

BoW: Basic, Fast, Turbo Die-to-Die Open Interface Solutions

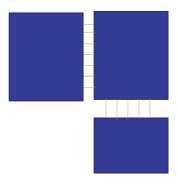
ODSA Project Workshop

March 28, 2019

Mark Kuemerle Ramin Farjad

Interface standardization

- Chiplet based systems will likely have a variety of different interfaces moving forward
 - Fast Serial interfaces with some compatibility to existing standards (eg 112GXSR)
 - Novel USR interfaces driven by an ecosystem (eg. Kandou/Marvell)
 - Simple interfaces for moving reasonable bandwidth between die from less cutting edge nodes


Does it make sense?

- Does it make sense to have another parallel standard?
 - AIB is a good starting point, currently has datarate and footprint definitions that limit use on a laminate
 - Making the spec as open as possible can hopefully speed up useability
- How do we decide if this effort is providing a value to the community?
 - Inertia from participants, adoption in products
 - Standardization coalesces
 - Adoption in custom/'contained' interfaces
 - Moving to interoperable interfaces between various die

OPEN Compute Project

The basic idea

- Blast from the past use simple CMOS IO to communicate
- We stopped using these when SERDES simplified board routing (less traces=less \$\$)
- Keeping everything on a laminate keeps things simple
 - More routing traces than a board
 - Less ESD requirements
- Make an interface that works on a cheap laminate or a fancy silicon based interconnect
 - Enable compatibility where we can

BoW Intro:

- High level proposed solution:
 - Simple source synchronous DDR interface
 - Clock adjust needed for DDR
 - Non Terminated (Termination may be ok, just adds power at lower rates)
 - 1-4 Gbps (or more?)
 - Low overhead IO cell (limited ESD)

BoW Extensions:

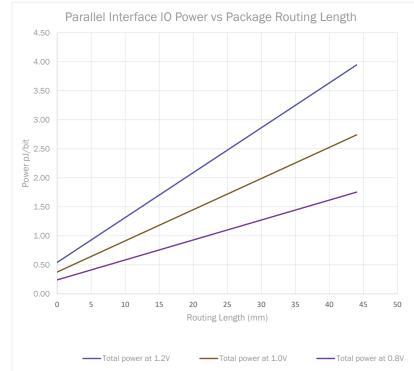
- Data Integrity / Power functions need to discuss
 - ECC How critical is BER? How much does interface spend vs.
 - DBI is power worth the pins?
- Extension Mode 2: Bow-Fast
 - Higher speed uses optional termination (~2-3x rate), minor impact on power
- Extension Mode 3: Bow-Turbo
 - Add potential bidirectional feature implemented in the IO cell
 - Hybrid circuit can be implemented in multiple ways (examples from BaseT)

Proposal for dart throwing

Function	Pins	Notes		Function	Pins	Notes	
RX Data	32			TX Data	32		
Data Clock	Clock 2			Data Clock	2	Differential	
Parity	1		Minimum streaming IF	Parity	1		
Other Function		Notes		Other Function	n	Notes	
Data Bus Inversion	n ~19% p	ower savings		Data Bus Invers	ion ~19	9% power savings	
Parity	Parity Not nee			Parity	No	Not needed if ECC	
FIFO Reset Helpful f		or control/init		FIFO Reset	Help	Helpful for control/init	
ECC	Error de	etect/correct		ECC	Err	or detect/correct	
Sideband Various calibration/etc			Sideband	Vario	ous calibration/etc		

Datarate discussion

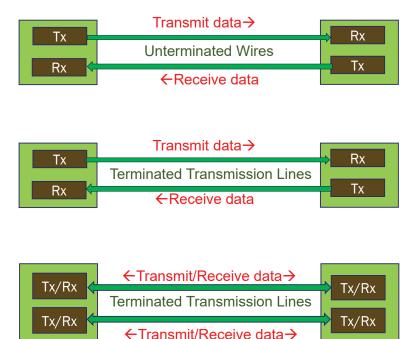
- Current proposal: Per databit wire configurable from 1-4Gbps
- What datarates make the most sense for the standard?
 - 1-2Gbps (AHB) limits usefulness on laminate (too many wires to move reasonable bandwidth
 - Configurable datarate including 1-2 Gbps could enable AHB compatibility
 - ->5Gbps may require termination
- Having a settable datarate with simple divides maximizes compatibility
 For 4, 2, 1 Gbps -> simple dividers

