

AMD Open CS 1.0 Micro-Server Card Hardware v1.0

Authors: Bob Ogrey, Ranger Lam, Otto Joe

1 Revision History

Date	Revision	Description
April 2014	1.0	Initial Release

2 Scope

This document defines the technical specifications for the AMD Open CS 1.0 Microserver Card that will be used in Open Compute Project servers.

Note-1: This document was based on the *Open Compute Project Micro-server Card Specification, v0.7*, and is subject to change

3 Contents

1	Revision History				
2	Scope		2		
3	Conten	ts	3		
4	Overvie	ew	4		
	4.1	License	4		
	4.2	CAD Models	5		
5	Mother	board Features	5		
	5.1	PCB Stackup	5		
	5.2	Block Diagram	7		
	5.3	Placement and Form Factor	7		
	5.4	CPU and Memory	8		
	5.5	PCIe Usage	9		
	5.6	Integrated Peripheral Features	9		
	5.7	Heat Sink and Thermal Simulation	10		
6	UEFI Fir	rmware	11		
7	System	Management	11		
	7.1	Temperature Sensors	11		
8	Power :	System	12		
	8.1	Power Budget for Open Platform Board Configurations	12		
	8.2	VRM Specifications	12		
	8.3	Power Sequencing	12		
	8.4	Power Optimized Hardware Features	12		
9	AMD O	pen CS 1.0 Micro-Server Card Interface	13		
	9.1	PCI-Express Card Edge	13		
	9.2	Pin-out	13		
10	Enviror	mental Requirements	15		
	10.1	Regulatory Compliance	15		
	10.2	Vibration and Shock	16		
11	Prescril	oed Materials	16		
	11.1	Disallowed Components	16		
	11.2	Capacitors and Inductors	16		

	11.3	SO-DIMM Connectors	. 16
12	Softwar	re Ecosystem	17
		·	
13	Adnere	nce to AMD Motherboard Design;	. 17

4 Overview

This document describes the "AMD Open CS 1.0 Micro-server Card," hereafter referred to as Open CS 1.0.

Open CS 1.0 is a common slot card that is optimized for cost and power, and designed to the *Open Compute Project Micro-server Card Specification*, *v0.7*. The card was designed to "Option 3" of the v0.7 specification. Please refer to the specification for further details. Schematics and layout files will be included in this contribution. BIOS files will not be included in the contribution.

4.1 License

As of February 7, 2014, the following persons or entities have made this Specification available under the Open Web Foundation Final Specification Agreement (OWFa 1.0), which is available at http://www.openwebfoundation.org/legal/the-owf-1-0-agreements/owfa-1-0

Advanced Micro Devices, Inc.

You can review the signed copies of the Open Web Foundation Agreement Version 1.0 for this Specification at http://opencompute.org/licensing/, which may also include additional parties to those listed above.

Your use of this Specification may be subject to other third party rights. THIS SPECIFICATION IS PROVIDED "AS IS." The contributors expressly disclaim any warranties (express, implied, or otherwise), including implied warranties of merchantability, non-infringement, fitness for a particular purpose, or title, related to the Specification. The entire risk as to implementing or otherwise using the Specification is assumed by the Specification implementer and user. IN NO EVENT WILL ANY PARTY BE LIABLE TO ANY OTHER PARTY FOR LOST PROFITS OR ANY FORM OF INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES OF ANY CHARACTER FROM ANY CAUSES OF ACTION OF ANY KIND WITH RESPECT TO THIS SPECIFICATION OR ITS GOVERNING AGREEMENT, WHETHER BASED ON BREACH OF CONTRACT, TORT (INCLUDING NEGLIGENCE), OR OTHERWISE, AND WHETHER OR NOT THE OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

CONTRIBUTORS AND LICENSORS OF THIS DOCUMENT MAY HAVE MENTIONED CERTAIN TECHNOLOGIES THAT ARE MERELY REFERENCED WITHIN THIS DOCUMENT AND NOT LICENSED UNDER THE OWF CLAOR OWFA. THE FOLLOWING IS A NON-EXHAUSTIVE LIST OF MERELY REFERENCED TECHNOLOGY: PCI Express®. IMPLEMENTATION OF THESE TECHNOLOGIES MAY BE SUBJECT TO THEIR OWN LEGAL TERMS.

