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1. License 
 
Contributions to this Specification are made under the terms and conditions set forth in 
modified Open Web Foundation Contributor License Agreement (“OWF CLA 1.0”) 
(“Contribution License”) by:  
 
Intel Corporation 
Microsoft Corporation 
 
Usage of this Specification is governed by the terms and conditions set forth in the modified 
Open Web Foundation Final Specification Agreement (“OWFa 1.0”) (“Specification 
License”).    
 
You can review the base Specification License(s) executed by the above referenced 
contributors to this Specification on the OCP website at 
http://www.opencompute.org/participate/legal-documents/. For actual executed copies of 
either agreement, please contact OCP directly.  
 
 Notes: 
 
 

1. The above license does not apply to the Appendix or Appendices. The information in 
the Appendix or Appendices is for reference only and non-normative in nature.  

 
NOTWITHSTANDING THE FOREGOING LICENSES, THIS SPECIFICATION IS PROVIDED 
BY OCP "AS IS" AND OCP EXPRESSLY DISCLAIMS ANY WARRANTIES (EXPRESS, 
IMPLIED, OR OTHERWISE), INCLUDING IMPLIED WARRANTIES OF 
MERCHANTABILITY, NON-INFRINGEMENT, FITNESS FOR A PARTICULAR PURPOSE, 
OR TITLE, RELATED TO THE SPECIFICATION. NOTICE IS HEREBY GIVEN, THAT 
OTHER RIGHTS NOT GRANTED AS SET FORTH ABOVE, INCLUDING WITHOUT 
LIMITATION, RIGHTS OF THIRD PARTIES WHO DID NOT EXECUTE THE ABOVE 
LICENSES, MAY BE IMPLICATED BY THE IMPLEMENTATION OF OR COMPLIANCE 
WITH THIS SPECIFICATION. OCP IS NOT RESPONSIBLE FOR IDENTIFYING RIGHTS 
FOR WHICH A LICENSE MAY BE REQUIRED IN ORDER TO IMPLEMENT THIS 
SPECIFICATION.  THE ENTIRE RISK AS TO IMPLEMENTING OR OTHERWISE USING 
THE SPECIFICATION IS ASSUMED BY YOU. IN NO EVENT WILL OCP BE LIABLE TO 
YOU FOR ANY MONETARY DAMAGES WITH RESPECT TO ANY CLAIMS RELATED TO, 
OR ARISING OUT OF YOUR USE OF THIS SPECIFICATION, INCLUDING BUT NOT 
LIMITED TO ANY LIABILITY FOR LOST PROFITS OR ANY CONSEQUENTIAL, 
INCIDENTAL, INDIRECT, SPECIAL OR PUNITIVE DAMAGES OF ANY CHARACTER 
FROM ANY CAUSES OF ACTION OF ANY KIND WITH RESPECT TO THIS 
SPECIFICATION, WHETHER BASED ON BREACH OF CONTRACT, TORT (INCLUDING 
NEGLIGENCE), OR OTHERWISE, AND EVEN IF OCP HAS BEEN ADVISED OF THE 
POSSIBILITY OF SUCH DAMAGE. 

  

http://www.opencompute.org/participate/legal-documents/
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2.0 Scope & Introduction 
 

 
Scalable I/O Virtualization (Scalable IOV) is a scalable and flexible approach to hardware- 
assisted I/O virtualization. Scalable IOV builds on existing PCI Express* capabilities, enabling it to 
be easily supported by compliant PCI Express (PCIe) or Compute Express Link (CXL) endpoint 
device designs and the software ecosystem. 
This document specifies the Scalable IOV architecture, including host platform and endpoint 
device capabilities required to support it, and describes a high-level reference software 
architecture. 
 
 

2.1 Document Organization 
Chapter 1 provides an architectural overview of Scalable IOV and its key components. Chapter 2 
specifies endpoint device blueprint and requirements. 
Chapter 3 describes the required host platform Root Complex (RC) support. Chapter 4 describes 
the reference software architecture. 
 

2.2 Audience 
This document is for host and endpoint device developers implementing scalable hardware 
support for I/O virtualization and sharing, for driver developers for such devices, and for Operating 
System and Virtual Machine Monitor developers who are enabling hardware-assisted I/O 
virtualization. 
 

2.3 Reference Documents 
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3.0 Compliance with OCP Tenets  
  

Openness 
Development and publication of an open specification is critical to enable an inter-operable ecosystem of 
host devices (e.g. CPUs), I/O devices, and software infrastructure. 
 
Efficiency 
The S-IOV specification is developed with optionality and design optimization choices to enable designs and 
features/resources to be most efficient in Silicon design and software usages for the intended application.  
This enables efficiencies in overall infrastructure costs in that designs can be optimized for what is required. 
 
Impact 
Leveraging S-IOV improves I/O virtualization and abstraction for the entire Data Center ecosystem by 
providing a scaled solution that is standardized across the ecosystem components. Via utilization of this 
new open technology, the expectation is that ecosystem deployment will happened more rapidly. 
 
Scalability 
By enabling a larger number of I/O slices per I/O device, S-IOV can provide a larger scale to the expanding 
number of threads, VMs, containers that are required in Data Centers as they grow in performance and 
scale.  This is a critical capability for large scale datacenter deployments. 
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4.0 Version History 
 

Date Version Author Description 

June 2018 1.0 Intel Corporation Technical preview release 

September 2020 1.1 Intel Corporation Specification update 

February 2022 1.2 Intel Corporation 
Microsoft Corporation 

Updated to include CXL;   
Removed Intel branding and Intel specific details 

 

5.0 Terms and Abbreviations 
 

Acronym Term Description 

SR-IOV Single Root I/O 

Virtualization 

SR-IOV as specified by the PCI Express Base 

Specification, Revision 4.0, Version 1.0. 

Scalable IOV Scalable I/O 

Virtualization 

Software composable and scalable I/O virtualization 

as specified by this document. 

PF Physical Function PCI Express Physical Function as specified by SR-IOV. 

VF Virtual Function PCI Express Virtual Function as specified by SR-IOV. 

ADI Assignable Device 

Interface 

Assignable Device Interface is the unit of assignment 

for a device. 

