

Alpha Networks Inc

SNX-61A0-486F

48-port 10G SFP+ & 4-port 100G QSFP28 or 6-port 40G QSFP28 Switch (ToR/Aggregation Switch)

Author: Alex Chen, Leander Chang

Revision History

Version	Revised Date	Author	Content Revised
0.1	16/09/19	Alex Chen	Initial Version

Scope

This documents defines the technical specification for SNX-61A0-486F used in the Open Compute Project as 10G Top of the Rack (ToR) or as an aggregation switch

Contents

Revis	ion History		2
Over	view		6
Licen	se		6
1	Feature High	lights	8
2	Physical Over	view	9
	2.1	Mechanical Dimension	9
	2.2	Top View	10
	2.3	Front View	10
	2.4	Rear View	11
3	LED Definitio	n	11
4	Field Replace	able Components	13
	4.1	Power Supply Modules	13
	4.2	Fan Modules	17
5	System Over	view	18
	5.1	Main PCB	18
	5.1	CPU Subsystem	20
		5.1.1 Intel CPU (C2558)	21
		5.1.1.1 DDR3 SDRAM	26
		5.1.1.2 PCle Interface	27
6	IO and Conne	ectors	27

7 7 7 6	Open Compute Project Alpha Networks SNX-60x0-486T Specification v0.6	
6.1	RS232 Interface	27
6.2	Management Ethernet Interfaces	27
6.3	USB Interface	27
7 Power/Envir	onmental/Agency Certifications	27
List of Fig	gures	
	: SNX-61A0-486F Chassis dimension	9
Figure 2:	: SNX-61A0-486F top view	10
Figure 3:	: SNX-61A0-486F front view	11
Figure 4:	: SNX-61A0-486F rear view	11
Figure 5:	: Power Supply Mechanical specification	15
Figure 6:	: Fan module mechanical specification	18
Figure 7	: Main board block diagram	19
List of Ta	bles	
	LED behavior for system	12
Table 2:	LED behavior for Port 1~48 10G Ethernet Port	12
Table 3:	LED behavior for Port 49~50 40G, 51~54 100G Ethernet Port	13
Table 4:	Power supply LED definition	13
Table 5:	Power supplies usage	14
Table 6:	Power supply connector pin out	14
Table 7:	LED definition on power supply	15
Table 8:	Power Supply EEPROM FRU data format	17
Table 9:	Fan Modules part number	17

Table 10: Fan Modules connector pin out	17
Table 11: PCBs for SNX-61A0-486F	18
Table 12: CPU subsystem key Components	20
Table 13: Intel CPU module connector pin out	23
Table 14: Intel CPU module connector Pin Definitions	26
Table 16: Power consumption and environment table	28
Table 16: Regulatory Standards Compliance table	30

Overview

The SNX-61A0-486F Series Data Center, Top-of-Rack (ToR)/aggregation switches, with a total combined bandwidth of 880 Gbps, feature 48 ports of 10 Gbps, 6 ports of 40 Gbps or 4 ports of 100 Gbps Ethernet wire-speeds. The Layer 3 capable, bare metal system also provides an RJ-45 console port and an Out-Of-Band (OOB) management port. It also provides a micro USB interface in the front panel for storage.

License

All semiconductor devices that may be referred to in this specification, or required to manufacture products described in this specification, will be considered referenced only, and no intellectual property rights embodied in or covering such semiconductor devices shall be licensed as a result of this specification or such references. Notwithstanding anything to the contrary in the CLA, the licenses set forth therein do not apply to the intellectual property rights included in or related to the semi-conductor devices identifies in the specification. These references include without limitation the reference to devices listed below. For clarity, no patent claim that reads on such semiconductor devices will be considered a "Granted Claim" under the applicable Contributor License Agreement for this specification.

Items		Detailed Description
MAC Controller		BCM56768*1
PHY for 10G		BCM82328
		CPU Subsystem
	СРИ	Intel Rangeley C2558 4 Cores/2.4GHz
Modular CPU board	RAM	DDR3 4GB for Intel Rangeley CPU (reserved up to 32G)
Wodular CPO board	Flash	SSD 32GB for Intel Rangeley CPU (reserved up to 64G)
	Boot Flash	8MB for Intel Rangeley CPU (reserved up to 16MB)
PHY for CPU Management Port		BCM54616S

As of July 13, 2014, the following persons or entities have made this Specification available under the Open Compute Contributor License Agreement

(OCP CLA) which is available at

https://rightsignature.com/forms/OMMUS-72474399-v1-db5554/token/27cfcf4a00d Alpha Networks Inc.

*OCPHL - Permissive

You can review the signed copies of the Open Compute Contributor License Agreement for this Specification at http://opencompute.org/licensing/, which may also include additional parties to those listed above.

