

Rackgo X **Tioga Pass**

QCT

Next-Gen OCP Server Refresh

www.QCT.io

QCT CONFIDENTIAL

Rackgo X Tioga Pass

- QCT Rackgo X Tioga Pass is next generation OCP general purpose compute server based on the latest Intel® Xeon® Scalable Processor family (aka Skylake-SP) CPU. The Motherboard has a single sided SKU, supporting up to 12 DIMMs or a double sided SKU supporting up to 24 DIMMs, designed to fit in the OCP Cubby chassis and mounted in ORv2 Rack.
- > OCP contribution by Quanta:
 - Design files of Tioga Pass
- > Reference:
 - Facebook 2S Server Tioga Pass Rev 1.0

Rackgo X Tioga Pass

Open Compute Project Multi-Node Server

Up to 2 Intel[®] Xeon[®] Skylake-SP Processors per Node

Up to 12 Memory Modules per Node

Up to 6 2.5" SFF drives(Ongoing) or 1 3.5" LFF drive per Node(Ready)

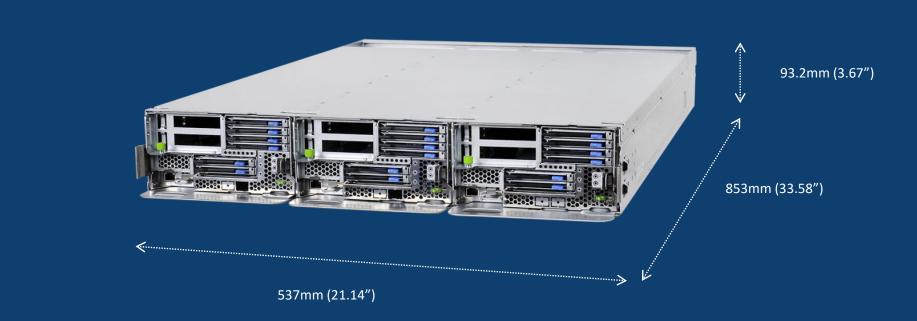
Tioga Pass Overview OCP Compute Server Refresh

Intel Next Generation Platform

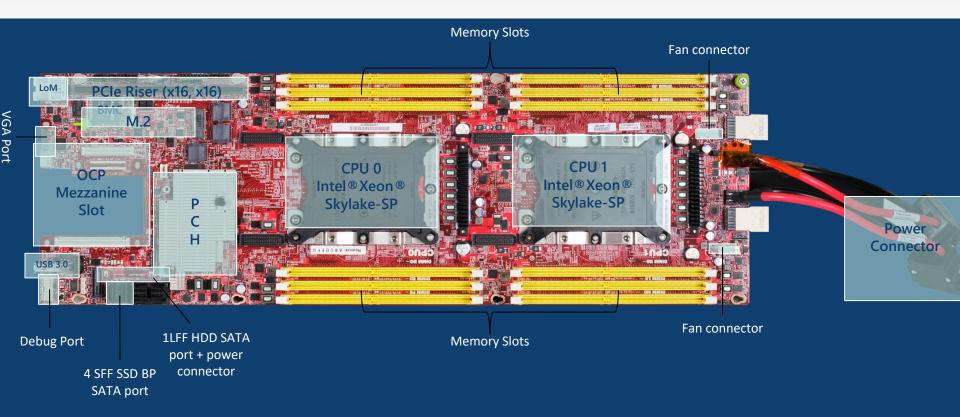
Supporting the latest and most powerful Intel[®]Xeon[®] Skylake-SP processor family
 Up to 1.5TB 2666 MHz DDR4 memory

Maximize Performance while Reducing Eco-footprint

- Eco-Friendly completely Halogen free board and component design


- Uniform Scale-up and Scale-out Building Block - Scale out on Capacity and Computing
- High Reliability, Serviceability and Availability
 Incredible level of business continuousness
- Air Cooling thermal design for existing infrastructure

- Support up to 165W processor TDP with ambient operating temperature of up to 40°C* to reduce operating costs


