE[7:0]= 04h (32 Bytes) 

03h 
NUM_VIRTUAL_WIRE_OUTPUT BYTES[3:0] = 0001b (1 

Out Byte) 
NUM_VIRTUAL_WIRE_INPUT BYTES[3:0] = 0001b (1 In 

Byte) 

04h DEVICE_ID[15:8] = 00h 

05h DEVICE_ID[7:0] = 27h 

06h VENDOR_ID[15:8] = 80h 

07h VENDOR_ID[7:0] = 86h 

08h DEVICE_VERSION[7:0] = A0h 

09h AFU = FFh 

0Ah NUM_DST_WIRES[3:0]= 0100b (4 CBL_PRES signals) 
AFU = 

0b 
NUM_PICPWR_DST_WIRES[2:0] = 001b (1 

PWR) 

0Bh AFU = 0b AFU = 0b AFU = 0b NUM_EP_DESCRIPTORS[3:0] = 00010b (Two Slots) 

0Ch 
AFU = 0b AFU = 0b AFU = 0b AFU = 0b AFU = 

0b 
AFU = 0b AFU = 0b AFU = 0b 

Minimum Required Fields  

 
See Appendix A which includes definitions and a two-slot riser payload example. 

 
  



5.6.5 Source to Destination Detection Phase (Optional) 
 

System management firmware can provide a stimulus to a M-PESTI target by asserting 
the corresponding M-PESTI instance LOW=0. Once the stimulus is asserted, an updated static 
payload can be queried for a corresponding response to that stimulus by that target.  This 
stimulus and response method can be used to govern source to destination couplings and 
provide end-to-end data fabric physical mapping from a root port to the destination through any 
source connection. 

 

5.6.5.1 M‐PESTI Protocol Phase Diagram (With Optional Source Detection) 

 
The example below depicts a target destination with two source wires through two x8 or 

a single x16 destination connector.  The first row of the wave diagram below shows the primary 
M-PESTI used for frame-based communication.  The primary source wire is associated with a 
specific set of data fabric lanes that is described to be physically routed to a destination in the 
initial discovery payload.  This results in the additional source wires requiring a stimulus 
response mechanism to discover the physical routing of those data fabric lanes to the 
destination. It is preferred to move this function up the stack to system firmware to simplify the 
target device hardware and firmware (e.g., avoids multiple UARTs). 
The second wave diagram below depicts that a stimulus to a wire not associated with that target 
did not result in a corresponding response.  Because it was a stimulus/response “MISS”, a third 
and successful stimulus and response was required to discover the physical cable source. 
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Figure 9. Discovery Command and Response Format with Optional Source Detection 

 
  



5.6.5.2 Example of Source Discovery Process Flow 

Initial Conditions: 
● G3 to S5 power state transition 
● DSTAT[1:0] = 00b : Not present 
● DPEN = 1 
● APEN = 0 

 
Shortly after the transition from G3 to S5 power state, all M-PESTI targets will de-assert BREAK 
to indicate presence to the system. 

● DSTAT = 11b : M-PESTI target present with a payload that is available upon request. 
With DPEN=1, the platform FPGA will retrieve initial discovery payloads from each M-PESTI 
target while the BMC may be booting. 
 
Once booted, the BMC can perform source to destination discovery for any target that includes 
multiple source couplings in the discovery payload (NUM_DST_WIRES, 
NUM_PICPWR_DST_WIRES)  
1. Set APEN=1.  This will cause the initiator to send the v-wire exchange command.  In 

response, the target will drive all secondary wires low (simple presence) prior to responding 
with platform v-wire inputs.  The BMC can observe that simple presence/break is active on 
all secondary wires attached to that target. DSTAT = 01b (Present) that were previously 
DSTAT=00b (Empty) 

2. Set APEN=0 to prevent target transition to the active phase during destination discovery 
iterations. 

3. BMC writes DPEN=0, then DPEN=1 
● The rising edge of DPEN causes the initiator to send payload request command.  As 

a result, the target tri-states all secondary wires because it is in the discovery phase 
and responds to the payload request after it samples the input state of those wires. 

4. The BMC enables a low=0 stimulus to an individual secondary M-PESTI wire and clears any 
previous stimulus that was asserted. 

5. BMC repeats steps 3,4 until all source to destination couplings are identified 
6. BMC sets APEN = 1 
7. Initiator and target enter HW controlled V-WIRE exchange 

● Firmware sends commands and reads the responses via the OEM command register 
interface.  

8. Target asserts simple presence on all secondary M-PESTI wires which can be ignored 
during source to destination discovery for additional targets. 

  



5.7 Target Reset and Fault Handling 
If the target resets during the active phase, it would be observed as temporary 
unresponsiveness at the initiator. This would be reflected in the ACTIVE_PHASE_ERROR 
(APERR) register described above if any RX timeout or parity error occurred.  Following target 
reset, a BREAK assertion and release would be observed by the initiator. During the active 
phase, the discovery status must be protected (locked) at a value of 10b=Payload Good. 
Locking the discovery status and payload data is required so that the host can safely consume 
the contents at any warm or cold reset. Since the discovery has already occurred, the initiator 
would resume sending the virtual wire exchange command and the target would not observe a 
discovery request command. Once a device has transitioned to the active phase, the only 
method to unlock the discovery payload and status is by system management firmware clearing, 
then setting DPEN. 
 