Your use of this Specification may be subject to other third party rights. THIS SPECIFICATION IS PROVIDED "AS IS." No support of any kind will be provided by the contributors. The contributors expressly disclaim any warranties (express, implied, or otherwise), including implied warranties of merchantability, non-infringement, fitness for a particular purpose, or title, related to the Specification. The entire risk as to implementing or otherwise using the Specification is assumed by the Specification implementer and user. IN NO EVENT WILL ANY PARTY BE LIABLE TO ANY OTHER PARTY FOR LOST PROFITS OR ANY FORM OF INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES OF ANY CHARACTER FROM ANY CAUSES OF ACTION OF ANY KIND WITH RESPECT TO THIS SPECIFICATION OR ITS GOVERNING AGREEMENT, WHETHER BASED ON BREACH OF CONTRACT, TORT (INCLUDING NEGLIGENCE), OR OTHERWISE, AND WHETHER OR NOT THE OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

1 Feature Highlights

The SNX-60A0-486F Series Data Center, leaf/ToR switches, with a total combined bandwidth of 880 Gbps, feature 48 ports of 10 Gbps SFP+, 6 ports of 40 Gbps QSFP28 or 4 ports of 100Gbps QSFP28 at Ethernet wire-speeds. The Layer 3 capable, bare metal system also provides a RJ-45 and micro USB for storage, an Out-Of-Band (OOB) management port using RJ-45.

- OCP micro server modular CPU board with large flash and memory Temperature warning
- Software-readable thermal monitor
- Real time clock (RTC) support
- Two Hot-swappable redundant power supply
- Four redundant (5+1) fan modules
- The following are supported
- Front panel
 - One Reset Button
 - One RJ-45 console port
 - One Out-Of-Band (OOB) 10/100/1000 Mbps RJ-45 management port
 - One Micro-USB (Type A) port for storage device

2 Physical Overview

2.1 Mechanical Dimension

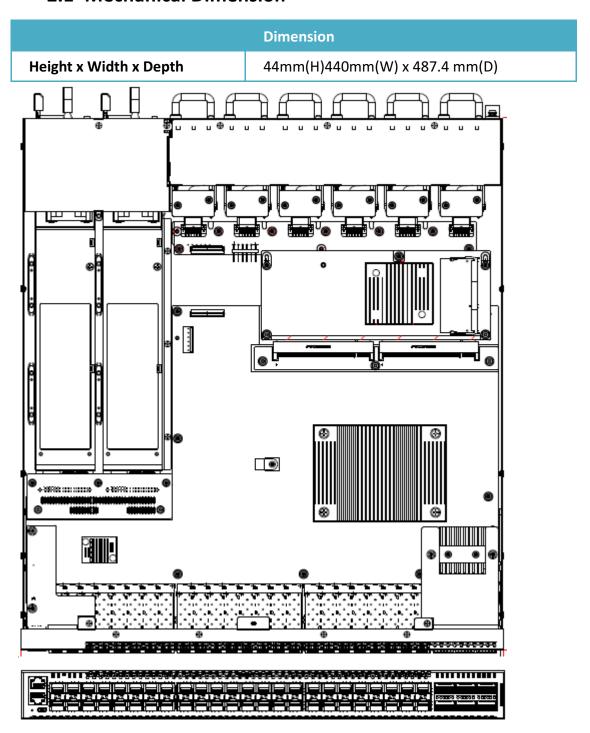
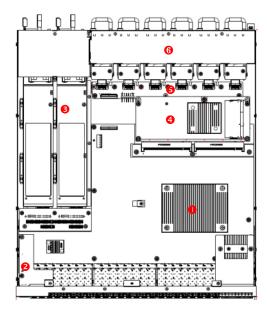



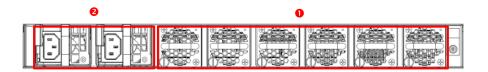
Figure 1: SNX-61A0-486F Chassis dimension

2.2 Top View

- 1: Main Board
- 2: Management board
- 3: PSU modules
- 4: Micro server CPU module
- **6**: Fan extender
- **6**: Fan modules

Figure 2: SNX-61A0-486F top view

2.3 Front View



- 1: Reset button
- 2: Micro USB port for storage
- **3**: 48* 10G SFP+ ports
- 4: 4* 100G QSFP28 ports
- **6**: 4* 100G QSFP28 ports
- **6**: MGMT port
- **7**: Console port

Figure 3: SNX-61A0-486F front view

2.4 Rear View

- 1: Hot swappable fan modules
- 2: Hot swappable power supply

Figure 4: SNX-61A0-486F rear view

3 LED Definition

The following table defines the per device LEDs' behaviors:

Items	LED Indication	Color	Behavior	Description
1	MGMT	Green	Solid Light	POST Passed, normal operation
			Blinking	POST in progress
			Light off	System No power
		Amber	Blinking	POST failed or overheat or power supply failed or Fan module fail or over temperature
2	ACT	Green	Blinking	Packet transmitting or receiving
			Light off	No packet transmitting or receiving
3	Link	Green	Solid Light	Link up
			Light off	No link up or port disable
4	PWR (P1, P2)	Green	Solid Light	Power On