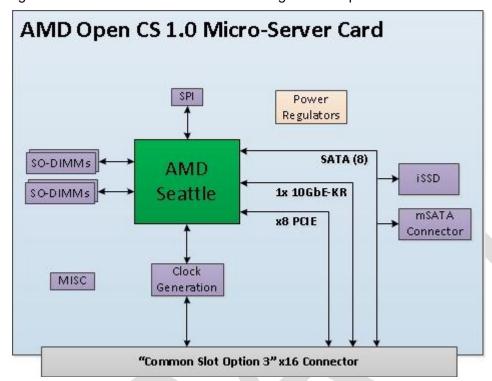
4.2 CAD Models

CAD models as fully set forth in this specification will be made available on the OCP Server page at http://www.opencompute.org/wiki/Motherboard/SpecsAndDesigns.

5 Motherboard Features

The Open CS 1.0 design supports the following feature set. A general description of the Open CS 1.0 design is documented below.

Component	Function			
	One AMD SP1 package per board			
Processor	Support for AMD's "Seattle" processor			
	Supports Infrastructure Group A and B: TDPs are TBD			
	2 ECC SO-DIMMs per channel (total of 4 ECC SO-DIMMs per card)			
Memory	Support up to 1866MHz for 1 DIMM and 1600MHz for 2 DIMMs per channel			
	Supports DDR3L (1.35V)			
	 Targeted configuration is 64GB, 1.35V, ECC SO-DIMM DDR3, 1333 MHz 			
	SoC with integrated Southbridge functions			
	SATA 3.0 ports			
I/O	o 1 iSSD			
1/0	o 1 mSATA connector			
	o 6 SATA to card interface			
	x8 PCI Express® Gen 3 to card interface			
Video	No embedded support.			
Networking	Integrated dual port 10G-KR			
Networking	1 10G-KR port to card interface			
System Management	See Chapter 7			
Board Dimensions	73.8mm x 210mm as per the <i>Open Compute Project, Micro-Server Card Hardware v0.7.</i>			
Layer Count	10 layers(see Chapter 5.1)			
Power target per MB	See Chapter 10			


5.1 PCB Stackup

1		SURFACE		AIR	(3)	E
2		DIELECTRIC	-	SOLDERMASK	-	0.0127
3	TOP	CONDUCTOR	-	1/20Z_COPPER+PLATE	*	0.0457
4		DIELECTRIC	-	FR4_P_1080_2.7	+	0.06858
5	L2_INNER	PLANE	•	10Z_COPPER	•	0.03048
6		DIELECTRIC	•	FR4_C_10		0.0762
7	L3_INNER	CONDUCTOR	•	1/20Z_COPPER		0.01524
8		DIELECTRIC	•	FR4_P_10	•	0.381
9	L4_INNER	CONDUCTOR	•	1/20Z_COPPER	•	0.01524
10		DIELECTRIC	•	FR4_C_10	*	0.0762
11	L5_INNER	PLANE	•	10Z_COPPER	•	0.03048
12		DIELECTRIC	-	FR4_P_10	*	0.0762
13	L6_INNER	PLANE	•	10Z_COPPER	•	0.0305
14		DIELECTRIC	•	FR4_C_10	•	0.0762
15	L7_INNER	CONDUCTOR	•	1/20Z_COPPER	•	0.01524
16		DIELECTRIC	-	FR4_P_10	•	0.381
17	L8_INNER	CONDUCTOR	-	1/20Z_COPPER	•	0.0152
18		DIELECTRIC	-	FR4_C_10	+	0.0762
19	L9_INNER	PLANE	-	10Z_COPPER	4	0.03048
20		DIELECTRIC	-	FR4_P_1080_2.7	+	0.0686
21	воттом	CONDUCTOR	•	1/20Z_COPPER+PLATE	•	0.0457
22		DIELECTRIC	•	SOLDERMASK	•	0.0127
23		SURFACE		AIR		

5.2 Block Diagram

Figure 1 illustrates the functional block diagram for Open CS 1.0.

Figure 1 Functional Block Diagram

5.3 Placement and Form Factor

The Open CS 1.0 form factor is a 73.8 x 210 millimeter following the card mechanical outline info detailed in the *Open Compute Project, Micro-Server Card Hardware v0.7*. Figure 2 illustrates board placement. The placement shows the relative positions of key components, while exact dimension and position information will be determined in the future. Once released, the ODM should strictly follow the form factor, memory slot position, and mounting holes, while other components can be shifted based on preference as long as relative position is maintained.

