

ONIE Certification Test Procedure

Contents
List of Changes .. 3

License... 4

Background ... 5

Introduction .. 5

ONIE Specification ... 5

Prerequisites ... 5

Board EEPROM Information Format ... 5

Hardware Face Plate and FRU Numbering.. 8

Hardware Documentation .. 9

Access to ONIE images .. 9

Asset Tracking and Labeling .. 9

NOS image discovery and Installation .. 10

Default File Name Search Order ... 10

Statically configured (passed from boot loader) .. 10

Local file systems (USB for example) .. 11

Exact URLs from DHCPv4 .. 11

Inexact URLs based on DHCP responses ... 11

DHCP Reference Information .. 12

HTTP Requests and Headers ... 13

IPv6 neighbors ... 14

TFTP waterfall ... 14

NOS Uninstallation .. 15

Update ONIE ... 15

Default File Name Search Order ... 15

Statically configured (passed from boot loader) .. 16

Local file systems (USB for example) .. 16

Exact URLs from DHCPv4 .. 16

Inexact URLs based on DHCP responses ... 16

IPv6 neighbors ... 16

TFTP waterfall ... 16

Rescue Mode .. 17

Execution Environment ... 17

ONIE Testing .. 18

Test Environment .. 18

Dead on Arrival Testing ... 19

Manual Testing.. 19

Preliminary .. 19

NOS image discovery and Installation .. 21

NOS Uninstallation .. 22

Update ONIE ... 22

Rescue Mode... 23

Appendix A – dhcpd.conf example file ... 25

Table 1- Layout of entire EEPROM block .. 6

Table 2 - Type Code Value Definitions .. 8

Table 3 - DHCP Options for Exact URL .. 11

Table 4 - DHCP Options used for Inexact URLs ... 12

Table 5 - DHCP Request Options ... 12

Table 6 - VIVSO Namespace Option Codes ... 13

Table 7 - DHCP Parameter Request List Options .. 13

Table 8 - HTTP Headers ... 14

Table 9 - Installer Core Environment Variables .. 17

Table 10 - Installer DHCP Environment Variables ... 18

Table 11- ONIE Variables from Device .. 21

List of Changes
Version Changes Name Date

0.1 Initial Draft Carlos Cardenas 2014/05/27

0.2 Review, feedback, add hardware test Thao Nguyen 2014/06/05

0.3 Added:

 Testing Environment

 Manual Testing

Carlos Cardenas 2014/06/10

0.4 Incorporate RFC 2119 language, clarify port
enumeration, labeling requirements

Matt Peterson 2014/06/11

0.5 Added:

 Test Number references

 Example dhcpd.conf file

Carlos Cardenas 2014/06/25

0.6 Added:

 Clarified USB install to be optional
(based on HW availability)

 Clarified that “luggage tag” on device is
to include additional space for end
user’s asset tracking system

Carlos Cardenas 2014/07/24

0.7 Corrected:

 Static Install

 Static Update
To use onie_debugargs

Carlos Cardenas 2014/08/22

0.8 Corrected:

 DHCP option for Server IP

 CPU architecture name for x86_64

Carlos Cardenas 2015/02/03

License
As of September 12, 2013, the following persons or entities (according to alphabet sequence) have

made this Specification available under the Open Web Foundation Final Specification Agreement (OWFa

1.0), which is available at http://www.openwebfoundation.org/legal/the-owf-1-0-agreements/owf-

contributor-license-agreement-1-0---copyright-and-patent.

University of Texas at San Antonio

Cumulus Networks

Facebook, Inc.

You can review the signed copies of the Open Web Foundation Agreement Version 1.0 for this

Specification at http://opencompute.org/licensing/, which may also include additional parties beyond

those listed above.

Your use of this Specification may be subject to other third party rights. THIS SPECIFICATION IS

PROVIDED "AS IS." The contributors expressly disclaim any warranties (express, implied, or otherwise),

including implied warranties of merchantability, non-infringement, fitness for a particular purpose, or

title, related to the Specification. The entire risk as to implementing or otherwise using the Specification

is assumed by the Specification implementer and user. IN NO EVENT WILL ANY PARTY BE LIABLE TO ANY

OTHER PARTY FOR LOST PROFITS OR ANY FORM OF INDIRECT, SPECIAL, INCIDENTAL, OR

CONSEQUENTIAL DAMAGES OF ANY CHARACTER FROM ANY CAUSES OF ACTION OF ANY KIND WITH

RESPECT TO THIS SPECIFICATION OR ITS GOVERNING AGREEMENT, WHETHER BASED ON BREACH OF

CONTRACT, TORT (INCLUDING NEGLIGENCE), OR OTHERWISE, AND WHETHER OR NOT THE OTHER

PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Background

Introduction
ONIE or the Open Network Install Environment is second stage boot loader to facilitate the installation

of operating systems. The original implementation was built to install network operating systems on

“bare metal” or whitelabel network switches. The architecture is geared to preserve a preliminary

“BIOS” or initial system ROM to bring up the system (such as UBoot for PPC or SeaBIOS for x86); while

ONIE functions exclusively to discover network, fetch an OS image, and execute an unattended installer.

This document serves as foundation for vendors or suppliers who wish to certify their ONIE

implementation under the support of the Open Compute Project.

The defined specification follows RFC 2119 language for the terms “MUST”, “MUST NOT”, “SHOULD”,

“SHOULD NOT”, and “MAY”.

ONIE Specification

Prerequisites
The ONIE firmware has modest hardware requirements that are required before ONIE can be used as

intended in this specification.

