
Open Compute Project Open optical Monitoring (OOM)

http://opencompute.org 1

Open Optical Monitoring (OOM)

A set of APIs and a decode layer to simplify accessing the information in a
pluggable module

Revision 1.0

2 2016-09-14

Executive Summary

Open Optical Monitoring (OOM) defines an interface for applications to access (read and write) the

content of optical module EEPROMs. The interface is uniform across all conforming NOS

implementations, and across pluggable modules from different vendors (both optical and electrical), as

long as they conform to the SFF committee standards. It provides access to the data as decoded key/value

pairs, eliminating the need for the developer to know the location and format of the data in the EEPROM.

The interface is consistent across different module types, though different keys are defined as appropriate

for each module type.

OOM should greatly expand the use of available optical module data by data center operators, by

simplifying and standardizing the interface across NOS and module vendor implementations. We believe

this will enrich the OCP networking standard and increase the value of OCP networking implementations.

Contents

Open Optical Monitoring (OOM) ... 1

A set of APIs and a decode layer to simplify accessing the information in a pluggable module 1

Executive Summary .. 2

Contents ... 2

Figures .. 3

Revision History ... 3

Overview .. 4

License ... 6

Background .. 6

Design... 6

Northbound Interface Definition (from Decode Layer) ... 6

Decode layer .. 9

SouthBound Interface Definition (from Decode Layer) ... 10

Test Plan ... 10

Checklist for Maintenance ... 11

Checklist for Governance ... 11

Roadmap .. 11

Supporting Documents .. 12

Open Compute Project Open optical Monitoring (OOM)

http://opencompute.org 3

Figures

Figure 1: Software Architecture levels ... 4

Revision History

Name Date Version Description

Steve Joiner 2015-11-18 0.1 Initial Version for Discussion on 20151118

Steve Joiner 2015-12-09 0.2 Additions reflecting the discussion of 20151118

Steve Joiner 2015-12-15 0.3 Additions from discussions during meeting of

20151209. Decision to simplify and focus on

northbound interface from decode layer, decode

layer, and southbound. Note: None of this text

has been approved by the project.

Steve Joiner 2016-01-13 0.4 Note: None of this text has been approved by

the project.

Updates to

Section on governance

Update of the SouthBound Definition

Update to checklist for Maintenance.

Added Github location in Checklist for

Governance and Supporting Documents.

NOTE: Northbound Interface is Out of Date for

this revision.

Don Bollinger 2016-03-16 0.5 Substantial Revision to bring this doc up to date

with the implementation as demonstrated at

OCP Summit, March 2016

Steve Joiner 2016-06-07 0.6 Updating status of progress. Some items have

moved from planned to completed. Also

updated future plans.

Steve Joiner 2016-9-14 1.0 Same as version 0.6 but recognizing vote of the

OCP Incubation Committee.

4 2016-09-14

Overview

The OOM project provides an open source method to easily access the information inside of the

pluggable modules in OCP switches. This project defines a consistent interface between a user

application and software layers that enables the user to request information from the pluggable module

without knowing the details of how to access the module, or how the information is stored inside the

pluggable module.

The high level architecture, depicted in Figure 1, implements a decode library, a Southbound API that the

library uses to get module information from the Network Operating System (NOS), and a Northbound

API that application developers use to request and receive the decoded module information.

Figure 1: Software Architecture levels

The Southbound API is defined by the include file oom_south.h, which specifies a „C‟ interface which

will be called by the decode library. This API specifies how to get a list of available ports, and routines to

read and write specific locations in module EEPROM. This API will be implemented in a „Vendor Shim‟,

which provides a translation between the native NOS functions and the standardized OOM API. As

depicted in Figure 2, each conforming NOS will provide an appropriate shim to support OOM.

Open Compute Project Open optical Monitoring (OOM)

http://opencompute.org 5

 Figure 2: NOS provides a shim to connect the decode layer to the native implementation.

The Northbound API is defined by the python file oom.py, which specifies a Python interface which will

be called by applications consuming OOM information. This API specifies how to get a list of available

ports, how to read and write values in EEPROM using pre-defined keys, how to read pre-defined

collections of keys with a single call, and how to read and write raw EEPROM data directly, without any

decode layer interpretation.

The decode library itself is implemented in Python. It includes (among other things) oomlib.py, which

contains most of the architectural framework and logic, and decode.py, which contains various routines to

decode each unique form of data in the various module types.

OOM provides a collection of python files that encode the actual location and format of the data for each

key, for each type of module. sfp.py and qsfp_plus.py are available in the initial implementation of OOM.