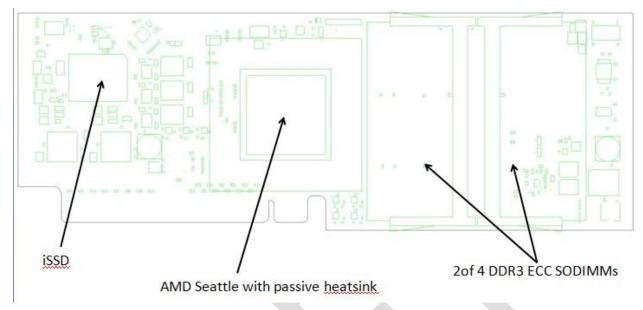
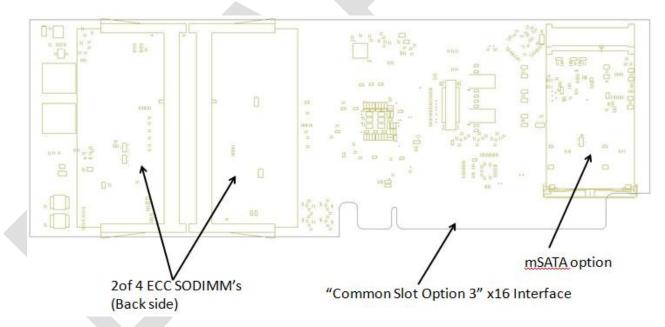



Figure 2 AMD Motherboard Topside Component Placement

Figure 3 AMD Motherboard Bottomside Component Placement

5.4 CPU and Memory

Open CS 1.0 is designed to accommodate SP1 power bands TBD.

AMD's "Seattle" processor in the SP1 package has the following characteristic:

- 28 nm AMD Family 20h processor
- 8 or 4 ARM Cortex®-A57 cores
- Each individual core has its own TBD L1 data cache

Dual-channel U/R-DDR3/ECC SO-DIMM memory

5.4.1 DDR3

It is a requirement to support 1.35V memory offerings. This still requires SPD detection by the system bios to detect the correct memory voltages; however hardware interfaces are simplified since only one voltage is supported.

Surface mount DIMM connectors are recommended for this design.

2 channels DDR3 registered memory interface on each SoC:

- 2 DDR3 slots per channel per processor (total of 4 DIMMs on the card)
- RDIMM (1.35V) and UDIMM (1.35V)
- SR, DR, and QR DIMMs
- DDR3 speeds up to 1866

5.5 PCle Usage

Open CS 1.0 supports 8 lanes of PCI-Express Gen 3. All 8 lanes are routed to the card interface.

5.6 Integrated Peripheral Features

The AMD's "Seattle" processor supports the following integrated peripheral features:

- SAT AIII ports
- SPI interface
- I2C interface (master and slave)
- Serial ports

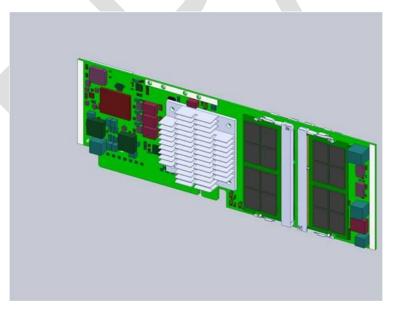


Figure 4 AMD Open CS 1.0 Micro-Server Card

The Open Platform board can fit into an Open Rack compliant chassis that will need to be developed. It can fit into future Open Compute 1.0 chassis that have been designed with multiple holes punched into the base. However, it cannot fit into currently deployed Open Compute chassis because of incompatible hole patterns.

5.7 Heat Sink and Thermal Simulation

Open CS 1.0 supports a low profile, off the shelf heat sink from Aavid Thermalloy P/N 343627. The mounting device employs push pins to secure the heatsink to the card. The ODM must comply with all keep out zones defined by AMD.

Thermal Simulation

Preliminary thermal simulations with a 35C ambient and 3m/s of flow should provide sufficient cooling for:

- Dual Row Implementation a fully populated baseboard where rear row of cards are preheated and shadowed.
- Single Row Implementation a half dense solution where only one row of cards are populated on the baseboard.

