

Open CloudServer OCS Chassis Manager Specification Version 2.1

Author: Ali Farasat, Senior Hardware Engineer Microsoft © 2016 Microsoft Corporation. All rights reserved.

This document is provided "AS-IS" with no warranties. Information and views ϵ document may change without notice. You bear the risk of using it.

As of October 30, 2014, the following persons or entities have made this Specification available under the Open Web Foundation Final Specification Agreement (OWFa 1.0), which is available at <u>http://www.openwebfoundation.org/legal/the-owf-1-0-agreements/owfa-1-0</u>

Microsoft Corporation.

You can review the signed copies of the Open Web Foundation Agreement Version 1.0 for this Specification at <u>http://opencompute.org/licensing/</u>, which may also include additional parties to those listed above.

Your use of this Specification may be subject to other third party rights. THIS SPECIFICATION IS PROVIDED "AS IS." The contributors expressly disclaim any warranties (express, implied, or otherwise), including implied warranties of merchantability, noninfringement, fitness for a particular purpose, or title, related to the Specification. The entire risk as to implementing or otherwise using the Specification is assumed by the Specification implementer and user. IN NO EVENT WILL ANY PARTY BE LIABLE TO ANY OTHER PARTY FOR LOST PROFITS OR ANY FORM OF INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES OF ANY CHARACTER FROM ANY CAUSES OF ACTION OF ANY KIND WITH RESPECT TO THIS SPECIFICATION OR ITS GOVERNING AGREEMENT, WHETHER BASED ON BREACH OF CONTRACT, TORT (INCLUDING NEGLIGENCE), OR OTHERWISE, AND WHETHER OR NOT THE OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

CONTRIBUTORS AND LICENSORS OF THIS SPECIFICATION MAY HAVE MENTIONED CERTAIN TECHNOLOGIES THAT ARE MERELY REFERENCED WITHIN THIS SPECIFICATION AND NOT LICENSED UNDER THE OWF CLA OR OWFA. THE FOLLOWING IS A LIST OF MERELY REFERENCED TECHNOLOGY: INTELLIGENT PLATFORM MANAGEMENT INTERFACE (IPMI), I²C TRADEMARK OF PHILLIPS SEMICONDUCTOR. IMPLEMENTATION OF THESE TECHNOLOGIES MAY BE SUBJECT TO THEIR OWN LEGAL TERMS.

and/or third parties may have intellectual property rights covering the subject matter in this document. Except as may be expressly provided in a separate agreement, if any, the furnishing of this document does not grant any licenses to any such intellectual property rights. Instead, this document is for your internal reference purposes. This document and its contents are confidential and proprietary to Microsoft. It is disclosed and can be used only pursuant to a non-disclosure agreement between you and Microsoft.

Contents

1	Overview of Chassis Manager6				
2	Brief Introduction to the Open CloudServer System7				
3	CM block diagram				
	3.1	Baseline Block Diagram Chassis Manager	8		
4	Cha	ssis Manager v2.1 Specification Changes			
	4.1	CM v2.1 changes list			
	4.2	UART future proof change			
	4.3	CPLD pinout change			
	4.4	EMI contingency plan			
	4.5	UART serial cable length	15		
	4.6	Future proofing pin connections for PSU_ALERT_N	15		
	4.7	Ethernet cable length support			
5	Lab	elling and Loading Guidelines			
	5.1	Component Labelling			
6	Cha	ssis Manager Interconnects			
7	Ma	nagement Subsystem			
	7.1	TPM Module			
	7.2	Debug features			
	7.3	Connector Quality			
8	Cha	ssis Manager Electrical Specifications			
	8.1	Current Interrupt Protection and Power, Voltage, and Current Monitoring			
	8.2	CPLD Isolation			
	8.3	12 Volt Brown out Protection			
	8.4	Grounding and Return			
9	Арр	pendix: Commonly Used of Acronyms			

List of Figures

Figure 1. OCS overview	7
Figure 2: ME model snapshots of Chassis Manager	9
Figure 3: Top Level CM v2.1 Block Diagram	10
Figure 4: v1.0 Chassis Manager IO Structure	11
Figure 5: v2.1 Changes	12
Figure 6: UART future proof change diagram	13
Figure 7: CPLD pinout change	14
Figure 8: PCB Bottom side landing pad for EMI gasket	14
Figure 9: PCB Top side pads for spring component contacts	15
Figure 10: CM supported serial cable lengths	15
Figure 11: New CPLD2 pin connections and block diagram	16

1 Overview of Chassis Manager

This specification is an addendum to the OCS Open CloudServer Chassis Management v2.0 specification. It defines the requirements for the upgrade to the Chassis Manager v1.0 made necessary by end of production of the CPU.