If the target resets during the discovery phase prior to the entry to the active phase (e.g., 
APEN=0), the DISCOVERY_STATUS value would revert to 11b (Payload not received.)  The 
initiator would autonomously send the payload request command if DISC_PAYLOAD_ENABLE 
= 1. The target device would not be transitioned to the active phase until 
DISCOVERY_STATUS=10b. If discovery had not previously completed or DPEN=0, the device 
would not be discovered and transition to the active phase. 
 

  



5.8 Active Phase: Dynamic Virtual Wires 
 
Once the target transitions to the active phase, the initiator autonomously exchanges virtual 
wires with each target device. The HW controlled virtual wire inputs and outputs are target 
device class specific. The total (HW controlled + firmware controlled) number of bytes in and out 
are advertised within the static discovery payload.  
 

5.8.1 Virtual Wire Exchange Example (1 Byte Out/In) 

tAPBI

CMD=01h

tAPTAR

VWOUT_0

tIIDLE

VWIN_0
Initiator TX
Target TX
Hi‐Z

tAPBI

 
Figure 10. Single Byte Virtual Wire Exchange 

 

5.8.2 Virtual Wire Exchange Example (N Byte Out/M Byte N) 

CMD=01h VWOUT_0

tAPTAR

... VWOUT_N VWIN_0 ... VWIN_M

tAPBItAPBI
tTIDLEtIIDLE tIIDLE

 
Figure 11. Multi-byte Virtual Wire Exchange 

 
 

  



5.8.3 Active Phase Rules 
● Minimum Initiator M-PESTI idle period between RX of the previous target response & TX 

of the next target command is tAPBI 
● A target must wait tAPTAR minimum before beginning to transmit the response. 
● A target must complete a response to the initiator within the RX timeout of tAPRTO. 
● The maximum period between commands sent from an initiator to that same target is not 

bound by this specification. 
● If the target device does not support virtual wires (active phase is not required) in either 

direction: 
o Target shall ignore the virtual wire out value and respond with a virtual wire input 

value=00h 
o Target shall drive any/all secondary M-PESTI wires low after receiving 

CMD=01h. 
o The BMC may clear APEN to disable the active phase for a device once the 

secondary M-PESTI wires are driven low by the target.   
▪ Even though the primary M-PESTI wire is static high=idle, the discovery 

payload and status would be locked until the next power cycle of the 
target or until DPEN is cleared, then set by system management FW. 

● Number of out bytes and in bytes can be asymmetrical as suited for the application. 
 

The method to route virtual wires to/from internal system logic or other entities and the M-PESTI 
wire is outside the scope of this document. The usage of the virtual wires (internal 
commands/policies or connections to local physical signals) by the target is also outside the 
scope of this document. 
 



5.8.4 Virtual Wire (HW) Definitions by Device Class 

5.8.4.1 EXAMPLE DEVICE_CLASS = 00h (CEM Interposer/Riser) 

VWOUT_0 (System Output Virtual Wires) 
7 6 5 4 3 2 1 0 

AFU AFU AFU AFU AFU AFU S0_RUN PWR_BRK 
 

PWR_BRK :  Active high (1=Assert, 0=De-assert)  virtual wire 
 
S0_RUN :  Active high (1=True, 0=False) virtual wire indicating system power 
state is ACPI S0_RUN.   
 
AFU :  Available for Future Use 

 
VWIN_0 (System Input Virtual Wires) 

7 6 5 4 3 2 1 0 
AFU AFU AFU AFU AFU AFU AFU WAKE 

 
WAKE :  Active high (1=Assert, 0=De-assert) virtual wire that indicates the target 
device is requesting entry to the ACPI S0_RUN state. 
 
AFU :  Available for Future Use 

 

All other device classes are vendor specific until a point where such standardization occurs 
 
  



5.9 Broadcast Commands 
 
To reduce the amount of baseboard logic required, it may be desirable to utilize a single initiator 
UART that is shared (multiplexed) among multiple targets. This has a limitation that commands 
and responses cannot be in progress to multiple targets simultaneously. If initiator sharing is 
implemented at the baseboard logic, each target that shares a common initiator must be 
serviced in a round-robin rotation.  
 
Following is a simplified FPGA logic diagram of a M-PESTI target group that shares a single M-
PESTI initiator. It depicts the parallel break detectors required for each M-PESTI wire and logic 
that acts as an internal MUX. The internal MUX can be directed to select/focus on a single M-
PESTI wire at a time or enable the UART TX traffic to be forwarded to every target within the 
group 
 



5.9.1 FPGA Logic Diagram 
 

Baseboard

FPGA

PESTI Initiator Group Logic

...

UART 
RX

PESTI 
Initator 
SM

Payload 
Data

VWireIn

VWireOut

DSTAT 
Logic

UART 
TX

ASTAT 
Logic

N BREAK 
Detectors

M‐PESTI_1

M‐PESTI_2

M‐PESTI_3
M‐PESTI_N

P
ES
TI_

SE
LE
C
TE
D

SELECT
BROADCAST_EN

Registers

HSIO SRC1 HSIO SRC2 HSIO SRC3 HSIO SRCN

Pseudo‐MUX

 
 

Figure 12. Example PESTI Initiator Logic 
 
 

PWR_BRK is an example low latency output virtual wire required to be communicated to 
all applicable M-PESTI targets within ~400 us (system specific). To meet this requirement while 
allowing implementation flexibility to share an initiator among multiple targets, a special 
broadcast command is required. 
 