			Off	Power Off and no power attached
		Amber	Blinking	Power supply failures, over voltage, over current, over temperature
5	FAN 1 FAN 2	Green	Solid Light	All diagnostics pass. The module is operational.
	FAN 3 FAN 4		Off	The module is not receiving power
	FAN 5 FAN 6	Amber	Blinking	Failure

Table 1: LED behavior for system

The following defines the 10G SFP+ port LEDs' behaviors:

Location	Speed	LED Indication	Color	Behavior	Description
LED Port 1~48 (10G bps)	10G bps (High peed speed LED) 1G bps (Low speed LED)	Link/Act/S peed	Green	Solid Light	A transceiver module or cable has been correctly installed. The port has a link and is operating at 10Gbps
				Blinking	The port is sending or receiving data at 10Gbps
		Amber	Solid Light	A transceiver module or cable has been correctly installed. The port has a link and is operating at 1Gbps	
			Blinking	The port is sending or receiving data at 1Gbps	
	Off			Light off	Link down or no link

Table 2: LED behavior for Port 1~48 10G Ethernet Port

The following table defines the 40G & 100G QSFP28 Ethernet port LEDs' behaviors:

Location	Speed	LED Indication	Color	Behavior	Description
LED Port 49~72	100Gbps	Link/Act/Speed	White	Solid Light	When there is a secure 100G connection (or link)
				Blinking	Packet transmitting or receiving
	50Gbps		Amber	Solid Light	When there is a secure 50G connection (or link)

			Blinking	Packet transmitting or receiving
40Gbps		Blue	Solid Light	When there is a secure 40G connection (or link)
			Blinking	Packet transmitting or receiving
25 or 10 Gbps		Green	Solid Light	When there is a secure 25G or 10G connection (or link)
		Blinking	Packet transmitting or receiving	
Off			Light off	No link up or port disable

Table 3: LED behavior for Port 49~52 100G, 53~54 40G Ethernet Port

Each power supply module has a bi-color LED, which behavior is descript in the following:

LED Color	Behavior	Description
	Solid Light	Output ON and OK
Green	Blinking	AC present / AC Line 12VSB Holdup
	Light off No AC power to all power supplies	
	Solid Light	Power supply critical event causing a shutdown; failure, Fan Fail
Amber	Blinking	Power supply warning events where the power supply continues to operate; high temp, high power, high current, slow fan.

Table 4: Power supply LED definition

4 Field Replaceable Components

4.1 Power Supply Modules

The switch is powered through one or two internal power supply modules.

Supported power supply modules:

- AC-770-12-FB
- AC-770-12-BF
- DC-1100-12-FB
- DC-1100-12-BF

The switch requires only one power supply for its operations, but you can include a second one for redundancy. By default the switch is installed one power supply in the

second power supply slot, and filled the first slot with a filler panel. You can order extra power supplies with forward airflow or reverse airflow. Be sure to order the same direction of airflow as is used with the switch. Never leave a power supply slot empty. Please fill the slot with a filler panel.

Please refer to Table 5 for the recommended power supply usage for each switch model.

Switch Model Number	Equipped CPU Model	Power Supply Vender	Power Supply Model Number	Minimum Number of Power Supply Need
SNX-61A0-486F-AF-B	Intel Rangely C2558	Delta Electronics	AC-770-12-FB	1
SNX-61A0-486F-AB-B	Intel Rangely C2558	Delta Electronics	AC-770-12-BF	1
SNX-61A0-486F-DF-B	Intel Rangely C2558	Delta Electronics	DC-1100-12-FB	1
SNX-61A0-486F-DB-B	Intel Rangely C2558	Delta Electronics	DC-1100-12-BF	1

Table 5: Power supplies usage

Power Supply connector: Molex 45984-4343

Pin#	Descriptin	Pin #	Descriptin3
S1	+12VRS+	S13	N/A
S2	+12VRS-	S14	SGND
S3	12LS	S15	A0
S4	SMB ALERT	S16	N/A
S5	SDA	S17	Vs
S6	SCL	S18	N/A
S7	PSKILL	S19	N/A
S8	PSON	S20	N/A
S9	PWOK	S21	N/A
S10	A1	S22	N/A
S11	5VSB	S23	+5VSB
S12	5VSB	S24	+5BSB
P1	+12_VOUT	Р3	GND
P2	+12_VOUT	P4	GND

Table 6: Power supply connector pin out

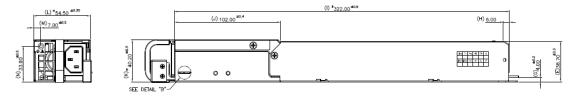


Figure 5: Power Supply Mechanical specification

LED definition on power supply

Power Supply Condition	LED Status
PSU is switched on and is running (Output ON and OK)	Green
No AC power to all power supplies or PSU is ON but with warning events	Off
PSU is OFF but 5VSB is on	1Hz on Blink Green
PSU critical event causing a shutdown: failure, OCP, OTP, OVP, UVP, Fan Fail	Amber
PSU warning events: high temp, high power, high current, slow fan, under input voltage	1Hz on Blink Amber

Table 7: LED definition on power supply

FRU

FRU data format compliant with IPMI ver 1.0 (per rev 1.1 from Sept. 25, 1999) specification. The FRU device will implement the same protocols as the commonly used AT24C02 device, including the Byte Read, Sequential Read, Byte Write and Page Read protocols.

