

AVA: NVMe M.2 in Scale-Out Storage

Dominic Cheng / Hardware Engineer / Facebook Michael Liberte / Partner Engineer / Facebook

Agenda

- Design objectives
- Design overview
- Use cases
- Disaggregate Lab

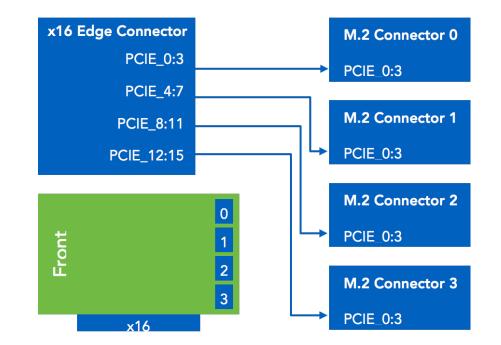
OPEN HARDWARE. OPEN SOFTWARE. OPEN FUTURE.

Design objectives

- Build a PCIe flash card with M.2s
- M.2 into PCIe FHHL form factor
- No PCIe switches or re-drivers
- Future-proof
- Serviceable
- Low cost

Why M.2?

- Fits into all of our storage and compute platforms
- Commodity
- Scales

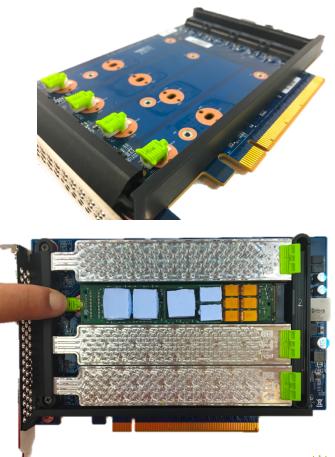


Design overview

- Direct connection from x16 edge connector to 4 M.2 connectors
- Standard Socket 3, M-key pinout
 - x4 lanes to each

Mechanical

- Supports 2280 and 22110 lengths
- 5.8 mm height connectors
 - Supports TIMs
 - Up to D5 height modules


OPEN FUTURE.

• Top and bottom heatsinks

OPEN SOFTWARE.

Tool-less service

OPEN HARDWARE.

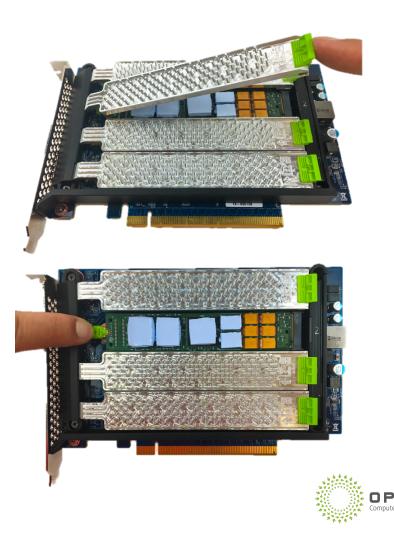
Thermal

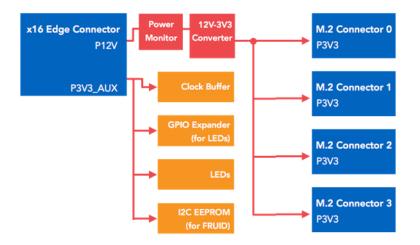
- Top and bottom heatsinks
- TIMs for heat transfer

Stress/Load	M.2 SMART Reading, 30C Inlet			
	AVA + Air Duct, 2X M.2	AVA + Heat Sink, 2X M.2	Power Per M.2	
100% Sequential Writes	74 ° C	54 ° C	7.9 W	

AVA + Air Duct, 2X M.2

AVA + Heat Sink, 2X M.2



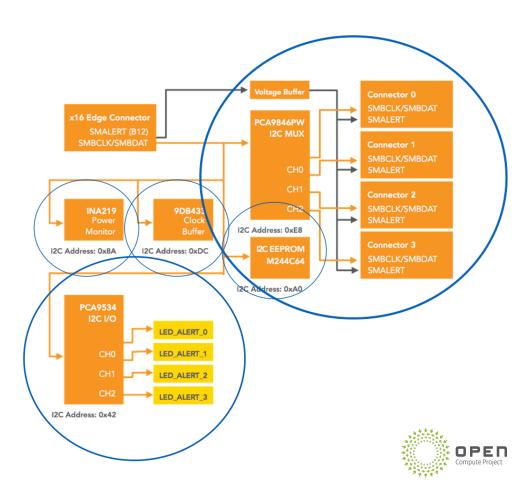

Serviceability

- Tool-less replacement of individual M.2 and top heat-sinks
- TIMs replaced with M.2

