

Project Zipline
Compression Specification

Author:

Microsoft Corporation

http://opencompute.org 1

Revision History

Date Description

03/11/2019 Version 1.0

 -

2 March 11, 2019

License

Contributions to this Specification are made under the terms and conditions set forth in the Open Web Foundation

Contributor License Agreement (“OWF CLA 1.0”) (“Contribution License”) by:

Microsoft Corporation

Usage of this Specification is governed by the terms and conditions set forth in Open Web Foundation Final Specification

Agreement (“OWFa 1.0”) (“Specification License”).

 Note: The following clarifications, which distinguish technology licensed in the Contribution License and/or Specification

License from those technologies merely referenced (but not licensed), were accepted by the Incubation Committee of the OCP:

None.

NOTWITHSTANDING THE FOREGOING LICENSES, THIS SPECIFICATION IS PROVIDED BY OCP "AS IS" AND OCP EXPRESSLY

DISCLAIMS ANY WARRANTIES (EXPRESS, IMPLIED, OR OTHERWISE), INCLUDING IMPLIED WARRANTIES OF MERCHANTABILITY,

NON-INFRINGEMENT, FITNESS FOR A PARTICULAR PURPOSE, OR TITLE, RELATED TO THE SPECIFICATION. NOTICE IS HEREBY

GIVEN, THAT OTHER RIGHTS NOT GRANTED AS SET FORTH ABOVE, INCLUDING WITHOUT LIMITATION, RIGHTS OF THIRD

PARTIES WHO DID NOT EXECUTE THE ABOVE LICENSES, MAY BE IMPLICATED BY THE IMPLEMENTATION OF OR COMPLIANCE

WITH THIS SPECIFICATION. OCP IS NOT RESPONSIBLE FOR IDENTIFYING RIGHTS FOR WHICH A LICENSE MAY BE REQUIRED IN

ORDER TO IMPLEMENT THIS SPECIFICATION. THE ENTIRE RISK AS TO IMPLEMENTING OR OTHERWISE USING THE

SPECIFICATION IS ASSUMED BY YOU. IN NO EVENT WILL OCP BE LIABLE TO YOU FOR ANY MONETARY DAMAGES WITH RESPECT

TO ANY CLAIMS RELATED TO, OR ARISING OUT OF YOUR USE OF THIS SPECIFICATION, INCLUDING BUT NOT LIMITED TO ANY

LIABILITY FOR LOST PROFITS OR ANY CONSEQUENTIAL, INCIDENTAL, INDIRECT, SPECIAL OR PUNITIVE DAMAGES OF ANY

CHARACTER FROM ANY CAUSES OF ACTION OF ANY KIND WITH RESPECT TO THIS SPECIFICATION, WHETHER BASED ON BREACH

OF CONTRACT, TORT (INCLUDING NEGLIGENCE), OR OTHERWISE, AND EVEN IF OCP HAS BEEN ADVISED OF THE POSSIBILITY OF

SUCH DAMAGE.

Open Compute Project  Project Zipline Compression Specification

http://opencompute.org 3

Contents
1.1 Purpose... 7

1.2 Intended Audience.. 7

1.3 Scope .. 7

1.4 Compliance ... 7

1.5 Terms and Conventions .. 7

2 Overview ... 8

2.1 What is Project Zipline and XP10? .. 8

2.2 Compression Algorithm Overview .. 8

2.3 Options and Compliance .. 9

3 Compressed Representation ... 10

3.1 Data Ordering .. 10

3.1.1 Overall Convention .. 10

3.1.2 Packing Bits to Bytes .. 10

3.2 Overview .. 11

3.3 XP10 Frame Definition .. 12

3.4 XP10 Block .. 13

3.4.1 Fixed-Length Headers .. 13

3.4.2 Compressed Data Header .. 14

3.5 Symbol Encode ... 15

3.5.1 Symbol Encoding Methods .. 15

3.6 Symbol Definition ... 25

3.6.1 Short Symbols .. 26

3.6.2 Long Symbols ... 28

3.7 Intermediate Representation ... 28

3.8 Compressed Data ... 30

4 Prefixes ... 30

4.1 Predefined Prefixes ... 30

4.2 User-Defined Prefixes ... 31

5 References .. 32

6 Appendix ... 33

6.1 Appendix A: XP10 Compact Frame Header .. 33

6.2 Appendix B: CRC Calculation .. 34

6.2.1 CRC32 Calculation Code ... 34

6.2.2 CRC64 Calculation Code ... 35

4 March 11, 2019

6.3 Appendix C: Frame Header Example .. 35

6.4 Appendix D: Block Header Example ... 36

6.5 Appendix E: Example of a Predefined Huffman Table Data Structure ... 37

6.6 Appendix F: Known Predefined Prefixes ... 38

Open Compute Project  Project Zipline Compression Specification

http://opencompute.org 5

Table of Figures
Figure 1: Huffman Symbol Encoding Process ... 17

Figure 2: XP10 Level 10 Symbol Assignment .. 26

6 March 11, 2019

Table of Tables
Table 1: XP10 Compression Level Mapping .. 9

Table 2: XP10 Frame Components Example ... 11

Table 3: XP10 Frame Fields ... 12

Table 4: XP10 Fixed Block Field Definition .. 13

Table 5: Example of MTF Offset Field ... 14

Table 6: Symbol Table Header .. 15

Table 7: Symbol Table Bit Length for Different Compression Levels .. 15

Table 8: Example of Huffman Alphabet Length Encoding .. 18

Table 9: Small Table Symbol Definition .. 19

Table 10: Example of Small Table Symbol Representation of the Short Huffman Symbols Table 20

