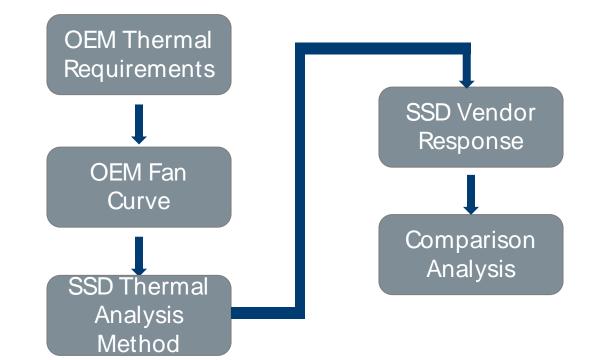
MSFT, Intel, WDC

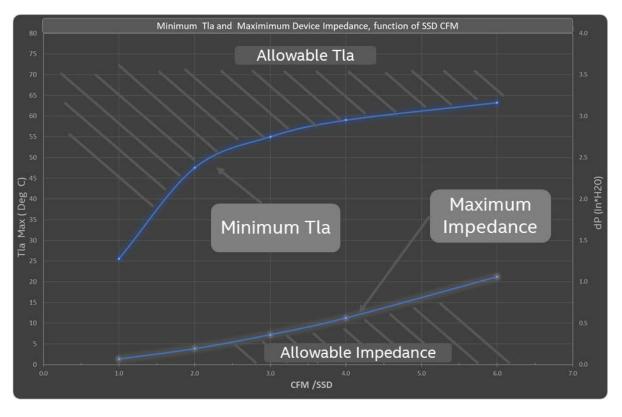

OCP 2020: E1.S THERMAL METHODOLOGY WORKGROUP

Feb 13, 2020

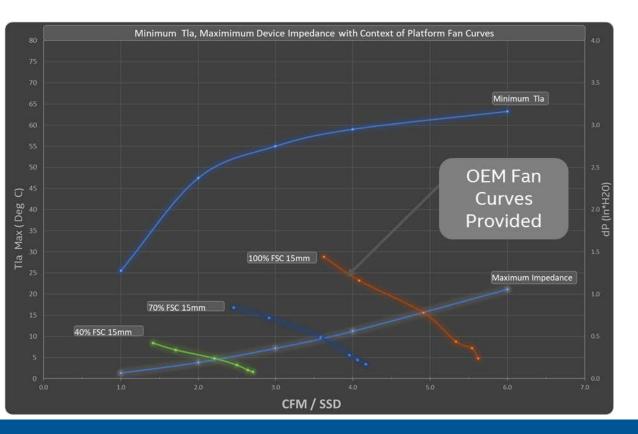
Goals of Standard to Develop

- How do OEM's communicate SSD Thermal requirements?
 - Reference framework for the system (environmental conditions as function of platform)
- How do we report SSD thermal metrics? (Vendor response curves)
- How do we compare SSD's thermally in a platform? (Table or Chart)
- How do characterize and report findings? (Methodology/Metrology physical characterization)

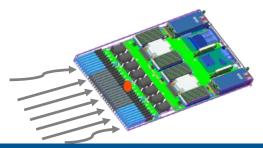
Methodology Flow



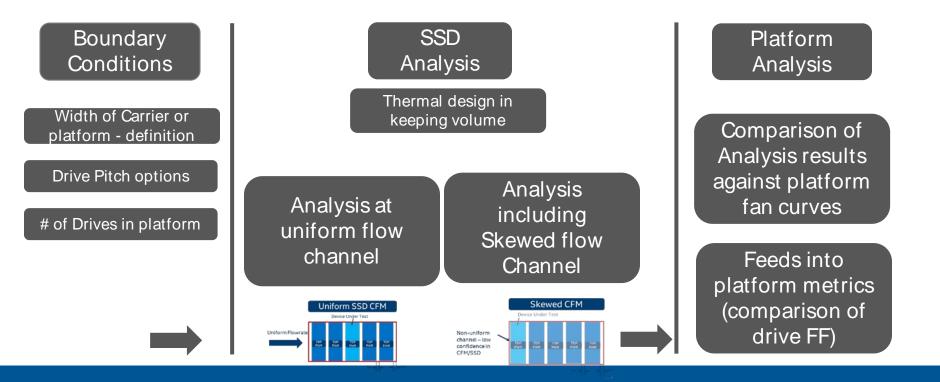
OEM Specifies: Workload, Tla Curve, Impedance Curve


• Specify Minimum Tla (temperature local ambient air (or entrance temperature) drive must support.

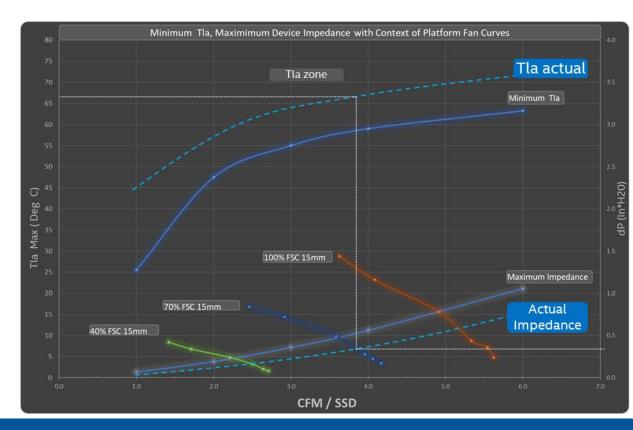
But what impedance will be ok for the platform???


• **Provide an allowable impedance** allows vendors to meet platform requirements.