This following broadcast command is required to be supported by applicable targets.  It is 
required to be implemented in the baseboard logic if an initiator is shared with multiple targets. 
 

CMD=FFh
(BROADCAST)

IDLE IDLE00h=(Assert 
PWR_BRK)

tAPBI tAPBI
tIIDLE

 
 

Figure 13. Example Broadcast Command 
  
There is no response to this command, so that it can optionally be repeated to ensure that it 
was received by the target 

CMD=FFh
(BROADCAST)

IDLE IDLE00h=(Assert 
PWR_BRK)

CMD=FFh
(BROADCAST)

00h=(Assert 
PWR_BRK)

Optional Repeat

tAPBI tAPBI

IDLE

tAPBItIIDLE tIIDLE

 
Figure 13. Example Broadcast Command Retransmission 

 
A benefit is that PWR_BRK would be set in the next virtual wire exchange to each applicable 
target if the triggering system event remains active. Round robin servicing naturally staggers 
PWR_BRK de-assertion (which is a common system preference to avoid excessive inrush 
current from high power loads). Additional delay between PWR_BRK de-assertion to multiple 
targets is implementation specific and controlled via system firmware via baseboard logic that 
feeds into the appropriate M-PESTI channel. 
  



5.9.2 Example of Round Robin VWIRE exchange and Broadcast 

Initiator TX
Target TX
Hi‐Z

S5‐‐>S0

VWIRE 
OUT/IN

SYS_PWR_BRK_EVENT

BROADCAST
PWRBRK=1 VWIRE

PWRBRK =1

VWIRE
PWRBRK=0

 
Figure 14. Example Round Robin and Broadcast Transitions 

 
SYS_PWR_BRK_EVENT (Active high) in the diagram above represents the logical combination 
of any hardware or firmware triggers that request assertion of PWRBRK# (Active-low, 
Emergency Power Reduction State Request) as defined in the PCI Express Base Specification.   
 

5.10 Initiator Abort Mechanism 
 
In some examples low latency commands needs to be sent and thus an abort mechanism is 
required. In these examples, PWRBRK is the example low latency command for illustration 
purposes. 
To limit a PWRBRK command insertion latency, the initiator may abort any communication 
exchange by asserting the M-PESTI wire low.  There are two general cases for the initiator 
abort sequence.  

1. Case 1 : While the initiator is transmitting or about to transmit. 
2. Case 2 : While the target is transmitting or about to transmit. 

 
Case 1 :  The abort sequence while the initiator is transmitting is synchronous to the START of 
a frame.  The initiator abort assertion (tABREAK) will begin at the same instant that the falling 
edge of START would begin.  The assertion width is guaranteed to encompass the START bit, 8 
data bits, parity bit and STOP bit.  There is additional margin of the assertion width beyond the 
STOP bit to allow the target to capture the BREAK as an invalid frame with both a parity (even) 
and framing (STOP=0) error.  The worst-case insertion latency occurs when the system 
PWRBRK event occurs just after the beginning of a normal START condition.  In this case, the 
tABREAK assertion does not begin until after the STOP bit of the previous frame. 
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Figure 15. PWRBRK Insertion Latency During Initiator TX Phase 

 
Case 2 :  The abort sequence while the target is transmitting is asynchronous to the START of 
a frame.  The initiator abort assertion (tABREAK) will occur at any point within the target 
transmitted frame.  The assertion width is guaranteed to encompass the START bit, 8 data bits, 
parity bit, STOP bit, tTAR and tTIDLE.  Because there is sufficient margin, the TARGET is only 
required to sample for the abort just prior to the START of any frame.  The worst-case insertion 
latency occurs when the system PWRBRK event occurs just after the beginning of a normal 
START condition.  In this case, the abort is not recognized by the target until just before the 
following START of a response frame. 
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Figure 16. PWRBRK Insertion Latency During Target TX Phase 

 



6. M-PESTI Fan Out 
 

Applications exist where the ability to fan out a M-PESTI bus to multiple targets exist. 
One such example is a motherboard or Host Processor Module (HPM) connection to a Power 
Distribution Board (PDB) with N number of target subsystems such as backplanes or risers. 
Since the number N is not a priori known by the motherboard, and pre-plumbing for a maximum 
quantity requires additional interconnects, M-PESTI fan out support helps scale the ability to 
support M-PESTI type features. 

 
This specification version includes the scope of fanout from between 2 to 8 downstream 

busses. Although out of scope, nesting of multiple tiers of fan out within a single hierarchy is 
possible with additional CMD codes and circuitry. In all fanout cases, it is left to the designer to 
understand the latency effects of fanout width (and depth). Two methods are shown where the 
MUX method is for typical fanout needs and the Switch method is targeted for applications that 
require the ability to broadcast commands simultaneously with all targets.  
 
Two fanout methods of operation include the MUX and Switch methods (see circuits below).  
 MUX method: Typical 1-to-many fanout. Broadcast commands are ineffective. 
 Switch method: For applications requiring broadcast commands to all attached targets. 