2 Brief Introduction to the Open CloudServer System

The OCS system is a fully integrated rack of servers and IT equipment that is highly optimized and streamlined for large, web-scale deployments. This OCS specification is intended to support at least two generations of servers to minimize the detailed, time-consuming, and expensive process of setting up networking and infrastructure in a server deployment.

OCS is an off-the-shelf (OTS) commodity rack that is loaded with up to four modular chassis, each with trays, power supplies, power distribution, chassis management, system fans, and two side-walls, as shown in Figure 1.

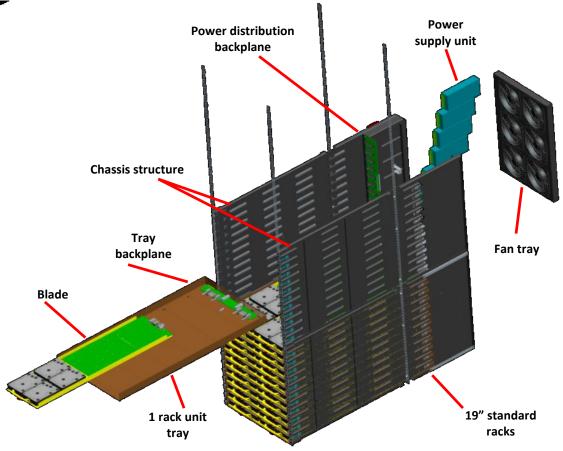
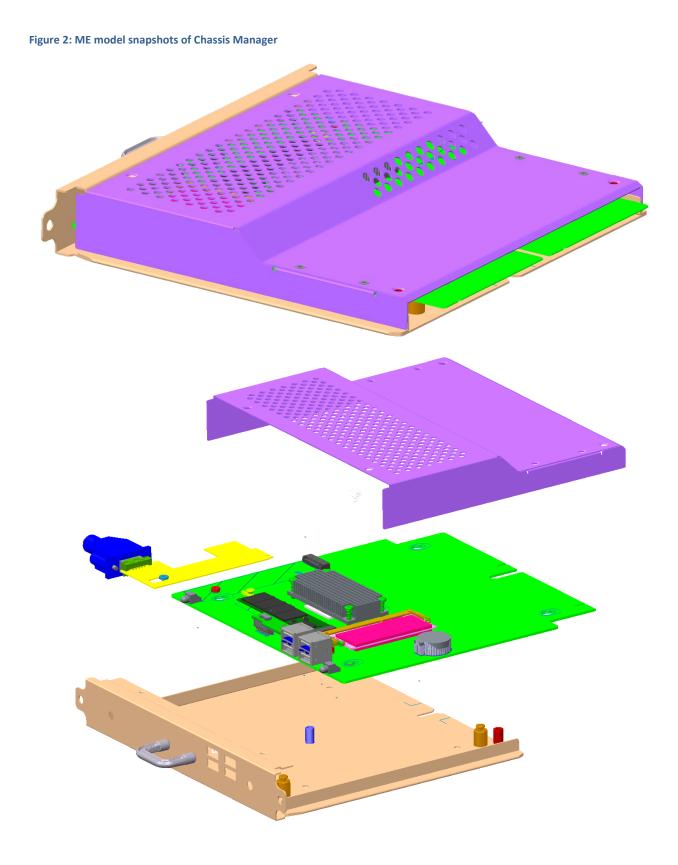
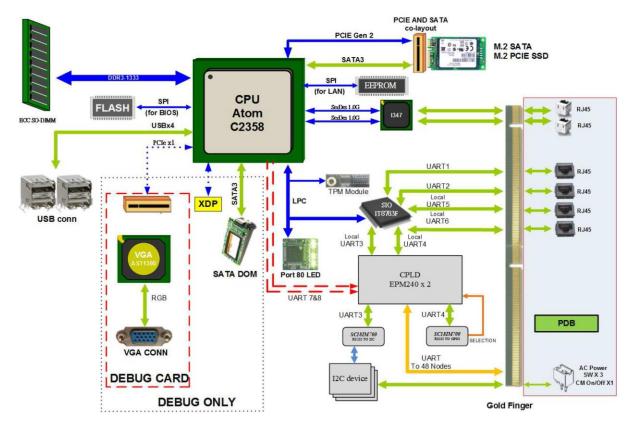


Figure 1. OCS overview


OCS blades are highly configurable, and are usually compute blades or storage "just a bunch of disks" (JBOD) blades.


