Open. Together.

Consume. Collaborate. Contribute.

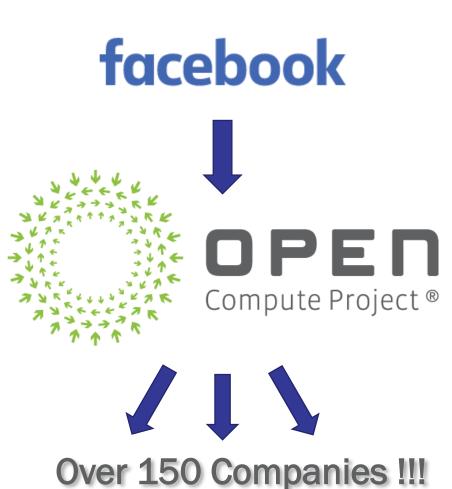
Open Domain Specific Architecture: The Impact of ODSA

By: Bapi Vinnakota – OCP ODSA Sub-Project Lead Kevin Drucker – Facebook ODSA Lead

Consume. Collaborate. Contribute.

The Impact of Open Domain Specific Architecture (ODSA) Agenda

- Background on the Open Compute Project
- Open Domain Specific Architecture (ODSA) Sub-Project
- Drivers for Domain Specific Architectures
- Evolution of the industry
- Chiplet and SIP use cases
- Market Opportunity
- ODSA Collaboration

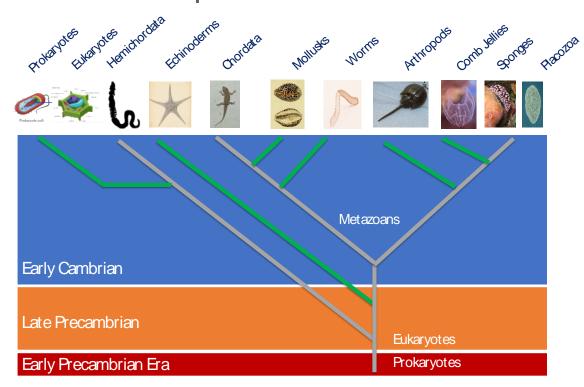

ODSA: Open Domain-Specific Architecture

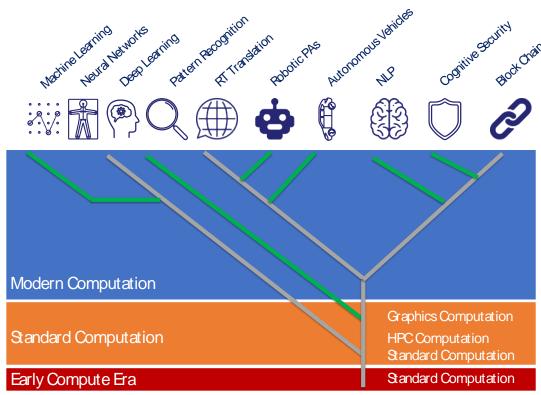
- Domain-specific architecture: Programmable devices optimized for specific applications or class of applications. Meet the demands of high-intensity workloads in the data center and at the edge – e.g. machine learning, video processing
- Chiplets: Implement an integrated product as a <u>collection</u> of die in a single package, instead of a single die. Each die is a chiplet. Can reduce development and manufacturing costs.

The Impact of Open Domain Specific Architecture (ODSA) History of Open Compute Project (OCP)

- In 2009 Facebook, confronting exponential growth, was forced to rethink infrastructure architecture
- Small team of engineers spent next two years reenvisioning and designing software, servers, racks, power supplies, cooling and data center design
- In 2011 Facebook shared it's designs and released them to the public
- Along with Intel, Rackspace, Goldman Sachs and Andy Becholtsheim, the Open Compute Project (OCP) was launched and the Open Compute Project Foundation created
- Today, OCP has grown into a massive global community with over 150 member companies