The EEPROM content is as following

Area Type	Description		
Common Header	Format Version Number		
Internal Use Area	Not required, do not reserve		
Chassis Info Area	Not applicable, do not reserve		
Board Info Area	Not applicable, do not reserve		
Product Info Area	As defined by the IPMI FRU document.		
Product into Area	Product information is defined as following		
Field name	Field Description		
Manufacturer Name	{Formal name of manufacturer}		
Product Name	{Manufacturer's model number}		
Product part/model number	Customer part number		

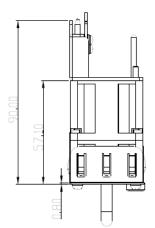
Product Version	Customer current revision	
Product Serial Number	{Defined at time of manufacture}	
Asset Tag	{Not used, code is zero length byte}	
FRU File ID	{Not required}	
PAD Bytes	{Added as necessary to allow for 8-bype offset to next area}	
Mulit-Record Area	As defined by the IPMI FRU documentation. The following information shall be used by this power supply: Power Supply Information (Record type 0x00) DC Output (Record Type 0x01) No other record types are required for power supply Multi-Record information shall be defined as following	
Field Name (PS Info)	Field Information Definition	
Overall Capacity (watts)	770	
Peak VA	770	
Inrush current (A)	40	
Inrush interval (msec)	5	
Low end input voltage range 1	100	
High end input voltage range 1	127	
Low end input voltage range 2	200	
High end input voltage range 2	240	
Low End Input Frequency Range	47	
High End Input Frequency Range	63	
Holdup Time (msec)	12	
Binary flags	Set for: Hot Swap support, Auto switch and PFC	
Peak Wattage	839 Watts	
Peak Wattage Time in seconds	12	
Combined wattage	770	
Predictive fail tach support	Supported	
Field Name (Output)	Field Description: Two output are to be defined from #1 to #2, as follows: +12V and +5VSB	
Output Information	Set for: Standby on +5VSB, no 5VSB on all others	
All other output fields	Format per IPMI specification , using parameters in this specification	

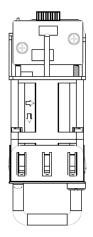
Table 8: Power Supply EEPROM FRU data format

4.2 Fan Modules

The SNX-61A0-486F supports up to 5+1 fan modules. For front to rear and rear to front air flow, different types of fan modules are required.

Air Flow Direction	Part Number
Front to Rear	AVC DFTA0456B2UP057
Rear to Front	AVC DFTA0456B2UP058


Table 9: Fan Modules part number


Fan module connector: LCU SM401V-20P

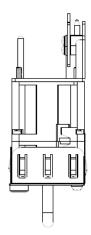

#	NAME	Description	#	NAME	Description
1	FAN_CON_TACH_0	FAN tachometer 0	11	FAN_DIR	FAN Direction
2	GND	GND	12	GND	GND
3	FAN_12VIN	12V	13	FAN_12VIN	12V
4	FAN_CON_PWM_0	PWM control for FAN0	14	EE_GND	EEPROM GND
5			15	EE_SDA	EEPROM SDA
6	EE_SCL	EEPROM SCL	16	EE_VDD	EEPROM VDD
7	EE_A0	EEPROM ADDR_0	17	FAN_CON_PWM_1	PWM control for FAN1
8	FAN_12VIN	12V	18	FAN_12VIN	12V
9	GND	GND	19	GND	GND
10	FAN_PRESENT#	Exist FAN module	20	FAN_CON_TACH_1	FAN tachometer 0

Table 10: Fan Modules connector pin out

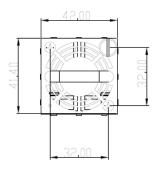


Figure 6: Fan module mechanical specification

5 System Overview

The SNX-61A0-486F comprised of the following PCB

PCB Function	PCB Layer	Dimension (mmxmm)
Main board	14	431*326.3
FAN module	2	38.5*29
FAN Adapter	2	228*30
LED board	2	50*91.5
PCIE Adapter	4	135.5*16
PSU Adapter	4	132.4*41.3
CPU board	12	210*73.8
Management board	4	58*180

Table 11: PCBs for SNX-61A0-486F

5.1 Main PCB

The main PCB is a 12 layer PCB where the switch MAC resides. It also supports the

following functions:

- Networking I/O ports
- Management ports
- LED
- Connectivity to power supply and fan
- Power conversion circuit
- Etcs

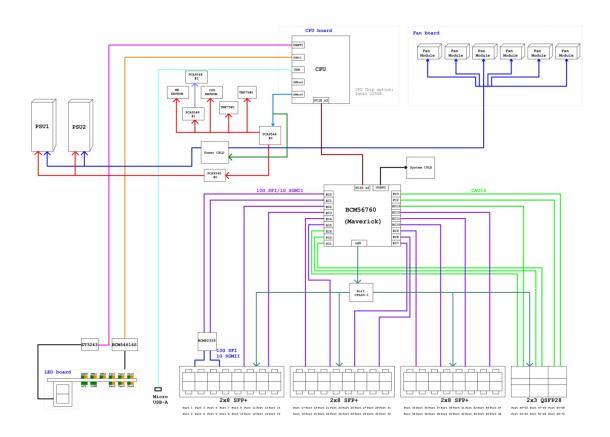
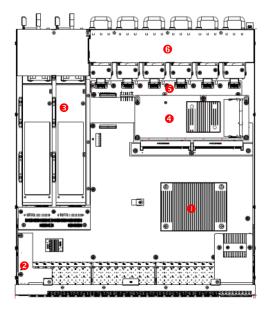



Figure 7: Main board block diagram

- 1: Main Board
- 2: Management board
- 3: PSU modules
- 4: Micro server CPU module
- **6**: Fan extender
- **6**: Fan modules

Figure 8: Main PCB top view

5.1 CPU Subsystem

The following Table is the list of key components used in SNX-60x0-486T

Items		Detailed Description		
		Intel		
	CPU	Intel Rangeley C2558 4 Cores/2.4G		
Modular CPU	RAM	DDR3 4GB for Intel Rangeley CPU		
board (Option 2)	Flash	SSD 8GB for Intel Rangeley CPU		
	Boot Flash	8MB for Intel Rangeley CPU		

Table 12: CPU subsystem key Components

5.1.1 Intel CPU (C2558)

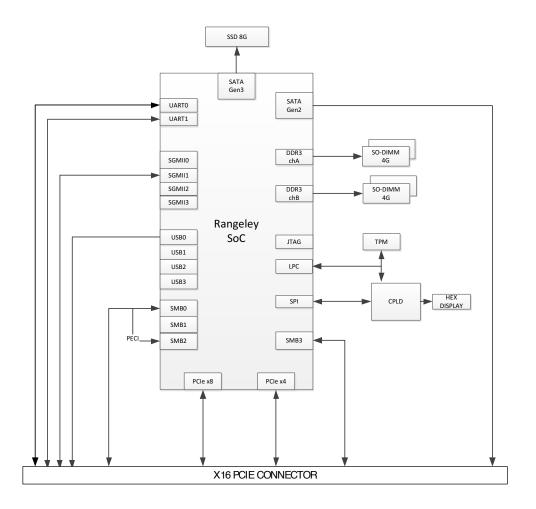


Figure 9: Intel CPU board block diagram

Intel CPU module connector: x16 PCIe Edge Connector

For 80	For 80 PIN connector				
#	Pin Name	#	Pin Name		
B1	P12V	A1	PRSNT#		
B2	P12V	A2	P12V		
В3	P12V	А3	P12V		
B4	GND	A4	GND		
B5	I2C_SCL	A5	RFU		
В6	I2C_DATA	A6	RFU		
B7	GND	A7	COM_TX		
B8	PWR_BTN#	A8	COM_RX		
В9	USB_P	A9	GE0_MDC		
B10	USB_N	A10	GE0_MDIO		
B11	SYS_RESET#	A11	PCIEO_RESET#		

	KEY			
B12	I2C_ALERT#	A12	GND	
B13	GND	A13	PCIEO_REFCLK_P	
B14	GND	A14	PCIEO_REFCLK_N	
B15	PCIEO_TXO_P	A15	GND	
B16	PCIEO_TXO_N	A16	GND	
B17	GND	A17	PCIEO RXO P	
B18	GND	A18	PCIEO_RXO_N	
B19	PCIEO_TX1_P	A19	GND	
B20	PCIEO_TX1_N	A20	GND	
B21	GND	A21	PCIEO_RX1_P	
B22	GND	A22	PCIEO_RX1_N	
B23	PCIEO_TX2_P	A23	GND	
B24	PCIEO_TX2_N	A24	GND	
B25	GND	A25	PCIE0_RX2_P	
B26	GND	A26	PCIE0_RX2_N	
B27	PCIEO_TX3_P	A27	GND	
B28	PCIEO_TX3_N	A28	GND	
B29	GND	A29	PCIEO_RX3_P	
B30	GND	A30	PCIEO_RX3_N	
B31	UARTO_TXD	A31	GND	
B32	UARTO_RXD	A32	GND	
B33	GND	A33	RFU	
B34	GND	A34	RFU	
B35	PCIE1_REFCLK_P	A25	GND	
B36	PCIE1_REFCLK_N	A36	GND	
B37	GND	A37	RFU	
B38	GND	A38	RFU	
B39	PCIE1_RESET#	A39	GND	
B40	RFU	A40	GND	
B41	GND	A41	RFU	
B42	GND	A42	NIC_SMBUS_ALERT#	
B43	NIC_SMBUS_SCL	A43	GND	
B44	NIC_SMBUS_SDA	A44	GND	
B45	GND	A45	GEO_RX_P	
B46	GND	A46	GEO_RX_N	
B47	GEO_TX_P	A47	GND	
B48	GEO_TX_N	A48	GND	
B49	GND	A49	RFU	
B50	GND	A50	RFU	
B51	RFU	A51	GND	
B52	RFU	A52	GND	
B53	GND	A53	RFU	
B54	GND	A54	RFU	