Board EEPROM Information Format
Each ONIE system MUST include an EEPROM which contains various system parameters assigned by the

manufacturer. This EEPROM includes information such as the MAC address(es) allocated to the system,

the serial number, the date of manufacturer, manufacturer name etc. The name of the EEPROM format

specified here is TlvInfo, because the information contained in the EEPROM is found in TLVs, or Type

Length and Value fields.

Definition of the TlvInfo EEPROM Format

The first eight bytes in the EEPROM MUST be a NULL-terminated ASCII string TlvInfo. This identification

string can be used as a simple, preliminary check that the EEPROM conforms to the TlvInfo format

defined here. Additional validation checks should be performed to validate that the TlvInfo format is

really being used, such as validating the CRC. But this string provides a good clue, when debugging or

dumping memory, that what follows is in the TlvInfo EEPROM format.

The identification string MUST BE followed by a single-byte version value. This value is set to 0x01 for

the TlvInfo EEPROM format described in this document. Since the format described herein is very

flexible and extensible, this value is not expected to ever change, but is included just in case. Software

SHOULD NOT assume anything about the format of the data that follows this byte if it has not been

written to support the version it reads from this value. The values 0x00 and 0xFF are reserved and will

never be used.

The version field MUST BE followed by two bytes, which give the total length of the data that follows.

This field is in big endian order and includes the cumulative length of all of the TLV fields that follow.

This field MAY be used to determine the amount of data to read, if the EEPROM data is read in bulk,

following the first 11 bytes. This field can also be used to determine the location of the CRC, since the

CRC-32 TLV is fixed length and always the last TLV in the EERPOM.

http://tools.ietf.org/html/rfc2119

The total length field MUST BE followed by the EEPROM system data, known as TLV fields. Each TLV field

is composed of three sub-fields: a type code field, a length field, and a value field, in that order.

 Type code: This is a single byte that defines the type and format of the value field. These types

are defined in the table below. Since these type codes can be added over time, software that

does not understand a particular type code MUST treat the value field as opaque data, not

assigning any meaning to its type or format. Type codes 0x00 and 0xFF are reserved and will

never be used. This allows for up to 254 type codes.

 Length: This is a single byte that contains the number of bytes in the value field. Valid values of

this field range from 0 to 255. A length of zero means that there is no value field associated with

this type code. In that case, the byte following the length field is the first byte of the next TLV, its

type code field.

 Value: This field contains the value for the specified type code. It may range in size from 0 to

255 bytes. The format of this field is defined, below, for each of the individual type codes.

Because each TLV contains a length field, ASCII strings are not NULL-terminated, unless

otherwise specified as described below.

Only the CRC-32 TLV is required to be present by this specification, but some systems may not initialize

properly without the presence of other fields. The CRC-32 TLV must occur last. This field can be quickly

found at the following offset in the EEPROM by adding 11 (the length of the fixed header information) +

the value of the total length field - 6 (the length of the CRC-32 TLV field).

The total length of the TlvInfo EEPROM data, from the first byte of the identification string to the last

byte of the CRC TLV, must be less than or equal to 2048 bytes.

The layout of the entire EEPROM block looks like:

Field Name Size in Bytes Value

ID String 8 “TlvInfo”

Header Version 1 0x01

Total Length 2 Total number of bytes that follow

TLV 1 Varies The data for TLV 1

TLV 2 Varies The data for TLV 2

.....

TLV N Varies The data for TLV N

CRC-32 TLV 6 Type = 0xFE, Length = 4, Value = 4 byte CRC-32

Table 1- Layout of entire EEPROM block

Type Code Values

The following type codes are defined.

Type

Code

Length Description Format

0x00 None Reserved This type code is illegal and will never be used, so that it will be easy

to detect if a portion of the EEPROM is erased.

0x21 Variable Product Name An ASCII string containing the product name.

0x22 Variable Part Number An ASCII string containing the vendor’s part number for the device.

0x23 Variable Serial Number An ASCII string containing the serial number of the device.

0x24 6 bytes MAC #1 Base Six bytes containing the base MAC address for this device. The first

three bytes contain the OUI of the assigning authority.

0x25 19

bytes

Manufacture

Date

An ASCII string that specifies when the device was manufactured.

The format of this string is: MM/DD/YYYY HH:NN:SS where MM is

the month (01-12), DD is the day of the month (01-31), YYYY is the

year, HH is the hour (00-23), NN is the minute (00-59), and SS is the

second (00-59).

0x26 1 byte Device

Version

A single byte indicating the version, or revision, of the device.

0x27 Variable Label Revision An ASCII string containing the label revision.

0x28 Variable Platform

Name

An ASCII string which identifies a CPU subsystem (CPU, architecture,

DRAM, NOR flash). Very useful when the CPU resides on a daughter

card. Typically this includes <arch>-<machine>-<machine_revision>.

0x29 Variable ONIE Version An ASCII string containing the version of the ONIE software installed

by the manufacturer.

0x2A 2 bytes Num MACs A two-byte big-endian unsigned integer describing the number of

sequential MAC addresses allocated to this device, starting with the

value specified in the MAC #1 Base TLV (code 0x2A). Valid values for

this field range from 1 to 65535.

0x2B Variable Manufacturer An ASCII string containing the name of the entity that manufactured

the device.

0x2C 2 bytes Country Code A two-byte ASCII string containing the ISO 3166-1 alpha-2 code of

the country where the device was manufactured.

0x2D Variable Vendor The name of the vendor who contracted with the manufacturer for

the production of this device. This is typically the company name on

the outside of the device.

0x2E Variable Diag Version An ASCII string containing the version of the diagnostic software.

http://www.iso.org/iso/country_codes/iso_3166_code_lists/country_names_and_code_elements.htm

0x2F Variable Service Tag An ASCII string containing a vendor defined service tag.