Table 11: Example of Huffman-Encoded Small Table ... 21

Table 12: Example of Delta Encoded Small Table ... 23

Table 13: Encoded Short Symbol BLT Table .. 24

Table 14: Number of Short and Long Symbols for Each Compression Level .. 25

Table 15: Short Symbol Table for 704 Short Symbols ... 27

Table 16: LZ77 Matches to Intermediate Symbol Mapping .. 29

Table 17: XP10 Compact Frame Fields .. 33

Table 18: XP10 Compact Frame Coding Block Fields .. 34

Open Compute Project  Project Zipline Compression Specification

http://opencompute.org 7

1.1 Purpose
This specification defines a lossless compressed data format that is independent of CPU type, operating
system, file system, and character set, and is suitable for compression using the Project Zipline
algorithm. The Verilog RTL being contributed was written given the name XP10. To remain consistent
with the Verilog RTL, XP10 will be referenced heavily in this document. The

format uses the XP10 compression method and CRC32/CRC64 checksum method for detection of data
corruption. This document is the authoritative specification of the XP10 compressed data format.

The data format defined by this specification does not attempt to allow random access to compressed
data.

1.2 Intended Audience
This specification is intended for use by software or hardware implementers to compress data into the
XP10 format and to decompress data from the XP10 format. This specification assumes a basic
background in programming at the level of bits and other primitive data representations.

1.3 Scope
This document specifies a method for representing a sequence of bytes as a (usually shorter) sequence
of bits and a method for packing the latter bit sequence into bytes.

1.4 Compliance
Unless otherwise indicated in this document, a compliant decompressor must be able to accept and
decompress any data set that conforms to all the specifications presented here. A compliant compressor
must produce data sets that conform to all the specifications presented here.

1.5 Terms and Conventions
Bitstream: A stream of data in binary form.

BLT: Bit length table.

Canonical Huffman code: A type of Huffman code with unique properties that allow it to be described in
a compact manner. Canonical Huffman code generation is described on the Wikipedia page
(https://en.wikipedia.org/wiki/Canonical_Huffman_code).

Codeword: Current byte position in the input bitstream.

CRC: Cyclic redundancy check.

Huffman alphabet: A set of symbols used in Huffman encoding.

Huffman codes: A set of variable-length bit sequences for an alphabet of symbols. To provide
compression, more frequent symbols are assigned shorter bit sequences. The bottom-up Huffman
construction process is optimal in the sense that the total length of the data is minimized, given the
number of times each symbol occurs.

Huffman symbol: See “prefix code.”

LIT: Literal.

Long symbol: Huffman alphabet used to represent match lengths.

LSB: Least significant bit.

https://en.wikipedia.org/wiki/Canonical_Huffman_code

8 March 11, 2019

LZ77: A general-purpose compression technique introduced by Lempel and Ziv in 1977. Byte sequences
that are the same as previous sequences are replaced by a (length, distance) pair that unambiguously
references the earlier sequence.

MSB: Most significant bit.

MTF: Move-to-front.

Offset: Distance in the past where a match is found.

Prefix Code: A type of code system, typically variable-length, having the prefix property, where no valid
codeword in the system is a prefix of any other valid codeword in the set.

PTR: Pointer to past, consisting of an (offset, length) pair.

Retrospective Huffman Codes: Huffman codes for each Huffman symbol are computed based on its
frequency in the coding block. A new Huffman tree is computed for each coding block based on the
frequencies of the Huffman symbols.

Short symbol: Huffman alphabet used to represent Literals, MTF and PTR matches.

Static Huffman Codes: Each Huffman symbol has a fixed Huffman code. Huffman code is independent of
the frequency of the Huffman symbol and stay the same across coding blocks.

Symbol alphabet: The long and short symbol used in the LZ77 stage before it is encoded.

2 Overview

2.1 What is Project Zipline and XP10?
Project Zipline is a lossless compression data format developed by Microsoft. The Verilog RTL being
contributed was written given the name XP10. To remain consistent with the Verilog RTL, XP10 will be
referenced heavily in this document. As with other compression formats, XP10 defines the compressed
buffer in a way that enables an XP10 decompressor to recover the original uncompressed data. XP10
can be used as a standalone file format and software or as an associated data format used with other
compression software.

2.2 Compression Algorithm Overview
The XP10 compression algorithm performs compression in two stages, LZ77 matching and Huffman
encoding. It continues work on these two stages until it reaches the end of the input stream.

1. LZ77 Match: In this stage, the compressor searches for prior duplicate strings in the input stream
using the LZ77 algorithm (Lempel-Ziv 1977, see [1] in the References section). If it finds a match, the
compressor emits “{offset, length} pair”, where “offset” specifies how far back from the current
position the match is seen, and “length” specifies the length of the match. The minimum length of
the match is parameterizable to either 3 or 4 bytes. If no prior match is found, then the current
symbol is emitted as a “literal.” The compressor uses the following two techniques to improve the
overall compression ratio:

• Lazy Matching: After a match of length “n” has been found, the compressor searches for a
longer match starting at the next input symbol. If it finds a longer match, the previous match

Open Compute Project  Project Zipline Compression Specification

http://opencompute.org 9

is ignored, and the previous symbol is encoded as a literal. The longer match is then
encoded as an offset-length pair. Otherwise the original match is emitted. A delayed match
window of “n” means that matches for the next “n” symbols are considered for optimal
encoding.