 
Two modes of operation for a fanout controller include Target Mode & Snoop Mode 

 Target Mode (Default):  
o Controller acts as a target supporting discovery and active phases 
o Only the fanout controller may be attached to the initiator bus 

 MUX Method: No channels are selected 
 Switch Method: Fanout controller on Ch0 is always enabled; all others default 

disabled 
o Shall support >=1 status command for the initiator reading information from the 

fanout controlling PESTI target such as:  
 The current MUX/switch settings 
 If an issue was observed such as a closed switch bus hang watchdog timeout  
 Live status of downstream subsegments (when the MUX is not focused or 

switch closed on a particular subsegment) 

 Snoop Mode: Fanout controllers must: 
o Enter snoop mode any time any other target(s) are attached to a bus 
o May process broadcast commands if application relevant 
o Listen/Process only special fanout control commands (MUX Select or Switch channel 

enable), thereby ignoring discovery and target mode active phase commands 
intended for other targets 
Example MUX Select commands may include: 

 Go to Target Mode and de-select all subsegments 

 Select specific subsegment(s) as connected, which may comprise of 1, all or 
select groups. 
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Figure 17. Example M-PESTI FANOUT Methods 

 
Designer note: Buffer(s) may be necessary if the Target/Snooper and the FET MUX or Switch 

have significant layout stubs. The designer may choose a switch with active buffers versus a FET 

switch to avoid reflection effects. 

 

Since any downstream interface may have a strap (such as a strong presence pulldown 
resistor) or be in a stuck state driving high or low, it is imperative to not create a deadlock 
condition where the Fanout controller cannot observe new commands to change the MUX or 
switch settings. Therefore, it is recommended to have the fanout controller implement a 
watchdog timer of at least 20ms after closing 1 or more channels to see any signaling activity. If 
no such activity (rising or falling edges), open the just selected channel(s) and set a status to 
inform the PESTI initiator why the channel(s) automatically opened. 
 
An alternative option is for the fanout controller to always be able to observe and report 
upstream the state of any downstream subchannel so that the PESTI initiator can choose to not 
close a suspect channel. 

   



7. Electrical Specifications 
 

7.1 DC Specifications 

Symbol Parameter Min Max Units Comments 

VDD Bus Voltage 3.135 3.465 V 3.3 +/-5% 

VIH 
HIGH level input 

voltage 2.0   V 3.3V LVCMOS 

VIL 
LOW level input 

voltage   0.8 V 3.3V LVCMOS 
 
 

  



7.2 AC Specifications 
Symbol Parameter Min Max Units Comments 

tBAUD BAUD rate 242500 257500 kHz 250000 +/- 3% 

tFRAME Start + 8b Data + Parity + 
Stop 

42.7 45.3 us  1/tBAUD * 11 bits 

tF Fall Time - 120 ns Same as 1MHz SMBus (VIH,MIN + 
0.15 V) to (VIL,MAX - 0.15 V) 

tR Rise Time - 120 ns Same as 1MHz SMBus (VIL,MAX - 
0.15 V) to (VIH,MIN + 0.15 V) 

tSPIKE Noise Spike suppression 
time 

0 50 ns Same as 400kHz SMBus.  Noise 
suppression is recommended, but 
not required 

tABREAK Initiator Abort BREAK 
assertion time 

50 55 us Initiator abort BREAK assertion 
falling edge is synchronous to a 
normal START of frame when the 
initiator is transmitting. It is 
asynchronous to START when the 
target is transmitting. MAX spec. 
reduces worst case PWRBRK 
insertion latency 
 

tDBREAK Target Discovery BREAK 
assertion time 

50 - us  M-PESTI target BREAK can be 
persistent. 

tIIDLE Initiator End of STOP to 
START 

0 - ns STOP is typically sampled at the 
midpoint of the bit, so there is 
approximately 2 us of time to the 
next START.  

tTIDLE Target End of STOP to 
START 

- 1000 ns This is required for the target to 
sample for initiator abort prior to 
START of target TX. 

tMARK End of BREAK to START 
time 

3.88 4.12 us  MARK time is 1 BAUD period 
between end of initiator abort 
BREAK and START of new 
command 

tDPTAR Discovery Phase 
Turnaround Time 

100 - ns MAX not specified.  It is bound by 
payload size and tDPRTO. 

tAPTAR Active Phase Turnaround 
Time 

0.1 20 us Between Target RX and Target TX 
of a response. MAX reduces time 
to sample initiator BREAK/Abort 
signal just before START.  Target 
MCU should not have trouble 
meeting minimum time required to 
allow the initiator to prepare for RX 
following TX. 

tDPRTO Discovery payload 
receive timeout 

- 250 ms Allows for 150 ms tDPTAR + 2048 
byte payload size. 

tAPRTO Active Phase receive 
timeout 

- 500 us Includes margin beyond 
tAPTARMAX + 8*tFRAMEMAX + 
7*tTIDLEMAX = 389 us  

tAPBI Active phase bus IDLE 
time  

10 - us Between initiator RX from target 
and initiator TX to same target 



8. Security Considerations 
Although M-PESTI is a basic, low level messaging and virtual wire tunnel, the following threats 
are identified with possible mitigations. 
It is believed that necessary mitigations can be implemented on top of the base specification or 
if necessary may be included in future revisions of this base specification. 
Revision 1.0 does not explicitly teach the mitigations due to needing further analysis on the 
often application specific impacts to latency, complexity and implementation costs. 
 
Threats 

1) Physical implant / signal re-routing: Assurance, where applicable, that the PESTI target 
is on the same HW (or same target) as other management interfaces. SPDM types of 
security capabilities are the likely current art in which to address this treat.  

2) Physical implant, man-in-the-middle snooping or alteration of payloads or virtual wires in 
flight. Potentially mitigated with encrypted payloads most likely using SPDM defined 
methods. 