0xFD Variable Vendor

Extension

This type code allows vendors to include extra information that is

specific to the vendor and cannot be specified using the other type

codes. The format of this value field is a four byte IANA enterprise

number, followed by a vendor defined string of bytes. The format of

the string of bytes is entirely up to the vendor, except that it can be,

at most, 255 bytes long, including the IANA enterprise number. If

more space is needed, then multiple TLVs with this type code can be

used.

0xFE 4 bytes CRC-32 A four-byte CRC which covers the EEPROM contents from the first

byte of the EEPROM (the “T” in the “TlvInfo” identification string) to

the length field of this TLV, inclusive. This CRC uses the crc32

algorithm (see Python’s binascii.crc32() function).

0xFF None Reserved This type code is illegal and will never be used, so that it will be easy

to detect if a portion of the EEPROM is erased.

Table 2 - Type Code Value Definitions

Note about MAC Addresses

A very critical characteristic of a switching platform EEPROM is the number of MAC addresses allocated

to the machine. The firmware requires allocating 1 MAC address for every serdes on the box.

For example, consider a machine that has one Ethernet management port and a switching ASIC with

48x10G ports plus 6x40G ports. Each 40G port could be broken out into 4x10G ports. Therefore, the

total number of MAC addresses this machines requires is:

1 -- Ethernet management port

48 -- 1 for each 48x10G port

24 -- 4 for each 6x40G port

73 Total MACs

To encode that in the EEPROM, set TLV code 0x2A (Num MACs) to 73.

Hardware Face Plate and FRU Numbering
The following conventions for face plate and FRU numbering shall be used on the sheet metal silkscreen

for the switch:

1. All enumerations start at 1, not 0. This is due to the historical nature of ONIE, where the first

supported platforms where ODM based networking hardware, which chose this scheme.

2. Switch ports are labeled starting with the number “1”. This scheme assumes facing at the front

of the switch, or whichever side has the most predominate number of ports.

3. Switch ports are labeled top to bottom, left to right. For example, consider a 48 port switch

with two rows of switch ports (two rows of 24 ports). The ports along the top row are labeled

http://www.iana.org/assignments/enterprise-numbers/enterprise-numbers

“1, 3, 5…47” and the bottom row is labeled “2, 4, 8..48”. Port should be labeled only with a

number designation, no “eth#” or “swp#” pre or appended name – as each operating system my

name this differently.

4. Field Replaceable Units (FRUs) are labeled starting with the number “1”. This typically applies to

field pluggable power supplies, fan modules, or other expansion slots. For example, a system

with 2 PSUs and 3 fan modules would label the PSUs “1, 2” and the fans “1, 2, 3”.

Hardware Documentation
As ONIE becomes ubiquitous in switching hardware, the hardware vendor shall include a one page (two

sides printed) Quick Start Guide flyer.

This flyer MUST include at least the following:

 Installed ONIE version number and certification number/date

 Stencil of front and rear switch view that calls out or arrows for the follow locations:

o First usable management Ethernet port

o Out of band serial or console port

o FRU’s (such as fans and power supplies, enumerated as specified above)

 If the baud rate or settings information is changed from the default (115200 baud, 8/n/1 – no

flow control), this data should be noted.

 Console port pin out or wiring scheme to a standard DB9 cable.

 Generic ONIE installation instructions (visual of network waterfall, file name discovery) –

pointers to the ONIE website or similar tiny URL with more verbose instructions. A template of

this graphical element will be available in a future specification standard.

 Generic ONIE debugging (ssh/telnet access, syslog) – pointers to ONIE website.

Access to ONIE images
Over the course of the lifetime of a given switch product, new features may be released in upstream

ONIE that a vendor may want to make available to all of their relevant products.

 All ONIE released and upgrade images much be made available from a public accessible HTTP

and/or FTP server. Such access MUST be freely accessible without any credentials or special

login information.

 All shipping, archival, and upgrades versions SHOULD be available to download.

 Such files should be offered in a directory tree starting with the SKU name, followed by ONIE

version number.

Asset Tracking and Labeling
Asset tracking is a vital part of an operator’s work flow and as such, the following asset tracking labels

are required:

 Human and machine readable barcodes that represent the first usable Ethernet management

port (usually eth0) MAC address, system serial number, product family or SKU identification and

CPU ID. Acceptable barcode encoding MUST be: Code 38, Code 128, or QR Code as ASCII text.

Such encoding between human and machine-readable should be consistent (for example, a

serial number printed as ASCII but encoded as HEX is not acceptable).

 For products that will be offered in a 2 or 4 post rack environment, these labels SHOULD be

available on the sides of the switches, not on the top or bottom of the switch – as to make them

readable once racked. A perfect example would be the “luggage tag” that many server vendors

currently use.

 Wherever the asset locators are placed on the device there needs to be enough space for an

end user to place their own asset locators. An ideal area is a “luggage tag” with enough space

for an end user’s asset locator.

 On platforms that support the SMBIOS/DMI standard, the serial number and product family /

SKU identifier information must be encoded to match human-readable labels. For example, the

encoding of the serial number (SMBIOS type 1, offset 07h) field MUST NOT be null or fake

(123456789).

NOS image discovery and Installation
The firmware is required to discover a NOS image through the following methods (in order):

1. Statically configured (passed from boot loader)
2. Local file systems (USB for example)
3. Exact URLs from DHCPv4
4. Inexact URLs based on DHCP responses
5. IPv6 neighbors
6. TFTP waterfall

Once the image has been downloaded, the firmware is required to perform the installation of the NOS.

At the end of installation, the firmware shall not attempt to auto discover another image, unless

instructed to by the NOS or user but rather should boot the NOS installed.