DWQ Dedicated Work 

Queue 

A work queue that can be assigned to a single address 

domain at a time. 

SWQ Shared Work Queue A work queue that can be assigned to multiple 

address domains simultaneously. 

PASID Process Address 

Space Identifier 

Process Address Space ID and its TLP prefix as 

specified by the PCI Express Base Specification. 

RID Requester ID Bus/Device/Function number identity for a PCI 

Express function (PF or VF). 

IMS Interrupt Message 

Storage 

Device-specific interrupt message storage for ADIs. 

MSI-X Message Signaled 

Interrupts Extended 

MSI-X capability as defined by the PCI Express Base 

Specification. 

FLR Function Level Reset Function Level Reset as defined by the PCI Express 

Base Specification. 

VMM Virtual Machine 

Monitor 

System software that creates and manages virtual 

machines. Also known as Hypervisor. 

VM Virtual Machine An isolated execution environment constructed by a 

VMM which runs a guest OS. 

Host OS Host Operating 

System 

The privileged OS that works with the VMM to 

virtualize the platform. 
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Acronym Term Description 

VDCM Virtual Device 

Composition Module 

A device-specific component that is responsible for 

composing a Virtual Device. Typically, this is a 

software component in the VMM or host driver, but 

other implementations are possible. 

VDEV Virtual Device A virtual device composed by VDCM that utilizes one 

or more ADIs. 

Guest Driver Guest Driver Device-specific software that runs in a VM and 

manages virtual device operation. 

Host Driver Host Driver Device-specific software that runs in the host OS and 

manages physical device operation. 

GVA Guest Virtual Address Virtual address space of a process executing within a 

VM. 

GPA Guest Physical 

Address 

Physical address space of a VM as seen by guest 

software. 

HPA Host Physical Address Physical address space of hardware machine. 

SVM Shared Virtual 

Memory 

A memory model that enables I/O devices to operate 

in shared virtual address space with CPU. 

ATS Address Translation 

Services 

Ability for device to request and cache address 

translations. Refer to the PCI Express Specification. 

DMWr Deferrable Memory 

Write 

Refer to the PCI Express ECN for Deferrable Memory 

Write (DMWr) . 
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6.0 Overview 
 

This chapter provides background on I/O virtualization and introduces the key concepts and components 

of Scalable I/O Virtualization. 

6.1 Virtualization Background 

Virtualization allows system software called a virtual machine monitor (VMM), also known as a hypervisor, 

to create multiple isolated execution environments called virtual machines (VMs), in which operating 

systems and applications can run. Virtualization is extensively used in enterprise and cloud datacenters as 

a mechanism to consolidate multiple workloads onto a single physical machine while keeping them isolated 

from each other. 

Containers are another type of isolated environment that are used to package and deploy applications and 

run them in the isolated environment. Containers may be constructed as either bare-metal containers that 

are instantiated as OS process groups or as machine containers that utilize the increased isolation 

properties of hardware support for virtualization. Containers are lighter weight than VMs and can be 

deployed in much higher density, potentially increasing the number of isolated environments on a system 

by an order of magnitude. This document primarily refers to isolated domains as VMs, but the principles 

also apply to other domain abstractions such as containers. 

I/O virtualization refers to the virtualization and sharing of I/O devices across multiple VMs or container 

instances. There are multiple existing approaches for I/O virtualization that may be broadly classified as 

either software-based or hardware-assisted. 

With software-based I/O virtualization, the VMM exposes a virtual device, such as a Network Interface 

Controller (NIC), to a VM. A software device model in the VMM emulates the behavior of the virtual device. 

The device model translates from virtual device commands to physical device commands that are 

forwarded to a physical device. Such software emulation of devices can provide good compatibility to 

software running within VMs but incurs significant performance overhead, especially for high performance 

devices. In addition to the performance limitations, emulating virtual devices in software can be complex for 

programmable devices such as Graphics Processing Units (GPUs) and Field-Programmable Gate Arrays 

(FPGAs) because these devices perform a variety of complex functions. Variants of software-based I/O 

virtualization such as ‘device paravirtualization’ and ‘mediated pass-through’ can mitigate some of the 

performance and complexity disadvantages of device emulation. 

To avoid the overheads of software-based I/O virtualization, VMMs may make use of platform support for 

DMA and interrupt remapping to support ‘direct device assignment’, which allows guest 
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software to directly access an assigned device. Direct device assignment provides the best I/O virtualization 

performance since the hypervisor is no longer in the path of most guest software accesses to the device. 

However, this approach requires the device to be exclusively assigned to a VM and does not support sharing 

of the device across multiple VMs. 

Single Root I/O Virtualization (SR-IOV) is a PCI-SIG* defined specification for hardware-assisted I/O 

virtualization that defines a standard way for partitioning endpoint devices for direct sharing across multiple 

VMs or containers. An SR-IOV capable endpoint device supports a Physical Function (PF) and multiple 

Virtual Functions (VFs). The PF provides resource management for the device and is managed by the host 

driver running in the host OS. Each VF can be assigned to a VM or container for direct access. SR-IOV is 

supported by high performance I/O devices such as network and storage controller devices as well as 

programmable or reconfigurable devices such as GPUs, FPGAs, and other accelerators. 

6.2 Scalable I/O Virtualization 

Scalable IOV is an approach to hardware-assisted I/O virtualization that enables highly scalable and high-

performance sharing of I/O devices across isolated domains, while containing the cost and complexity for 

endpoint device hardware to support such scalable sharing. 

Figure 1-1 illustrates two example approaches to Scalable IOV, showing how it enables flexible composition 

of virtual devices for device sharing. Accesses between a VM and a virtual device are defined as either 

‘direct path’ or ‘intercepted path’. Direct-path operations on the virtual device are mapped directly to the 

underlying device hardware for performance, while intercepted-path operations are emulated by a Virtual 

Device Composition Module (VDCM) for greater flexibility. 