  



Supplemental Material 
Supplemental Material A: 2 x16 CEM Slot Riser Payload Example 

Payload Format 
Number 
of Bytes 

Description 

12 Header Information 

5 
End Point 1: Data Fabric, Power and SMBus Physical Routing 

Description 
5 … 

5 
End Point N: Data Fabric, Power and SMBus Physical Routing 

Description 
2 Destination Wire Descriptors 

Varies Misc. Vendor Specific Region 
Varies *Padding (0 – 7 Bytes) 

1 Checksum 

Minimum Required Payload Regions *Payload size must be a multiple of 8 including 
checksum 

HEADER Definition 
Byte/Bi

t 
7 6 5 4 3 2 1 0 

00h PAYLOAD_VERSION[7:0]  
01h DEVICE_CLASS[7:0]  
02h STATIC_PAYLOAD_SIZE[7:0] 
03h NUM_VIRTUAL_WIRE_OUTPUT BYTES[3:0]  NUM_VIRTUAL_WIRE_INPUT BYTES[3:0] 
04h DEVICE_ID[15:8] 
05h DEVICE_ID[7:0] 
06h VENDOR_ID[15:8] 
07h VENDOR_ID[7:0] 
08h DEVICE_VERSION[7:0] 
09h AFU = FFh 
0Ah NUM_DST_WIRES[3:0] AFU NUM_PICPWR_DST_WIRES[2:0] 
0Bh AFU AFU AFU NUM_EP_DESCRIPTORS[4:0] 

0Ch AFU AFU AFU AFU AFU AFU AFU AFU  

Minimum Required  

PAYLOAD_VERSION[7:0] :  
Indicates the format version of the payload.  Future revisions may relocate, remove or add 
additional bit-fields beyond the first four bytes.  Any alteration of the definitions to bytes 0-3 must 
be avoided for backward compatibility to bit fields that are directly consumed by FPGA logic. 
 
DEVICE_CLASS[7:0] :  Indicates the device class of the M-PESTI target peripheral 

00h : Riser/Interposer 
All others reserved. 

 
STATIC_PAYLOAD_SIZE[7:0] : Indicates the total static payload size.  The value of this bit 
field represents the SIZE/8.   
Example:  STATIC_PAYLOAD_SIZE = 04h indicates the size as 4 * 8 = 32 Bytes 



NUM_VIRTUAL_WIRE_OUTPUT_BYTES[3:0] :  
Indicates the number of output bytes (from target to initiator) supported for future system 
management firmware interaction. 
NUM_VIRTUAL_WIRE_INPUT_BYTES[3:0] :  
Indicates the number of output bytes (from initiator to target) supported for future system 
management firmware interaction. 
NOTE:  The number of HW controlled Virtual wire bytes in and out of a target device and their 
meaning is defined to be DEVICE_CLASS specific  
 
VENDOR_ID leverages PCIe VENDOR_ID table 
The formats of DEVICE_ID and DEVICE_VERSION are vendor specific. 
 
NUM_DST_WIRES[3:0] : 
Indicates the total number of M-PESTI destinations (required per x8 data fabric segment) that 
are connected to this device. 
Examples:   

● A single x8 target requires only one (primary) M-PESTI wire 
● A four-slot riser with x16 routed to each slot requires 8 source wires 

 
NUM_PICPWR_DST_WIRES[2:0] : Indicates the total number of PICPWR M-PESTI sources 
supported 
 
NUM_EP_DESCRIPTORS[4:0] :  Indicates the number of End Point descriptor groups.  5-bits 
accommodate more than 16 end points to be described with 1-indexing. 
Examples:  

● A two-slot riser would populate NUM_EP_DESCRIPTORS = 00010b (two) 
● A device that does not require any physical routing description would populate 

NUM_EP_DESCRIPTORS = 00000b (None) 
  



Endpoint Descriptor Bit fields 
BYT
E/BI

T 
7 6 5 4 3 2 1 0 

0 SMB_UP_CH[2:0] SMB_MUX_DCH[2:0] 
SMB_MUX_PR

ES 
EP_PRES 

1 EP_TYPE[2:0] PICPWR_DST_INDEX[2:0] AFU HOT_PLUG 

2 EP_LANE_WIDTH[2:0] INDIRECT_DISC_ORDER[3:0] INDIRECT 

4 AFU DST_INDEX_A[2:0] EP_LANE_OFFSET_A[3:0] 

5 AFU DST_INDEX_B[2:0] EP_LANE_OFFSET_B[3:0] 

 
SMB_MUX_PRES : 
 1 : indicates that a SMBus MUX exists between the connector and the destination 
 0 : there is no MUX present, and the physical routing is described by SMB_UP_CH 
 
SMB_MUX_DCH[2:0] :  When SMB_MUX_PRES=1, this field indicates which downstream 
channel (up to 8) of the MUX is physically routed to this end point.   
 