In the event of an installation failure, the firmware shall repeat the NOS image discovery and installation

process.

Default File Name Search Order
In a number of the following methods, ONIE searches for default file names in a specific order. All the

methods use the same default file names and search order, which are described in this section.

The default installer file names are searched for in the following order:

1. onie-installer-<arch>-<vendor>_<machine>-r<machine_revision>

2. onie-installer-<arch>-<vendor>_<machine>

3. onie-installer-<vendor>_<machine>

4. onie-installer-<arch>

5. onie-installer

Statically configured (passed from boot loader)
The firmware shall provide this static method as an engineering function to be used during the porting

of ONIE to a new platform. To use this method, a statically configured installer URL (install_url)

shall be set by the user on the kernel command line argument prior to booting ONIE. Additional kernel

command line arguments can be added by setting the onie_debugargs environment variable.

Local file systems (USB for example)
The firmware shall provide a method to identify a locally attached storage device to obtain a NOS

installer. This method is intended for the case where the NOS installer is available on a USB memory

stick (if supported by the device) plugged into the front panel. The supported file systems the firmware

will support shall be vfat (common on commercially available USB sticks) and ext2.

The general algorithm for locating the installer on local storage proceeds as follows:

foreach $partition in /proc/partitions {

 if able to mount $partition then {

 if default file name exists {

 Add partition to found_list

 }

 }

}

foreach $partition in found_list {

 Run installer from $partition

}

Exact URLs from DHCPv4
The DHCP options discussed below, provide a number of ways to express the exact URL of the NOS

installer. When interpreting URLs, the firmware accepts the following URI schemes:

 http://server/path/...

 https://server/path/...

 ftp://server/path/...

 tftp://server/path/…

The following options can be used to form the exact URL.

Option Name Comments

125 VIVSO The installer URL option (code = 1). Options yields
an exact URL.

114 Default URL Intended for HTTP, but other URLs are accepted.

150 + 67 TFTP server IP and TFTP bootfile Both options are required for an exact URL.

66 + 67 TFTP server name and TFTP bootfile Both options are required for an exact URL.
Requires DNS.

Table 3 - DHCP Options for Exact URL

Inexact URLs based on DHCP responses
The firmware can find an installer using partial DHCP information by using a default sequence of URL

paths and default file names in conjunction with partial DHCP information available to find an installer.

The following DHCP option responses are used to locate an installer in conjunction with the default file

names:

DHCP Options Name URL

67 TFTP Bootfile Contents of bootfile

72 HTTP Server IP http://$http_server_ip/${onie_default_installer_names}

66 TFTP Server IP http://$tftp_server_ip/${onie_default_installer_names}

54 DHCP Server IP http://$dhcp_server_ip/${onie_default_installer_names}
Table 4 - DHCP Options used for Inexact URLs

DHCP Reference Information
DHCP provides a powerful and flexible mechanism for specifying the installer URL. During the DHCP

request, the firmware sets a number of options to help the DHCP server determine an appropriate

response. The following table illustrates what options are set during the request phase.

Option Name ISC option-name RFC

60 Vendor Class Identifier vendor-class-identifier RFC 2132

77 User Class user-class RFC 2132

125 Vendor-Identifying Vendor-Specific Information vivso RFC 3925

55 Parameter Request List dhcp-parameter-request-list RFC 2132
Table 5 - DHCP Request Options

Vendor Class Identifier – Option 60

The vendor class identifier option is the concatenation of two strings, separated by the colon ‘:’

character.

1. The static string onie_vendor

2. <arch>-<vendor>_<machine>-r<machine_revision>

For example, using the example PowerPC machine, the string would be:

onie_vendor:powerpc-VENDOR_MACHINE-r0

At this time, the only valid values for CPU architecture are:

 powerpc

 x86_64

User Class – Option 77

The user class option is set to the static string

onie_dhpc_user_class

Vendor-Identifying Vendor-Specific Information – Option 125

The VIVSO option allows for custom namespaces, where the namespace is identified by the 32-bit IANA

Private Enterprise Number. The firmware currently uses the enterprise number 42623 to identify its

custom namespace.

The option codes within the firmware namespace have a size of 1 byte. The option payload length is

also 1 byte.

http://tools.ietf.org/html/rfc2132
http://tools.ietf.org/html/rfc2132
http://tools.ietf.org/html/rfc3925
http://tools.ietf.org/html/rfc2132

Within this namespace, the following option codes are defined:

Option Code Name Type Example

1 Installer URL string http://10.0.0.1/nos_installer.bin

2 Updater URL string http://10.0.0.1/onie_update.bin

3 Platform Name string VENDOR_MACHINE

4 CPU Architecture string powerpc

5 Machine Revision string 0
Table 6 - VIVSO Namespace Option Codes

Parameter Request List – Option 55

The parameter request list option encodes a list of requested options. The firmware requests the

following options:

Option Name ISC option-name Option Type RFC Example

1 Subnet Mask subnet-mask dotted quad 2132 255.255.255.0

3 Default Gateway routers dotted quad 2132 10.0.0.1

6 Domain Server Domain-name-servers dotted quad 2132 10.0.0.1

7 Log Server log-servers dotted quad 2132 10.0.0.1

12 Hostname host-name string 2132 switch-01

15 Domain Name domain-name string 2132 example.com

42 NTP Servers ntp-servers dotted quad 2132 10.0.0.1

54 DHCP Server
Identifier

dhcp-server-identifier dotted quad 2132 10.0.0.1

66 TFTP Server Name tftp-server-name string 2132 bootserver

67 TFTP Bootfile Name bootfile-name or
filename

string 2132 tftp/installer.sh

72 HTTP Server IP www-server dotted quad 2132 10.0.0.1

114 Default URL default-url string http://server/install

150 TFTP Server IP
Address

next-server dotted quad 10.0.0.2

Table 7 - DHCP Parameter Request List Options

HTTP Requests and Headers
All HTTP requests made by the firmware include a set of standard HTTP headers, which an HTTP

automation system could utilize. The headers sent on each HTTP request are:

Header Value Example

ONIE-SERIAL-NUMBER Serial number XYZ123004

ONIE-ETH-ADDR Management MAC address 08:9e:01:62:d1:93

ONIE-VENDOR-ID 32-bit IANA Private Enterprise
Number

12345

ONIE-MACHINE <vendor>_<machine> VENDOR_MACHINE

ONIE-MACHINE-REV <machine_revision> 0

ONIE-ARCH CPU architecture powerpc

ONIE-OPERATION ONIE mode of operation os-install or onie-update

http://tools.ietf.org/html/rfc2132
http://tools.ietf.org/html/rfc2132
http://tools.ietf.org/html/rfc2132
http://tools.ietf.org/html/rfc2132
http://tools.ietf.org/html/rfc2132
http://tools.ietf.org/html/rfc2132
http://tools.ietf.org/html/rfc2132
http://tools.ietf.org/html/rfc2132
http://tools.ietf.org/html/rfc2132
http://tools.ietf.org/html/rfc2132
http://tools.ietf.org/html/rfc2132

ONIE-VERSION Version of ONIE onie/1.0 (2.6.13)

Table 8 - HTTP Headers

IPv6 neighbors
The firmware shall also query its IPv6 link-local neighbors via HTTP for an installer. The general

algorithm follows:

Ping6 the “all nodes” link local IPv6 multicast address, ff02::1

For each responding neighbor, try to download the default file names from the root of the web server

The following is an example of URLs used by this method:

http://fe80::4638:39ff:fe00:139e%eth0/onie-installer-powerpc-VENDOR_MACHINE-

r0

http://fe80::4638:39ff:fe00:139e%eth0/onie-installer-powerpc-VENDOR_MACHINE

http://fe80::4638:39ff:fe00:139e%eth0/onie-installer-VENDOR_MACHINE

http://fe80::4638:39ff:fe00:139e%eth0/onie-installer-powerpc

http://fe80::4638:39ff:fe00:139e%eth0/onie-installer

http://fe80::4638:39ff:fe00:2659%eth0/onie-installer-powerpc-VENDOR_MACHINE-

r0

http://fe80::4638:39ff:fe00:2659%eth0/onie-installer-powerpc-VENDOR_MACHINE

http://fe80::4638:39ff:fe00:2659%eth0/onie-installer-VENDOR_MACHINE

http://fe80::4638:39ff:fe00:2659%eth0/onie-installer-powerpc

http://fe80::4638:39ff:fe00:2659%eth0/onie-installer

http://fe80::230:48ff:fe9f:1547%eth0/onie-installer-powerpc-VENDOR_MACHINE-r0

http://fe80::230:48ff:fe9f:1547%eth0/onie-installer-powerpc-VENDOR_MACHINE

http://fe80::230:48ff:fe9f:1547%eth0/onie-installer-VENDOR_MACHINE

http://fe80::230:48ff:fe9f:1547%eth0/onie-installer-powerpc

http://fe80::230:48ff:fe9f:1547%eth0/onie-installer

TFTP waterfall
The firmware shall include a classic PXE-like TFTP waterfall method for locating a NOS installer image.

Given a TFTP server address, the firmware will attempt to download the installer using a sequence of

TFTP paths with decreasing levels of specificity.

An example of this method is as follows:

55-66-aa-bb-cc-dd/onie-installer-<arch>-<vendor>_<machine>

C0A801B2/onie-installer-<arch>-<vendor>_<machine>

C0A801B/onie-installer-<arch>-<vendor>_<machine>

C0A801/onie-installer-<arch>-<vendor>_<machine>

C0A80/onie-installer-<arch>-<vendor>_<machine>

C0A8/onie-installer-<arch>-<vendor>_<machine>

C0A/onie-installer-<arch>-<vendor>_<machine>

C0/onie-installer-<arch>-<vendor>_<machine>

C/onie-installer-<arch>-<vendor>_<machine>

onie-installer-<arch>-<vendor>_<machine>-<machine_revision>

onie-installer-<arch>-<vendor>_<machine>

onie-installer-<vendor>_<machine>

onie-installer-<arch>

onie-installer

NOS Uninstallation
The firmware is required to allow a user to completely remove the current NOS installed leaving only the

firmware intact. The firmware will wipe out all unused portions of NOR flash and the attached mass

storage device (like an SD card or USB NAND flash). The only thing untouched is the firmware itself.

This is akin to ‘reset to factory defaults’.

Update ONIE
The firmware is required to provide a facility to self-update via the same method used in NOS image

discovery and installation except for a firmware image rather than a NOS image.

The firmware is required to discover an ONIE image through the following methods (in order):

1. Statically configured (passed from boot loader)
2. Local file systems (USB for example)
3. Exact URLs from DHCPv4
4. Inexact URLs based on DHCP responses
5. IPv6 neighbors
6. TFTP waterfall

Default File Name Search Order
ONIE searches for default file name for the updated image in a specific order. All update methods use

the same default file names and search order, which are described in this section.