• Move-to-Front (MTF) Buffer: Offset values from the recently generated {offset, length} pairs
are cached in a buffer. If the offset value of a new match matches any of the entries from
the cached buffer, the match is encoded using the {index, length} pair where “index” is the
entry position in the buffer. The MTF buffer is sized at four entries. All the entries in the
buffer are initialized to 0 at the start of the coding frame. During an update all the entries
are moved one position (i.e entry 0 is moved to entry 1, entry 1 is moved to entry 2, entry2

is moved to entry 3) and the new Offset value is inserted into entry 0.

The generated literals, {index, length} or {offset, length} pairs, are referred to as LZ77 symbols
and are stored in an intermediate buffer. The {index, length} pairs are also referred to as MTF
matches and {offset, length} pairs are also referred to as pointer-to-past (PTR) matches.

2. Huffman Encode: In this stage, the compressor generates canonical Huffman codes (see [2] in the
References section) for the LZ77 symbols produced in the LZ77 match stage. The LZ77 symbols are
then encoded using the generated canonical Huffman codes. Canonical Huffman codes are stored in
a compressed format in the block header.

2.3 Options and Compliance
Many options affect compression ratio and performance. Options that affect the decompressor will be
reflected in the frame and block headers, including window size and minimum match length. XP10–
compliant decompressors must support all options that affect decompressors, but each compressor may
choose to implement only certain options.

The following is a list of options:

• Compression levels: The compression level determines the search window size. Larger windows

may find matches of longer lengths, but they are more resource intensive. XP10 supports

window sizes ranging from 4 KB to 16 MB. A compressor may choose to implement a smaller

window size, but the decompressor must be able to support all compression levels. If a

hardware implementation lacks support for a window size then a software library must be

provided for decompressing all larger window sizes.

Table 1: XP10 Compression Level Mapping

Compression Level Window Size (Bytes)

1–2 Not specified

3 4,096

4 8,192

5 16,384

6 65,536

10 March 11, 2019

7 262,144

8 1,048,576

9 4,194,304

10 16,777,216

• Minimum match length: XP10 uses a minimum match length of 3 or 4 bytes.

• Delayed match windows: This option affects compressor performance only, as explained in

section 2.2.

• Use of the prefix engine: XP10 supports 63 predefined prefixes, each up to 1 KB in size. An
XP10–compliant decompressor must have storage for all 63 predefined prefixes. Note that
prefix encoding zero is a special encoding, used to indicate that no predefined prefix is used.

3 Compressed Representation

3.1 Data Ordering

3.1.1 Overall Convention
Unless otherwise specified, this document assumes bit 0 to be the least significant bit and is written on

the right, and also assumes little endian representation in byte ordering—for example, the least

significant byte is stored first at the lower memory address.

3.1.2 Packing Bits to Bytes
XP10 uses the same rule for packing bits to bytes as DEFLATE (see [3] in the References section). For the

sake of completeness, we include the entire text of the relevant parts of DEFLATE RFC 1951 in this

section.

Compressed data consists of data elements of various bit lengths. The following rules apply when

packing data elements into bytes to form the final compressed byte sequence:

• Data elements are packed into bytes in order of increasing bit number within the byte—for

example, starting with the least-significant bit of the byte.

• Data elements other than Huffman codes are packed starting with the least-significant bit of the

data element.

• Huffman codes are packed starting with the most-significant bit of the code.

In other words, if one were to print out the compressed data as a sequence of bytes, starting with the

first byte at the right margin and proceeding to the left, with the most significant bit of each byte on the

left as usual, one would be able to parse the result from right to left, with fixed-width elements in the

correct MSB-to-LSB order and Huffman codes in bit-reversed order (that is, with the first bit of the code

in the relative LSB position).

Open Compute Project  Project Zipline Compression Specification

http://opencompute.org 11

3.2 Overview
The XP10 compressed bitstream is called a frame. A frame consists of a frame header and a series of

blocks. Each block consists of a block header and data block. Data blocks can be uncompressed raw data

or compressed data, which is identified in the block header, as defined in Table 4, presented in section

3.4, “XP10 Block.”

The settings in the frame header are used consistently among the blocks within the frame. XP10 has no

maximum frame size. The last block indicates the end of the frame by setting the LAST_BLK field in its

block header, as defined in Table 4. Implementations of XP10 may choose to limit the uncompressed file

size to avoid resource hogging. In this case a software decompressor must be supplied to handle larger

frame size. The final uncompressed data is the concatenation of the uncompressed symbols from each

block.

XP10 calculates the CRC over the original uncompressed data. Whether to use CRC32 or CRC64 depends

on the option chosen in the frame header. If the XP10 file format is used, the CRC field follows the end

of the last block as a footer at the next byte boundary. If the XP10 data format is used, it is up to the

compression utility to determine where it outputs the footer.

Note that XP10 has no header protection. XP10 chooses to deal with a single CRC error. Header errors

are detected because the CRC for the overall data will not match.

Table 2 shows an XP10 structure, preceded by a color key that identifies structure elements.