TLA vs Flowrate and dP, Example for 15mm Width E1.S



- OEM adds platform fan curves
- Multiple Fan Curves provide context for SSD design:
 - Ideal operation fan curve
 - Maximum fan curve
 - Minimum operating curve
 - Fan Curve at 100% w/ Fan Failure
- Fan curves provide necessary information to design for platform operation, at multiple fan conditions.


SSD Thermal Analysis – Detailed Workflow to get final results

Goal is to analyze a form factor width or device design with boundary conditions that are realistic to platform integration.

SSD / Device Vendor Response to Specification

- Actual Tla operating curve meets requirement
- Impedance shown meets allowed condition
 - Platform airflow is not limited by SSD
- Fan / Impedance operating point:
 - An idea of SSD CFM in platform quantified.
 - An Estimation of SSD impedance effect on platform airflow
- Analysis allows drives to be compared in the context of platform integration (chart).

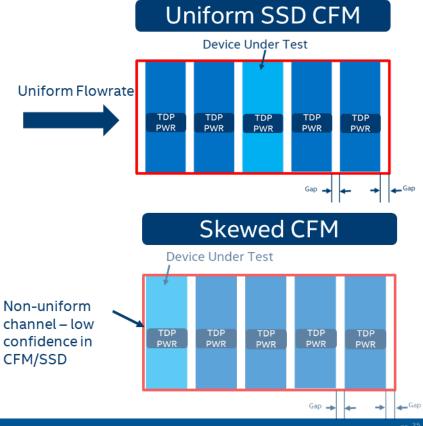
TIa and Flowrate - How do Designs Compare @ fixed 20W SSD PWR

	Width	Fin Offset	SSDs / Platform	Fin Thk / Gap	CFM/SSD	Tla	dP SSD (in-H2O)	Platform CFM	PWR/SSD*	Total SSD PWR	Air T-rise
A	9.5	n/a	32	n/a	2.4	45	.62	76.8	20	640	16.3
С	15	5	24	1/1.9	3.6	57	.5	86.4	20	480	10.8
D	25	5	16	1/1.9	6.0	62	.24	96	20	320	6.5

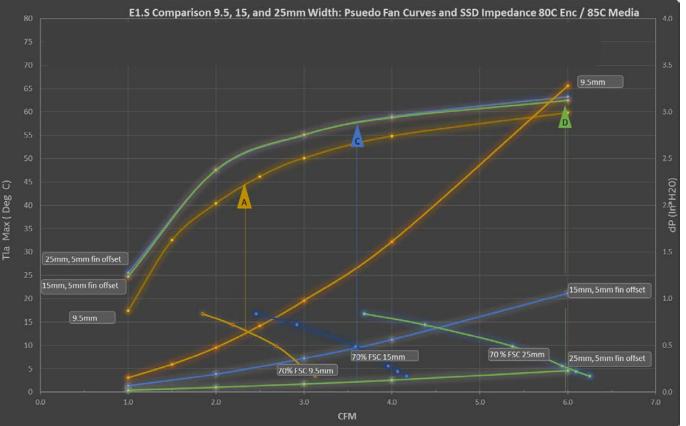
Multiple Thermal designs are evaluated against platform integration scenarios and compared, in a common set of metrics

Power Capability of the Drive, fixed Tla, at platform fan curve operation.

. . .

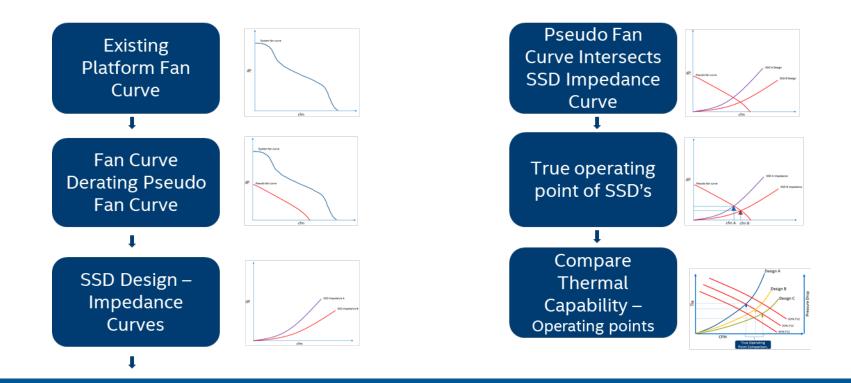

	Width	Fin Offset	SSDs / Platform	Fin Thk / Gap	CFM/SSD	Tla	dP SSD (in-H2O)	Platform CFM	Max PWR/SSD*	Total SSD PWR	Air T-rise
А	9.5	n/a	32	n/a	2.4	35	.62	76.8	25	800	20.3
С	15	5	24	1 / 1.9	3.6	35	.5	86.4	35	840	19
D	25	5	16	1/1.9	6.0	35	.24	96	45	720	14.6

•9.5mm	
	Great 1U capacity – 32 SSDs
	Cross Modular with 25mm
•15mm	
	Great 1U total power – 840W
	Good 1U capacity – 24 SSD
•25mm	
	Lowest impedance - down stream thermal advantage
	Best SSD power capability (45)
	Best SSD thermal advantage


Backup Slides

Evaluating the Form Factor – Thermal Potential!

- Goal: Consistent method across industry to compare thermal performance of SSD thermal design(s)
- Approach achieve uniform flowrate through channels – "simple comparison"
 - Some platform configurations can skew flowrate if not uniform channel thickness.
- Minimum 3 drives ISO powered, focus on middle drive thermal response.
 - T-rise contribution included real power dissipated.


What does all this mean – comparison? Looking at 9.5, 15, and 25mm FF impedance: @ 80C Enc / 85C Media

Trend: Increasing width achieves better system airflow, higher Tla, naturally achieves higher flow on the fan curve.

Methodology "Strawman"

Focus on realistic operating point – increasing accuracy beyond iso-CFM

