

Compute Summit January 28–29, 2014 San Jose

Type A IPM Controller

Hank Bruning
JBlade
hank@jblade.com

The Goal #1

- Increase the raw data describing the hardware
 - Inventory data on DDR3/DDR4 and optical
 - More Sensors
 - •SFP+ optical module 22 sensors (5 are temperature)
 - •CXP optical module 62 sensors (13 are temperature)
 - •DDR3/DDR4 has a single temperature sensor
 - More sensors allow raising DC temperature and get feedback how close to failure you are

Goal #2

- Provide a uniform optical(QSFP+/CXP), memory DDR3/DDR4, and chassis identification for:
 - Servers
 - Storage
 - Network switches
- No operating system is required
- Independent of CPU type

Type A IPM Controller Overview

- An implementation of IPMI FRU data and commands to:
 - •OCP Chassis identification including 1/2 U height
 - IPMI Commands that are mandatory
 - DDR3/DDR4 inventory and temperature sensors
 - Optical XFP/SFP/QSFP/CXP Inventory and control
 - •IPMI Command to reset IPMI back to system defaults

Type A is not mandatory

- Building block
 - •A future Type B may do the same thing at a different price point. DMTF?
- Different Type Deployment scenarios
 - •First 1000 severs from a new Generation
 - Only present in every 10th rack
 - -A mix of Type A and others in a multi node

Example of IPM Controller Spec Family

Type	Description
Α	IPMI DDR memory/ Optical
В	Same at Type A but DMTF and no IPMI
С	Multi node IPMB Bus Security
D	IPv6 Multicast of sensor readings
Е	IPMI PCIe SSD Encryption Key Management

 Multiple specifications allow the Data Center to comparison shop

Type A IPM Controller Functions

Chassis Identification

Problem: Can not identify OCP chassis

- A rack layout can not be drawn
- •OCP allows 1/2 U high chassis
 - •Minimum size is 1U
- Can not identify a OCP compliant chassis
 - Don't know if OCP IPMI commands should be sent to the chassis

OCP Chassis Identification

- •Need to identify Server/Storage/Switch using OCP 1/2 U size.
 - •Does not allow different heights from and rear. No stair step servers.
- Implemented with FRU Info Multi record

Mandatory IPMI Implementation

Problem. Inconsistant IPMI

- •Cost pressure increases the number of incompatible IPMI implementations
- Data Center needs some assurance that new hardware will work with old System Manager

Mandatory IPMI Commands

- Get Channel Authentication Capabilities
 - valid inside and outside RMCP session
- SDRs for Fan speed must contain a max RPM
 - some vendors set it max speed to zero. Can not inform user how close to max speed the fan is running
 - Operator has no data to understand how close to a temperature alarm they are

DDR3/DDR4 Support

Problem: DDR3/DDR4 heat

- DDR3 memory varies widely
 - Module case temperature options
 - •85° C with refresh rate 65ms
 - •95° C with refresh rate 32ms
 - Memory speed
 - •Is 100% of memory access from single Rank
 - Does module have a heat sink?
- DC has no view into memory temperatures

DDR3/DDR4 Slot Inventory

- Server/Storage/Switch has static FRU Info with the quantity and type of memory slots
 - Mapping of allows finding total slot count, never changes from IPMI view
 - Independent of memory module population
 - •Inventory includes vendor dependent slot name. Error messages specific to slot.
 - Implementation is changed. Now use FRU Device Locator Record. No custom software.

DDR3/DDR4 Module Inventory

- Map the Serial Presence Detect data to FRU ID
 - ·Vendor, model, serial number
 - Capacity
 - Speed
 - Temperature rating 85°C or 95°C rating