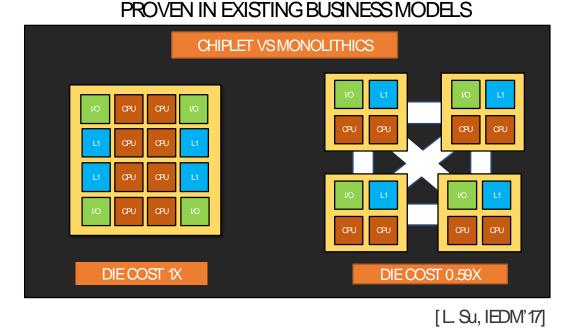
The Impact of Open Domain Specific Architecture (ODSA) ODSA within OCP: A new Server Sub-Project)


- ODSA organized within the Open Compute Project (OCP):
 - ODSA aligned as OCP Server sub-project
 - Initial concept brought to OCP by Netronome
 - First silicon focused effort within OCP
- Extending Moore's Law:
 - Domain-Specific Architectures: Typically programmable silicon products that accelerate high-intensity workloads (e.g. Tensorflow, Network Processor, Antminer...)
 - Chiplets / SIPs go beyond MCM → Build complex products from multiple die, instead of monolithic devices, to reduce TTM, R&D expense and manufacturing costs.
- Open Domain-Specific Architecture: An architecture for a domain-specific products
 - Today: All multi-chiplet products are based on proprietary interfaces
 - Tomorrow: Select best-of-breed chiplets from multiple vendors
 - Incubating a new group, to define a new open interface and standards to build a PoC



The Impact of Open Domain Specific Architecture (ODSA) Cambrian Explosion of Workloads

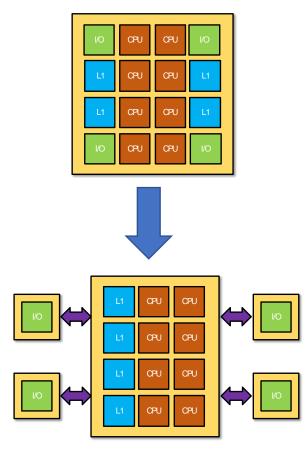
Bio-Diversity Exploded from single cells into multi-cell organisms during the Cambrian explosion; all major phylla were established in this transition


Al and Machine-learning and data-heavy workloads have exploded in past 5 years and will diversify as new applications are discovered constantly...

All images from Creative Commons

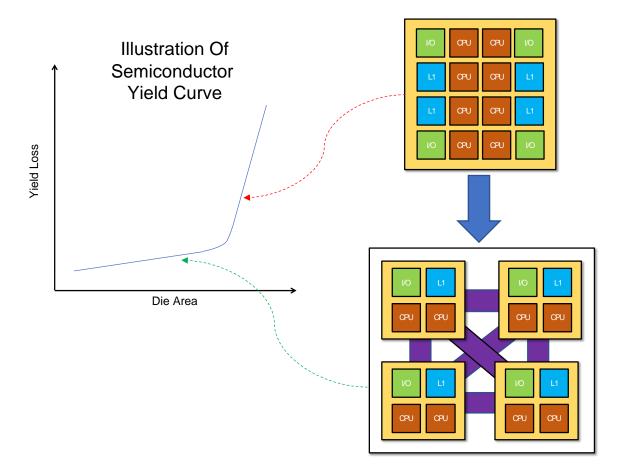
The Impact of Open Domain Specific Architecture (ODSA) Chiplet and SIP Technology Is Happening Today!

- Many major semiconductor companies have brought to market chiplet / SIP based products
- Developed using hybrid flows of internally developed tools and EDA industry available point solution
- ODSA seeks to enable internally developed and 3rd party chiplets to be readily integrated
- ODSA seeks to democratize this evolution of chiplet and SIP technology for the larger mass market through an open eco-system marketplace
- Focus on three (3) use cases:
 - IO Disaggregation, Core Disaggregation, System Integration



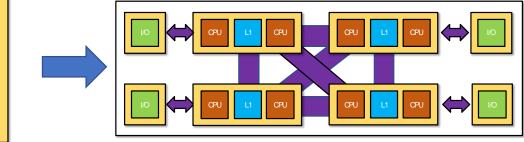
The Impact of Open Domain Specific Architecture (ODSA)