3 CM block diagram

The following provides the baseline block diagram for the v2.1 Chassis Manager. These are for illustration purposes only and are not to scale. All requirements are specified in the text of this document.

3.1 Baseline Block Diagram Chassis Manager

The following mechanical model and electrical block diagram show the top level architecture for the v2.1 Chassis Manager.

Figure 3: Top Level CM v2.1 Block Diagram

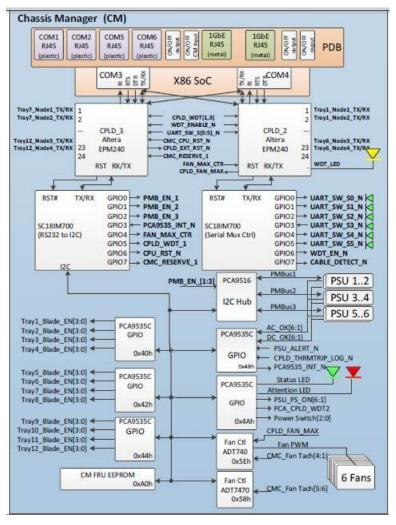
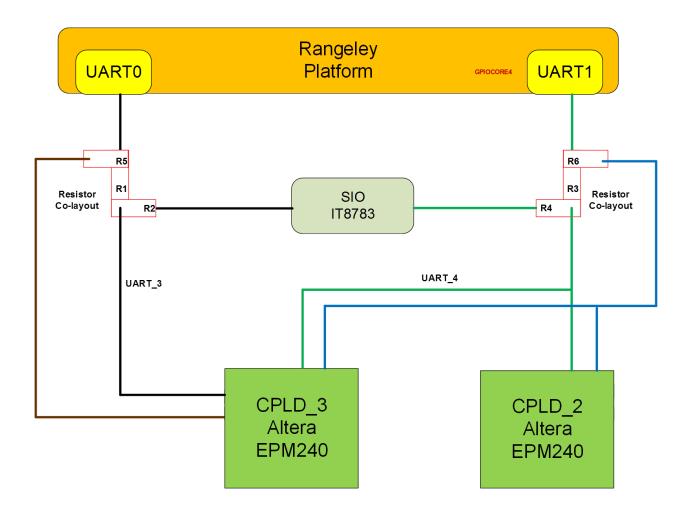


Figure 4: v1.0 Chassis Manager IO Structure

4 Chassis Manager v2.1 Specification Changes

The new chassis manager will meet the original specification that are covered in the schematic, layout and RTL files included later in this document. The additions to the specification are covered in this section of the document.

4.1 CM v2.1 changes list


Figure 5: v2.1 Changes

D#======	
Processor	
CPU	Intel [®] Atom [™] Processor C2358 (1M Cache, 1.70 GHz) Rangeley Embedded SoC
Memory/Storage	
DIMM	SO-DIMM with ECC
Size	At least 4GB
Storage	M.2 flash storage with at least 64GB
Future Storage	PCIe connection stuffing option for M.2 connector for future proofing
VGA Support	
USB	USB to VGA Dongle option
USB	4 USB 2.0 Ports on exterior panel
Chassis Manager UART Support	
UARTs	All UARTs remain the same as specified in the schematic, except the removal of Remote COM 3 and Remote COM 4.
Rangeley UARTs	Attach Rangeley UARTs to the CPLD ports Remote COM3 and Remote COM 4
New SoC COM Ports	New COM ports from the SoC will be called COM 7 and COM8
BIOS Debug	Console select pin must remain for debugging the BIOS posts. The jumper turns COM1 or COM2 into serial console port. The feature is in the current v1.0 CM
CPLD Specific Changer	

CPLDs	The CPLD will be backwards compatible with the CPLD code included in the specification
GPIOs	Extra GPIOs can be added to the CPLDs but they must not require changes in the code for the CPLDs. The GPIO will be determined by Microsoft.