More such files will be provided to implement support for additional module types. Application

developers should examine these files to determine the available keys for the module types of interest,

and the format of the data provided by each key. These files also specify which keys can be accessed as a

collection (eg SERIAL_ID and DOM), and which keys can be written back to EEPROM. Typically there

are lots of readable keys, and only a handful of writable keys.

OOM supports adding additional keys to existing module types. This can be used by module vendors to

access non-standard or proprietary capabilities, or by application developers to extend the list of

supported keys beyond the current implementation. An example is in the file addonsample.py.

All of the files referenced above are available at https://github.com/ocpnetworking-wip/oom.

https://github.com/ocpnetworking-wip/oom

6 2016-09-14

License

This software is offered under the MIT License.

Background

Motivation for project:

A Call for Interest posted by Carlos Cardenas on 10/14/2015 as a result of discussions that occurred

during the OCP engineering workshop in September 2015 at Fidelity. There was a request for a common

diagnostic monitoring utility for NOSs to use since at present, most of them are only able to dump

encoded pages.

This call for interest evolved into an “open optical monitoring” group that wrote and tested code that

became OOM.

Design

Open Optical Monitoring consists of the following Interfaces and Code modules:

1. Northbound Interface between User Applications and Decode layer

2. Decode Layer

3. South bound Interface between Decode Layer and Linux Kernel / Physical Layer

Northbound Interface Definition (from Decode Layer)

The Northbound API is defined in oom.py. The code supersedes this specification.

As a starting point, consider a complete executable python script, printing the part number of

each module in each port. Using the Northbound API, it looks like this:

from oom import * # import the Northbound API routines

for port in oom_get_portlist(): # loop through each port

 print port.port_name + ‘ ‘ + oom_get_keyvalue(port, ‘VENDOR_PN’)

Table of Python routines in oom.py:

Discovery

API Function Description

oom_get_portlist() returns a list of ports available on the host switch.

Port is a python class. User accessible class members include:

 c_port: the C port structure returned by the Southbound API (see

oom_south.h)

Open Compute Project Open optical Monitoring (OOM)

http://opencompute.org 7

 port_name: The name of the port provided by the Southbound API

 port_type: The type of the port, per the SFF specs. For example:

SFP is type 3, QSFP+ is type 13

 mmap: The dictionary of keys, decoders and locations for

everything OOM knows how to access in this port. See qsfp_plus.py

for the list of QSFP+ keys, for example.

 fmap: The list of keys that form function groups (for

oom_get_memory())

 wmap: The list of writable keys, and the encoder to pack the data to

write for each key

Decoded Access to Data

Fields

API Function Description

oom_get_keyvalue(port, key) For the given port, returns the value for the specified key.

Port: The OOM port as returned by oom_get_portlist()

Key: Available keys are defined by module type. Refer to the

appropriate file for the complete list of keys. Currently sfp.py and

qsfp_plus.py are available. Look for the definition of the MM

dictionary to find the function list (MM = Memory Map).

Note that the type of the returned value will depend on the key,

including strings (eg VENDOR_NAME), integers (eg IDENTIFIER),

byte strings (eg VENDOR_OUI), floating point (eg

TEMPERATURE), etc.

Key names are, to the extent practical, derived directly from the SFF

specification for the module. See the key files (eg sfp.py, qsfp.py) for

the SFF Spec reference used.

oom_get_memory(port, function) Gets a collection of keys from memory (aka EEPROM) at port.

Returns a python dictionary of key/value pairs.

Port: The OOM port as returned by oom_get_portlist()

Function: Available functions are defined by module type. Refer to

the appropriate file for the complete list of functions and the keys

returned for those functions. Currently sfp.py and qsfp_plus.py are

available. Look for the definition of the FM dictionary to find the

function list (FM = Function Map).

SERIAL_ID and DOM should be defined for every port type.

The key values returned will match what oom_get_keyvalue() would

return individually for each key.

8 2016-09-14

oom_set_keyvalue(port, key, value) For the given port, writes the value for the specified key, into module

EEPROM.

Port: The OOM port as returned by oom_get_portlist()

Key: Available keys are defined by module type. Refer to the

appropriate file for the complete list of writable keys. Currently sfp.py

and qsfp_plus.py are available. Look for the definition of the WMAP

dictionary to find the list of writable keys (WMAP = Write Map).

Value: The value to be written into EEPROM. Value should be of the

same type and format as returned for that key by oom_get_keyvalue().