Tioga Pass Chassis Overview

Uniform Modular Design as Previous Generation

Modular Infrastructure Allows Simplicity and Flexibility add or remove building blocks as needed

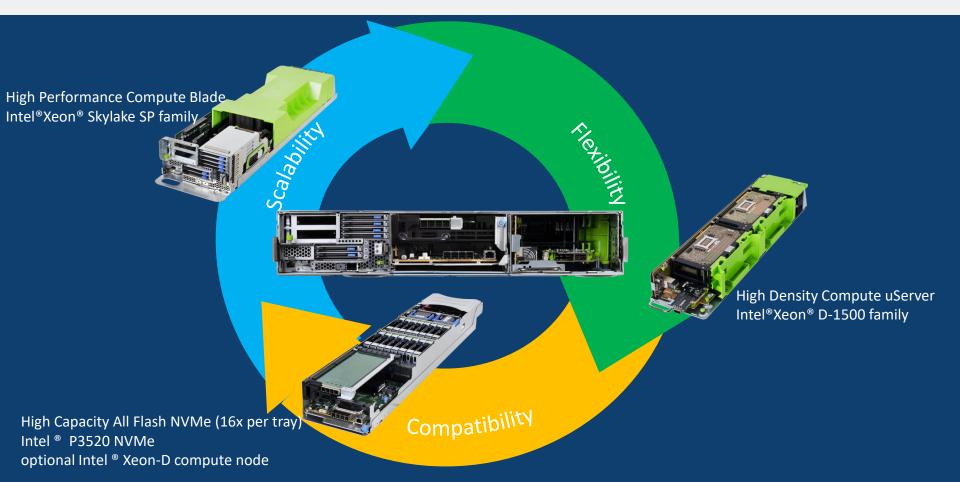
Motherboard Overview

Front View

LOM M.2 OCP 2.0 mezz USB 3.0

One System Design with Flexible Storage Options

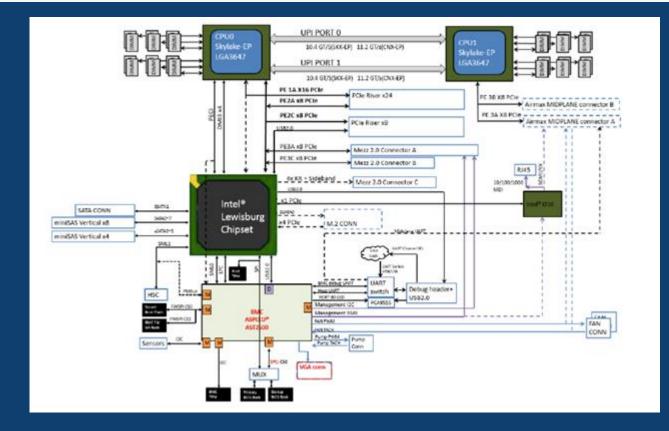
High Performance Compute Blade Intel[®]Xeon[®] Skylake SP family <u>1x LFF drive with 2x FH PCIe slots</u>


(Ready)

High Performance Compute Blade Intel[®]Xeon[®] Skylake SP family 6x SFF drives with 2x HH PCIe slots

(Ongoing)

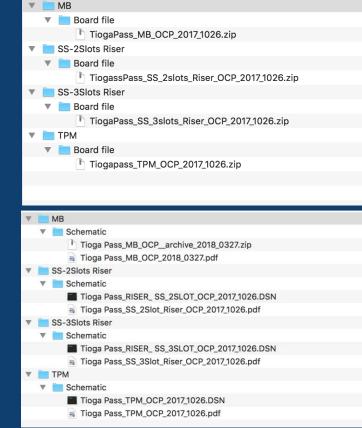
Note: Double sized with 24 DIMMs SKU is not orderable as plan