4.2 UART future proof change

Figure 6: UART future proof change diagram

R5, R2, R6 and R4 will be installed. R1 and R3 will not be installed. In the future, CPLD code may be changed to use different UART routing. Another available option is to change resistor stuffing to change UART routing without requiring CPLD code change.

4.3 CPLD pinout change

For CPLD pinout, remote COM5 and remote COM6 pins will be removed and these pins will be used to connector to the CPU UARTS 0 and 1.

Figure 7: CPLD pinout change

	PIN	Net Name	I/О Туре
	97	UART1_AVN_TXD	Input to CPLD
CPLD3	98	UART1_AVN_RXD	Output from CPLD
	99	UARTO_AVN_TXD	Input to CPLD
	100	UART0_AVN_RXD	Output from CPLD
CPLD2	97	UART1_AVN_TXD	Input to CPLD
CPLDZ	98	UART1_AVN_RXD	Output from CPLD

4.4 EMI contingency plan

The design will add the option to be able to add gasket on the bottom side and spring components on the top side for EMI containment in case it is needed. The PCB will add a landing pad area for EMI gasket on the bottom side. On the top side, the PCB will add pad areas for shrapnel spring components to make contact with CM sheet metal.

The pads on the top side will need to have the distance between the pads to be less than a quarter wavelength of the highest frequency in the design. For example, if 6GHz SATA3 for M.2 SATA module is the highest frequency, then the distance between pads will need to be less than 12mm.

Figure 8: PCB Bottom side landing pad for EMI gasket

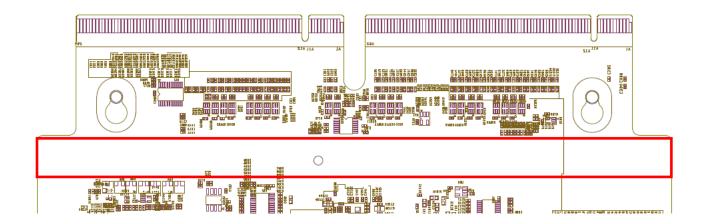
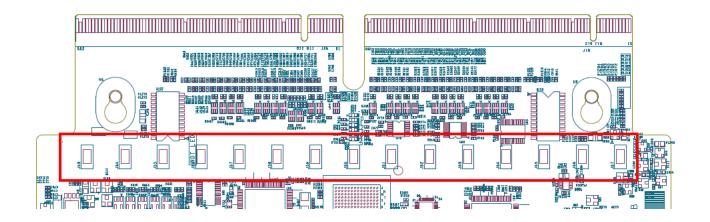



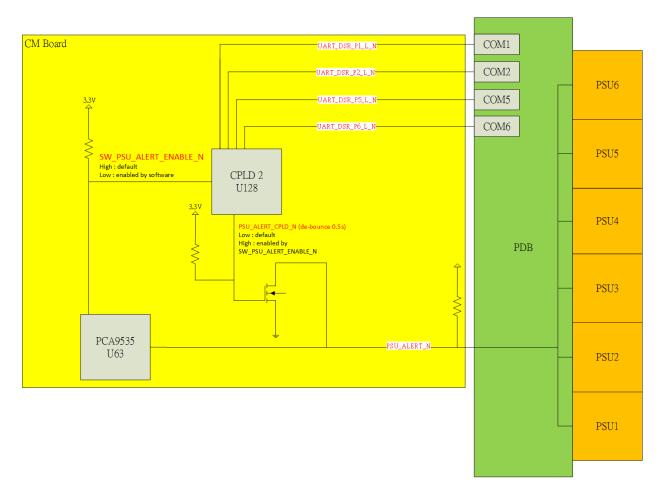
Figure 9: PCB Top side pads for spring component contacts

4.5 UART serial cable length

OCS CM v1 and v2.1 both implement defines the requirements for the Field Programmable Gate Array (FPGA) card. The standard RS-232 serial ports.