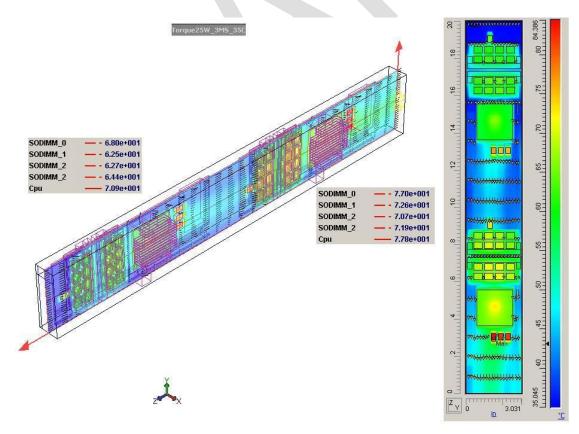


Figure 5 Dual Row Baseboard Thermal Simulation

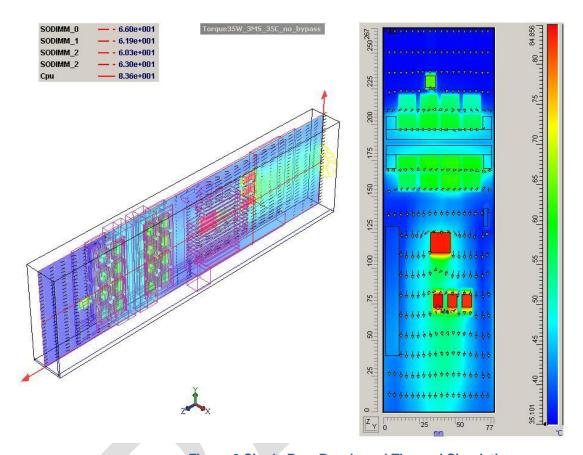


Figure 6 Single Row Baseboard Thermal Simulation

6 **UEFI Firmware**

The ODM is responsible for supplying the UEFI firmware for the card. The UEFI firmware is developed in collaboration with AMD's "Seattle" processor IBV support.

For more information, please contact AMD.

7 System Management

For more information, go to http://www.opencompute.org/assets/download/OpenComputeProjectOpenMachinesMan agement.pdf.

7.1 Temperature Sensors

Per *Open Compute Project, Micro-Server Hardware v0.7*, the card should support these thermal sensors:

- One to monitor SOC temperature, retrieved through the SOC's temperature sensor interface
- SO-DIMM temperatures, retrieved from the on DIMM thermistor, if used

• Outlet temperature, retrieved through the thermistor, and located along the rear edge of the card

8 Power System

This chapter describes the power sub-system for the AMD Open CS 1.0 Micro-Server Card.

8.1 Power Budget for Open Platform Board Configurations

The Open CS 1.0 power budget fits within the allowed maximum of 60W for a x8 Card design per *Open Compute Project, Micro-Server Hardware v0.7.*

8.2 VRM Specifications

The SoC VRM solutions should be load line enabled and designed to fit the specified power loads only.

In addition, the voltage regulators with the following characteristics are recommended:

- Load line to minimize load step transient.
- Differential Sense for accurate voltage sensing.
- Support for high value, low ESR ceramic caps and low ripple noise.
- In general, the target for ripple from the regulator should be < 10% of the maximum allowable voltage range. This allows 90% for all other sources of noise.

8.2.1 Target Power Efficiencies

The following are the target power efficiencies for each given group:

- Core VR: > 91% when loaded between 30% and 90% of the full operating load
- DDR VR: > 91% when loaded between 30% and 90% of the full operating load

8.3 Power Sequencing

The Open CS 1.0 design should follow power sequencing requirements for the AMD Socket SP1. Specific sequencing requirements are outlined in available design guides.

8.4 Power Optimized Hardware Features

This section describes the high level power optimized hardware features needed for the AMD Open CS 1.0 Micro-Server Card.

8.4.1 Switching Regulators versus Linear Regulators

Because Open CS 1.0 is designed to maximize system power savings, careful consideration must be undertaken when designing power delivery to the various system components. There are cost and board space considerations to balance, but it is generally recommended that all voltage rails that consume more than 15W of power be implemented using more efficient switching solutions.

Specific space, cost, and efficiency tradeoffs should be carefully analyzed during the earliest stages of the design.

9 AMD Open CS 1.0 Micro-Server Card Interface

This section describes the Open CS 1.0 interface pinout.

9.1 PCI-Express Card Edge

The Open CS 1.0 design leverages a board edge connector as defined by the PCI Express Card Electromechanical Specification. Details of this edge connector are outlined in the *Open Compute Project, Micro-Server Hardware v0.7*.