SMB_UP_CH[2:0] : Indicates the physical connector index that sources SMBus to the end point 
(SMB_MUX_PRES=0) or to the upstream channel of a MUX (SMB_MUX_PRES=1) 
 000b = D1A (Destination Connector1, I2C_A) 
 001b = D1B (Destination Connector1, I2C_B) 
 010b = D2A 
 011b = D2B 
 100b = D3A 
 101b = D3B 
 110b = D4A 
 111b = D4B (Destination Connector4, I2C_B) 
 
AFU : Available for Future Use  
 
EP_TYPE[2:0] :  Indicates the end point type that is being described to be attached to this lane 
group. Note:  This bit field definitions for EP_TYPE may be specific to a DEVICE_CLASS 
Examples (CEM Riser/Interposer): 
 000b = PCIe CEM Slot 
 001b = Embedded (Device Down) End Point 
 010b = Upstream port of a PCIe Switch 
 Others = AFU 
Examples (Storage Class) 
 000b = NVMe Slot 
 001b = SAS/SATA Slot 
 001b = Universal Slot 
PICPWR_DST_INDEX[2:0] : 
Indicates which PICPWR destination connector provides power to this EP (End Point) 
 



HOT_PLUG :  Applicable to NVME direct attach storage or similar EP. Physical presence of the 
device is communicated via an out-of-Band mechanism, data fabric in-band method or dynamic 
virtual wire. 
 
EP_PRES :  

1 = Device is present  
 static=1 for embedded devices 
 downstream cable presence for cabled sources downstream of a switch 
0 = Device such as an Add-In Card or downstream cable is not present 

Not applicable to a hot plug EP. 
  
EP_LANE_WIDTH[2:0] : //Note this is the connector width and not the slot installed add-in card. 

000b = x1 
001b = x2 
010b = x4 
011b = x8 
100b = x16 (infers two sources required, all others only require one source) 
All others reserved 

Note:  When EP_TYPE describes a PCIe CEM slot, the EP_LANE_WIDTH attribute describes 
the number of lanes routed to the slot.  It does not describe the width of the Add In Card (AIC) 
that may be inserted into the slot. 
 
INDIRECT : 
 0 = EP’s data fabric physical routing is direct from the destination connector 
 1 = EP is downstream of a PCIe switch 
 
INDIRECT_DISC_ORDER[3:0] :  
Applicable when INDIRECT = 1 indicating that this destination is downstream of a PCIe switch.  
The discovery order index requires depth-first traversal during enumeration of the switch’s 
downstream ports. 
 0000b = First 
 0001b = 2nd 
 … 
 111b = 15th 
 
DST_INDEX_x[2:0] :  
Indicates which destination connector(s) source data fabric lanes connect to this end point.  
 000b = Destination 1A 
 001b = Destination 1B 
 … 
 110b = Destination 4A 
 111b = Destination 4B 
 



EP_LANE_OFFSET_x[3:0] : This field indicates the starting lane offset of the destination 
connector that the end point consumes. 

EP_LANE_OFFSET_A[3:0] indicates which destination connector segment and lane are 
physically routed to lane 0 of the end point.   
X8 Example: Natural order routing would indicate an offset of 0 from the High Speed I/O 
destination to lane 0 of the EP. Reverse order routing would indicate an offset of 7 from the 
destination to lane 0 of the EP. 
EP_LANE_OFFSET_B[3:0] is only applicable to a EP with EP_LANE_WIDTH[2:0] = 100b (x16).  
All other end points only require physical routing description from a single DST_INDEX. 

Source Wire Descriptors and Stimulus Response 

BYTE/BIT 7 6 5 4 3 2 1 0 

0 P_D4 P_D3 P_D2 P_D1 COMM_SRC_TYPE COMM_SRC_INDEX[2:0] 

1 M_D4B M_D4A M_D3B M_D3A M_D2B M_D2A M_D1B M_D1A 

 
COMM_SRC_INDEX[2:0] : 
Indicates which source index is being used for frame-based communication.  The physical 
routing of this wire is not able to be discovered through the stimulus response method.  The 
corresponding destination index will always appear as ‘1b’ in the discovery payload. 
 
COMM_SRC_TYPE :   0b = High Speed I/O (aka M-XIO) 

  1b = Power (aka PICPWR) 
 
M_DXY :  

X =  Destination connector index 
 Y =  Destination connector sub-Index (1 per x8) 
These fields will change state during the source discovery stimulus phase so that system 
management firmware can map the data fabric and I2C physical routing from the end point back 
to the planar. 
 
P_DX : 

X = PICPWR destination index 
These fields will change state during the source discovery stimulus phase so that system 
management firmware can map the power path to this end point.  This is useful for optional 
enablement to a DPU EP in the ACPI S5 power state. 

Checksum 
BYT
E/BI

T 
7 6 5 4 3 2 1 0 

0 CHECKSUM[7:0] 

CHECKSUM[7:0] :    CRC-8 checksum with polynomial = 0x07, Seed = 0x00 
 
 
 
  



 
Example 2-slot Riser Block Diagram 
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The above example depicts an M-PESTI riser with two x16 CEM slots attached to two x16 
cabled High Speed source connectors on the baseboard. All four of the M-PESTI wires are 
connected between the riser destination connectors and the target MCU so that it natively 
supports all valid source connections to the baseboard. Valid source connection topologies 
include one x16 or two x8 sources per x16 destination connector. 