Figure 10: CM supported serial cable lengths

Baud Rate	Max Cable Length (feet)
1200	4000
2400	3000
4800	1000
9600	500
19200	50
115200	29


4.6 Future proofing pin connections for PSU_ALERT_N

We will add hardware hooks on CM v2.1 board to allow for a future row level power capping solution without affecting existing functionality

This change involves adding in six pin connections to spare pins on CPLD2, one GPIO connection on a spare pin of GPIO expander part and a FET switch.

With the new hardware hooks, CPLD2 on CM can receive a command fromPCIe Express card will function as a programmable accelerator card for data center control through UART DSR signals (software has the ability to enable/disable this feature through a GPIO expander part pin). CPLD2 will then take over and drive the existing PSU_ALERT_N signal to a future power solution.servers. A

Signal Name	CPLD2 pin#	I/O	Description
UART_DSR_P1_N	1	I	COM port signal, isolated after xver
UART_DSR_P2_N	51	I	COM port signal, isolated after xver
UART_DSR_P5_N	14	I	COM port signal, isolated after xver
UART_DSR_P6_N	62	I	COM port signal, isolated after xver
SW_PSU_ALERT_ENABLE_N	12	1	High: Default state. PSU continues to drivePSU_ALERT_N as it does today.Low: Software is enabling CPLD to now take over and drive PSU_ALERT_N low after a 0.5s de-bounce logic when a command from data center control (through UART DSRs) is received.
PSU_ALERT_CPLD_N	99	0	Default low. When enabled by SW_PSU_ALERT_ENABLE_N, if a command from data center control (through UART DSRs) is received, this is driven high. This will cause PSU_ALERT_N to be driven low.

Default state will be that SW_PSU_ALERT_ENABLE is high and PSU_ALERT_N will work normally through GPIO expander part as it is currently implemented.

In a next generation data center design if the data center sends command through COM port UART_DSR_P[1,2,5,6]_L_N pins then CPLD2 will receive the command and after a 0.5s de-bounce logic it will set PSU_ALERT_CPLD_N to high causing PSU_ALERT_N to be driven low.

With this change implemented the existing functionality of the CM board will not be affected and the existing CPLD2 image would work normally. These changes are being made to allow for possible future use without affecting current functionality.

4.7 Ethernet cable length support

The two 1G Ethernet ports from the CM v2.1 available through the Ethernet connectors on the PDB will be validated to support Ethernet cables up to 30 meters in length for each port. Ethernet cables longer than 30 meters in length will not be validated or supported.

5 Labelling and Loading Guidelines

5.1 Component Labelling

Labeling of all major components must match the schematic that is generated for the design.

6 Chassis Manager Interconnects

The Chassis Manager interconnects is defined in the schematic for the v1.0 version. The interconnections to the main chassis must be maintained except the Remote COM 3 and Remote COM 4 can be removed.

7 Management Subsystem

7.1 TPM Module

The Chassis Manager shall include a connector to support a TPM 2.0 module.

7.2 Debug features

USB to VGA dongle will provide driver for BIOS in UEFI mode. This will allow system to show BIOS posts. If UEFI is not used have a COM port with a select pin that will show the BIOS posts.

LED as shown in the schematic will be used to support debug. They must remain once the device is in production for datacenter debug.

7.3 Connector Quality

OCS is used in datacenters with a wide range of humidity (up to 90%). The connectors for these deployments must be capable of withstanding high humidity during shipping and installation. The base starting point for plating for DIMMs and PCIe connectors shall be 30u" thickness gold. Connectors can be made from different materials and thicknesses. The plating specifications for all connectors within the Blade Assembly must be reviewed with Microsoft and approved by Microsoft with extra focus on plating that is less than 30u" gold. DIMM connectors must also include lubricant/sealant applied by the connector manufacturer which can remain intact after soldering and other manufacturing processes. The sealant is required to displace any voids in the connector gold plating.

8 Chassis Manager Electrical Specifications

Follow the specification in the schematic for the v1.0 Chassis Manager. v2.1 must fit within the limits of the v1.0 device.

8.1 Current Interrupt Protection and Power, Voltage, and Current Monitoring

Match the specification for the hotswap controller in the schematic from the v1.0 Chassis Manager.

8.2 CPLD Isolation

The Isolation of the CPLD's UARTs from the blades need to be implemented using the same method as the I2C interface. The purpose is to stop current leaking from the blades to the Chassis Manager when the Chassis Manager is off.