Color Key for Table 2:

Frame header encapsulation

Compressed data block

Uncompressed data block

Table 2: XP10 Frame Components Example

XP10 Frame Header

XP10 Block (block 0)

XP10 Block (block 1)

XP10 Block (block 2)

…

XP10 Block (block n)

CRC 64 or CRC 32

As mentioned in section 2.1, XP10 can be used as a standalone compression file format. In this case, the

frame encapsulation information is output to the same buffer as the data blocks. The decompressor will

have all the information needed to decompress the frame given a single buffer location.

12 March 11, 2019

A compression utility (software or hardware) can also choose to output the frame encapsulation

information to a separate buffer from the data blocks. The corresponding decompression utility will

need to receive the information captured in the frame encapsulation through alternative methods in

order to decompress the data blocks.

3.3 XP10 Frame Definition
Table 3 list the fields of the XP10 frame. Each field follows right after another with no additional

information before, between, or after.

Table 3: XP10 Frame Fields

Field Bits Description

XP10_ID [31:0] Hardcoded to 0xC039E510. Indicates that the frame
is in the XP10 file format.

Flags WINDOW_SIZE_SEL [2:0] Reflects the compression level listed in Table 1.

3’h0: 4,096

3’h1: 8,192

3’h2: 16,384

3’h3: 65,536

3’h4: 262,144

3’h5: 1,048,576

3’h6: 4,194,304

3’h7: 16,777,216

MIN_MATCH_LEN_SEL [3] Selects minimum match length between 3 and 4. In
XP10, PTR and MTF use the same minimum match
lengths.

• 0: minimum length = 3

• 1: minimum length = 4

Mode [5:4] Indicates the operating mode for the predefined
prefix and predefined Huffman options:

• 00: normal operation—no predefined prefix and
no predefined Huffman

• 01: user-defined prefix and no predefined
Huffman

• 10: predefined prefix and no predefined
Huffman

• 11: predefined prefix and predefined Huffman

PREDEF_SEL [11:6] If the mode is 2’b10 or 2’b11, this field chooses
which of the 63 predefined prefixes is used. A value
of 0 means that no suitable predefined prefix and no
predefined Huffman is found, so normal

Open Compute Project  Project Zipline Compression Specification

http://opencompute.org 13

compression or decompression should be
performed. For all other modes, this field is ignored.

RSVD [13:12] Reserved. Must be always 0.

CRC_OPTION 14 • 0: CRC64

• 1: CRC32 (optional for small frame size)

FLG_EXTRA [15] • 0: no extra flag presented

• 1: bit flag extension is present

No FLG_EXTENTION fields are currently defined,
therefore FLG_EXTRA is always 0.

FLG_EXTENTION [31:16] Reserved. Must be always 0.

…XP10_blocks… The XP10 blocks that contain the compressed or
uncompressed blocks. No padding separates the
blocks.

CRC 64/32 CRC64/CRC32 calculation over the original input file
based on the CRC_OPTION field in the frame header.
This field starts on a byte boundary. If needed,
padding bits of zero value will be added to achieve
byte alignment.

3.4 XP10 Block
XP10 frames may contain one or more blocks. Each block contains the block header, optional MTF fields,

the optional symbol table, and either compressed data or raw uncompressed data as identified in the

block header. No paddings exist before or in the middle of the block or between the blocks. Only the

end of the last block may be padded with zeros so that the CRC field in the frame footer starts on a byte

boundary when the frame footer is stored in the same data buffer as the blocks (file format mode). XP10

block headers contains fixed-length and variable-length headers.

3.4.1 Fixed-Length Headers
The fixed header contains the fields that are always present in the XP10 block header, as specified in

Table 4. Each field follows another with nothing in between.

Table 4: XP10 Fixed Block Field Definition

Field Bits Description

OUTPUT_SIZE [27:0] The output’s compressed or uncompressed data size in bits,
including the block headers (fixed and variable-length
headers). The size does not include the padding bits.

RSVD 28 Reserved. Must be always 0.

BLK_TYPE 29 1’b0 = uncompressed

1’b1 = compressed

14 March 11, 2019

MTF_HDR_PRESENT 30 The MTF header is present. If BLK_TYPE is uncompressed,
MTF_HDR is not present, regardless of this bit’s value.

LAST_BLK 31 1’b1 = this block is the last block in the frame

1’b0 = this block is not the last block in the frame

3.4.2 Compressed Data Header
The compressed data header block is present only if the BLK_TYPE is 1’b1.

Some XP10 block headers exist only when certain fields in the fixed-length block header are set for

certain settings.

3.4.2.1 MTF Offset Header
MTF offset headers are present only if the MTF_HDR_PRESENT bit is set. It comes after the fixed-length

header. The MTF offset header can be used to help track the MTF state from the previous block if the

information is lost from a previous uncompressed data block. It is expected that a new frame will not

reference any “stale” entries from a previous frame. The header size is a minimum of 20 bits and

defaults to 0.

Table 5: Example of MTF Offset Field

Bits MSB
LSB

0

Description

 M
TF_O

FFSET3
_LSB

 M
TF_O

FFSET3
_EX

P

 M
TF_O

FFSET2
_LSB

 M
TF_O

FFSET2
_EX

P

 M
TF_O

FFSET1
_LSB

 M
TF_O

FFSET1
_EX

P

 M
TF_O

FFSET0
_LSB

 M
TF_O

FFSET0
_EX

P

The MTF offset is represented using the (MTF_OFFSET_EXP, MTF_OFFSET_LSB. MTF_OFFSET_EXP =

Floor(Log2(MTF_OFFSET))). If MTF_OFFSET_EXP != 0, the MTF_OFFSET_LSB field is written with

MTF_OFFSET – 2 ^ (MTF_OFFSET_EXP) next; otherwise, MTF_OFFSET_LSB is not written.