Major Chiplet / System in a Package (SIP) use cases: IO Disaggregation


- Use case: IO Disaggregation
- What:
 - Separating core and un-core
 - High speed IO Interfaces moved to chiplets
 - Ex: PCIe I/F, Memory I/F, Network I/F
- Why:
 - Focus resources on value added core functions
 - Reduce development and qual intervals \rightarrow shorter TTM
 - PPA: Target IP / Core to process nodes that yield highest Performance, Power, Area for a given function

The Impact of Open Domain Specific Architecture (ODSA) Major Chiplet / System in a Package (SIP) use cases: Logic Disaggregation

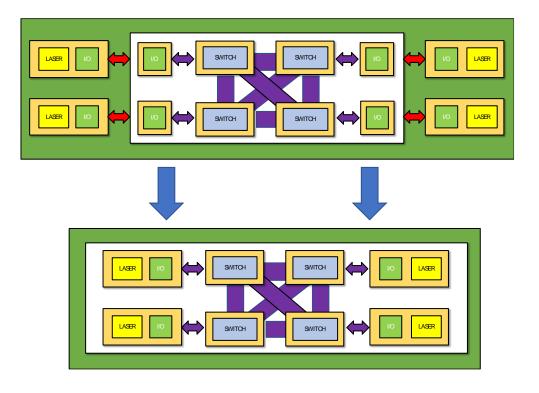
- Use case: Logic Disaggregation
- What:
 - Sub-divide large area of monolithic low yield device into multiple lower area / higher yielding devices
- Why:
 - Shift final product from costly, nonlinear portion of semiconductor yield curve to lower-cost, higher yielding linear portion



The Impact of Open Domain Specific Architecture (ODSA) Major Chiplet / System in a Package (SIP) use cases: Combined

- Optimize for process node vs. PPA →Select the best node for the given function

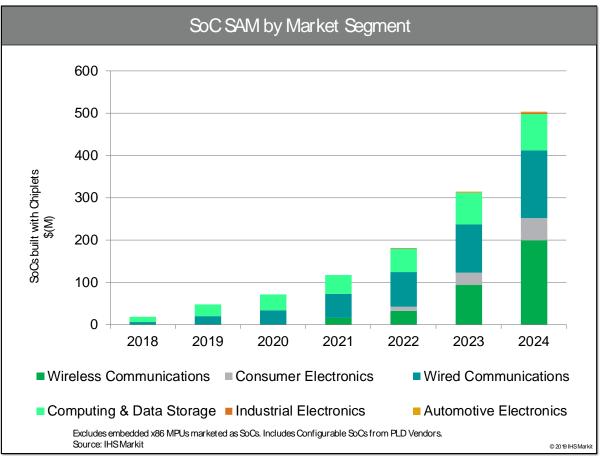
- Maximize yield curve for linear intercepts
- Amortize cost of development and qualification of the chiplets and reuse them for subsequent products
- Combine with known good die chiplets (KGD) from 3rd parties



The Impact of Open Domain Specific Architecture (ODSA)

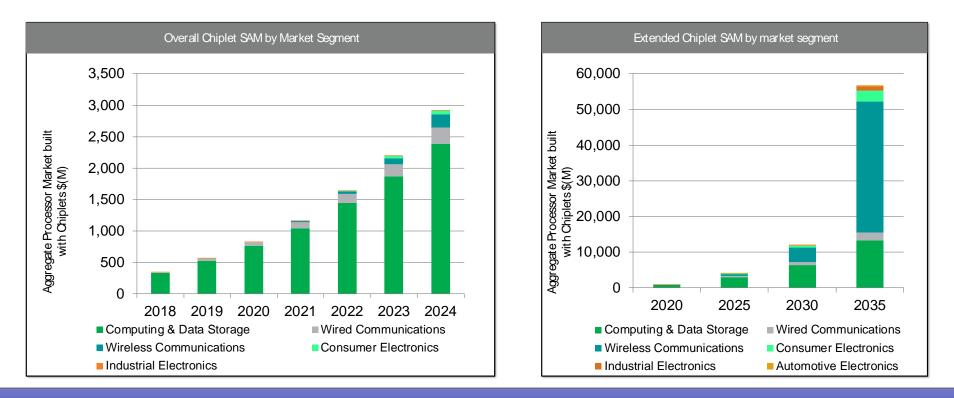
Major Chiplet / System in a Package (SIP) use cases: System Integration

