
Engineering Workshop

October 30-31, 2014
Paris

Engineering Workshop

SMR, the ZBC/ZAC Standards and the
New libzbc Open Source Project
Jorge Campello
Director of Systems Architecture, HGST

Engineering Workshop Engineering Workshop

Magnetic Recording System Technologies

Time

Longitudinal Magnetic
Recording (LMR)

1 Tb/in2

10 Tb/in2

Perpendicular Magnetic
Recording (PMR)

150 Gb/in2

5 Tb/in2

Discrete Track Recording (DTR)
(Limited Gains)

Superpara-magnetic limit A
re

al
 D

en
si

ty

Y. Shiroishi, Intermag 2009, FA-01

New recording system technologies are needed to keep the HDD industry on its historical track
of delivering capacity improvements over time

Shingled Magnetic Recording (SMR)

Bit Patterned Magnetic Recording (BPMR)
Heat Assisted Magnetic Recording (HAMR)
Microwave Assisted Magnetic Recording (MAMR)

Future recording technologies will build on
SMR, not replace it.

Engineering Workshop Engineering Workshop

What is Shingled Magnetic Recording (SMR)?

SMR write head geometry extends well beyond the track pitch in order to generate the field necessary for
recording. Tracks are written sequentially in an overlapping manner forming a pattern similar to shingles
on a roof.!

SMR Constraint:!
Rewriting a given track will damage one or
more subsequent tracks.!

Wood, Williams, et al., IEEE TRANSACTIONS ON MAGNETICS, VOL. 45, NO. 2, FEBRUARY 2009

corner
head

scans

head
motion

corner
head

progressive
writes

Engineering Workshop Engineering Workshop

SMR Types

SMR category Description

Drive managed
(Autonomous)

No host changes. SMR device manages all requests. Performance is
unpredictable in some workloads. Backward compatible

Host aware Host uses new commands & information to optimize write behavior. If host
sends sub-optimal requests the SMR device accepts the request but
performance may become unpredictable. Backward compatible

Host Managed Host uses new commands & information to optimize write behavior.
Performance is predictable. If host sends sub-optimal requests the SMR
device rejects the request. Not backward compatible

T1
0/

T1
3

ZB
C

/Z
A

C

ZBC = Zoned Block Commands

ZAC = Zoned ATA Commands

Engineering Workshop Engineering Workshop

Zoned Block Devices
3 types of Zones supported

Conventional Zones
•  Behave according to the direct access block device type model

in SBC-3
Sequential Write Preferred Zones

•  Implements the new ZBC standard
•  Writes should be at the “Write Pointer” (WP) for best

performance
•  BUT, Device will accept writes in any order

Sequential Write Only Zones
•  Implements the new ZBC standard
•  Writes have to be at the Write Pointer

…

Conventional Zone

Sequential Write Preferred Zone

Sequential Write Only Zone

Write Pointer

•  Sequential Write Only Zones; Conventional Zones are
optional

•  Reads cannot span zones or cross the Write Pointer

•  Sequential Write Preferred Zones, Conventional Zones are
optional

•  Non-sequential writes in a Sequential Write Preferred Zone
toggle the zone to conventional mode— dealt by HDD internal
indirection

Host Managed ç Two Device Types è Host Aware

Engineering Workshop Engineering Workshop

ZBC/ZAC Device Types – current drafts

Direct Access Host Aware Host Managed

Peripheral Device Type 00h 00h 14h

HAW_ZBC 0b 1b 0b

Conventional zones n/a Optional Optional

Seq’l wr preferred zones n/a Mandatory Disallowed

Seq’l wr only zones n/a Disallowed Mandatory

Reads and writes crossing seq’l write only
zone boundaries

n/a n/a Disallowed

REPORT ZONES Disallowed Mandatory Mandatory

RESET WRITE POINTER Disallowed Mandatory Mandatory

Engineering Workshop Engineering Workshop

SMR Introduction Models
H

ar
dw

ar
e

K
er

ne
l

U
se

r S
pa

ce

ZBC/ZAC Host
Aware

ZBC/ZAC

Host Aware Host
Managed

ZBC/ZAC

Host Aware Host
Managed

Engineering Workshop Engineering Workshop

libzbc and lkvs:
Linux ZBC library and Linear
Key Value Store Application

Engineering Workshop Engineering Workshop

Designing for Host Managed SMR
Current State
•  Existing applications will not work
•  Need new applications that are HM-SMR specific
•  Each app has to do their own ZBC parsing to talk with low

level SCSI layer

U
se

r l
ev

el

K
er

ne
l

H
ar

dw
ar

e

Kernel VFS!
Block Layer!