3.4.2.2 Symbol Table Header
Symbol table headers are present only if BLK_TYPE is compressed. Table 6 shows the content of the

symbol header and the conditions in which it is present. Note that there are separate short and long

symbols encode type field allows the long symbols to be encode differently than the short symbols.

Although the frame header may have the MODE_FIELD = 2’b11, which enable the use of predefine-

Huffman, a block has the option of using the Retrospective Huffman if it gives better compression ratio.

Predefined Huffman is always used in conjunction with prefix in XP10, however XP10 does not prevent

Open Compute Project  Project Zipline Compression Specification

http://opencompute.org 15

the case of subsequent block uses of predefined Huffman Table. The predefined Huffman table

requirement are described in Section 3.5.1.2.

Table 6: Symbol Table Header

Field Bits Description

SHORT_SYMBOL_ENCODE_TYPE [1:0] Present if BLK_TYPE=1

2’b00: simple encode

2’b01: predefined Huffman

2’b10: retrospective Huffman

2’b11: reserved

Short Huffman Symbol Table Present if SHORT_SYMBOL_ENCODE_TYPE == 2’b10

LONG_SYMBOL_ENCODE_TYPE [3:2] Present if BLK_TYPE=1.

2’b00: simple encode

2’b01: predefined Huffman

2’b10: retrospective Huffman

2’b11: reserved

Long Huffman Symbols Present if LONG_SYMBOL_ENCODE_TYPE == 2’b10

3.5 Symbol Encode

3.5.1 Symbol Encoding Methods
Symbol tables contain encoded symbols from the LZ77 stage. Short symbols are encoded followed by

the long symbol. XP10 can encode a block in three ways: simple encode, predefined Huffman, and

retrospective Huffman. This selection is stored in the symbol table header defined in Table 6. The long

and short symbols can use different encoding modes.

3.5.1.1 Simple Encode
One way of encoding the symbols is to use M=Floor (Log2(symbol alphabet size A)) bits to encode the

first N symbols where N=2^(M+1) – A where the symbol is represented with the symbol value itself. The

remaining A-N symbols may be encoded with (M+1) bits, where the symbol is encoded to (N << 1). In

this simple encode mode, there is no symbol table in the output bitstream.

For example, for 704 short symbols, simple encode uses 9 bits to represent the first 1024-704 = 320

symbols; the remaining 384 symbols will be encoded with 10 bits. For the long symbol table, simple

encode uses 8 bits to represent the 256 symbols. For 576 short symbols, simple encode uses 9 bits to

represent the first 1024-576 = 448 symbols and 10 bits to encode the remaining 128 symbols. Table 7

gives a complete list of the symbol’s lengths at each compression level when using simple encode.

Table 7: Symbol Table Bit Length for Different Compression Levels

Level Window Size Long/Short Symbol Bit Length Bit Length Start Code

10 16777216 Short [0-319] 9 0

[320-703] 10 640

16 March 11, 2019

Long [0-255] 8 0

9 4194304 Short [0-351] 9 0

[352-671] 10 704

Long [0-1] 7 0

[2-253] 8 4

8 1,048,576 Short [0-383] 9 0

[384-639] 10 769

Long [0-3] 7 0

[4-251] 8 8

7 2621,44 Short [0-415] 9 0

[416-607] 10 832

Long [0-5] 7 0

[6-249] 8 12

6 65,536 Short [0-447] 9 0

[448-575] 10 896

Long [0-7] 7 0

[8-247] 8 16

5 16,384 Short [0-479] 9 0

[480-543] 10 960

Long [0-9] 7 0

[10-245] 8 20

4 8,192 Short [0-495] 9 0

[496-527] 10 992

Long [0-10] 7 0

[11-244] 8 22

3 4096 Short [0-511] 9 0

Long [0-11] 7 0

[12-243] 8 24

3.5.1.2 Predefined Huffman Encode
XP10 provides a set of predefined Huffman tables that are not stored in the compressed data. XP10

allows 63 sets of predefined Huffman tables to be used with the prefix. The set is selected by the

PREDEF_SEL field in the frame header described previously in Table 3.

The predefined Huffman code provides information for short symbol BLT (bit length table) and long

symbol BLT. The BLT table records the bit length for each symbol. The data structure of the BLT is

Open Compute Project  Project Zipline Compression Specification

http://opencompute.org 17

implementationspecific. However, the data structure needs to capture the bit length for all valid long

and short symbols regardless of whether they are used in the bitstream. The provided bit lengths for

symbols need to generate valid Huffman codes.