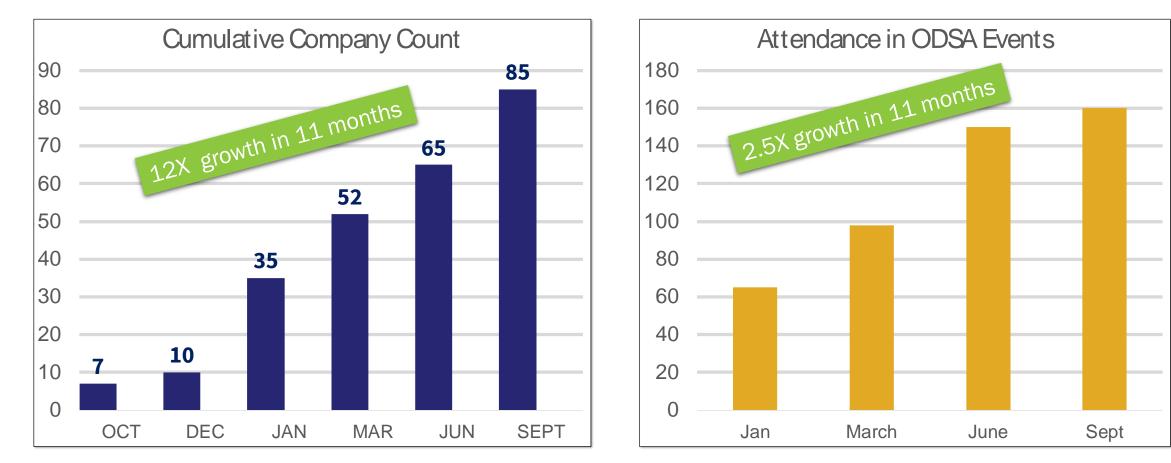
- Use case: System Integration
- What:
 - Integrate multiple SoCs and components into a single SIP package
 - Obtain KGD from multiple 3rd party suppliers
 - Ex: co-packaged optics and switch
- Why:
 - Significant system footprint reduction
 - IO power reduction: driving inches of PCB vs.
 mm of substrate → mJ → pJ
 - Huge win @ scale: even 5W ~ 10W savings power system adds up to MW savings


The Impact of Open Domain Specific Architecture (ODSA) Transformative Market Opportunity: The Tip of the Spear

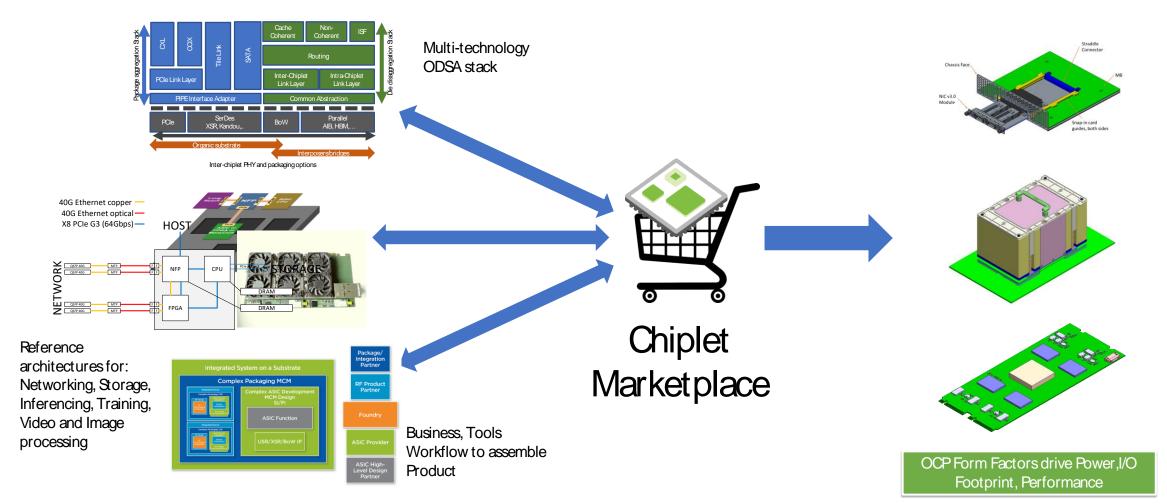
- Independent research from IHS Markit
- Four (4) segments for chiplets analyzed (SoCs, MPU, GPU, PLD (FPGA/CPLDs)
- Six Verticals (wireless, wireline, consumer, computing, industrial, automotive)