The exact mechanism for virtual device composition is implementation specific. For example, Figure 1-1 (a) 

shows a system that implements VDCM in host OS or VMM software, whereas Figure 1-1 (b) shows a system 

that implements VDCM in an embedded controller on the platform. VDCM configures the device through 

 

 

(a) (b) 

Figure 1-1: Approaches to Scalable I/O Virtualization 
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the host driver. VDCM and the host driver may be co-located. For simplicity, this specification primarily uses 

the example where VDCM is implemented in the host OS or VMM software, but the architecture can be 

applied to other mechanisms of virtual device composition. 

Figure 1-2 illustrates the main benefits of Scalable IOV. Device resources shown as “Q” can be directly 

mapped to VMs. A VDEV is a virtual device instance that is exposed to a VM. Virtual device composition 

enables increased sharing scalability and flexibility at lower hardware cost and complexity. It provides 

system software the flexibility to share device resources with different address domains using different 

abstractions. For example, application processes may access a device using system calls and VMs may 

access a device using virtual device interfaces. Virtual device composition can also enable dynamic mapping 

of VDEVs to device resources, allowing a VMM to over-provision device resources to VMs. 

In a data-center with physical machines containing different generations (versions) of the same I/O device, 

a VMM can use the virtual device composition to present the same VDEV capabilities irrespective of the 

different generations of physical I/O devices. This ensures that the same guest OS image with a VDEV driver 

can be deployed or migrated to any of the physical machines. 

Figure 1-2: Main benefits of Scalable I/O Virtualization 

 

The Scalable IOV architecture is composed of the following elements: 
 

Endpoint device support PCI Express endpoint device requirements and capabilities, covered in 

Chapter 2. 

Platform support Host platform (Root Complex) requirements including enhancements to DMA 

remapping hardware, covered in Chapter 3. 

Virtual Device Composition 
Module support 

Virtual device composition architecture. This specification describes the 

software-based virtual device composition architecture in detail, including 

host system software enabling and device specific software components 

such as host driver, guest driver, and virtual device composition module 

(VDCM). This is covered in Chapter 4. 

PCI Express endpoint devices may be designed to operate with either Scalable IOV or SR-IOV. Device 

implementations that already support SR-IOV can maintain it for backwards compatibility while adding the 

new capabilities to support Scalable IOV. A device capable of both methods should allow software to enable 

it to operate in one mode or other. Devices may support both methods concurrently or support  
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Scalable IOV operation in a hierarchical manner over SR-IOV VFs, but these modes of operation are beyond 

the scope of this document. 

6.2.1 Separation of Direct-path and Intercepted-path Operations 

The hardware-software interface for most I/O devices may be divided into (a) slow-path control and 

configuration operations that are less frequent and hence virtualizing them has less impact on overall 

device performance; and (b) fast-path command and completion operations that are frequent and hence 

virtualizing them has higher impact on overall device performance. This distinction of slow-path and fast-

path operations is practiced by high performance I/O devices that support direct user-mode access. 

Scalable IOV extends such device designs to define a dynamically composable approach to I/O 

virtualization. 

Scalable IOV distinguishes intercepted-path and direct-path accesses. Intercepted-path accesses from VMs 

go through the virtual device composition module, while direct-path accesses are mapped directly to the 

device. Which operations and accesses are distinguished as intercepted path versus direct path is 

controlled by the device implementation. Typically, slow-path operations are treated as intercepted-path 

accesses and fast-path operations are treated as direct-path accesses. For example, intercepted-path 

accesses typically include initialization, control, configuration, management, QoS, error processing, and 

reset, whereas direct-path accesses typically include data-path operations involving work submission and 

work completion processing. 

6.2.2 Assignable Device Interfaces 

High performance I/O devices support a large number of command/completion interfaces for efficient 

multiplexing/demultiplexing of I/O. Scalable IOV defines an approach to assign these device interfaces to 

isolated domains at a fine granularity. The architecture defines the granularity of sharing of a device as an 

‘Assignable Device Interface’ (ADI). Each ADI instance on the device encompasses the set of resources on 

the device that are allocated by software to support the direct-path operations for a virtual device. See 

section 2.1 for examples of the types of resources that may constitute ADIs. 

6.2.3 Platform Scalability Using PASIDs 

All ADIs on a device function use the same PCIe* Requester ID (Bus/Device/Function number) corresponding 

to the device’s PCIe Function. Process Address Space Identifiers (PASID) are used to distinguish upstream 

memory transactions performed for different ADIs and to convey the address space targeted by the 

transaction. The 20-bit PASID associated with a transaction is conveyed in a PCI Express PASID TLP 

Prefix. Refer to the PCI Express specification for details on the PASID TLP Prefix. A platform with support 

for Scalable IOV enables a unique address translation function for upstream requests for each PASID, as 

described in Chapter 3. 



Scalable I/O Virtualization 

Scalable I/O Virtualization – R1.0, Ver 1.2, February 2022 

13 

 

 

 

6.2.4 Virtual Device Composition 

A device-specific component called the Virtual Device Composition Module (VDCM) is responsible for 

managing virtual device instances. 

Figure 1-3 illustrates an example software architecture where VDCM is implemented in host software. The 

figure calls out key components to describe the architecture and is not intended to illustrate all virtualization 

software or specific implementation choices. Software responsibilities are abstracted between system 

software (OS/VMM) and device-specific driver software components. The VMM maps direct-path accesses 

from the guest directly onto the provisioned ADIs for the VDEV. The VMM traps intercepted-path accesses 

from the guest and forwards them to VDCM for emulation. VDCM emulates the intercepted accesses to the 

VDEV. If required, it may access the physical device (for example, to read ADI status or configure the ADI’s 

PASID). 

Virtualization management software may make use of VDCM interfaces for virtual device resource and state 

management, enabling capabilities such as suspend, resume, reset, and migration of virtual devices. 

Depending on the specific VMM implementation, VDCM may be instantiated as a separate user or kernel 

module or may be packaged as part of the host driver. Chapter 4 further describes the high-level software 

architecture. 

 
 

Figure 1-3: Scalable I/O Virtualization Software Architecture 
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7. Device Support 
 

This chapter describes the key set of requirements and capabilities for an endpoint device to support 

Scalable IOV. The requirements apply to both Root-Complex Integrated Endpoint and PCI Express Endpoint 

devices. 