3.5.1.3 Huffman Encoding
3.5.1.3.1 Overview

XP10 performs multiple stages of Huffman encoding to reduce the symbol table size. Figure 1 shows the

various stages in the Huffman symbol encoding process. There are separate Huffman encode process for

long and short symbol and they are independently encoded. Short symbols are processed first, followed

by long symbols. Each symbol table contains two parts:

1. Delta encoded small table (output at stage 4).

2. Encoded symbol bit length table (output at stage 5).

Figure 1: Huffman Symbol Encoding Process

3.5.1.3.2 Stage 1

The first stage compressor uses canonical Huffman code to encode the LZ77 result that contains the

histograms on short symbols and long symbols that is referred as the symbol alphabet. The encoded

Alphabet
Symbols

•Stage 1:

• Canonically encode and represent with code length (maximum 27). Code length is also referred to as bit
length.

• The bit length table(BLT) is the table listing the bit length for each alphabet symbol.

BLT

•Stage 2

•Coalese the bit length table using five additonal coalesed symbols in addition to the symbols representing
lengths of 0 to 27. This document refers to the 33 symbols as small table symbols.

•For all the alphabet, represent the alphabet symbols with small table symbols. This table is referred to as
the bit length table.

Small Symbol
Table

•Stage 3:

•Canonically encode the 33 small table symbols.

•The table that captures the bit length symbol length is refered as the small table.

Delta Enoded
Small Symbol

Table

•Stage 4:

•Use delta encode to output the 33 Huffman-enocded BLT length symbol length and output that in the
compressed data stream.

Encoded BLT

•Stage 5:

•Replace the short table symbol in BLT with Huffman-encoded short table symbols and output to the
compressed data stream.

18 March 11, 2019

variable-length codewords are referred as the Huffman symbol alphabet. The maximum length of the

Huffman symbol alphabet is 27. This would require a maximum of 5 bits to record the Huffman symbol

alphabet length. Symbols that do not occur within the input are assigned zero length. Table 8 shows an

example of the intermediate result at the end of Stage 1.

Table 8: Example of Huffman Alphabet Length Encoding

Symbol Bit Length

0 0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

9 0

10 8

11 0

12 0

13 0

14 0

15 0

… …

58 11

…

66 11

… …

504 11

505 11

…

521 12

… …

703 20

Open Compute Project  Project Zipline Compression Specification

http://opencompute.org 19

3.5.1.3.3 Stage 2

The code length of the Huffman symbol can be represented using 28 symbols. XP10 uses five additional

symbols, ranging from symbols 28 to 32. These five symbols are used to further back-reference or

coalesce the code length. These 33 symbols are called small table symbols, and their definition is

provided in Table 9. The notation Length[i] means the codeword length of the i-th Huffman symbol

alphabet. FILL_COUNT is hardcoded to 16 for XP10.

Table 9: Small Table Symbol Definition

Huffman Bit
Length Symbol

Defines Counting Conditions

0..27 Maps to each code length When the next five conditions do not
occur

28 HUFFMAN_ENCODED_TABLE_FILL length[i] == 0 till the next FILL_COUNT
boundary (where k <= i < ((k+16)>>4)
<< 4)

29 HUFFMAN_ENCODED_TABLE_ZERO_REPT length[i] == 0 for the next k
consecutive symbols (k >= 5)

30 HUFFMAN_ENCODED_TABLE_PREV length[i] == length[i-1]

31 HUFFMAN_ENCODED_TABLE_ROW_0 length[i] == length[i- FILL_COUNT]

32 HUFFMAN_ENCODED_TABLE_ROW_1 length[i] == length[i-FILL_COUNT] + 1

3.5.1.3.3.1 HUFFMAN_ENCODED_TABLE_FILL

If a symbol has zero length and the subsequent symbols until the next FILL_COUNT boundary all have

zero length, the symbol can be replaced by a HUFFMAN_ENCODED_TABLE_FILL. FILL_COUNT is

hardcoded to 16 in XP10. This can be expressed as follows:

If Len[i] = 0 for all k <= i < k + FILL_COUNT - (k%FILL_COUNT),

replace all Symbol[i] in the range of k <= I < K+ FILL_COUNT – (k%FILL_COUNT) with one
Symbol[HUFFMAN_ENCODED_TABLE_FILL]

Example 1:

If Len[i] == 0 for all 13 <= i <=19, a HUFFMAN_ENCODED_TABLE_FILL symbol can replace and encode the

information in symbol[13], symbol[14], and symbol[15]. The remaining zero-length symbols in this range

are symbol[16], symbol[17], symbol[18], and symbol[19]. These symbols will still use symbol length 0 to

encode.

Example 2:

If Len[i]==0 for all 13< = i <= 38, two HUFFMAN_ENCODED_TABLE_FILL can replace symbol[13] to

symbol[31]. Symbol[32] to symbol[35] can be replaced by HUFFMAN_ENCODED_TABLE_ZERO_REPT and

a length field described in section 3.5.1.3.3.2.

20 March 11, 2019

3.5.1.3.3.2 HUFFMAN_ENCODED_TABLE_ZERO_REPT

HUFFMAN_ENCODED_TABLE_ZERO_REPT is another zero-length coalescing symbol that can be used in

replacing consecutive symbols. It requires a minimum of five consecutive zero-length symbols. The

consecutive K 0-length symbols can be replaced with a symbol for

HUFFMAN_ENCODED_TABLE_ZERO_REPT followed by the encoded length field to capture k, the repeat

length, which is encoded in the following ways:

If (5<=k<8) write 2’b(k-5); else {

write 2’b3; k-=8;

while (k>=7) {

 write 3’h7

k-=7

}

write 3’hk

}

3.5.1.3.3.3 HUFFMAN_ENCODED_TABLE_PREV

HUFFMAN_ENCODED_TABLE_PREV is used to reference the same bit length seen in the previous

nonzero Huffman alphabet. For example, if Huffman alphabet 13 and Huffman alphabet 14 both have a

Huffman code length of 26, Huffman alphabet 13 will be represented using small table symbol 26 but

Huffman alphabet 14 can be replaced with HUFFMAN_ENCODED_TABLE_PREV. The default previous

nonzero value is 8 at the beginning of the comparison.