8.3 12 Volt Brown out Protection

In no case the removal of the 12V power can cause the system to boot hang the Chassis Manager. The 12V supply voltage may drop or cut in and out and in these cases the Chassis Manager must be able to recover.

8.4 Grounding and Return

Follow the pin mapping included in the schematic from the v1.0 Chassis Manager.

9 Appendix: Commonly Used of Acronyms

This section provides definitions of acronyms used in the OCS system specifications.

ACPI – advanced configuration and power	ASIC – application-specific integrated circuit	
interface	BCD – binary-coded decimal	
AHCI – advanced host controller interface	BIOS – basic input/output system	
AHJ – authority having jurisdiction	BMC – baseboard management controller	
ANSI – American National Standards Institute	CFM – cubic feet per minute (measure of	
API – application programming interface	volume flow rate)	
ASHRAE – American Society of Heating, Refrigerating and Air Conditioning Engineers	CM – Chassis Manager	

Open Compute Project • Open CloudServer Chassis Manager

CMOS – complementary metal–oxide–	IBC – international building code	
semiconductor	IDE – integrated development environment	
COLO – co-location	IEC - International Electrotechnical Commission	
CTS – clear to send	IOC – I/O controller	
DDR3 – double data rate type 3	IPMI – intelligent platform management	
DHCP – dynamic host configuration protocol	interface	
DIMM – dual inline memory module	IPsec – IP security	
DPC - DIMMs per memory channel	ITPAC – IT pre-assembled components	
DRAM –	JBOD – "just a bunch of disks"	
DSR – data set ready	KCS – keyboard controller style	
DTR – data terminal ready	L2 – layer 2	
ECC – error-correcting code	LAN – local area network	
EEPROM - electrically erasable programmable	LFF – large form factor'	
read-only memory	LPC – low pin count	
EIA – Electronic Industries Alliance	LS – least significant	
EMC – electromagnetic compatibility	LUN – logical unit number	
EMI – electromagnetic interference	MAC – media access control	
FRU – field replaceable unit	MDC – modular data center containers	
FTP – file transfer protocol	MLC – multi-level call	
GPIO – general purpose input output	MTBF – mean time between failures	
GUID – globally unique identifier	MUX - multiplexer	
HBI – high business intelligence	NUMA – non-uniform memory access	
HCK – Windows Hardware Certification Kit	OOB – out of band	
HMD – hardware monitoring device	OSHA - Occupational Safety & Health	
HT – hyperthreading	Administration	
I ² C – inter-integrated circuit	OTS – off the shelf	

Open Compute Project • Open CloudServer Chassis Manager

PCB – printed circuit board	RxD – received data
PCIe – peripheral component interconnect express	SAS – serial-attached small computer system interface (SCSI)
PCH – platform control hub	SATA – serial AT attachment
PDB – power distribution backplane	SCK – serial clock
PDU – power distribution unit	SCSI – small computer system interface
PECI – Platform Environment Control Interface	SDA – serial data signal
Ph-ph – phase to phase	SDR – sensor data record
Ph-N – phase to neutral	SFF – small form factor
PNP – plug and play	SFP - small form-factor pluggable
POST – power-on self-test	SMBUS – systems management bus
PSU – power supply unit	SMBIOS – systems management BIOS
PWM – pulse-width modulation	SOL – serial over LAN
PXE – preboot execution environment	SPD – Serial Presence Detect
QDR – quad data rate	SPI – serial peripheral interface
QFN – quad flat package no-lead	SSD – solid-state drive
QPI – Intel QuickPath Interconnect	TBP – Tray Backplane
QSFP – Quad small form-factor pluggable	TDP – thermal design power
RAID – redundant array of independent disks	TMC – Tray Mezzanine Card
REST - representational state transfer	TOR – top of rack
RM – Rack Manager	TPM – trusted platform module
RMA – remote management agent	TxD – transmit data
ROC – RAID-on-chip controller	v1.0 – Original Version of the Chassis Manager
RSS – receive-side scaling	v2.1 – Second Generation of the Chassis
RTS – request to send	Manager
RU – rack unit	U – rack unit

UART – universal asynchronous receiver/transmitter

UEFI – unified extensible firmware interface

- **UL** Underwriters Laboratories
- **UPS** uninterrupted power supply
- **Vpp** voltage peak to peak
- WMI Windows Management Interface

CONFIDENTIAL