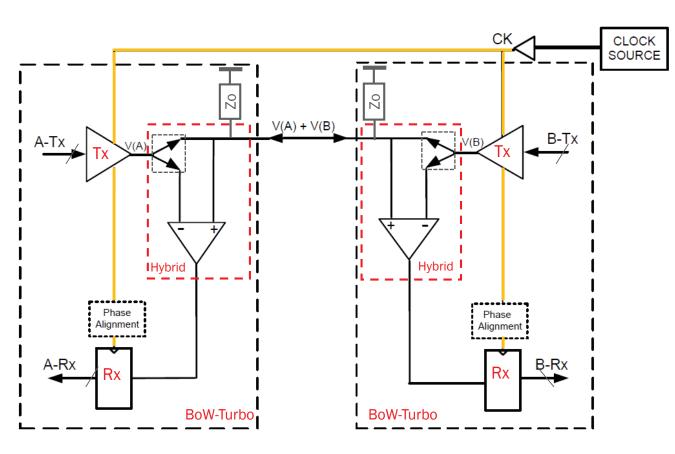

Voltage discussion

- Simple, single voltage based approach challenge is what voltage to choose?
- 1.2 is HBM legacy, costs power
- 0.9V is often available, decent power, interoperable with AIB*
- 0.75 / 0.8 often available as well, popular chiplevel VDD values
- Lower voltages will have lower power, too low will be a challenge for IO design

Power (energy)

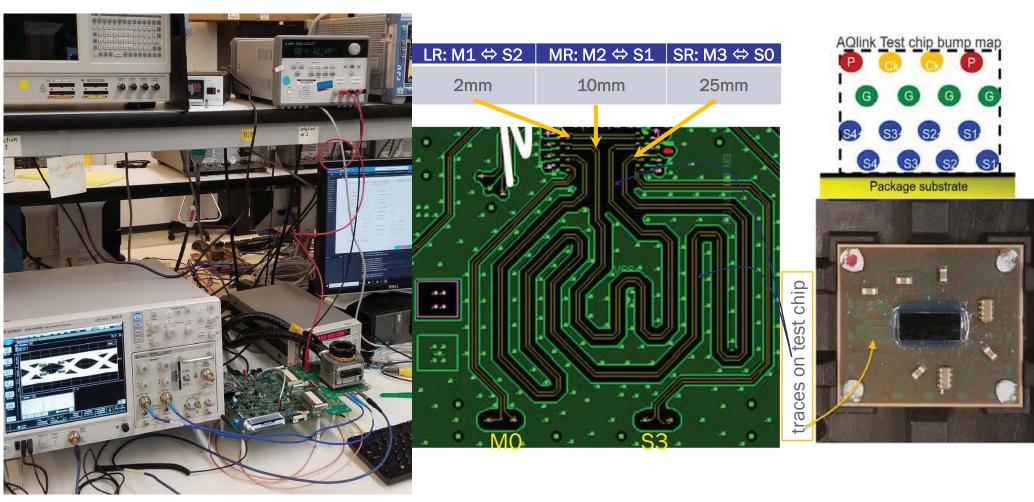
- Simple energy calculation
 - Pathological worst case w/DBI
 - 0.4
 - No on chip routing from IO to bump assumed
 - Add 0.1 0.25 pJ depending on length
 - Termination +~0.2 pJ low speed, less at high speed




Operation Modes BoW on Organic Package Substrate

- BOW Basic
 - Unterminated lanes \rightarrow up to 5 Gbps/wire
 - Source Synchronous with clock alignment
- BOW Fast
 - − Terminated lanes \rightarrow up to 12Gbps/wire
 - Source Synchronous with clock alignment
- BOW Turbo
 - Simultaneous Bidirectional ightarrow both directions
 - Terminated lanes \rightarrow up to 2x12Gbps/wire
 - Source Synchronous with clock alignment

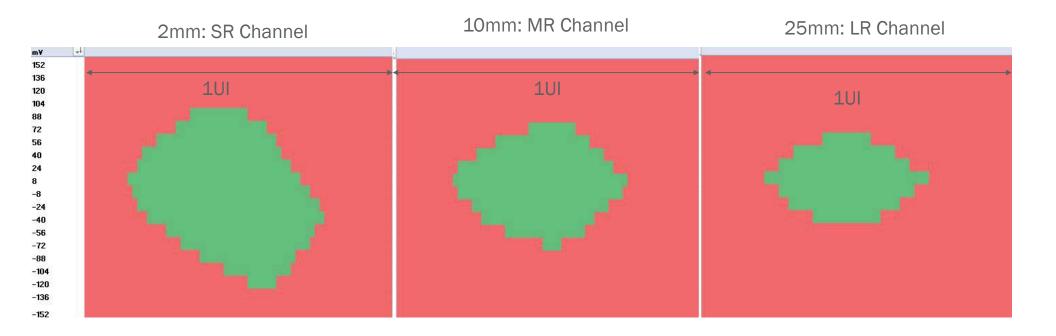
Note: Bidirectional signaling been around for decades, in all phone lines, and at multi-Gig in BASE-T PHYs since late 1990s. The cancellation requirement for a link with small loss is fairly relaxed