 
Payload Example (Initial Discovery Payload) 

Byte/Bit 7 6 5 4 3 2 1 0 
Valu

e 
00h PAYLOAD_VERSION[7:0] = 00h 00h 
01h DEVICE_CLASS[7:0] = 00h (CEM Riser) 00h 
02h STATIC_PAYLOAD_SIZE[7:0]= 04h (32 Bytes) 04h 

03h 
NUM_VIRTUAL_WIRE_OUTPUT BYTES[3:0] 

= 0000b 
NUM_VIRTUAL_WIRE_INPUT BYTES[3:0] = 0000b 

00h 

04h DEVICE_ID[15:8] = 00h 00h 
05h DEVICE_ID[7:0] = 27h 27h 
06h VENDOR_ID[15:8] = 80h 80h 
07h VENDOR_ID[7:0] = 86h 86h 
08h DEVICE_VERSION[7:0] = A0h A0h 

09h 
NUM_DST_WIRES[3:0] = 0100b (4 

CBL_PRES signals) 
AFU = 0b 

NUM_PICPWR_DST_WIRES[2:0] = 
001b 

41h 

0Ah 
AFU = 

0b 
AFU = 

0b 
AFU = 

0b 
NUM_DST_DESCRIPTORS[4:0] = 00010b (Two Slots) 02h 

0Bh 
AFU = 

0b 
AFU = 

0b 
AFU = 

0b 
AFU = 0b AFU = 0b AFU = 

0b 
AFU = 0b AFU = 0b 00h 

0Ch 
010b (I2C Source is D2A 

Connector) 
000b (NA, No Mux) 

0b ( No 
Mux) 

1b 
(Present) 

41h 

0Dh 000b (CEM slot) 001b (P_D1 power) 0b (AFU) 0b (not HP) 04h 

0Eh 100b (x16 EP) 000b (NA, Direct) 0 (Direct) 80h 

0Fh 
0b 

(AFU) 
011b (D2A Destination) 0111b (Lane 7 Dest. to EP Lane 0, reversed) 

37h 

10h 
0b 

(AFU)  
010b (D2B Destination) 0111b (Lane 7 Dest. to EP Lane 8, reversed) 

27h 

11h 000b (D1A Connector) 000b (NA, No Mux) 
0b ( No 
Mux) 

0b (Absent) 
00h 

12h 000b (CEM slot) 001b (P_D1 power) 0b (AFU) 0b (not HP) 04h 

13h 100b (x16 EP) 000b (NA, Direct) 0 (Direct) 80h 

14h 
0b 

(AFU) 
000b (D1A Destination) 0000b (Lane 0  Dest. to EP Lane 0, natural order) 

00h 

15h 
0b 

(AFU)  
001b (D1B Destination) 0000b (Lane 0 Dest. to EP Lane 8, natural order) 

10h 

16h 0b (NA) 0b (NA) 0b (NA) 1b (valid) 
0b = Data 

Comm 
000b (D1A Connector) 

10h 

17h 0b (NA) 0b (NA) 0b (NA) 0b (NA) 1b (valid) 1b (valid) 1b (valid) 1b (valid) 0Fh 

18h 00h (Padding) 00h 

19h 00h (Padding) 00h 

1Ah 00h (Padding) 00h 

1Bh 00h (Padding) 00h 

1Ch 00h (Padding) 00h 

1Dh 00h (Padding) 00h 

1Eh 00h (Padding) 00h 

1Fh 31h (Checksum) 31h 

 
 

 



 

 



Supplemental Material B: Estimated latency for HW owned virtual wires 
Assumptions:   

● 242500 BAUD (250000 -3%); 8-O-1  
● Worst case 8 device group with round robin servicing to each. This is if the source 

device wishes to reduce logic count by implementing for example 1 UART servicing 8X 
M-PESTI instances. Such an implementation would need a parallel BREAK detect circuit 
to not miss signaling from a not currently in use M-PESTI instance. 

Nominal Latency  

 Dedicated Initiator Only: 

Single VWIRE byte in each direction 
tAPBI2MIN + [2* tFRAMEMAX TX (90.6 us)] + tAPTARTYP (1.0 us) + [1 * tFRAMEMAX RX 
(45.3 us)]     = 145.9 us  

Note: tAPBIMAX is not specified and is system dependent 
 

8 targets per Initiator: 

Single VWIRE byte in each direction  
[[2* tFRAMEMAX TX (90.6 us)] + tAPTARTYP (1.0 us) + [1 * tFRAMEMAX RX (45.3 us)]]   
= 136.9 us * 8 devices  
= 1167.2 us 
 

Worst Case Latency  

Dedicated Initiator Only: 

For a dedicated initiator per target, the active phase RX timeout (tAPRTO) will add to the 
latency between each successive attempt to send the command and receive a valid response.  
The RX timeout period is much greater than (tAPTAR + 1 * tFRAMEMAX RX) and would affect 
latency the most. 
A single RX timeout would increase the nominal latency to: 

2* [2* tFRAMEMAX TX (90.6 us)] + tAPRTO   = 681 us 

8 targets per Initiator: 

With 3 attempts (initial + 2 retries) per M-PESTI, the max latency with a single target not able to 
respond successfully adds significant latency to the nominal value of 1167.2 us 

= 1167.2 us - tAPTAR + tAPRO + 2* [135.9 us + tAPRTO]  =  2.802 ms 
Note: Firmware disablement (APEN=0) of one or more misbehaving M-PESTI wires would 
remediate the latency increase for the other devices within the group. 