3.5.1.3.3.4 HUFFMAN_ENCODED_TABLE_ROW_0

HUFFMAN_ENCODED_TABLE_ROW_0 is used to reference the same bit length seen previously in

Huffman alphabet at a distance of 16. If Huffman alphabet 13 and Huffman alphabet 29 both have a

Huffman code length of 26, Huffman alphabet 13 will be represented using small table symbol 26 but

Huffman alphabet 29 can be replaced with HUFFMAN_ENCODED_TABLE_ROW_0.

3.5.1.3.3.5 HUFFMAN_ENCODED_TABLE_ROW_1

HUFFMAN_ENCODED_TABLE_ROW_1 is used to reference the bit length that is one more than what is

seen previously in Huffman alphabet at a distance of 16. If Huffman alphabet 13 has a length of 26 and

Huffman alphabet 30 has a Huffman code length of 27, Huffman alphabet 13 will be represented using

small table symbol 26 but Huffman alphabet 30 can be replaced with

HUFFMAN_ENCODED_TABLE_ROW_1 instead of using small table symbol 27.

With the small table symbols, the example in Table 8 will be coalesced to the example in Table 10

(entries in gray represent symbols that are not necessary to explain the scheme).

Table 10: Example of Small Table Symbol Representation of the Short Huffman Symbols Table

Symbol Bit Length Small Table Symbol Representation

Open Compute Project  Project Zipline Compression Specification

http://opencompute.org 21

Small Table Symbol Notes

0 0 29

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

9 0

10 8 30 Uses HUFFMAN_ENCODED_TABLE_PREV
because the default is 8.

11 0 28

12 0

13 0

14 0

15 0

… … …

50 11 11

… …

66 11 31 Has the same length as symbol[50].

… … …

504 11 11

505 11 30 Has the same length as symbol[504].

… … …

521 12 32 Length as symbol[505] + 1.

… … …

703 0

3.5.1.3.4 Stage 3

With the small table symbol representation of the BLT, a histogram can be generated from counting the

frequency of the small table symbols presented in the bit length table. The 33 small table symbols are

encoded again with the histogram using canonical Huffman code. The encoded small table symbol

length has a maximum length of 8.

Table 11: Example of Huffman-Encoded Small Table

22 March 11, 2019

Small Table Symbol Bit-Length Encoded Small Table Symbol Value In the Bitstream

0 2 2’b0 2’b00

1 0

2 0

3 0

4 7 7’h7e 7’h3f

5 6 6’h3c 6’hf

6 6 6’h3d 6’h2f

7 6 6’h3e 6’h1f

8 5 5’h1a 5’hb

9 5 5’1b 5’h1b

10 5 5’h1c 5’h7

11 4 4’ha 4’h5

12 4 4’hb 4’hd

13 0

14 0

15 0

16 0

17 0

18 0

19 0

20 0

21 0

22 0

23 0

24 0

25 0

26 0

27 0

28 3 3’h4 3’h1

29 7 7’h7f 7’h7f

30 2 2’h1 2’h2

31 4 4’hc 4’h3

32 5 5’h1D 5’h17

Open Compute Project  Project Zipline Compression Specification

http://opencompute.org 23

3.5.1.3.5 Stage 4

The small table is output to the bitstream using delta encode using the following algorithm.

Previous symbol length prev = 4

For each symbol

K= length of the symbol

If (k == prev) Write 1’b0

Else

Write 1’b1.

If (k > prev) write 3’b(K-1) else write 3’bk

Prev = k;

End foreach

In the example shown in Table 11, the small table will be encoded, as shown in Table 12.

Table 12: Example of Delta Encoded Small Table

Small Table Symbol Bit-Length Delta Encode

0 2 1’b1, 3’h2

1 0 1’b1, 3h0

2 0 1’b0

3 0 1’b0

4 7 1’b1, 3’h6

5 6 1’b1, 3’h6

6 6 1’b0

7 6 1’b0

8 5 1’b0

9 5 1’b1, 3’h5

10 5 1’b0

11 4 1’b1, 3’h4

12 4 1’b0

13 0 1’b1, 3’h0

14 0 1’b0

15 0 1’b0

16 0 1’b0

17 0 1’b0

24 March 11, 2019

18 0 1’b0

19 0 1’b0

20 0 1’b0

21 0 1‘b0

22 0 1’b0

23 0 1’b0

24 0 1’b0

25 0 1’b0

26 0 1’b0

27 0 1’b0

28 3 1’b1,3’h2

29 7 1’b1, 3’h6

30 2 1’b1, 3’h2

31 4 1’b1, 3’h3

32 5 1’b1, 3’h4

3.5.1.3.6 Stage 5

The bit length table is written out to the data stream using the encoded small table symbols. The length

field is written out to the data stream using the algorithm described earlier. The final representation of

the encoded short symbol BLT table that is present in the output data stream (entries in gray represent

symbols that are not necessary to explain the scheme) is shown below. A similar encoded long symbol

BLT table will also occur in the bitstream if the Huffman encode scheme is used.