As described in previous chapter, the construct for fine-grained sharing on endpoint devices is Assignable 

Device Interfaces (ADIs). ADIs form the unit of assignment and isolation for devices and are composed by 

software to form virtual devices. This chapter describes the requirements for endpoint devices for 

enumeration, allocation, configuration, management, and isolation of ADIs. 

7.1 Organizing Device Resources for ADIs 

Resources on a device associated with work submission, execution, and completion operations are referred 

to as device backend resources. These may include command/status registers, on-device queues, 

references to in-memory queues, local memory on the device, or any other device-specific internal 

constructs. 

An Assignable Device Interface (ADI) refers to the set of device backend resources that are allocated, 

configured and organized as an isolated unit, forming the unit of device sharing. The type and number of 

backend resources grouped to compose an ADI is device specific. An ADI may be associated with a device 

context, rather than with specific device resources. ADIs using shared work queues (SWQ) for work 

submission may have little to no state or resources associated with them on the device. (See Section 2.3 for 

more details.) 

Figure 2-1 illustrates a logical view of ADIs with varying number of device backend resources, and 

virtualization software composing virtual device instances with one or more ADIs. ADI 1 and ADI 2 are 

composed of single backend resource 1 and 2 respectively, whereas ADI 3 is composed of multiple backend 

resources 3, 4, and 5. Virtual device 1 instance (VDEV1) is composed of two ADIs (ADI 1 and ADI 2) whereas 

VDEV 2 and VDEV k instances are composed of single ADIs (ADI 3 and ADI m respectively). Due to different 

ADI composition of ADI 3 and ADI m, VDEV 2 gets 3 backend resources whereas VDEV k gets one backend 

resource. 

 
 

IMPLEMENTATION NOTE 

Example ADIs for various types of devices 

• Network controller: Transmit/receive queues associated with a virtual switch interface. 

• Storage controller: Command and completion queues associated with a storage namespace. 

• GPU: Dynamically created graphics or compute context. 

• FPGA: Accelerator Functional Unit. 

• Multi-context FPGA: Dynamically created execution context. 

• RDMA device: Queue pair. 
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7.2 Identifying ADI Upstream Requests 

Upstream memory requests from all ADIs are tagged with the Requester ID of the device function hosting 

the ADIs. Requests from different ADIs of the device function are distinguished using a Process Address 

Space Identifier (PASID). The PCI Express specification defines the Process Address Space Identifier 

(PASID) in the PASID TLP Prefix of memory transactions. In conjunction with the Requester ID, the PASID 

identifies the address space associated with the request. 

Endpoint devices must support the PASID capability as defined by the PCI Express specification and comply 

with all associated requirements. Before enabling ADIs, the PASID capability of the device must be enabled. 

Before an ADI is activated, it must be configured with a PASID value. All upstream memory requests and 

ATS Translation Requests generated by any ADI must be tagged with the assigned PASID value using the 

PASID TLP Prefix. ATS Translated Requests by an ADI may be generated without PASID or with the 

assigned PASID. Refer to the PCI Express specification and related ECNs for details on usage of the PASID 

TLP Prefix on Translated Requests. Interrupts generated by ADIs are not tagged with the PASID TLP Prefix. 

Refer to Section 2.5 for identifying ADI interrupts. 

Each ADI must have a primary PASID associated with it, which is used for direct-path operations. ADIs may 

have optional secondary PASIDs whose usage is device dependent. For example, an ADI may be configured 

to access meta-data, commands, and completions with a secondary PASID that represents a restricted 

control domain, while data accesses are associated with the primary PASID corresponding to the domain to 

which the ADI is assigned. 

When assigning an ADI to an address domain (e.g., VM, container, or process), the ADI is configured with 

the unique PASID of the address domain and its memory requests are tagged with the PASID value in the 

PASID TLP Prefix. If multiple ADIs are assigned to the same address domain, they may be assigned the same 

PASID. If ADIs belonging to a VDEV assigned to a VM are further mapped to secondary address domains 

(e.g., application processes) within the VM, each such ADI is assigned a unique PASID corresponding to 

the secondary address domain. This enables usages such as Shared Virtual Memory within a VM, where a 

guest application process is assigned an ADI and requests from the ADI are subject to nested translation 

(GVA to GPA to HPA) by the DMA remapping hardware, which is similar to the nested address translation 

for CPU accesses by a guest application. 
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7.3 ADIs Using Shared Work Queues 

A Shared Work Queue (SWQ) is a special work submission interface that can be used simultaneously by 

multiple independent software entities such as applications, containers, or VMs. Work submission to SWQ 

makes use of PCI Express Deferrable Memory Write (DMWr) requests. DMWr provides a mechanism for 

PCIe Endpoints and hosts to choose to carry out or defer incoming DMWr Requests. DMWr requests 

destined to an SWQ may be accepted or deferred (i.e., rejected for re-submission) by the Endpoint device. 

Refer to the PCI Express Deferrable Memory Write (DMWr) and Device 3 Extended Capability ECN for 

details. 

Software submits work descriptor to an SWQ using DMWr request. Such DMWr requests may convey the 

PASID value identifying the software entity generating the DMWr requests. The SWQ on the device may 

either return a “Success” (Accepted) or “Retry” (Deferred) in the DMWr response. Success indicates the 

work was accepted into the SWQ, while Retry indicates it was not accepted due to SWQ capacity, QoS, or 

other reasons. On a Retry status, the work submitter may back-off and retry later. 

Multiple ADIs can map to an SWQ and hence an SWQ can support larger number of VMs. Because work 

submissions to an SWQ contain a PASID value in the work descriptor, the PASID may not need to be 

preconfigured in the device for ADIs that use an SWQ. 

 

 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2-1: Composability of Virtual Devices from ADIs 
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7.4 ADI Memory Mapped Registers 

Each ADI’s memory mapped I/O (MMIO) registers are contained within one or more of address ranges 

mapped by the PCI Express Base Address Registers (BARs) of the device. Each ADI’s MMIO registers 

must be isolated in one or more system page size aligned regions. These may be contiguous or scattered 

regions within the device’s MMIO space. The number and location of system page size regions associated 

with specific ADIs is device-specific. The system page sizes supported by the device is reported via the 

Scalable IOV DVSEC Capability described in Section 2.8. 