Open Compute Project Alpha Networks SNX-60x0-486T Specification v0.6

B55	RFU	A55	GND
B56	RFU	A56	GND
B57	GND	A57	RFU
B58	GND	A58	RFU
B59	RFU	A59	GND
B60	RFU	A60	GND
B61	GND	A61	RFU
B62	GND	A62	RFU
B63	RFU	A63	GND
B64	RFU	A64	GND
B65	GND	A65	PCIE1_RX0_P
B66	GND	A66	PCIE1_RX0_N
B67	PCIE1_TX0_P	A67	GND
B68	PCIE1_TX0_N	A68	GND
B69	GND	A69	PCIE1_RX1_P
B70	GND	A70	PCIE1_RX1_N
B71	PCIE1_TX1_P	A71	GND
B72	PCIE1_TX1_N	A72	GND
B73	GND	A73	PCIE1_RX2_P
B74	GND	A74	PCIE1_RX2_N
B75	PCIE1_TX2_P	A75	GND
B76	PCIE1_TX2_N	A76	GND
B77	GND	A77	PCIE1_RX3_P
B78	GND	A78	PCIE1_RX3_N
B79	PCIE1_TX3_P	A79	GND
B80	PCIE1_TX3_N	A80	GND
B81	GND	A81	P12V
B82	GND	A82	P12V

Table 13: Intel CPU module connector pin out

Intel CPU module pin definitions

#	Pin	Direction	Required/	Pin Definition
		(from CPU side)	Configurable	
	P12V	Input	Required	12 V-AUX power
	I2C_SCL	Input/Outp ut	Required	I2C clock signal. I2C is the primary sideband interface for server management functionality. 3.3 VAUX signal. Pull-up is provided on the baseboard.

I ₂ C_SDA	Input/Outp	Required	I2C data signal. I2C is the primary sideband
120_30/1	ut	пеципец	interface for server management functionality.
	ut		3.3 VAUX signal. Pull-up is provided on the
			baseboard.
			vasevoaru.
I2C_ALERT#	Output	Required	I2C alert signal. Alerts the Baseboard
			Management Controller (BMC) that an event
			has occurred that must be processed. 3.3 V-AUX
			signal. Pull-up is provided on the baseboard.
NIC_SMBUS_SCL	Input/Outp	Required	Dedicated SMBus clock signal for network
	ut		traffic between the BMC and the NIC. 3.3 V-AUX
			signal. Pullup is provided on the baseboard.
NIC CHANGE CO.	1	D	
NIC_SMBUS_SDA	Input/Outp	Required	Dedicated SMBus data signal for network
	ut		traffic between the BMC and the NIC. 3.3 V-AUX
			signal. Pullup is provided on the baseboard.
NIC_SMBUS_ALERT#	Output	Required	Dedicated SMBus alert signal for network
			traffic between the BMC and the NIC. 3.3 V-AUX
			signal. Pullup is provided on the baseboard.
PWR_BTN#	Input	Required	Power on signal. When driven low, it indicates
			that the server will begin its power-on
			sequence. 3.3 VAUX signal. Pull-up is provided
			on the baseboard. If PWR_BTN# is held low for <
			4 seconds, then this indicates a soft (graceful)
			power off. Otherwise, a hard shutdown is
			initiated.
SYS_RESET#	Input	Required	System reset signal. When driven low, it
			indicates that the server will begin its warm
			reboot process. 3.3 V-AUX signal. Pull-up is
			provided on the baseboard.
			· ·
PRSNT#	Output	Required	Present signal. This is pulled low on the card to
			indicate that a card is installed. 3.3 V-AUX
			signal. Pull-up is provided on the baseboard.
COM_TX	Output	Required	Serial transmit signal. Data is sent from the
			micro-server module to the BMC. 3.3 V-AUX
			signal.