The default ONIE image file names are searched for in the following order:

1. onie-updater-<arch>-<vendor>_<machine>-r<machine_revision>

2. onie-updater-<arch>-<vendor>_<machine>

3. onie-updater-<vendor>_<machine>

4. onie-updater-<arch>

5. onie-updater

Statically configured (passed from boot loader)
The firmware shall provide this static method as an engineering function to be used during the porting

of ONIE to a new platform. To use this method, a statically configured updater URL (install_url)

shall be set by the user on the kernel command line argument prior to booting ONIE. Additional kernel

command line arguments can be added by setting the onie_debugargs environment variable.

Local file systems (USB for example)
The firmware shall provide a method to identify a locally attached storage device to obtain a firmware

updater. This method is intended for the case where the new firmware image is available on a USB

memory stick (if supported by the device) plugged into the front panel. The supported file systems the

firmware will support shall be vfat (common on commercially available USB sticks) and ext2.

The general algorithm for locating the installer on local storage proceeds as follows:

foreach $partition in /proc/partitions {

 if able to mount $partition then {

 if default file name exists {

 Add partition to found_list

 }

 }

}

foreach $partition in found_list {

 Run updater from $partition

}

Exact URLs from DHCPv4
The firmware shall provide a method to use a URL from a DHCPv4 response. Please refer to the section

above for details.

Inexact URLs based on DHCP responses
The firmware can find an updater using partial DHCP information by using a default sequence of URL

paths and default file names in conjunction with partial DHCP information available to find an updater

image. Please refer to the section above for details.

IPv6 neighbors
The firmware shall also query its IPv6 link-local neighbors via HTTP for an updater image. Please refer to

the section above for details.

TFTP waterfall
The firmware shall include a classic PXE-like TFTP waterfall method for locating an updated firmware

image. Given a TFTP server address, the firmware will attempt to download the updater using a

sequence of TFTP paths with decreasing levels of specificity.

An example of this method is as follows:

55-66-aa-bb-cc-dd/onie-updater-<arch>-<vendor>_<machine>

C0A801B2/onie-updater-<arch>-<vendor>_<machine>

C0A801B/onie-updater-<arch>-<vendor>_<machine>

C0A801/onie-updater-<arch>-<vendor>_<machine>

C0A80/onie-updater-<arch>-<vendor>_<machine>

C0A8/onie-updater-<arch>-<vendor>_<machine>

C0A/onie-updater-<arch>-<vendor>_<machine>

C0/onie-updater-<arch>-<vendor>_<machine>

C/onie-updater-<arch>-<vendor>_<machine>

onie-updater-<arch>-<vendor>_<machine>-<machine_revision>

onie-updater-<arch>-<vendor>_<machine>

onie-updater-<vendor>_<machine>

onie-updater-<arch>

onie-updater

Rescue Mode
The firmware is required to provide a rescue mode as a failsafe, to perform diagnostics and to reload a

new NOS. The rescue mode is the same as the discovery and installation phase, but the discovery

mechanism is disabled. The firmware shall not try to locate and install a NOS image, but rather allow

troubleshooting of the current system.

In this mode of operation, the firmware is accessible via the serial console or via telnet. A user can use

the available BusyBox toolset to attempt to fix the problem or use wget to retrieve additional resources.

Execution Environment
After the firmware locates and downloads an installer, the next step is to execute the installer.

Prior to execution, the firmware prepares an execution environment:

1. chmod +x on the downloaded installer

2. Export a number of environment variables (defined below) which are usable by the installer

3. Executes the installer

Variable Name Meaning

onie_exec_url Currently executing URL

onie_platform CPU architecture, vendor and machine name

onie_vendor_id 32-bit IANA Private Enterprise Number

onie_serial_num Device serial number

onie_eth_addr MAC address for Ethernet management port

onie_version ONIE build version number
Table 9 - Installer Core Environment Variables

In addition to the environment variables, any and all DHCP response options are exported, in the style of

BusyBox’s udhcpc. Those variables are as follows:

Variable Name Meaning

onie_disco_dns DNS Server

onie_disco_domain Domain name from DNS

onie_disco_hostname Switch hostname

onie_disco_interface Ethernet management interface (i.e. eth0)

onie_disco_ip Ethernet management IP address

onie_disco_router Gateway

onie_disco_serverid DHCP server IP

onie_disco_siaddr TFTP server IP

onie_disco_subnet IP netmask

onie_disco_vivso VIVSO option data
Table 10 - Installer DHCP Environment Variables

ONIE Testing

Test Environment
In order to test an ONIE device, the following is required:

 ONIE device

 Vendor provided serial console cable (for device interaction and recording of session)

 CAT5/CAT6 RJ45 cable (for image discovery and delivery)

 PC with serial terminal and RJ45 NIC

Recommended environment - Linux

 Latest Linux distribution (e.g. Debian) with IPv6 enabled

 screen(1) or minicom(1)

o 115200 baud 8N1, no flow control

o Logging enabled

 ISC DHCP Server

o See Appendix A – dhcpd.conf example file or

https://github.com/onie/onie/blob/master/contrib/isc-dhcpd/dhcpd.conf

 Web Server

o Apache httpd

o nginx

o lighttpd

 TFTP server

o atftpd

 USB memory stick (if supported by the device)

o 2GB is sufficient

Recommended environment - Windows

 Windows 8.1 Update

 PuTTY or Tera Term

https://github.com/onie/onie/blob/master/contrib/isc-dhcpd/dhcpd.conf

o 115200 baud 8N1, no flow control

o Logging enabled

 dhcpsrv (http://www.dhcpserver.de/dhcpsrv.htm)

o Also includes web server and tftp server

 Web Server

o IIS

o Apache httpd

 TFTP server

o WinAgents TFTP server

 USB memory stick (if supported by the device)

o 2GB is sufficient

Dead on Arrival Testing
Prior to the start of the testing the ONIE device, the ONIE Certification lab will be performing the

following functionality testing

1. Power on the switch, perform any vendor diagnostic test, if applicable.

2. Verify the hardware configuration such as CPU, memory, flash storage, USB, Network ports,

labeling and asset tracking

3. Perform warm reboot 20 x AC power cycles

4. Perform cold boot 20 x AC power cycles

PASS Criteria: Switch boots from warm and cold boot. Tests 0 and 1.