Devices must partition their ADI MMIO registers into two categories: (a) MMIO registers accessed for direct- 

path operations; and (b) MMIO registers accessed for intercepted-path operations. The definition of what 

operations are designated as intercepted path versus direct path is device-specific. The device must 

segregate registers in these two categories into distinct system page size regions, to allow the VMM to 

directly map direct-path operations to one or more constituent ADIs while emulating intercepted-path 

operations in the VDCM. 

Devices should implement prefetchable 64-bit BARs so that address space above 4GB can be used for 

scaling ADI MMIO resources. 

7.5 ADI Interrupts 

ADIs capable of generating interrupts must generate only message signaled interrupts, not legacy 

interrupts. ADIs must not share interrupt resources/messages with the base function or with another ADI. 

ADIs sharing the same SWQ for work submission must also support separate interrupt messages. Each ADI 

may support zero or more interrupt messages. For example, an ADI composed of N queues may support 

N interrupt messages to distinguish work arrivals or completions for each queue. 

7.5.1 ADI Interrupt Message Storage (IMS) 

Device implementations may support a large number of ADIs, and each ADI may use multiple interrupt 

messages. To support the large interrupt message storage for all the ADIs, a device-specific construct called 

Interrupt Message Storage (IMS) is defined. IMS enables devices to store the interrupt messages for ADIs 

in a device-specific optimized manner without the scalability restrictions of the PCI Express defined MSI-X 

capability. Support for IMS is indicated by the IMS Support field in the Scalable IOV DVSEC Capability 

described in Section 2.8.1 

IMS entries store and generate interrupts using the same interrupt message address and data values as PCI 

Express MSI-X table entries. Interrupt messages stored in IMS are composed of a DWORD size data payload 

and a 64-bit address. IMS implementations must allow for dynamic allocation and release of IMS entries as 

ADIs are dynamically instantiated/revoked to create/destroy virtual devices. IMS must support per-message 

 
 

1 IMS may be supported by devices independent of Scalable IOV. Such usages are outside the scope of 

this document. 
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masking and pending bit status, similar to the per-vector mask and pending bit array in the PCI Express MSI- 

X capability. 

The size, location, and storage format for IMS is device specific. For example, a device may implement IMS 

as on-device storage. A device that maintains ADI contexts in memory may implement IMS as part of the 

context privileged state. In either approach, the device may implement IMS as either one unified storage 

structure or as de-centralized per-ADI storage structures. If IMS is implemented in host memory, the device 

may cache IMS entries within the device. If the device implements IMS caching, it must also implement 

device specific interfaces for the device driver to invalidate the IMS cache entries. Programming of IMS is 

done by the host driver. 

Devices should support IMS for better scalability and dynamic allocation of ADI interrupts. Interrupts 

generated by ADIs should use the IMS. Interrupts generated by the base function should use the MSI or 

MSI-X capability. With appropriate device and system software support, ADI interrupts may use MSI-X and 

base-function interrupts may use IMS. 

7.5.2 ADI Interrupt Isolation 

IMS is managed by host driver software and is not accessible directly from guest or user-mode drivers. 

Within the device, IMS storage is not accessible from the ADIs. ADIs can request interrupt generation only 

through the device’s ‘Interrupt Message Generation Logic’, which allows an ADI to only generate interrupt 

messages that are associated with that specific ADI. These restrictions ensure that the host driver has 

complete control over which interrupt messages can be generated by each ADI. 

 

7.6 ADI Isolation, Access Control, and QoS 

ADIs are isolated from each other and from the base function. Operations or functioning of one ADI must 

not functionally affect other ADIs or the base function. Every memory request (except ATS translated 

requests) from an ADI must include the ADI’s assigned PASID value in the PASID TLP prefix. The PASID 

identity for an ADI is modified only by privileged software such as the host driver. 

The PCI Express Access Control Service capability is not applicable for isolation between ADIs. Devices must 

not allow peer-to-peer access between ADIs or between ADIs and the base function (either internal to the 

device or at I/O fabric egress). Independent of Scalable IOV support, a device may support ACS guidelines 

for isolation across endpoint functions or devices, per the PCI Express specification. 

Although ADIs are functionally isolated, they may have performance effects on each other and on the base 

function. Devices may define Quality of Service (QoS) controls for ADIs to manage these effects. The 

definition of QoS for ADIs is device specific and is outside the scope of this specification. 

ADI specific errors are errors that can be attributed to a particular ADI, such as malformed commands or 

address translation errors. Such errors must not impact functioning of other ADIs or the base function. 
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Handling of ADI specific errors can be implemented in device-specific ways; such errors should be reported 

directly to the guest that the ADI is assigned to, when possible. 

7.7 ADI Reset 

Each ADI must be independently resettable without affecting the operation of other ADIs. Reset of an ADI 

is performed through device-specific interfaces. ADI reset causes the device to abort (discard) all in flight 

and accepted operations to the ADI by specific domain and reset ADI specific configuration on the device 

to a known state. For ADIs using shared work queue (SWQ) for work submission, ADI reset must not cause 

reset of the SWQ since that may affect other ADIs sharing the SWQ. 

A VDEV may expose a virtual FLR capability that may be emulated by the VDCM by requesting the device 

to perform ADI resets for each of the constituent ADIs of the virtual device. 

An ADI reset must ensure that the reset is not reported as complete until all of the following conditions are 

satisfied: 

- All DMA write operations by the ADI are drained or aborted 

- All DMA read operations by the ADI have completed or aborted 

- All interrupts from the ADI have been generated 

- If ADI is capable of Address Translation Service (ATS), all ATS requests by the ADI have completed or 

aborted, and 

- If ADI is capable of Page Request Service (PRS), no more page requests will be generated by the ADI. 

Additionally, either page responses have been received for all page requests generated by the ADI or 

the ADI will discard page responses for any outstanding page requests by the ADI. 