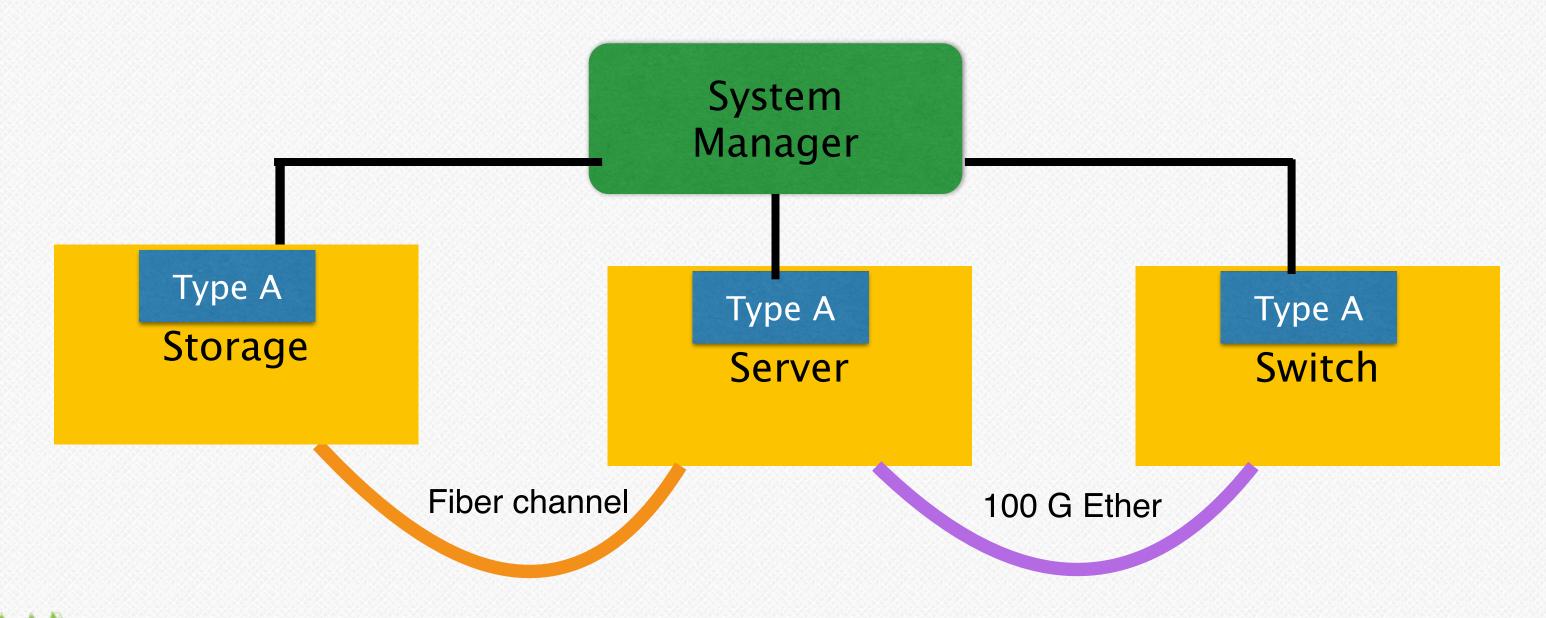
DDR3/DDR4 Module Inventory Benefits

- •Real time database on memory population. Allows finding servers:
 - •with enough capacity to load an O/S and application
 - with empty memory slots to upgrade
 - with DDR3/DDR4 modules that can be replaced with higher capacity
 - when decommissioning what memory can be removed and reused in new hardware

DDR3/DDR4 sensors

- •IPMI Present/Absent sensor for memory module
- Temperature sensor
 - -Alarm thresholds built from 85°/95° C
 - •DC can decrease workload on servers with temperature alarms
 - •DC more likely to raise air temperature if they know memory modules are within operating bounds

Optical XFP/SFP+/QSFP+/CXP Support


Problem: Optical modules vary •Protocol independent way to diagnose problems

- Fiber Chanel
- Infiniband
- 100G Ether
- •128G SAS

Leverage IPMI to monitor optical links

System Manager uses identical diagnostics

Problem: Optical modules vary

- Optical Tx/Rx power varies by temperature and voltage
- •Raise room temperature optical links may fail.
- •SFF-8636 allows real time measurement of optical link margins

Optical Bay Inventory

- Bays are identified by:
 - •FRU ID
 - Location Front/Rear
 - Type XFP/SFP+/QSFP+/CXP
 - •Row/Column. For drawing highlights
 - Vendor dependent bay name so System Manager provides bay dependent error messages

Optical Module Inventory

- Map128 Bytes of SFF defined data to FRU ID
 - · Vendor ID, Model, Serial number
 - Optical transmit power 1.0, 1.5, 6.5 watts

Optical Module Sensors

- •IPMI Present/Absent sensor for optical module
 - Detect and process within 20 seconds
- Each optical lane has 5 sensors, two thresholds
 - Transmit optical power
 - Temperature
 - Receive power(two way to measure)
 - Transmit Bias
 - Input voltage

IPMI Reset Command

Problem: No way to reset IPMI variables

- Only current way to do this is reflash BMC
- No quick way to return Server/Storage/Switch to factory default states
- Reflashing slows down testing and deployment
- Data Centers supplying colocated bare metal servers may have customers with IPMI access which needs to be reset

IPMI Reset Command

- Restore IPMI subsystem to defaults
- Limited to IPMI. Not change to BIOS or PMBus
 - Defaults are what ever vendor defines
 - Not happy with the way it's written
 - No OCP vendor independent testing possible
 - · No consistent RMCP account, VLAN, IP

Future Changes

Potential Changes to specification

- Move optical to a separate specification
- •Add options to define what happens with Event Log Full. Discard new events vs. discard oldest events
- Make RMCP session activation a sensor that gets logged.
 - Discover RMCP account attacks
 - ·Win for colocation Data Centers supplying bare metal
 - •Good for multi-node?

Questions?

Ask on the OCP HW Management reflector