- p			5183 5187 6676 4661 Specification vo.6
COM_RX	Input	Required	Serial receive signal. Data is sent from the BMC
			to the micro-server module. 3.3 V-AUX signal.
UARTo_TXD	Output	Required	Serial transmit signal. Data is sent from the
			micro-server module to the BMC. 3.3 V-AUX
			signal.
UARTo_RXD	Input	Required	Serial receive signal. Data is sent from the BMC
			to the micro-server module. 3.3 V-AUX signal.
GEo_TX_P/N	Output	Required	Primary Ethernet transmit signal. Data is sent
			from the micro-server module to the
			baseboard.
GEo_RX_P/N	Input	Required	Primary Ethernet receive signal. Data is sent
			from the baseboard to the micro-server
			module.
GEo_MDC	Output	Required	Primary Ethernet management interface clock
			signal.
GEo_MDIO	Input/Outp	Required	Primary Ethernet management interface data
	ut		signal.
PCIEo_RESET#	Output	Required	PCIe reset signal. If a PCIe bus is connected, this
			signal provides the reset signal indicating the
			card VRs and clocks are stable when driven high
			to 3.3V.
PCIEo_TX0/1/2/3_P/N	Output	Configurable	PCIe x4 bus-transmit signals. Data is sent from
			the micro-server module to the baseboard.
			These signals may or may not be connected on
			the baseboard.
PCIEo_RXo/1/2/3_P/N	Input	Configurable	PCIe x4 bus-receive signals. Data is sent from
			the baseboard to the micro-server module.
			These signals may or may not be connected on
			the baseboard.
PCIEo_REFCLK_P/_N	Output	Configurable	PCIe reference clock. This signal may or may not
			be connected on the baseboard.
DCIE1/2 DESET#	Output	Configurable	PCIe reset signals for to 2x additional PCIe
PCIE1/2_RESET#	Output	Configuration	PCIE reset signals for to 2x additional PCIE

			buses. If a PCIe bus is connected, this signal provides the reset signal indicating the card VRs and clocks are stable when driven high to 3.3V.
PCIE1_TX0/1/2/3_P/N	Output	Configurable	Second set of PCIe x4 bus-transmit signals. Data is sent from the microserver module to the baseboard. These signals may or may not be connected on the baseboard.
PCIE1_RX0/1/2/3_P/N	Input	Configurable	Second set of PCIe x4 bus-receive signals. Data is sent from the baseboard to the micro-server module. These signals may or may not be connected on the baseboard.
PCIE1_REFCLK_P/_N	Output	Configurable	Two additional PCIe reference clocks. These signals may or may not be connected on the baseboard.
USB_P/N	Input/Outp ut	Configurable	USB 2.0 differential pair.
RSVD	Input/Outp ut	Configurable	Available differential pairs that could be configured as PCIe, SATA, SAS, Ethernet, or other high-speed interfaces.
RFU	Input/Outp ut	Not	These pins are reserved for future use and are not used.

Table 14: Intel CPU module connector Pin Definitions

5.1.1.1 DDR3 SDRAM

The Rangeley Memory Controller supports up to 64 GB. The memory controller supports a 64-bit data bus with 8-bit ECC. When only one of the two memory channels is used in a platform board design, Channel 0 must be used. In all designs, Channel 0 must be populated by DRAM devices. Within each memory channel DIMMs are populated in slot order; slot 0 is populated first and slot 1 last. If a DIMM has two ranks, the ranks must be symmetrical (same chip width, same chip density, and same total memory size per rank). If both memory channels of the memory controller are used, then both channels must be populated identically. The CPU board is used a DDR3-1333 4GB SO-DIMM.

5.1.1.2 PCIe Interface

The Rangeley has up to 16 PCIe ports. Each port consists of a Transmitter differential pair and a Receiver differential pair which are in the 1.0-Volt Core power well of the SoC. The Rangeley supports devices with 5.0 GT/s and 2.5 GT/s capabilities.

6 IO and Connectors

6.1 RS232 Interface

Baud Rate: s/w define

Data bits: 8Stop Bit: 1Parity: None

Flow control: None

6.2 Management Ethernet Interfaces

There are one single PHY on front panel PCBA, use SGMII interface from CPU module convert to 10/100/1000 RJ-45 GbE Management port. The PHY used is Marvell 88E1112.

6.3 USB Interface

The CPU contains one Enhanced Host Controller Interface (EHCI) and complies to the EHCI 1.0 Specification. The EHCI supports up to four USB 2.0 root ports. USB 2.0 allows data transfers up to 480 Mbps. The controller integrates a Rate-Matching Hub (RMH) to support USB 1.1 devices. The USB Port 1 interface is configured by the debug software to be a debug port.