Devices supporting Scalable IOV should support Function Level Reset (FLR) and may support additional 

device-specific global reset controls. A global reset operation or FLR resets all ADIs and returns the device 

to a state where no ADIs are configured. A device may also support a device-specific global reset that resets 

all ADIs but leaves them configured. 

Devices may optionally support saving and restoring ADI state, to facilitate operations such as live migration 

and suspend/resume of virtual devices composed of ADIs. For example, to support ADI suspend, a device 

may implement an interface to drain (complete) all operations submitted to the ADI. 

7.8 Capability Enumeration 

An endpoint device function reports support for Scalable IOV via a PCI Express Designated Vendor Specific 

Extended Capability (DVSEC). This capability may be used by system software and tools to detect endpoint 

devices supporting Scalable IOV without a dependency on the host driver. The host driver is still responsible 

for enabling Scalable IOV related operations through system software specific interfaces. Figure 2-2 

illustrates the Scalable IOV DVSEC structure. 
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Figure 2-2: DVSEC for Scalable I/O Virtualization 
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The fields up to offset 0xa are the standard DVSEC capability header. Refer to the PCI Express 

DVSEC header for a detailed description of these fields. The remaining fields are described below. 

 
 

Function Dependency Link (Offset = 0xA, Size = 1 Byte) 

Bit Location Description Attributes 

7:0 The programming model for a device may have vendor-specific dependencies 

between sets of Functions. The Function Dependency Link field is used to 

describe these dependencies. 

This field describes dependencies between Functions. ADI dependencies are 

the same as the dependencies of the Functions that they are part of. 

If a Function is independent from other Functions of a device, this field shall 

contain its own Function Number. 

If a Function is dependent on other Functions of a Device, this field shall 

contain the Function Number of the next Function in the same Function 

Dependency List. The last Function in a Function Dependency List shall 

contain the Function Number of the first Function in the Function Dependency 

List (FDL). 

Dependencies between Functions are described by the Flags field at offset 

0xB. 

RO 

 

Next Capability Offset 
Cap 

Version = 1 

PCI Express Extended Capability ID 

= 0x23 

DVSEC Length = 0x18 
DVSEC 

rev = 0 
DVSEC Vendor ID = 8086 

Flags (RO) 
Function Dependency 

Link (RO) 
DVSEC ID for Scalable IOV = 5 

 

Supported Page Sizes (RO) 

System Page Size (RW) 

Capabilities (RO) 
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Flags (Offset = 0xB, Size = 1 Byte) 

Bit Location Description Attributes 

0 H (homogeneous): When the H flag is reported as set, it indicates that all 

Functions in the Function Dependency List (FDL) must be enabled for 

Scalable IOV operation (in a device-specific manner). If some but not all of 

the Functions in the FDL are enabled for Scalable IOV operation, the 

behavior is undefined. For example, one Function cannot be in Scalable IOV 

operation mode and another in SR-IOV operation mode if this flag is reported 

as set. 

If the H flag is not Set, then different Functions in the FDL can be in different 

modes. 

RO 

7:1 Reserved RO 

 
 

Supported Page Sizes (Offset = 0xC, Size = 4 Bytes) 

Bit Location Description Attributes 

31:0 This field indicates the page sizes supported. A page size of 2n+12 is supported 

if bit n is Set. For example, bit 0 indicates support for 4 KB pages. The page 

size indicates the minimum alignment requirement for ADI MMIO pages so 

that they can be independently assigned to different address domains. 

Support for 4 KB pages is required. Devices may support additional page sizes 

for compatibility with a variety of host platform architectures. 

RO 
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System Page Size (Offset = 0x10, Size = 4 Bytes) 

Bit Location Description Attributes 

31:0 This field defines the page size the system uses to map the ADIs’ MMIO pages. 

Software must set the value of System Page Size to one of the page sizes set 

in the Supported Page Sizes field. As with Supported Page Sizes, if bit n is 

set in System Page Size, a page size of 2n+12 is used. For example, if bit 1 is 

set, the device uses an 8 KB page size. The behavior is undefined if System 

Page Size is zero, more than one bit is set, or a bit is set in System Page Size 

that is not set in Supported Page Sizes. 

When System Page Size is written, all ADI MMIO resources are aligned on 

system page size boundaries. System Page Size must be configured before 

setting the Memory Space Enable bit in the PCI command register. The 

behavior is undefined if System Page Size is modified after Memory Space 

Enable is set. 

Default value is 0000 0001h indicating a system page size of 4 KB. 

RW 

 
 

Capabilities (Offset = 0x14, Size = 4 Bytes) 

Bit Location Description Attributes 

0 IMS Support: This bit indicates the support for Interrupt Message Storage 

(IMS) in the device. 

0: IMS is not supported by the 

device. 1: IMS is supported by the 

device. 

If virtualization software supports IMS use only for ADIs and not by the base 

function, then when the base function is directly assigned to a domain, 

virtualization software may expose a virtual Scalable IOV DVSEC Capability 

to the domain with the IMS support bit reported as 0. 

RO 

31:1 Reserved RO 
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8 Platform Support 
 

The following platform level capabilities are required to support Scalable IOV: 

• Support for the PCI Express PASID TLP Prefix in Root Ports and the Root Complex. Refer to the 

PCI Express Revision 4.0 specification or higher for details on PASID TLP Prefix support. 

• PASID-granular address translation in Root Complex. 

• Interrupt remapping support in Root Complex. 

• Virtualization support for Deferrable Memory Write (DMWr). 

8.1 Address Space Isolation 

Room Complex DMA remapping hardware must support PASID granular DMA remapping. The definition 

of the address space targeted by a PASID value is dependent on the Root Complex DMA remapping 

hardware capability and the programming of such hardware by software. Depending on the programming 

of the DMA remapping hardware, the address space targeted by an upstream request with PASID can be a 

Host Physical Address (HPA), Host Virtual Address (HVA), Host I/O Virtual Address (HIOVA), Guest Physical 

Address (GPA), Guest Virtual Address (GVA), Guest I/O Virtual Address (GIOVA), etc. All of these address 

space types can co-exist on a system for different PASID values. ADIs from one or more devices may be 

configured to use these PASIDs. PASID granular address translation enables upstream requests from each 

ADI to have a unique address translation and hence enables each ADI to be independently assigned to a 

different domain.  