BoW-Turbo IO Block Diagram

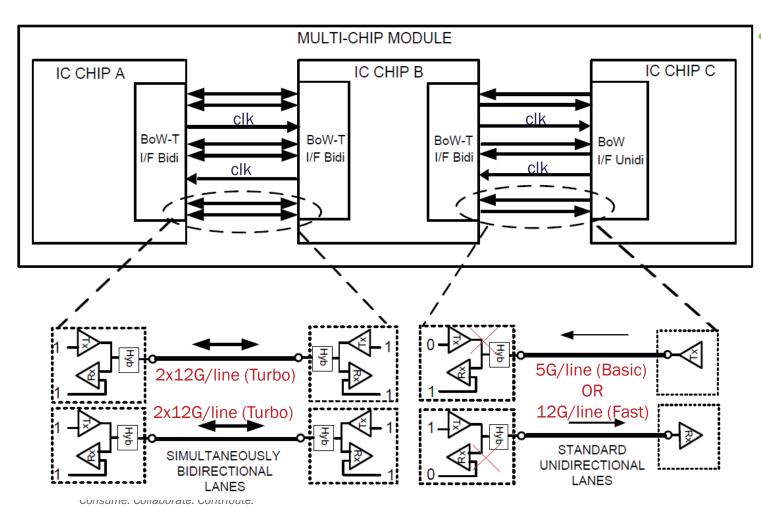
 A Hybrid block, placed between the pad and basic BoW Tx/Rx ports, creates a Bow Turbo port

- Passes local Tx output signal to the IO pad
- Subtracts local Tx output signal from the combined signal on IO pas and passes the resulting signal to Rx input
- Once implemented, Easy to port
- BoW-Turbo is backward compatible with Bow-Basic & BoW-Fast
 - Interface can easily be programed to act as a transmit only or receive only port
- Total area for BoW-Turbo transceiver is <0.018mm².
 - Can be integrated under single pad area (pad pitch=130um)
- Bow-Turbo concept proven in Silicon
 - AQlink SerDes in GF 14nm operated in Singleended mode