The value will be reformatted as appropriate for that key and written

into the same location in EEPROM that oom_get_keyvalue() would

read that key from. Note for example, that if oom_get_keyvalue()

extracts 3 bits from the middle of a byte in EEPROM, and returns

those bits in the low 3 bits of a byte, then oom_set_keyvalue() (for that

key) will take the low 3 bits of a byte, and the current value of the

target byte in EEPROM, merge them appropriately, and write the byte

back to EEPROM. If oom_get_keyvalue() for that key returns a string,

then oom_set_keyvalue() for that key will expect a string and write it

into the appropriate sequential bytes in EEPROM.

R/W Memory (Raw)

API Function Description

oom_get_memory_sff(port, address,

page, offset, length)

Gets contents of EEPROM from pluggable module and returns length

bytes of binary data

Port: The OOM port as returned by oom_get_portlist()

Address: A0h, A2h, A8h, as appropriate for the specific module.

Page: The page (as defined in the SFF spec) where the desired data

resides.

Offset: Byte location for start of read. IMPORTANT NOTE: ALL

offsets less than 128 are in the low memory specified by Address,

independent of the page specified. From offset 0 to 127, the page is

ignored. The first byte on Page <n> will be at offset 128, for all pages.

Only one page can be read per call, consecutive pages are not available

sequentially in memory (offset + length may never exceed 255).

Length: Number of bytes to be read

oom_set_memory_sff(port, address,

page, offset, length, data)

Writes data of length bytes to the pluggable module at the address,

page, offset specified

See oom_get_memory_sff() for a description of the parameters. Heed

the important note regarding pages and offsets.

Open Compute Project Open optical Monitoring (OOM)

http://opencompute.org 9

Data: Binary data to be written to EEPROM.

R/W “PINs”

API Function Description

oom_get_function(port, function,

Status)

Reads status of function at port and returns a Boolean value

Port: The OOM port as returned by oom_get_portlist()

Status: Boolean; True is asserted or False is de-asserted.

Function: Python key (Note:Availability is Port Type dependent)

Function Status

TxFault R Asserted Tx has fault; Deasserted Fault not
present
TxDisable RW Asserted is Tx off; Deasserted Tx is on

Mod_ABS R Asserted module absent; Deasserted Module
Present

RS0 RW Asserted RS0 is high; Deasserted RS0 is Low

RS1 RW Asserted RS1 is high; Deasserted RS1 is Low
LOS R Asserted = Loss of Rx Signal (Rx signal power too
low)
Interrupt R Asserted = Read module status to determine
source of interrupt

oom_set_function(port, function,

status)

Sets status of function at the port.

Port: The OOM port as returned by oom_get_portlist()

Status: asserted or de-asserted.

Function: Python key (Note:Availability is Port Type dependent)

Function Status

TxDisable RW Asserted is Tx off; Deasserted Tx is on

RS0 RW RS0 and RS1 should be written together
RS1 RW
Reset W Asserted HOLDS module in Reset until
Deasserted. (causes data flow to be stopped)

Decode layer

The Decode layer is coded in Python. It runs on the switch, receives requests from user

applications via the Northbound API, accesses the pluggable modules via the Southbound API,

and performs the necessary actions to provide the requested services.

The decode layer is meant to remove the tedium of knowing the specific addresses and definitions

of MSA defined fields found in pluggable modules used in OCP related systems.

Currently those modules are limited to SFP+, QSFP+ and QSFP28. In the near future other

pluggable platforms are expected to be introduced into the OCP networking domain such as CFP2,

CFP4, etc.

10 2016-09-14

These pluggable devices are usually defined by an MSA group. In the case of the SFP, QSFP,

and QSFP28, the MSA documents for the Serial ID information and digital monitoring

information are controlled by the Small Form Factor (SFF) Committee.

As products evolve, errors are found, and new features are added, the decode layer will be

regularly maintained and updated.

Key definitions (location of the data, how to decode them), collections of keys (eg SERIAL_ID,

DOM), and writable keys are defined in python files for use by the decode layer. Additional

types can be added by properly coding the keys for that type into a new python file, and naming

that file appropriately (see „port_type_e‟ in oomlib.py for the appropriate name for each type).

Additional keys can be added separately via the „addons‟ directory. See addonsample.py for

detailed info on how to add keys, including read keys, collections of keys and writable keys. This

capability can be used to create user defined data areas in the scratchpad registers in EEPROM, to

describe proprietary data for a specific vendor or module, or to access data fields that are defined

in the SFF spec but not included in the OOM key definitions. Addon keys are handled in all

respects the same as predefined keys by the decode layer.