9.2 Pin-out

Open CS 1.0 implements a x16 edge connector pinout. The lower x8 portion of the connector follows the Option 3 configuration detailed in the *Open Compute Project*, *Micro-Server Hardware v0.7*. The upper x8 portion of the connector implements the full x8 PCIE Express Gen 3 interface from AMD's "Seattle" processor. The x8 port can alternatively be configured as two x4 PCIE Express Gen 3 ports.

For more pinout details, please refer to the *Open Compute Project, Micro-Server Hardware v0.7* located at

http://files.opencompute.org/oc/public.php?service=files&t=0ab1c41dd11111c4f3ceafc17 5883fcb.

The Open CS 1.0 pin-out is shown below.

	Side	Side	
Pin Name	В	Α	Pin Name
P12V	1	1	PRSNT#
P12V	2	2	P12V
P12V	3	3	P12V
GND	4	4	GND
I2C_SCL	5	5	SVR_ID0
I2C_SDA	6	6	SVR_ID1
GND	7	7	COM_TX
PWR_BTN#	8	8	COM_RX
PCIE1_REFCLK_P	9	9	SVR_ID2
PCIE1_REFCLK_N	10	10	SVR_ID3
SYS_RESET#	11	11	PCIEO_RESET#
I2C_ALERT#	12	12	GND
GND	13	13	PCIEO_REFCLK_P
GND	14	14	PCIEO_REFCLK_N
SATA5_TX_P	15	15	GND
SATA5_TX_N	16	16	GND
GND	17	17	SATA5_RX_P
GND	18	18	SATA5_RX_N
SATA4_TX_P	19	19	GND
SATA4_TX_N	20	20	GND
GND	21	21	SATA4_RX_P

	1	ı	T
	Side	Side	
Pin Name	В	Α	Pin Name
GND	22	22	SATA4_RX_N
SATA3_TX_P	23	23	GND
SATA3_TX_N	24	24	GND
GND	25	25	SATA3_RX_P
GND	26	26	SATA3_RX_N
SATA2_TX_P	27	27	GND
SATA2_TX_N	28	28	GND
GND	29	29	SATA2_RX_P
GND	30	30	SATA2_RX_N
SATA1_TX_P	31	31	GND
SATA1_TX_N	32	32	GND
GND	33	33	SATA1_RX_P
GND	34	34	SATA1_RX_N
SATA0_TX_P	35	35	GND
SATA0_TX_N	36	36	GND
GND	37	37	SATAO_RX_P
GND	38	38	SATAO_RX_N
PCIE1_RESET#	39	39	GND
NC	40	40	GND
GND	41	41	NC
GND	42	42	NIC_SMBUS_ALERT#
NIC_SMBUS_SCL	43	43	GND
NIC_SMBUS_SDA	44	44	GND
GND	45	45	GEO_RX_P
GND	46	46	GEO_RX_N
GE0_TX_P	47	47	GND
GE0_TX_N	48	48	GND
GND	49	49	PCIEO_RXO_P
GND	50	50	PCIEO_RXO_N
PCIE0_TX0_P	51	51	GND
PCIEO_TXO_N	52	52	GND
GND	53	53	PCIEO_RX1_P
GND	54	54	PCIEO_RX1_N
PCIEO_TX1_P	55	55	GND
PCIEO_TX1_N	56	56	GND
GND	57	57	PCIEO_RX2_P
GND	58	58	PCIEO_RX2_N
PCIEO_TX2_P	59	59	GND
PCIEO_TX2_N	60	60	GND

	Side	Side	
Pin Name	В	Α	Pin Name
GND	61	61	PCIEO_RX3_P
GND	62	62	PCIEO_RX3_N
PCIEO_TX3_P	63	63	GND
PCIE0_TX3_N	64	64	GND
GND	65	65	PCIE1_RX4_P
GND	66	66	PCIE1_RX4_N
PCIE1_TX4_P	67	67	GND
PCIE1_TX4_N	68	68	GND
GND	69	69	PCIE1_RX5_P
GND	70	70	PCIE1_RX5_N
PCIE1_TX5_P	71	71	GND
PCIE1_TX5_N	72	72	GND
GND	73	73	PCIE1_RX6_P
GND	74	74	PCIE1_RX6_N
PCIE1_TX6_P	75	75	GND
PCIE1_TX6_N	76	76	GND
GND	77	77	PCIE1_RX7_P
GND	78	78	PCIE1_RX7_N
PCIE1_TX7_P	79	79	GND
PCIE1_TX7_N	80	80	GND
GND	81	81	P12V
GND	82	82	P12V

Figure 7 AMD Open CS 1.0 Micro-Server Card Option 3 x16 Interface Pinout

10 Environmental Requirements

The motherboard meets the following environmental requirements:

- Gaseous Contamination: Severity Level G1 per ANSI/ISA 71.04-1985
- Ambient operating temperature range: -5°C to +45°C.
- Operating and storage relative humidity: 10% to 90% (non-condensing)
- Storage temperature range: -40°C to +70°.
- Transportation temperature range: -55°C to +85°C (short-term storage).

