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UCLA CHIPS 
A UCLA Led partnership to develop Applications, Enablement and Core 
technologies and the eco-system required for continuing Moore’s Law at 
the Package and System Integration levels and develop our students & 
scholars to lead this effort
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Simplify hardware development through novel architectures, 
integration methods,  technologies, and devices.
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What we do @UCLA CHIPS
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Large Scale Energy Efficient 
Systems

Medical Engineering 
applications

Advanced Packaging Technologies Novel Compute architectures

Silicon as a 
heterogeneous fine pitch 
packaging Platform,  Si IF

FlexTrate as a flexible 
Biocompatible Heterogeneous 

Integration Platform

The CTT as an in-
memory compute 

device
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Silicon and Package scaling 

Since 2015, Packaging has taken off !
Why ?
Advanced packaging borrowed 
immensely from Silicon technology

Adapted from: S.S. Iyer, MRS bulletin (2015)
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Why is heterogeneity assuming sudden importance ?
• Packaging has always been about assembling heterogeneous 

dies/chips onto a Printed Circuit Board 

• The problem with PCBs has to do with Latency and Bandwidth between 
the chips  as well as energy per bit transferred
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Packaging and AI - A one-page illustrative primer

Neural networks are central to AI
Accuracy requires these networks 
to be extremely deep (many hidden layers)
Eg. Residual Net (ResNet) has ~1000+ layers
Also the width of these hidden layers can 
also be quite large

Vector multiplications are a key operation in neural networks
And the vector  multiply and accumulate (MAC) function is central
The bit precision of the inputs, weights and outputs can exceed 16 bit,
leading to unprecedented computational complexity .

Even with today’s very powerful processors, processors need
to time multiplex, constantly moving inputs, weights and
outputs of each layer between the processor and memories
So the memory bottleneck is quite severe. 
This is where packaging comes in ! - BW, energy-per-bit Xferred  
(and latency) define system performance (and processer speed)
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Some observations

• If Moore’s law has enabled 
miniaturization, why have chips gotten 
larger ?
– More complex problems
– More cores @ higher clock speeds
– More cache memory 

• Main memory capacity and access 
limits performance

• Power density challenges - more 
”dark” silicon

• I/Os take up more space and power as 
system size increases >30% Intel Pentium cpu ~300mm2 

-3.1 Million Xtors (1993) 
0.8 µm technology

NVidia A100: 54 Billlion Xtors - 826 mm2 (2020)
In TSMC 7 node

17,000 more 
transistors
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Don
e

Can this be Done practically ? 

Some more observations:
• Interposers are getting bigger
• 3D stacks are getting taller

• Interposers are an additional 
level in the packaging hierarchy

Going to a silicon-like board 
With fine pitch interconnect and 
short die to die spacings will 
allow us to build massive systems

But many issues need to be 
addressed
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Silicon

The “Right” Rigid Interconnect Fabric
Requirements:

• Mechanically robust (flat, stiff, 
tough…) 

• Processability: fine pitch wiring, 
& interconnects

• Thermally conductive

• Can have passive (and active) 
built-in components

• Economical

Organic (e.g. FR-4)

Hybrid approaches(EMIB by Intel
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Going to a silicon wafer scale is not new - there is a 
new “twist”

Cerebras (2019) - wafer scale AI processor
Homogeneous

UCLA CHIPS 2019
Wafer scale Heterogeneous assembly

Bumped  100 mm wafer (Ca 1982)
Trilogy Systems 

Homogeneous Te
chnology  

(Bipolar E
CL)

Homogeneous Te
chnology  

(CMOS) Heterogenous Te
chnology 

Our approach:
Integrate lots of dielets on a silicon 
substrate at fine pitches

* Wafer-Scale Integration
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Important Questions
• What is the optimal pitch at which dies should be interconnected ?

• What is the optimal dielet size

• How close should we assemble dies

• What level of heterogeneity should we aim for

Hint: how do we make a SOW look like an ginonormous SOC
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The CHIPLET Golden Regime
Mechanical
constraints

Electrical/logical 
constraints

Die handling 
constraint

Die yielding 
constraint

SerDes-like

CMOS 
wire-like

Packaging-likeSoC-like

Optimal pitch
2 to 10 µm

Optimal dielet 
size

1 to 100 mm2

500 µm
BGA/LGA

50 nm
Gate pitch Interconnect pitch

IP reuse
I/O complexity/powerDielet/chiplet size (# of circuits)
Testing complexity
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What is the optimal I/O pitch ?