One Infrastructure with Wide Application Coverage

Tioga Pass Short Spec

Feature	Specification
Processor	(2) Intel [®] Xeon [®] Skylake-SP processor family per node, up to 165W
Chipset	Intel® C621
Memory	(12) 2666 MHz DDR4 RDIMM per node
	Or (24) 2666 MHz DDR4 RDIMM per node
Drive Bay	(1) 3.5" fixed drive bays per node(Ready)
	or
	(6) 2.5" hotswap SFF drive bays per node <mark>(Ongoing)</mark>
Network Controller	Support following QCT OCP mezzanine card (PCIe x16) for network option in front IO per node
	(1) QCT 1/10GbE RJ45 dual port OCP mezzanine card or
	(1) QCT 10G/25Gb SFP+/SFP28 OCP dual port mezzanine card
	(1) QCT 40/56G QSFP+ OCP single port mezzanine card
	(1) QCT 100G QSFP28 OCP single port mezzanine card
Expansion Slot	(2) PCIe gen 3 x16 FHHL PCIe expansion slots per node with 1x LFF drive SKU
	(1) PCIe gen 3 x16 OCP mezzanine slot per node
	or
	(2) PCIe gen 3 x16 HHHL PCIe expansion slots per node with 6x SFF drive SKU
	(1) PCIe gen 3 x16 OCP mezzanine slot per node
Form Factor	(3) nodes in 2OU (Open Rack) Rackmount
Rack Compatible	Open Rack v.2
Onboard Storage	(1) M.2 PCIe/SATA 2280/22110
Management Port	(1) dedicated 1GbE RJ45 management port
Integrated BMC chip	Aspeed AST2500/AST2520
Front I/O	(1) USB 3.0 type A port
	(1) USB 3.0 type C port
	(1) VGA port

Block Diagram



11

Design Files Contribution-01_Electricals

01_Full System Board Layout

O2_Full System Schematic CAD

Design Files Contribution-01_Electricals

03_Full System Component BON

> 04_Manufacturing Files

		🖾 🔤 🔤 🔤 🔤	stem Component BOM.xlsx
6	וב	ent BOM	
	- I		
_	_		
V		01_PCB manufacturing files	
	Ŧ	MB	
		Gerber file	
	Ŧ	SS-2Slots Riser	
		Gerber file	
	T		
		Gerber file	
_		Gerber file	
Ť		02_Schematic (.pdf)	
		Schematic	
	-	Schematic	
		Solution Riser	
	~	SS-3Slots Riser	
	*	Schematic	
	W		
	*	Schematic	
W	-	03_Board component placement map (.pdf)	
*		TiogaPass placement map.pdf	
W		04_Stack Up	
		MB	
		Stackup	
	w		
		Stackup	
		Stackup	
	$\overline{\mathbf{v}}$	🔻 🛅 TPM	
		🕨 🚞 Stackup	

Design Files Contribution-02_Mechanicals

Mechanical Step File

TP-SS-TOP-ASSY-20171026.zip

Design Files Contribution-03_Software

Software File

- 01_BIOS
 TP_3A10.BIN
 02_BMC
 fbtp-v3.2.4_unsigned.zip
 03_CPLD
 F08_4000HC_V2_0.zip
 F08_4000HC_V2_0.zip
 F08_DVT1_rev00_PVCCIN_VSA_8BB76549_20170208.psf
 F08_DVT1_rev00_PVCCIO_C609F4EE_20170208.psf
 - F08_DVT1_rev00_PVNN_3DE4AF22_20170208.psf
 - F08_DVT1_rev00_VDDQ_SS_1ph_RDIMM-Pin_D2C5738D_20170208.psf
 - F08_PVT_rev00_VDDQ_DS_7FACDC07_20170721.psf

OCP Tenets/Principles

Efficiency

- New design to trim the dimension requirement of compute node to achieve the optimization of space use in the chassis
- Selectable riser to support 2x FH slots riser with 1x 3.5" HDD or 2x HH slots riser with 6x 2.5" HDD according to the IO bandwidth requirement
- Utilize efficiently the layout of rack, each chassis is with 20U height, totally 16x 20U system in one rack without remaining space

Scalability

Leverage current Cubby chassis to extend the various platform use case

Openness

Comply with ORv2 standard

> Impact

New design architecture of placing DIMM on bottom side of baseboard to efficiently utilize the chassis space

Thanks!!!