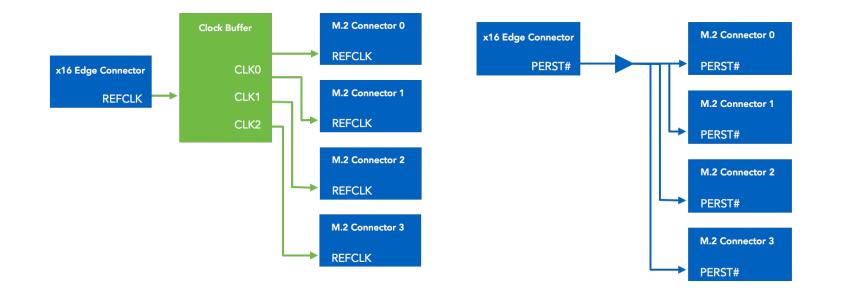
Power

- 3.3 VR supports up to 18A of total continuous current
- All I2C/SMBus devices powered from 3.3Vaux

I2C/SMBUS


- SMBus connection to each M.2
- FRU EEPROM
- Status LED control

OPEN SOFTWARE.


OPEN FUTURE.

- Power monitor
- Clock buffer

OPEN HARDWARE.

Clocks and Reset

OPEN HARDWARE. OPEN SOFTWARE. OPEN FUTURE.

PCIe Bifurcation

- Pin B31 is pulled low on the card
- Pin B81 is connected to pin A1 on the card for presence detection
- All PRSNT#2 pins are routed to the PCH
- BIOS configured to auto-detect if B31 + B81 is low

#	Name	Description	Name	Description
1	+12v	+12 volt power	PRSNT#1	Hot-plug presence detect
2	+12v	+12 volt power	+12v	+12 volt power
3	+12v	+12 volt power	+12v	+12 volt power
4	GND	Ground	GND	Ground
5	SMCLK	SMBus clock	JTAG2	TCK
6	SMDAT	SMBus data	JTAG3	TDI
7	GND	Ground	JTAG4	TDO
8	+3.3v	+3.3 volt power	JTAG5	TMS
9	JTAG1	+TRST#	+3.3v	+3.3 volt power
10	3.3Vaux	+3.3 volt power	+3.3v	+3.3 volt power
11	WAKE#	Link Reactivation	PWRGD	Power Good
		Mechanical Key		
12	SMBALERT#	Power Reduction	GND	Ground
13	GND	Ground	REFCLK+	Reference Clock
14	PETP(0)	Transmitter Lane 0,	REFCLK-	Differential pair
15	PETN(0)	Differential pair	GND	Ground
16	GND	Ground	PERP(0)	Receiver Lane 0,
17	PRSNT#2	Presence detect	PERN(0)	Differential pair
18	GND	Ground	GND	Ground
19	PETP(1)	Transmitter Lane 1,	RSVD	Reserved
20	PETN(1)	Differential pair	GND	Ground
21	GND	Ground	PERP(1)	Receiver Lane 1,
22	GND	Ground	PERN(1)	Differential pair
23	PETP(2)	Transmitter Lane 2,	GND	Ground
24	PETN(2)	Differential pair	GND	Ground
25	GND	Ground	PERP(2)	Receiver Lane 2
26	GND	Ground	PERN(2)	Differential pair

Transmitter Lane 3

Differential pair

Ground

0 = PCle x4

Bifurcation

GND

GND

PERP(3)

PERN(3)

GND

27

28

29

31

PETP(3)

PETN(3)

GND

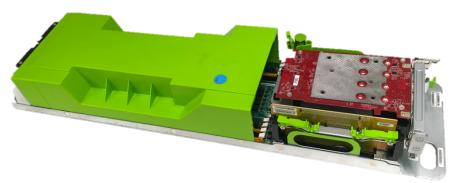
BIFURx4

Ground

Ground

Receiver Lane 3,

Differential pair


Ground

Use cases

- Cache
- Databases
- File system cache

OPEN HARDWARE. OPEN SOFTWARE. OPEN FUTURE.

Disaggregate Lab

- AVA and NVME at Disaggregate: Lab
- Partners tested:
 - Excelero
 - Hedvig
 - Weka.IO
 - Spectrum Scale IBM

OPEN Compute Project