Manual Testing

Preliminary
Before putting a device under test, it is best to know the available environment variables and options as

they will be used in a variety of ways (naming schemes for install and update images, host options,

etc…). Below is a print out of using the printenv command from UBoot.

LOADER=> printenv

autoload=no

baudrate=115200

bootargs=root=/dev/ram rw console=ttyS0,115200 quiet

bootcmd=run check_boot_reason; run nos_bootcmd; run onie_bootcmd

bootdelay=10

check_boot_reason=if test -n $onie_boot_reason; then setenv onie_bootargs

boot_reason=$onie_boot_reason; run onie_bootcmd; fi;

consoledev=ttyS0

dhcp_user-class=powerpc-as4600_54t_uboot

dhcp_vendor-class-identifier=powerpc-as4600_54t

http://www.dhcpserver.de/dhcpsrv.htm

ethact=eth0

ethaddr=70:72:CF:AA:34:FA

ethprime=eth0

gatewayip=192.168.1.10

hostname=es4654bf_zz-unknown

ipaddr=192.168.1.10

loadaddr=0x2000000

loads_echo=1

netmask=255.255.255.0

nos_bootcmd=echo

onie_args=run onie_initargs onie_platformargs

onie_bootcmd=echo Loading Open Network Install Environment ...; echo

Platform: $onie_platform ; echo Version : $onie_version ; cp.b $onie_start

$loadaddr ${onie_sz.b} && run onie_args && bootm ${loadaddr}#$platform

onie_initargs=setenv bootargs quiet console=$consoledev,$baudrate

onie_machine=as4600_54t

onie_machine_rev=0

onie_platform=powerpc-as4600_54t

onie_platformargs=setenv bootargs $bootargs serial_num=${serial#}

eth_addr=$ethaddr $onie_bootargs $onie_debugargs

onie_rescue=setenv onie_boot_reason rescue && boot

onie_start=0xefB60000

onie_sz.b=0x00400000

onie_uninstall=setenv onie_boot_reason uninstall && boot

onie_update=setenv onie_boot_reason update && boot

onie_vendor_id=259

platform=as4600_54t

serial#=460054T1406013

serverip=192.168.1.99

stderr=serial

stdin=serial

stdout=serial

ver=U-Boot 2013.01.01-g73423af-dirty (Jan 10 2014 - 21:00:23) - 3.0.1.6

Environment size: 1584/65532 bytes

LOADER=>

Of interest for testing,

Variable Value

MAC Address 70:72:CF:AA:34:FA

arch powerpc

vendor 259

machine as4600_54t

machine_revision 0
Table 11- ONIE Variables from Device

NOS image discovery and Installation

Statically configured (passed from boot loader)

Prior to booting into ONIE, the environment variable install_url needs to be set. To ensure ONIE

will perform the installation regardless if there is a NOS installed, the variable onie_boot_reason

needs to be set to install .

LOADER=> setenv onie_boot_reason install

LOADER=> setenv onie_debugargs install_url=<URL>

LOADER=> boot

PASS Criteria: ONIE installs the specified image. Test 2.

Local file systems (USB for example)

Prior to booting ONIE, a USB memory stick with an ONIE image conforming to the naming scheme

above. Boot device. This test is only valid for those devices that contain a USB port.

PASS Criteria: ONIE installs image from USB device using all options of the naming scheme. Tests 3 – 7.

Exact URLs from DHCPv4

Prior to booting ONIE, ensure the ONIE image server has the DHCP server configured to parse out VIVSO

(defined above) and other DHCP options. When using default-url, please ensure the appropriate

service (ftp, http, or tftp) is enabled.

PASS Criteria: ONIE installs image using Exact URLs from DHCPv4 (all 4 targets). Tests 8 – 11.

Inexact URLs based on DHCP responses

Prior to booting ONIE, ensure the ONIE image server has the DHCP server configured with four options

(configured one at a time). Please refer to Inexact URLs based on DHCP responses for the four options.

All options except for the TFTP bootfile, will locate the image by conforming to the naming scheme

defined above.

PASS Criteria: ONIE installs image using Inexact URLs from 4 DHCPv4 options (all 16 tests). Tests 12 –

27.

IPv6 neighbors

Prior to booting ONIE, ensure the ONIE image server has IPv6 configured and running a web server with

the ONIE images conforming to the naming scheme above.

PASS Criteria: ONIE installs image from IPv6 neighbor device using all options of the naming scheme.

Tests 28 – 32.

TFTP waterfall

Prior to booting ONIE, ensure the ONIE image server has the TFTP service enabled and configured.

PASS Criteria: ONIE installs image from TFTP waterfall using all options of the naming scheme. Tests

33 – 37.

NOS Uninstallation
To perform the NOS uninstallation will depend on where in the boot process the device is in.

If the device is powered off:

 Boot device

 Break out to UBoot prompt

LOADER=> run onie_uninstall

Otherwise

fw_setenv onie_boot_reason uninstall

reboot

PASS Criteria: ONIE boots up and performs the uninstallation phase erasing all blocks of the previous

image. Tests 74 – 76.

Update ONIE

Statically configured (passed from boot loader)

Prior to booting into ONIE, the environment variable install_url needs to be set. To ensure ONIE

will perform the upgrade regardless if there is a NOS installed, the variable onie_boot_reason needs

to be set to update .