7 Power/Environmental/Agency Certifications

Power		
Number of power supply	2	
Power supply types	AC (forward and reversed airflow) DC (forward and reversed airflow)	
Typical operating power	TBD	
Maximum power	511W	
AC PSUs Input voltage Frequency Efficiency	770W ■ 100 to 240 VAC ■ 50 to 60 Hz	
DC PSUs • Input voltage range	1100W	

• Efficiency	• 40.5V/23.8A 48V/19.0A -60V/15.6	
Environment		
Operating temperature	$0 \sim 45^{\circ}$ C (at sea level with Fan Failure condition)	
Altitude	0 ~ 10,000ft at 40°C*	
Storage temperature	-40~70°C	
Operating relative humidity	0%-95% RH (non-condensing)	
Storage relative humidity	0%~95% RH (non-condensing)	
Dimensions (height x width x depth)	44mmx440mmx487.4mm	
Weight	TBD	

Table 15: Power consumption and environment table

		Regulatory Standards Compliance		
Regulato complia	ory nce Safety	Comply with CE markings per directives 2004/108/EC and 2006/95/EC FCC/IC Report Class A BSMI UL/cUL Listed Mark CCC		
Safety		IEC60950-1 FCC/IC Report Class A EN 60950-1 FCC/IC Report Class A UL/CSA 60950-1 CNS 14336-1 GB4943.1		
EMC: Em	IEC60950-1 FCC/IC Report Class A EN 60950-1 FCC/IC Report Class A UL/CSA 60950-1 CNS 14336-1 GB4943.1			
		RoHS Requirement		
Level	#	Description	Limitation/ ppm	
	A1	Cadmium/ Cadmium Compounds	80	
	A2	Hexavalent Chromium/ Hexavalent Chromium Compounds	800	
Α	А3	Lead/ Lead Compounds	800	
	A4	Mercury/ Mercury Compounds	800	
	A5	Polybrominated Biphenyls (PBBs)	800	
	A6	Polybrominated Diphenylethers (PBDEs)	800	
Reliability Test Reports				

Test Items	Standards	Remarks
MTBF Prediction Report	Telcordia SR-332, Issue 2	
Free Fall Test Report	IEC 60068-2-32: Basic Environmental Testing Procedures Part 2: Tests Test Ed: Free Fall-Second Edition; Incorporating Amendment 1; Amendment 2: 10-1990	 Drop Range: ≤ 20Kg,1000mm; ≤ 50kg, 500mm; Max. Load: 500 kg; FCS: 1 carton.
Vibration Test Report	IEC 60068-2-34:1973: Environmental testing Test Fd: Random vibration wide band-General requirements	 Frequency: 20Hz ~500Hz; Method: Random; Test Time: 30 min/Per Axis; FCS: 1 carton.
Storage Test Report	IEC 60068-2-48: Basic Environmental Testing Procedures Part 2: Tests Guidance on the Application of the Tests of IEC Publication 68 to Simulate the Effects of Storage-First Edition	 Low Temp.: -40°C,72Hours High Temp. /Low Humidity: 70 °C,25%R.H.,72Hours High Temp. /High Humidity: 40 °C,95%R.H.,96Hours FCS: 1 carton
Cold Test Report	IEC 60068-2-1: Environmental Testing Part 2: Tests - Tests A: Cold-Fifth Edition; Amendment 1-1993; Amendment 2-1994	 Temperature: -10±3°C Humidity: Uncontrolled Test Time: 72 Hours FCS: 2 sets
Dry Heat Cyclic Test Report	IEC 60068-2-2: Basic Environmental Testing Procedures Part 2: Tests - Tests B: Dry Heat-Fourth Edition; Supplement A-1976; Amendment 1-1993; Amendment 2-1994	 Temperature: 55±2°C Humidity: 5%R.H. Test Time: 72 Hours FCS: 2 sets
Damp Heat Steady State Report	IEC 60068-2-78: Environmental Testing - Part 2-78: Tests - Test 2-78: Body Cab: Damp Heat, Steady State-First Edition; (Replaces IEC 60068-2-3 and 60068-2-56)	 Temperature: 40±2°C Humidity: 95+2-3%R.H. Test time: 96 Hours FCS: 2 sets
Damp Heat Cyclic Report	IEC 60068-2-30: Basic Environmental Testing Procedures Part 2: Tests - Test Db and Guidance: Damp Heat, Cyclic (12 + 12-Hour Cycle)-Second Edition; Amendment 1-08/1985	 Temperature: 40±2°C Humidity: 95+2-3%R.H. Cycle Time: 24 Hours Number of Cycle: 2 Cycles FCS: 2 sets
ESD Simulation Test Report	IEC 61000-4-2: Electromagnetic Compatibility (EMC) - Part 4-2: Testing and Measurement Techniques - Electrostatic Discharge Immunity Test-Edition 1.2; Edition 1:1995	Air Discharge: ±8KV;Contact Discharge: ±4KV;FCS: 1 set.

	Consolidated with Amendments 1:1998 and 2:2000	
Electrical Isolation Test Report	For Class I equipment only.	 Primary (L-N) to Earth (Metal frame or Ground Pin): Minimum 1,5 kV ac, at least 60 seconds; Lan Port (RJ-45) to Ground (Metal frame) Minimum 1,5 kV ac at least 60 seconds.

Table 16: Regulatory Standards Compliance table