8.2 Interrupt Isolation 

For interrupt isolation across devices, the host platform should support interrupt remapping for all interrupt 

messages programmed in MSI, MSI-X, or IMS on the device. 

The host platform should support direct delivery of virtual interrupts to VMs without hypervisor processing 

overheads. This also enables virtual interrupts to operate in guest interrupt vector space without consuming 

host processor interrupt vectors. 

8.3 DMWr Virtualization 

ADIs using Shared Work Queues use DMWr request that convey the PASID (see Section 7.3). These 

DMWr requests can be directly submitted by VMs to the SWQ. To ensure isolation of such DMWr requests 

from VMs, the Root Complex must provide a way for virtualizing PASID conveyed in the DMWr request.  
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9 Reference Software Model 
 

This chapter describes an example software architecture in which Scalable IOV is enabled through VMM 

software as shown in Figure 1-3. This chapter is not intended to be prescriptive, and instead covers an 

example description of system software and device-specific software roles and interactions to compose 

hardware-assisted virtual devices and manage device operation. Specific OS or VMM implementations may 

choose other methods to enable Scalable IOV. 

The software architecture described in this chapter focuses on I/O virtualization for virtual machines and 

machine containers. However, the principles can be applied to other domains such as I/O sharing across 

bare-metal containers or application processes. Figure 1-3 illustrates the high-level software architecture. 

The logical components of the reference software architecture are described below. 

9.1 Host Driver 

The host driver for an Scalable IOV capable device is conceptually equivalent to an SR-IOV PF driver. The 

host driver is loaded and executed as part of the host OS or hypervisor software. The host driver reports 

support for Scalable IOV to system software through the driver interface. In addition to the usual roles of a 

device driver, the host driver implements software interfaces as defined by the host OS or hypervisor 

infrastructure to support enumeration, configuration, instantiation, and management of ADIs. The host 

driver is responsible for configuring each ADI, including aspects such as its PASID identity, Interrupt Message 

Storage entries, MMIO register resources for direct-path access to the ADI, and any device-specific 

resources. 

Table 4-1 illustrates a high-level set of operations that the host driver supports for managing ADIs. These 

operations are invoked through suitable software interfaces defined by specific system software 

implementations. 
 

Description 

Scalable IOV capability reporting 

Enumeration of types and maximum number of ADIs/VDEVs 

Enumeration of resource requirements for each ADI type 

Enumeration and setting of generational compatibility for ADIs 

Allocation, configuration, reset, drain, abort, release of ADI and its constituent resources 

Setting and managing PASID identity of ADIs 

Managing device-specific Interrupt Message Storage for ADIs 

Enabling guest to host communication channel (if supported) 

Configuring device specific QoS properties of ADIs 

Suspending/saving state of ADIs, and restoring/resuming state of ADIs 

Table 4-1: Host Driver Interfaces for Scalable I/O Virtualization 
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9.2 Virtual Device Composition Module 

The Virtual Device Composition Module (VDCM) is a device-specific component that is responsible for 

composing virtual device instances using one or more ADIs allocated by the host driver. The VDCM 

implements software-based virtualization of intercepted-path operations and arranges for direct-path 

operations to be submitted directly to the backing ADIs. Each OS or VMM implementation may require the 

VDCM to be implemented and packaged by device vendors in a specific way. For example, in some OS or 

hypervisor implementations, the VDCM may be packaged as user-space modules or libraries that are 

installed as part of the host driver. In other implementations, the VDCM may be a kernel module. If 

implemented as a library, the VDCM may be statically or dynamically linked with the hypervisor-specific 

virtual machine resource manager responsible for creating and managing VM resources. If implemented in 

the host kernel, the VDCM can be part of the host driver. 

9.3 Guest Driver 

The guest driver for an Scalable IOV capable device is conceptually equivalent to an SR-IOV VF driver. The 

guest driver manages the VDEV instances composed by the VDCM. Direct-path accesses by the guest 

driver are issued directly to the ADIs behind the VDEV, while intercepted-path accesses are intercepted and 

virtualized by the VDCM. The guest and host drivers can be implemented as a unified driver that supports 

both host and guest functionality or as two separate drivers. For existing SR-IOV devices, if the VDEV can 

be composed to behave like an existing VF, the Scalable IOV guest driver can be same as the SR-IOV VF 

driver. 

9.4 Virtual Device 

A virtual device (VDEV) is the abstraction through which a shared physical device is exposed to guest 

software. A VDEV is typically exposed to a guest OS as a virtual PCI Express device. A VDEV has virtual 

resources such as virtual Requester ID, virtual configuration space registers, virtual memory BARs, virtual 

MSI-X table, etc. Each VDEV may be backed by one or more ADIs. The ADIs backing a VDEV typically 

belong to the same physical function, but implementations are possible where they are allocated across 

multiple functions (for example to support device fault tolerance or load balancing). 

A device may support multiple types of ADIs, both in terms of number of backend resources (see Figure 2-

1) and in terms of functionality. Similarly, a VDCM may support more than one type of VDEV composition, 

with respect to the number of backing ADIs, functionality of ADIs, etc., enabling the virtual machine resource 

manager to request different types of VDEV instances for assigning to virtual machines. The VDCM uses the 

host OS and VMM defined interfaces to allocate and configure resources needed to compose a VDEV. 

A VDEV may be composed of a static number of ADIs that are pre-allocated at the time of VDEV instantiation 

or composed dynamically by the VDCM in response to guest driver requests to allocate/free resources. An 

example of statically allocated ADIs is a virtual NIC with a fixed number of RX/TX queues. An example of 

dynamically allocated ADIs is a virtual accelerator device, where context allocation requests are virtualized 

by the VDCM to dynamically create accelerator contexts as ADIs. 
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9.4.1 Virtual Device Memory Mapped Registers Composition 

As part of composing a VDEV instance, the VDCM implements the behavior of the virtual MMIO regions in 

guest physical address space. A VDEV’s MMIO registers may be implemented using any of the following 

methods. Each system page size region of the VDEV MMIO space may use a different method. 