Subset of IHS Markit Data:System on a Chip (SoC) segment

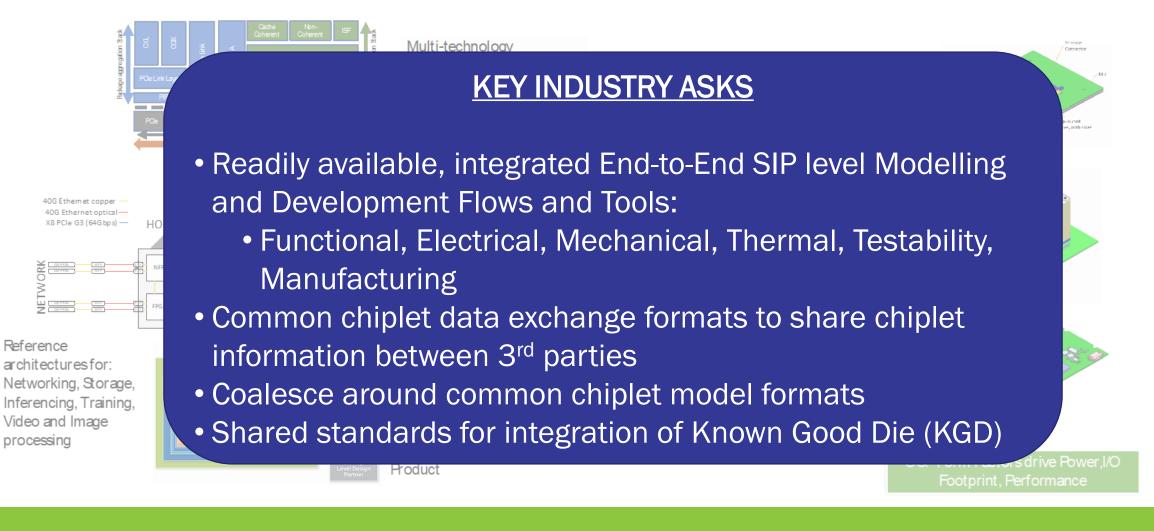

• **Conclusion**: Immediate opportunity for chiplets and an open interface


The Impact of Open Domain Specific Architecture (ODSA) Transformative Market Opportunity: The End Game

- Initially dominated by compute uses case, other market segments grow to dominate
- **Takeaway**: an open chiplet eco-system with open interface standards is a huge opportunity