The full OCP system also meets these requirements. In addition, the full system has an operating altitude with no de-ratings of 1000m (3300 feet).

10.1 Regulatory Compliance

The Open CS 1.0 card is designed to meet the below system targets in mind:

- FCC/CE Class "A" EMC
- UL Safety Enabled

10.2 Vibration and Shock

The Open CS 1.0 card is designed to meet the following shock and vibration requirements according to the following IEC specifications: IEC78-2-(*) and IEC721-3-(*) Standard & Levels. The testing requirements are listed below.

	Operating	Non-Operating
Vibration	0.5g acceleration, 1.5mm amplitude, 5 to 500 Hz, 10 sweeps at 1 octave/minute for each of the three axes (one sweep is 5 to 500 to 5 Hz)	1g acceleration, 3mm amplitude, 5 to 500 Hz, 10 sweeps at 1 octave/minute for each of the three axes (one sweep is 5 to 500 to 5 Hz)
Shock	6g, half-sine 11mS, 5 shocks for each of the three axes	12g, half-sine 11mS, 10 shocks for each of the three axes

Figure 8 Vibration and Shock Requirements

11 Prescribed Materials

11.1 Disallowed Components

The following components are not used in the design of the card:

- Components disallowed by the European Union's Restriction of Hazardous Substances Directive (RoHS 6)
- Trimmers and/or potentiometers
- Dip switches

11.2 Capacitors and Inductors

The following limitations apply to the use of capacitors:

- Only aluminum organic polymer capacitors made by high quality manufacturers are used; they must be rated 105°C.
- All capacitors have a predicted life of at least 50,000 hours at 45°C inlet air temperature, under worst conditions.
- Tantalum capacitors are forbidden.
- SMT ceramic capacitors with case size > 1206 are forbidden (size 1206 are still allowed when installed far from the PCB edge and with a correct orientation that minimizes risks of cracks).
- Ceramic material for SMT capacitors must be X7R or better material (COG or NP0 type should be used in critical portions of the motherboard).

Only SMT inductors may be used. The use of through hole inductors is disallowed.

11.3 SO-DIMM Connectors

The following SO-DIMM connectors are used in the design of the card:

- Foxconn AS0A626-H2S6-7H
- Foxconn AS0A626-H2R6-7H

12 Software Ecosystem

Most up to date information about OS and Tool support is listed below.

Operating Systems	Status	Comments		
Fedora for ARM64	In process	Starts with the bootstrapping of Fedora 17 http://fedoraproject.org/wiki/Architectures/ARM/AArch64		
Ubuntu for ARM64	Download A vailable	A bootable (raring) image available to download and run http://lists.debian.org/debian-devel/2013/02/msg00413.html		
Linux 3.7	A vailable	Includes support for the ARM 64-bit architecture http://kernelnewbies.org/Linux-3.7		
Hypervisors	Status	Comments		
KVM	Ported to ARM64	Implementation of KVM for arm64 http://marc.info/?l=kvm&m=136245528521204&w=2		
XEN	Ported to ARM64	Has 32-bit and 64-bit ARM support available today http://wiki.xenproject.org/wiki/Xen_ARM_with_Virtualization_Extensions		
Developer Tools	Status	Comments		
GCC 4.8 (compiler)	Available	Actively being used by Linaro community http://gcc.gnu.org/gcc-4.8/changes.html		
Glibc 2.17 (library)	A vailable	Includes ARM64 support contributed by Linaro http://sourceware.org/ml/libc-announce/2012/msg00001.html		
QEMU (emulator)	Available	FAST! processor emulator using a portable dynamic translator https://launchpad.net/qemu-linaro/+milestone/2013.06		

Figure 9 Supported Operating Systems and Tools

13 Adherence to AMD Motherboard Design;

The expectation is that close partnership between AMD and a selected ODM will occur. This will include joint review of specification, schematic, stack-up, layout, thermal, and chassis design.