LOADER=> setenv onie_boot_reason update

LOADER=> setenv onie_debugargs install_url=<URL>

LOADER=> boot

PASS Criteria: ONIE installs the specified image. Test 38.

Local file systems (USB for example)

Prior to booting ONIE, a USB memory stick with an ONIE image conforming to the naming scheme

above. Boot device. This test is only valid for those devices that contain a USB port.

PASS Criteria: ONIE updates image from USB device using all options of the naming scheme. Tests 39 –

43.

Exact URLs from DHCPv4

Prior to booting ONIE, ensure the ONIE image server has the DHCP server configured to parse out VIVSO

(defined above) and other DHCP options. When using default-url, please ensure the appropriate

service (ftp, http, or tftp) is enabled.

PASS Criteria: ONIE updates image using Exact URLs from DHCPv4 (all 4 targets). Tests 44 – 47.

Inexact URLs based on DHCP responses

Prior to booting ONIE, ensure the ONIE image server has the DHCP server configured with four options

(configured one at a time). Please refer to Inexact URLs based on DHCP responses for the four options.

All options except for the TFTP bootfile, will locate the image by conforming to the naming scheme

defined above.

PASS Criteria: ONIE updates image using Inexact URLs from 4 DHCPv4 options (all 16 tests). Tests 48 –

63.

IPv6 neighbors

Prior to booting ONIE, ensure the ONIE image server has IPv6 configured and running a web server with

the ONIE images conforming to the naming scheme above.

PASS Criteria: ONIE updates image from IPv6 neighbor device using all options of the naming scheme.

Tests 64 – 68.

TFTP waterfall

Prior to booting ONIE, ensure the ONIE image server has the TFTP service enabled and configured.

PASS Criteria: ONIE updates image from TFTP waterfall using all options of the naming scheme. Tests

69 – 73.

Rescue Mode
To enter rescue mode will depend on where in the boot process the device is in.

If the device is powered off:

 Boot device

 Break out to UBoot prompt

LOADER=> run onie_rescue

Otherwise:

fw_setenv onie_boot_reason rescue

reboot

PASS Criteria: ONIE boots up without the discover mechanism running. Tests 77 – 79. Verify with boot

screen saying:

discover: Rescue mode detected. Installer disabled.

Or via ps w.

Appendix A – dhcpd.conf example file
Sample configuration demonstrating many ONIE install options

ddns-update-style none;

option domain-name "ocp-labs.local";

option domain-name-servers 192.168.1.1;

default-lease-time 600;

max-lease-time 7200;

Create an option namespace called ONIE for VIVSO (option 125)

option space onie code width 1 length width 1;

Define the code names and data types within the ONIE namespace

option onie.installer_url code 1 = text;

option onie.updater_url code 2 = text;

option onie.machine code 3 = text;

option onie.arch code 4 = text;

option onie.machine_rev code 5 = text;

Package the ONIE namespace into option 125

option space vivso code width 4 length width 1;

option vivso.onie code 42623 = encapsulate onie;

option vivso.iana code 0 = string;

option op125 code 125 = encapsulate vivso;

Optionally add syslog server for logging

option log-servers 192.168.1.3;

log-facility local7;

Logging constructs to assist with debugging

log(error, concat("vendor-class: ", substring(option vendor-class-identifier,

0, 11)));

log(error, concat("platform : ", substring(option vendor-class-identifier,

12, 999)));

Parses vendor-class-identifier and adjusts the default-url

class "onie-vendor-X-class" {

 match if substring(option vendor-class-identifier, 0, 27) =

"onie_vendor:powerpc-VendorX";

 option default-url = "http://onie-server/VendorX-onie-installer";

}

VIVSO example

class "onie-vendor-classes" {

 # Limit the matching to a request we know originated from ONIE

 match if substring(option vendor-class-identifier, 0, 11) = "onie_vendor";

 # Required to use VIVSO

 option vivso.iana 01:01:01;

 # generic CPU architecture matching

 if option onie.arch = "powerpc" {

 option onie.installer_url = "http://onie-server/generic-powerpc-onie-

installer";

 }

 # matching on CPU architecture and machine type

 if option onie.arch = "powerpc" and option onie.machine = "XYZ1234" {

 option onie.installer_url = "http://onie-server/powerpc-xyz1234-onie-

installer";

 }

 # The contents of an option can also be used to create the response text

 if exists onie.arch and exists onie.machine and exists onie.machine_rev {

 option onie.installer_url = concat("http://onie-server/image-installer-",

 option onie.arch, "-", option

onie.machine,

 "-r", option onie.machine_rev);

 }

 # When operating in ONIE 'update' mode ONIE will check the

 # onie.updater_url response option

 if option onie.arch = "powerpc" and option onie.machine = "XYZ1234" {

 option onie.updater_url = "http://onie-server/onie-updater-

VENDOR_XYZ1234-powerpc.bin";

 }

}

Uses the default-url option for ONIE

subnet 192.168.1.0 netmask 255.255.255.0 {

 range 192.168.1.150 192.168.1.240;

 authoritative;

 option routers 192.168.1.1;

 option broadcast-address 192.168.1.255;

 option default-url = "http://192.168.1.2/custom-onie-installer";

 # Below is the same but uses DNS resolution

 # option default-url = "http://onie-server/custom-onie-installer";

}

Typical tftp waterfall example

ONIE will also try to use HTTP on the next-server and dhcpd server

subnet 192.168.1.0 netmask 255.255.255.0 {

 range 192.168.1.150 192.168.1.240;

 authoritative;

 option routers 192.168.1.1;

 option broadcast-address 192.168.1.255;

 next-server 192.168.1.1;

}