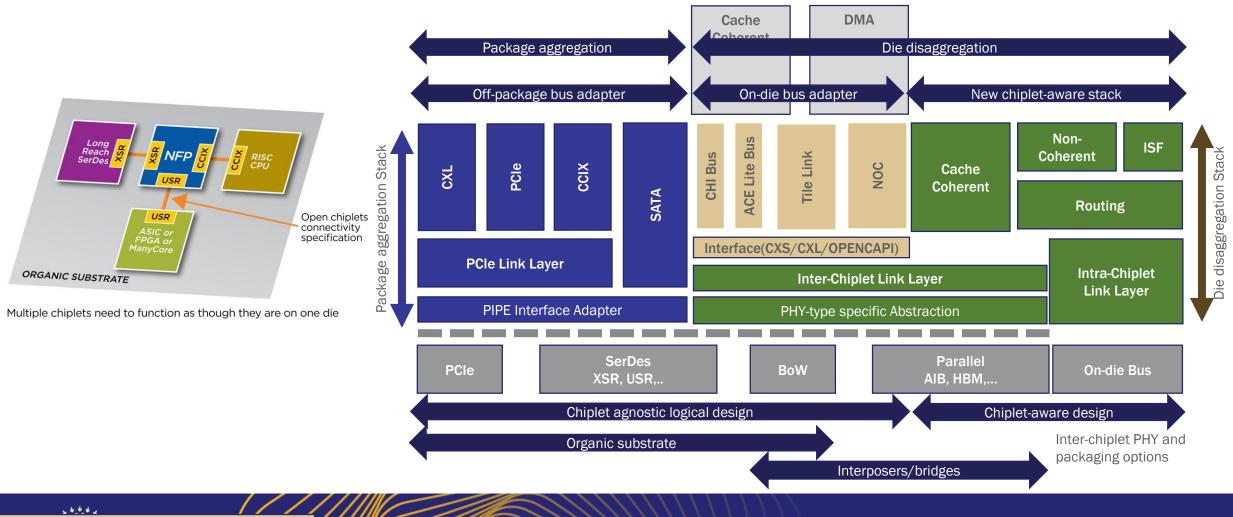

The Impact of Open Domain Specific Architecture (ODSA) Growth of ODSA since Inception

Source: OCPODSAS.rvey, Workshop Registration Data



The Impact of Open Domain Specific Architecture (ODSA) ODSA Vision of Chiplet Eco-System

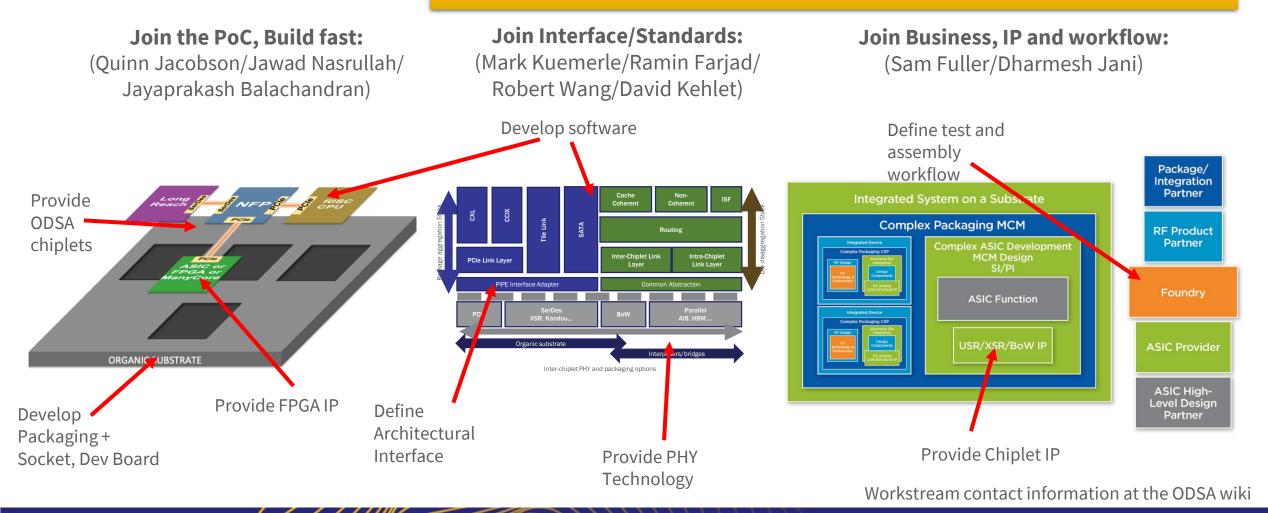
The Impact of Open Domain Specific Architecture (ODSA) ODSA Vision of Chiplet Eco-System



The Impact of Open Domain Specific Architecture (ODSA)

ODSA Stack: Current View

!! Coming Along Nicely !!



Open. Together.