Supplemental Material C: Cable Topology Case Studies 

Case 1: 2x8 Source to 1x16 End Point Block Diagram 

Baseboard
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CEM SLOT
015

DST1_CBL_PRESA_PESTI_N

DST1_CBL_PRESB_PESTI_N

[15:0]

DST1_I2CB

 
 

  



Case 1: 2x8 Source to 1x16 Destination to 1x16 End Point Payload 

Byte/Bit 7 6 5 4 3 2 1 0 
Valu

e 
00h PAYLOAD_VERSION[7:0] = 00h 00h 
01h DEVICE_CLASS[7:0] = 00h (CEM Riser) 00h 
02h STATIC_PAYLOAD_SIZE[7:0]= 03h (24 Bytes) 03h 

03h 
NUM_VIRTUAL_WIRE_OUTPUT BYTES[3:0] 

= 0000b 
NUM_VIRTUAL_WIRE_INPUT BYTES[3:0] = 0000b 

00h 

04h DEVICE_ID[15:8] = 00h 00h 
05h DEVICE_ID[7:0] = 27h 27h 
06h VENDOR_ID[15:8] = 80h 80h 
07h VENDOR_ID[7:0] = 86h 86h 
08h DEVICE_VERSION[7:0] = A0h A0h 

09h 
NUM_DST_WIRES[3:0] = 0010b (2 

CBL_PRES signals) 
AFU = 0b 

NUM_PICPWR_DST_WIRES[2:0] = 
000b 

20h 

0Ah 
AFU = 

0b 
AFU = 

0b 
AFU = 

0b 
NUM_DST_DESCRIPTORS[4:0] = 00001b (One Slot) 02h 

0Bh 
AFU = 

0b 
AFU = 

0b 
AFU = 

0b 
AFU = 0b AFU = 0b AFU = 

0b 
AFU = 0b AFU = 0b 00h 

0Ch 
010b (I2C Source is D2A 

Connector) 
000b (NA, No Mux) 

0b ( No 
Mux) 

1b 
(Present) 

41h 

0Dh 000b (CEM slot) 000b (No discoverable power) 0b (AFU) 0b (not HP) 00h 

0Eh 100b (x16 EP) 000b (NA, Direct) 0 (Direct) 80h 

0Fh 
0b 

(AFU) 
000b (D1A Destination) 0000b (Lane 0 Dest. to EP Lane 0, reversed) 

00h 

10h 
0b 

(AFU)  
001b (D1B Destination) 0000b (Lane 0 Dest. to EP Lane 8, reversed) 

10h 

11h 0b (NA) 0b (NA) 0b (NA) 0b (NA) 
0b = Data 

Comm 
000b (D1A Connector) 

00h 

12h 0b (NA) 0b (NA) 0b (NA) 0b (NA) 0b (NA) 0b (NA) 1b (valid) 1b (valid) 03h 

13h 00h (Padding) 00h 

14h 00h (Padding) 00h 

15h 00h (Padding) 00h 

16h 00h (Padding) 00h 

17h 39h (Checksum) 39h 

 

  



Case 2: 1x16 Source to 2x8 Destination to 1x16 End Point 
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Case 2: 1x16 Source to 2x8 Destination to 1x16 End Point 

Byte/Bit 7 6 5 4 3 2 1 0 
Valu

e 
00h PAYLOAD_VERSION[7:0] = 00h 00h 
01h DEVICE_CLASS[7:0] = 00h (CEM Riser) 00h 
02h STATIC_PAYLOAD_SIZE[7:0]= 03h (24 Bytes) 03h 

03h 
NUM_VIRTUAL_WIRE_OUTPUT BYTES[3:0] 

= 0000b 
NUM_VIRTUAL_WIRE_INPUT BYTES[3:0] = 0000b 

00h 

04h DEVICE_ID[15:8] = 00h 00h 
05h DEVICE_ID[7:0] = 27h 27h 
06h VENDOR_ID[15:8] = 80h 80h 
07h VENDOR_ID[7:0] = 86h 86h 
08h DEVICE_VERSION[7:0] = A0h A0h 

09h 
NUM_DST_WIRES[3:0] = 0010b (2 

CBL_PRES signals) 
AFU = 0b 

NUM_PICPWR_DST_WIRES[2:0] = 
000b 

20h 

0Ah 
AFU = 

0b 
AFU = 

0b 
AFU = 

0b 
NUM_DST_DESCRIPTORS[4:0] = 00001b (One Slot) 02h 

0Bh 
AFU = 

0b 
AFU = 

0b 
AFU = 

0b 
AFU = 0b AFU = 0b AFU = 

0b 
AFU = 0b AFU = 0b 00h 

0Ch 
010b (I2C Source is D2A 

Connector) 
000b (NA, No Mux) 

0b ( No 
Mux) 

1b 
(Present) 

41h 

0Dh 000b (CEM slot) 000b (No discoverable power) 0b (AFU) 0b (not HP) 00h 

0Eh 100b (x16 EP) 000b (NA, Direct) 0 (Direct) 80h 

0Fh 
0b 

(AFU) 
000b (D1A Destination) 0000b (Lane 0 Dest. to EP Lane 0, reversed) 

00h 

10h 
0b 

(AFU)  
010b (D2A Destination) 0000b (Lane 0 Dest. to EP Lane 8, reversed) 

20h 

11h 0b (NA) 0b (NA) 0b (NA) 0b (NA) 
0b = Data 

Comm 
000b (D1A Connector) 

00h 

12h 0b (NA) 0b (NA) 0b (NA) 0b (NA) 0b (NA) 1b (valid) 0b (NA) 1b (valid) 05h 

13h 00h (Padding) 00h 

14h 00h (Padding) 00h 

15h 00h (Padding) 00h 

16h 00h (Padding) 00h 

17h 66h (Checksum) 66h 

 
Note: The only bytes that change relative to Case 1 are payload offsets 0x10 and 0x12 to 
account for two PRESA wires from 2x8 destination connectors versus PRESA and PRESB 
wires connecting through a 1x16 destination connector. 
 
 
 
  



 
 