SCSI Layer!
HBA driver!

HM-SMR!

HBA!

App! ZB
C

 App! ZB
C

 App! ZB
C

App!App!App!

Kernel VFS!
Block Layer!

SCSI Layer!
HBA driver!

HM-SMR!

HBA!

App!App!App!

libzbc!

HGST developed libzbc
•  Removes annoyance of low-level parsing SCSI/ZBC

commands
•  Follows the T10/T13 standards
•  Facilitates new HM-SMR specific application

development

Engineering Workshop Engineering Workshop

Libzbc Project: SMR for Linux

Download Now:
http://github.com/hgst

-  Allows Linux apps access to host-managed HDD

-  Ensures new command sets flow through HBA

-  Emulates Host Managed SMR on PMR drives

Engineering Workshop Engineering Workshop

libzbc
• Allows Linux applications access to ZBC host-managed disks

Access to disk zone information and read/write operations in zones through direct SCSI command execution (SG_IO)
ZAC drives will be supported by libzbc as well

• Additionally, provide a ZBC emulation layer for operation on top of standard SAS/SATA
block devices

Zone configuration of the disk is emulated within the library

Application!

libzbc!
Kernel VFS!
Block Layer!

SCSI Layer!
HBA driver!

ZBC disk!

User level

Kernel

Hardware

Application!Application!
Native mode

Application!

libzbc!

Kernel VFS!
Block Layer!
SCSI Layer!
HBA driver!

PMR disk!

Application!Application!
Emulation mode

SCSI command (SG_IO)

Standard system calls (read/write)

Engineering Workshop Engineering Workshop

Libzbc Project
Libzbc is an Open Source Project

-  Distributed under an LGPL licence

http://Github.com/hgst

The mailing list for the project is: libzbc@vger.kernel.org

Will provide a consistent interface for both ZBC and ZAC devices.

Will evolve with the standards

Currently supports ZBC Host Managed Devices or Emulation Mode
-  Plan to support ZAC devices soon
-  Plan to support Host Aware ZBC/ZAC as well

Engineering Workshop Engineering Workshop

libzbc Interface

Functions Description Input Output SCSI command (native
mode)

zbc_open Open a device Device file path Device handle INQUIRY, READ CAPACITY
16

zbc_close Close an open device Device handle None None

zbc_get_device_info
Get a device
information (size,
sector size, ...)

Device handle Device information None

zbc_report_zones
Get information on
zones following a
specified LBA

Device handle, zone start
LBA, zone filter Zone information REPORT ZONES

zbc_reset_write_pointer Reset the write pointer
of an open or full zone Device handle, zone start LBA None RESET WRITE POINTER

zbc_pread Read data from a zone

Device handle, Zone to read,
LBA offset in the zone,
number of sectors to read,
data buffer

Amount of sectors read and
data READ 16

zbc_pwrite Write data to a zone

Device handle, Zone to write,
LBA offset in the zone,
number of sectors to write,
data buffer

Amount of sectors written WRITE 16

Engineering Workshop Engineering Workshop

libzbc Interface (Emulation Mode)

• These functions are used to initialize an emulated ZBC device
Write pointer persistency is also emulated

– Zone configuration and current write pointer values are saved to the disk on execution of the zbc_close function

Functions Description Input Output SCSI command (native
mode)

zbc_set_zones Configure the zones of
an emulated device

Device handle, size of
conventional zone, size of
sequential write zones

None None*

zbc_set_write_pointer Change a zone write
pointer LBA value

Device handle, zone start
LBA, write pointer value None None*

Engineering Workshop Engineering Workshop

Linear Key Value Store (lkvs)
Application

Engineering Workshop Engineering Workshop

Linear Key Value Store Architecture

•  lkvs
Implements a simple append only KVS as an example use of libzbc
Queries drive info (write pointer, zone information) through libzbc
Read/write executed through libzbc

•  libzbc
Provides zone information, write pointers, to lkvs

ZBC Device

lkvs
libzbc

Applications link with libzbc!

lkvs gets ZBC device !
information and read/write
operations are perfromed through
libzbc!

device file

Engineering Workshop Engineering Workshop

lkvs Interface

Functions Description Input Output

openDev Open a device Device file path, format flags Bool success

Put Insert key/value pair into
the store Key string, value buffer, size Bool success

Get Get key/value pair form the
store Key string, value buffer, size Bool success

List
List key/value pairs on the
device
(Not Finalized)

TBD TBD

Engineering Workshop

October 30-31, 2014
Paris

Engineering Workshop

Thank YOU!!