SouthBound Interface Definition (from Decode Layer)

The Southbound API is defined in oom_south.h. As of May 2016, the decode layer consumes 3

functions from the Southbound API:

1. oom_get_portlist() returns a list of ports that may contain optical modules. These ports

provide the handle to specify which port is the target of subsequent EEPROM read and write

calls.

2. oom_get_memory_sff() returns the content of the EEPROM, at the location and for the

number of bytes specified.

3. Oom_set_memory_sff() writes the specified buffer to EEPROM at the location and for the

number of bytes specified.

In addition to these 3 functions, the data structure for a port is defined, as well as an enumerated type

to identify what class of port this is.

There are I/O pin control functions specified but not yet implemented by any shim or consumed by

the decode layer. These are oom_get_function() and oom_set_function().

There are two additional read/write functions specified but not yet implemented by any shim or

consumed by the decode layer. These are oom_get_memory_cfp() and oom_set_memory_cfp().

They provide the same services as their „oom_*et_memory_sff‟ counterparts, but the memory layout

of CFP class modules is sufficiently different that a different function call is warranted.

Experience suggests that the currently unused functions are likely to change when first implemented.

Test Plan

The test plan involved several steps. After testing within the labs of pluggable vendors, OCP box

Open Compute Project Open optical Monitoring (OOM)

http://opencompute.org 11

providers and OCP NOSs, OOM was demoed live at OCP Summit 2016 in March. In addition it was

presented during one of the breakout sections. OOM was then tested with success at the OCP

Interoperability event at UnH IOL during the week of May 2, 2016. We expect OOM to be used as part

of the OCP Interoperability test process at UNH. The test framework and test code for OOM will be

aligned for maximum sharing with that process.

Checklist for Maintenance

Currently the code is maintained in GitHub and the development uses GitHub-based best practices. All

code changes are reviewed publicly (using GitHub‟s online code review tools) and approved by someone

with commit rights. The current list of committers/maintainers includes:

 Steve Joiner, Finisar

 Craig Thompson, Finisar

 Don Bollinger, Finisar

 Carlos Cardenas, Cumulus Networks / OCP

It is mandatory that all entities (including the ones listed above) with code approval or commit capability,

i.e., are either committers/maintainers into the project be OCP members. We are open to expanding the

committers list as other contributors/authors emerge. New contributors/authors cannot become

committers/maintainers without first being an OCP member.

In the event that all maintainers are permanently unavailable, a duly appointed representative of the Open

Compute Project may take over the project.

Software releases will be made as time and major features are committed. While many open source

projects with regular committers have a time-based release model, at least for the near future until the

projects popularity increases, we will follow a feature-based release schedule.

Checklist for Governance

This is the list of current governance sites which may change with acceptance into OCP.

Website: N/A

Mailing list: opencompute-networking@lists.opencompute.org

IRC: N/A

Mirror: N/A

GitHub: https://github.com/ocpnetworking-wip/oom

Wiki: http://www.opencompute.org/wiki/Networking/SpecsAndDesigns#Common_Module_Interface

Roadmap
 Working OOM software was demonstrated at the OCP Summit in San Jose in March 2016. The

shims also need to implement oom_set_memory_sff(). The decode layer currently writes to

EEPROM, both raw and via oom_set_keyvalue(), but has only been demonstrated on a simulator

shim.

 Date TBD: “I/O pins” functions (in both the decode layer and the shims)

mailto:opencompute-networking@lists.opencompute.org
https://github.com/ocpnetworking-wip/oom
http://www.opencompute.org/wiki/Networking/SpecsAndDesigns#Common_Module_Interface

12 2016-09-14

 As demand arises: CFP support, both raw read/write and keys with decoders.

 Extensions will be needed such as

o Additional module types

o MDIO

o Additional form factors as they become used on OCP switches

Supporting Documents

The OOM code is available in the Github repository. It is reasonably well commented to allow the

curious to understand how it works in detail.

Project documents, architecture slides, proposals, meeting minutes, etc are available at

http://www.opencompute.org/wiki/Networking/SpecsAndDesigns (look for “Common Module Interface”)

SFF documents can be found http://sffcommittee.org/ie/Specifications.html

https://github.com/ocpnetworking-wip/oom
http://www.opencompute.org/wiki/Networking/SpecsAndDesigns
http://sffcommittee.org/ie/Specifications.html