On-die custom protocol (could be open e.g. AXI) → CONAL II / AND Off-package protocol (e.g. PCIe)

The Impact of Open Domain Specific Architecture (ODSA) **ODSA Workstreams**

DCP REGIONAL

The Impact of Open Domain Specific Architecture (ODSA) Active Projects

Project	Objective	Organizations Participating	Recent Results	Upcoming Milestones	Needs
PHY Analysis	PHY requirements PHY analysis Cross-PHY abstraction (PIPE)	Alphawave, AnalogX, Aquantia, Avera Semi, Facebook, Intel, Kandou, Netronome, zGlue,	PHY Analysis paper (published at Hot Interconnect)	PIPE abstraction	
BoW Interface	No technology license fee, easy to port inter-chiplet interface spec	Aquantia, Avera Semi, Netronome	BoW Interface proposal (published at Hot Interconnect)	BoW specification 0.7 End September, 2019	Test chips, Chiplet library supporting interface
Prototype	product that integrates existing die from multiple companies into one package	Achronix, Cisco, Netronome, NXP, Samtec, Sarcina, zGlue, Macom, Facebook	Decomposable design flow.	Committed schedule	End user End user participation ~30% funding is open
Chiplet design exchange	Open chiplet physical description format.	Ayar, Cadence, NXP, zGlue,	Draft spec	ZEF Exchange format draft specification	
Link and Network Layer	Interface and implementations – requirements and proposals	Achronix, Avera Semi, Intel, Netronome, NXP, Xilinx			
Multi-chiplet test	Test requirements for an open-chiplet interface	Engineers from: Achronix, AnalogX, ASE, Avera Semi, Ayar, Cadence, Cisco, Facebook, Ferric, Intel, Kandou, Macom, Marvel, Netronome, NXP, On Semi, Samtec, Sarcina, Synopsys, Xilinx, zGlue			
Chiplet monitoring	Monitoring infrastructure for chiplet operation				
Business workflow	Formalize learnings from prototype effort				

Wiki: <u>https://www.opencompute.org/wiki/Server/ODSA</u>, meet Fridays at 8 AM Pacific Time.

Please join us.

The Impact of Open Domain Specific Architecture (ODSA) ODSA Collaboration Results

- Physical Interface Definition:
 - PHY: Multi-company (zGlue, Netronome, Alphawave, Aquantia) analysis. First cross-PHY analysis published at Hot Interconnect
 - Bunch of Wires (BoW) PHY new low-cost inter-chiplet PHY. Developed cooperatively by Aquantia, Avera Semi and Netronome with input from Xilinx, Global Foundries. Published at Hot Interconnect, IEEE Micro (Jan'20).
 - PIPE Abstraction a new layer to "abstract" the interface PHY. Supported by Intel in their most recent PHY specification.
- SIP Proof-of-concept / Prototype:
 - Software development vehicle: Designed collaboratively by Cisco, Facebook, Macom, zGlue. Components from Achronix, NXP, Netronome. Working toward integrated into SIP. Design is highly scalable → able to add new participants easily.
- Chiplet Design Exchange (CDX) Project:
 - Project to facilitate the design of physical chiplet information for CAD tool integration (zGlue, ASE, Cadence, Macom)
- Independent Market survey conducted by IHS Markit
- Everything is on our wiki <u>https://www.opencompute.org/wiki/Server/ODSA</u>

The Impact of Open Domain Specific Architecture (ODSA) Looking Ahead

Time to begin planning Implementation

- PHY Layer:
- Open or nearly-open PHY layer
- Association to share development costs for proprietary PHY layer
- Combination of the two
- Adapter Logic
- PIPE adapter logic
- IO Coherent link layer protocol –an ODSA member company may offer
- Coherent link layer protocol open
- Bus adapters
- Easy to use no-friction interface will be widely used
- Open source implementation is a good start

Next ODSA Workshop: 2019-Dec-18 @ Facebook, Menlo Park Ca

IF YOU WANT TO GO FAST, GO ALONE IF YOU WANT TO GO FURTHER, GO TOGETHER

AFRICAN PROVERB

Open. Together.

Consume. Collaborate. Contribute.