Chip Area 
(mm2)

Transistor 
count 
(x109)

Technology 
node (nm)

IBM POWER9 [26] 695 8
14

AMD Zen [27] 44 1.4
IBM POWER8 [28] 649 4.2

22
Intel Xeon Haswell E5 [29] 663 5.56
IBM POWER7 + 80 MB [30] 567 2.1

32
Intel Itanium Poulson [31] 544 3.1
IBM POWER7 + 32 MB [32] 567 1.9

45
Intel Xeon 7400 [33] 503 1.9

Actual pitches ~100s of µm

Iyer, Jangam & Vaisband, IBM J R&D 2019
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Practical limits in heterogeneous integration
• Fine pitch ?

– like ”fat wires” on a Silicon wafer - 2-10 µm - this is the bump pitch (BGA pitch is >500µm)
– Trace pitch  < 1 µm (compared to ~30 µm on PCB)

• Precision alignment  ? 
– similar to fat wire alignment <0.2 µm (bumps alignment accuracy is several µm)

• Close Spacing
– As close as possible <20 µm (dies on a PCB are spaced at least a few 10’s of mm away)

• Typical block sizes on an SoC are typically a few ~100 µm on a side
– So dielets should be small (1 to 100 mm2 in area) 

• Heterogeneity: 
– multiple nodes - use the node that is optimal from a performance, area and cost perspective
– multiple technologies - logic, DRAM, sensors etc.
– multiple materials Si , III-Vs………

14
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A versatile Fine pitch  wafer-scale assembly (Si IF)
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2x2 array of TSMC 16FF 
dies on the Si-IF.  

Die 2 Die 3

Si-IF

Die 1 Die 4

8 mm

55 µm 55 µm

Die 2 Die 3

Die 1 Die 4

Legacy dies & passives on Si-IF

Wafer scale assembly at fine pitch
Both Si and III-Vs

55 µm inter-die spacing

Cu 
pads

Developed termination protocols 
with most major foundries Cu for Si, Au for III-Vs

Direct Cu-Cu Thermal Compression Bonding using formic acid vapor

Process parameters
Pressure
Temperature
Surface prep

X-Ray Tomograph of 
10µm Cu-Cu pitch die to 
wafer connects 
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• Continuity check
• Latency characterization

–Reference & Si-IF ring oscillator: 3-4 GHz
–On-chip frequency divider (212) & cycle counter

• High-speed data transfer & Bit error rate (BER)
–Programmable ring oscillator clock: 0.5-3 GHz
–Pseudo Random Number Generator (PRNG)

–On-chip comparator and error counter

Si-IF Pad

Active 
Chain

Passive 
Chain

Inverting Delay

Buffer Delay

Inverting Delay

Buffer Delay

Si
-I

F

Established CHIPS metrics using SuperCHIPS macros
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•Successfully passed continuity tests of both passive 
and active daisy chains

•Measured latency verified with on-chip counter 
–Latency comparable to on-chip buffer delays
–Overall latency is <30 ps

•Demonstrated data transfer up to 3 Gbps
–Bandwidth: 1200 Gbps/mm for 2-layer Si-IF

–No errors were observed even after 43 hrs
–BER: <10-14 with 99% confidence (Estimate: <10-25)

•Measured energy/bit: 0.028 pJ/b
•No electrostatic discharge protection (ESD) used

–For ESD protection of 50 fF : Latency & Energy increase by 
2X

Oscillator
Measured 
frequency 

[kHz]

Actual 
frequency 

[GHz]

Latency 
of Si-IF 

links [ps]
TSMC 16FF Die

On-chip reference 921.1 3.77 NA
200 μm Si-IF links 836.8 3.43 6.67
500 μm Si-IF links 762.3 3.12 13.80

GF 22FDX Die
On-chip reference 1033.9 4.23 NA
200 μm Si-IF links 877.6 3.59 10.51
500 μm Si-IF links 760.3 3.11 21.26

Measured 
waveforms for 
TSMC 16FF die 
assembly

Results: SuperCHIPS macros (GF 22FDX, TSMC 16FF)
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SuperChips - a versatile communication protocol

SuperCHIPS macros
Width: 1.5μm
Pitch: 4.9μm

Cu pillars 
(Ø= 4 μm)

9.8 µm
350 µm

Micrograph of the fabricated SuperCHIPS interface
8111 I/O interdie Connections
22291 power Connections

D Q

Q̅ 
D Q

Q̅ 

Async_Sel

Data_in

Clock_in
Data_outSi-IF link

Schematic of the SuperCHIPS I/O

Longer Range connections can be done daisy 
chaining through Intervening dies using porosity rules 
and multiple buffer stages - for a few die over
or 
using pico-SerDes for longer (~ cms) lengths.