AQlink Demo Silicon in GF 14nm

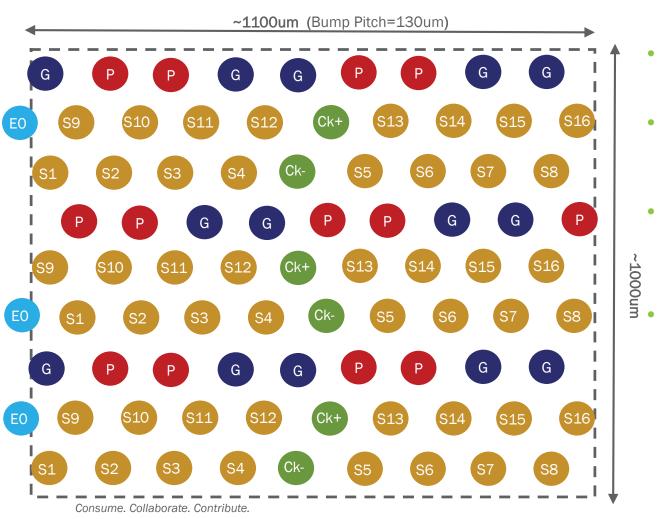


AQlink External Ports

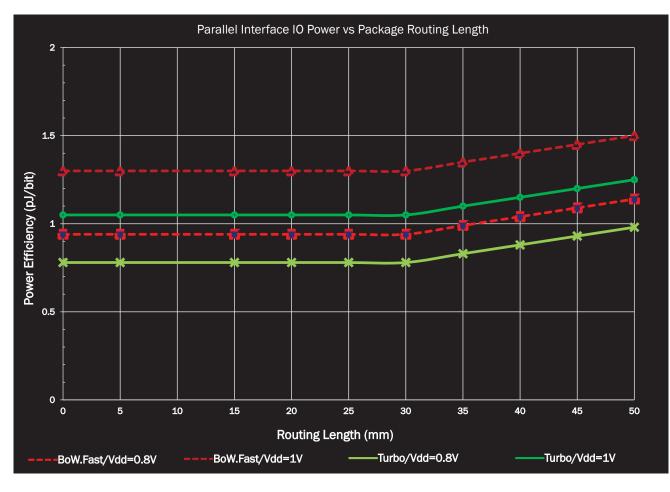

Eye/Mask		KEYSIGHT File		Measure	Tools A	Apps Help	0	Auto		top Clear		x
	7=	Waveform	<u>)%) JTLFL</u> [nuunuu		<u>Hafafata</u>					And and a state of the state of	IA
¥	Eye Meas										÷ 1	24
Rise Time	_	24,02312 ns				++			6	Signals		
X	Mask Test									Differential 1A		2
Fall Time	Fest											
XT1	SC			-								
One Level	JSA/CRE		ms en l	R rms					245			14
-	$\overline{\mathbb{R}}$	-				ł	-		-			
Zero Level	\square											
	PAM											
XIX												
Eye Height		Results 🕑				. (>) 🖡					
XIX		Measurement Eye Height[Ampl	1 01A	Currer		ount 85		- xte	rnal	Fve		
Eye Width		Eye Width[Time]		24.02 pt	in the second	220						
		Jitter[rms]		1.920 p.		302		@2	8Gb	ps		
More (2/4)		Details L	imits Setu	p	🗹 Annotati	ions					۲	
		32 mV/ 2.25 mV	CDR 28.125000 GE LBW: 10.00 M	Tear and the	: teference	Time 5.93 Pos: 24.0	ps/ Fu	Acquisition Il Pattern: On 9212598 pts/bit	Frame Trigger Src: CDR (Slot 1) 28.125018 Gb/s 127 bits	Pattern Lock	tath Signals)

- One port per AQlink Quad core is an external port. Each external port trace:
 - 10mm package
 - 30mm board (1/2 package loss)
 - →Effective 10+15=~25mm package
 - →Loopback trace=2x25=50mm
- A differential external loop back operates error free up to ~25Gbps per direction (BER~1E-15)
- If loopback connected in single-ended fashion, the link operates error free up to ~15Gbps/direction (BER~1E-15)
- To provide further margin, simplify the phase alignment & duty cycle corrector, maximum Bow-Turbo speed limited to 12Gbps/direction

AQlink Internal Eye for Bidirectional 28Gbps (>1E¹¹ bits per point)



Top Level View: Bow-Turbo Backward Compatible to Fast/Basic


- A Bow-Turbo Core is configurable to be backward compatible to
 - BoW-Fast
 - by disabling Tx or Rx per lane
 - BoW-Basic
 - by disabling Tx or Rx per lane
 - disconnecting the line terminations

Sample BoW Staggered Bump Map – Terabit Core

- Terabit Module has 48 data pads:
 48x2x11.5Gbps/pad=1Tbps/mm
- A common bump map can be used for Basic/Fast/Turbo
 - Important for backward compatibility
- Two clock ports per 16 data ports
 - Configurable to be clock output or clock input pads when connected to non-Turbo interface (Tx or Rx only)
- Optional ECC
 - Option column to add one ECC bit per 16 data group at the edge of the Terabit Core bump map to provide error correction capability if BER<1E-20

Power Efficiency of BoW Fast/Turbo

[•] Data activity \rightarrow PRBS

- Power efficiency for data from the edge of the interface core on side to edge of interface core on the other side
- Based on 14nm 28Gbaud silicon measurement (AQlink), but more room for power reduction:
 - Port from 14nm to 7nm
 - Baud reduction from 28Gbuad to 12Gbuad means less circuitry

BoW-Turbo Interface Performance Specifications

Parameter	Parameter			
Single Supply Voltage	0.75V-1.2V (+/-5%)			
Throughput/Trace (Max)	24Gbps (2x12Gbps)			
Power Efficiency	0.74pJ/bit (0.8V/30mm/14nm)			
Package Trace length (Max)	50mm (Package Substrate: GZ41)			
Latency	<2ns			
Pad Pitch	130um			
Terabit IP Core Dimension	Chip Edge: 1100um. Height:1000um			
Power/Area for 1Tbps Throughput	740mW/1.1mm^2			
BER	<1E-15 (No ECC) / <1E-20 (with ECC)			
ESD / CDM protection	400V/100V			
Silicon Proven	GF 14nm			

BoW Turbo Spec Summary

- Over 1Tbps/mm chip edge over organic substrate & 130um pad pitch
 - Throughput per port of 2x10.5Gbps (up to: 2x12Gbps)
 - Small per port area of <0.018mm²
- Less than 1pJ/bit in 14nm at Vdd=0.8V and trace=50mm
- Single power supply that is compatible with synthesized logic core
- Concept proven in 14nm Silicon (Hybrid easy to port to other nodes)
- Easy and quick to port into other process nodes (Just a 10G USR)
- Backward compatible with BoW Basic/Fast die-die interfaces
 - Can use matching bump map as Bow Basic/Fast
 - A Chiplet with Bow Turbo interoperates with all Chiplets using other BoW interfaces

Test Options

- Need discussion to find suitable test solutions
 - Calibration?
 - 1149.1 legacy (JTAG scan)
 - IEEE 1500 (HBM type systems)
 - Could define at speed / functional interop test if needed

Call for Volunteers

- We need your help to define a generally useful and interoperable interface
- What do we need?
 - Good ideas on what applications the BoW makes sense for
 - SI/PI input for various options
 - Defining test for interface

Thank You

Compute Project