• Direct Mapped to ADI MMIO: Direct-path registers of the VDEV virtual MMIO space are mapped directly 

to the physical MMIO space of the device. The VDCM requests the hypervisor to set up GPA to HPA 

mappings for these regions in the CPU virtualization page tables, enabling direct access by the guest 

driver to the ADI. 

• VDEV MMIO Intercepted and Emulated by VDCM: Intercepted-path registers of the VDEV are virtualized 

by the VDCM by requesting the hypervisor to not map these MMIO regions in the host processor 

virtualization page-tables, thus forcing host intercepts when the guest driver accesses these registers. 

The intercepted accesses are provided to the VDCM to virtualize, either by itself or through interactions 

with the host driver. 

VDEV registers that are read frequently and have no read side-effects, but require VDCM intercept and 

emulation on write accesses, may be mapped as read-only to backing memory pages provided by 

VCDM. This supports high performance read accesses to these registers along with virtualizing their 

write side-effects by intercepting on guest write accesses. ‘Write intercept only’ registers must be 

contained in separate system page size regions from the ‘read-write intercept’ registers on the VDEV 

MMIO layout. 

• VDEV MMIO Mapped to Memory: VDEV registers that have no read or write side effects may be mapped 

to memory with read and write access. These registers may contain parameters or data for a subsequent 

operation performed by writing to an intercepted register. Device implementations may also use this 

approach to define virtual registers for VDEV-specific communication channel between the guest driver 

and the VDCM. The guest driver writes data to the memory backed virtual registers without host 

intercepts, followed by a mailbox register access that is intercepted by the VDCM. This optimization 

reduces host intercept and instruction emulation cost for passing data between guest and host. Such 

approach may enable guest drivers to implement such channels with VDCM more generally than 

hardware-based communication doorbells (as often implemented between SR-IOV VFs and PF) and 

without depending on guest OS or hypervisor specific para-virtualized software interfaces. 

9.4.2 Virtual Device Interrupts 

A VDEV may expose a virtual MSI or virtual MSI-X capability that is emulated by the VDCM. The guest driver 

requests VDEV interrupt resources normally through guest OS interfaces, and the guest OS may service this 

by programming one or more Interrupt Messages through the virtual MSI or virtual MSI-X capability of the 

VDEV. 

Two sources of interrupts may generate VDEV interrupts to the guest driver. One source is the VDCM 

software itself generating virtual interrupts on behalf of the VDEV. These are purely software generated 

interrupts arising from the intercepted-path operations of the VDEV being emulated by the VDCM. The 
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other source of interrupts is the ADI instances on the device that are used to support direct-path operations 

of the VDEV. 

When the guest OS programs the virtual MSI or MSI-X register, the operation is intercepted and virtualized 

by the VDCM. For intercepted-path virtual interrupts, the VDCM requests virtual interrupt injection to the 

guest through the VMM software interfaces. For direct-path interrupts from ADIs, the VDCM invokes the 

host driver to allocate and configure required interrupt message address and data in the IMS. 

9.4.3 Communication Channel Between Guest Driver and VDCM 

For device-specific usages and reasons, devices may choose to build communication channels between the 

guest driver and the VDCM. These communication channels can be built in a manner that is independent of 

specific guest and host system software, using one of the following methods. 

• Software emulated communication channel: This type of channel is implemented by the VDCM by 

setting up one or more system page size regions in VDEV MMIO space as fully memory-backed, to be 

used to share data between the guest and the host. The VDCM also sets up an intercepted-path register 

in VDEV MMIO space to be used by the guest to signal an action to the host. A virtual interrupt may be 

used by the VDCM to signal the guest about completion of asynchronous communication channel 

actions. 

• Hardware mailbox-based communication channel: If the communication between the guest driver and 

the VDCM (or the host driver) is frequent and the software emulation-based communication channel 

overhead is significant, the device may implement communication channels based on hardware 

mailboxes. This is similar to communication channels between SR-IOV VFs and PF in some existing 

designs. 

9.4.4 ADIs Supporting Shared Virtual Memory 

Shared Virtual Memory (SVM) is a usage where a device operates in the CPU virtual address space of the 

application accessing the device. SVM usage is enabled by system software programming the DMA 

remapping hardware to reference the CPU page tables. Devices supporting SVM do not require pages that 

are accessed by the device to be pinned, but instead use the PCI Express Address Translation Services 

and Page Request Services capabilities to implement recoverable device page faults. Refer to the PCI 

Express specification for details on ATS and PRS capabilities. 

Like Scalable IOV, devices supporting SVM use PASIDs to distinguish different application virtual address 

spaces. A device that supports both SVM and Scalable IOV will support SVM both for ADIs assigned to 

host applications and for ADIs assigned to guest applications. The distinction between host and guest SVM 

usages is transparent to the device. The only difference is in the address translation function programming 

of the DMA remapping hardware for each PASID. The address translation function programmed for a 

PASID representing host SVM usage refers to the CPU virtual address to physical address translation, 

while the address translation function programmed for a PASID representing guest SVM usage refers to 

nested address translation (guest virtual address to guest physical address and then to host physical 

address). 
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10. System Firmware 
 
There are no ecosystem-specific firmware requirements to enable or use Scalable I/O Virtualization.  All 
device capabilities are discoverable by software. 
 
Note:  There could be vendor-specific enabling requirements for devices that provide a disable ability for 
Scalable I/O Virtualization.  This would be outside of the standardization scope. 

 

11. Hardware Management 
 
There are no ecosystem-specific hardware management interfaces or management configurations 
necessary to enable or use Scalable I/O Virtualization.  All device capabilities are discoverable by in-band 
host software. 
 
Note:  There could be vendor-specific discovery or enabling requirements for devices that provide a 
vendor-specific discovery or disable ability for Scalable I/O Virtualization.  This would be outside of the 
standardization scope. 

18. Security 
There are no known security vulnerabilities to enable or use Scalable I/O Virtualiation. 
 
However, there are known improvements and extensions that can be pursued to enable security isolation 
of ADIs in confidential computing usages where the associated software entities has isolated access to 
assigned/approved ADIs within a device. 
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