Using “utility dies” which may also provide 
redundant routing options to manage assembly defects
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[1] AIB interface [2] HBM JEDEC Standard JESD235C, 2020. [3] M. O'Connor et al, MICRO, 2017. [4] M. Lin, JSSC, 2020. [5] M. Lin, et al, HCS, 2016. [6] J. W. Poulton, et al, JSSC, 2013. [7] J. W. Poulton et 
al., JSSC, 2019. [8] A. Shokrollahi, ISSCC, 2016. [9] A. Tajalli, et al, JSSC, 2020. [10] Y. Krupnik et al, JSSC, 2020. [11] J. Kim et al, JSSC 2019. [13] M. LaCroix et al, ISSC 2019. [14] E. Depaoli, JSSC, 2019.

Tech/ 
Interface 
protocol

Si-IF/
SuperCHIPS Interpose

r/ AIB PCB/ SerDes Improv
ementAsync Sync

Reach Neighbor Neighbor Neighbor Long 
Reach

Overall 
Latency (ps) 30 500 1500[1] ~2000 ~6000 3-65X

Energy/bit 
(pJ/b) <0.03 <0.15 0.8-

0.85[3,4] 1.17[7] 6.9[13] 5-40X

Bandwidth/
mm 

(Gbps/mm)
8000a 2560a,b 707.7b 354 149-298c 4-23X

a 4 wiring levels, b Assuming 20% overhead, c Estimated from data in  [10-13]

Technology Comparison using s-FOMk

Jangam & Iyer T-CPMT (2020)
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Interposer BoardChip-like Package/ 
Near-chip 
on board

100-10,000X

Technology Comparison s-FoMucla - shows the benefit of technology

• Does not account for area used by I/Os
• SerDes occupy significant chip area
• Especially when we have deep I/Os that go several layers in
• This can be >30% of die area !  
• Note: this is influenced by Technology node

• Does not account for latency 
• ToF is not always the main contributor
• Serialization, Deserialization, equalization, clock recovery etc. are the 

major contributors
• Note: this is influenced by Circuit design

• No credit for load that is driven
• This is influenced by Packaging Technology

Surrogate	
for	Load	

BW/mm

>ℎ-! -! .ℎ3 +-3 )43) “,)!.3+”
76 :;! )*+ <)*. 73 T!3+ U$4
<$0VT.3

Overhead	time	to	
serialize/deserialize	
data,	ECC,	+	ToF
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CHIPS Project Goals and Milestones
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So What are the issues ?
• Developing the assembly technology: fine pitch, close spacing 

tight alignment etc…
• Establishing a communication protocol for both near and far 

dielets
• Communicating with the outside world
• Delivering power - huge amounts of power ! 
• Extracting heat - huge amounts of heat !
• Making such system reliable 
• Ensuring the costs are economical

22
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Communicating with the outside world
• Flexible high speed wired 

connectors  (FlexTratetm)

• RF links using embedded 
fused quartz or PDMS 
and III-V drivers

• Photonic Interconnects

Antenna on  
Fused Silica 
substrate

Antenna on  
PDMS
substrate

Simulated radiation pattern (20GHz) 

23
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Summary
• Packaging has scaled significantly in the last few years
– Driven by need, more investment, More silicon-like processing
– Silicon as a base packaging material has significant potential

• The challenges are
– Assembly - especially at high throughput
– Connections to the outside world
– Power delivery and heat extraction
– Reliability and yield
– Supply chain for bare dies

• We can extend this concept to flexible hybrid electronics (did not 
talk about it much today) 
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UCLA CHIPS  Thanks you for your Support !
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Our 
Students

In a 
recent 
zoom
Group 
meeting