Table 13: Encoded Short Symbol BLT Table

Symbol Bit Length

Small Table Symbol
Representation

Final Encoded Version

Small Table Symbol Encoded Symbol

0 0 29 7’h7f followed by 2’h3, 2’h2 to
represent 10 consecutive symbols

with bit length 0.
1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

Open Compute Project  Project Zipline Compression Specification

http://opencompute.org 25

9 0

10 8 30 2’h2

11 0 28 3’h1

12 0

13 0

14 0

15 0

… …

50 11 11 4’h5

…

66 11 31 4’h3

… …

504 11 11 4’h5

505 11 30 2’h2

… …

521 12 32 5’h17

… …

703 0

3.6 Symbol Definition
To build canonical Huffman codes, XP10 converts LZ77 match results into symbols. The LZ77

compression stage produces three types of match results, as follows.

• Literal (LIT): LIT emits the current byte as it is because it could not find any good matches from

the past.

• Pointer to Past (PTR): PTR is a match to a previous point, containing the offset and length.

• Move-to-Front (MTF): The algorithm maintains offsets of four most recent matches and tries to

find matches out of these offsets. Because the offset is one of the last N (0..3) most recent

offsets, it can encode the offset via a 2-bit value.

These results are converted into intermediate symbols from which canonical Huffman codes are

produced. There are two types of intermediate symbols, short symbols (described in section 3.6.13) and

long symbols (described in section 3.6.24). XP10 can have maximum of 704 short symbols and 256 long

symbols at level 10. For lower compression levels, the number of the symbol is trimmed down with the

search window size. The number of short symbols = 320 + log2 (Window size) *16. The number of long

symbols = 232 + Ceiling (log(Window Size – 246 – MIN_MATCH_LEN)) .Table 14 lists the number of short

and long symbols corresponding to each compression level.

Table 14: Number of Short and Long Symbols for Each Compression Level

26 March 11, 2019

Level Window Size Number of Short Symbols Number of Long Symbols

3 4,096 512 244

4 8,192 528 245

5 16,384 544 246

6 65,536 576 248

7 262,144 608 250

8 1,048,576 640 252

9 4,194,304 672 254

10 16,777,216 704 256

Figure 2 shows an overview of how the short and long symbols are assigned. Symbol m in the diagram

refers to MIN_ MATCH_LEN.

Figure 2: XP10 Level 10 Symbol Assignment

3.6.1 Short Symbols
Short symbols are used for representing literals and MTF and PTR matches. The first 256 short symbols

represent literal values according to their ASCII values. A configurable MIN_MATCH_LEN is chosen to

determine which matches may be expressed using only a short symbol. This configuration selection is

...

...

...

...

MTF0 (16)

Literal (256)

0

255
256

271

319
MTF3 (16)

OFFSET0 (16)
floor(log(offset)) = 0

OFFSET23 (16)
floor(log(offset)) = 23

320

703

Len=m+0
Len=m+1
Len=m+2
Len=m+3

Len=m+14
Len>=m+15

...

Len=m+15

Len=m+246

0
1

230
231

Len=m+16

LEN0
floor(log(Len-m-246)) = 0232

255
LEN23

floor(log(Len-m-246)) = 23

[Short symbols] [Long symbols]

Open Compute Project  Project Zipline Compression Specification

http://opencompute.org 27

reflected in the frame header field MIN_MATCH_LEN_SEL. Any match that is less than the minimum

length is expressed using literals.

Symbols 256 to 319 are reserved for MTF matches. PTR match offset uses symbol 320 to symbol

log2(window size) + 320 because, for XP10, the match offset and match length is capped at the window

size.

Table 15 (preceded by a color key) shows an example of short symbol table with 704 symbols. Each MTF

or PTR group has 16 symbols in it where each symbol specifies its length to MIN+0, MIN+1, MIN+2, …,

MIN+14, and longer than or equal to MIN+15, respectively. The last symbols in groups, whose match

lengths are longer than or equal to MIN+15, further form long symbols described section 3.6.24.

There are four groups of MTF matches based on which recent offset each one matched against in the

order from most recent to least recent. PTR matches are divided into 24 groups based on the offset size.

The region for PTR matches is divided logarithmically. Group N includes offset from 2^N to 2^(N+1)–1,

where N ranges from 0 to 23. Based on this division, XP10 can support offsets up to 2^24, which is

equivalent to a 16 MB window size.

Table 15: Short Symbol Table for 704 Short Symbols

Color Key for Table 15:

Literals

MTF

PTR

Symbol

Value

Number

of Entries
Type Description Example

0 … 255 256 Literals 0-255 map to the 255 ASIC characters Symbol “97” for

literal “a”

256 … 271 16 MTF0 Match length = MIN _MATCH_LEN + 0 Symbol “283” for

MTF match with

length 14 and

index 1 if

MIN_MTF_MATCH

_LEN =3

Match length = MIN_MATCH_LEN + 1

Match length = MIN_MATCH_LEN + 2

…

Match length = MIN_MATCH_LEN + 14

Match length >= MIN_MATCH_LEN + 15

304 … 319 16 MTF3 Match length = MIN_MATCH_LEN + 0

Match length = MIN_MATCH_LEN + 1

Match length = MIN_MATCH_LEN + 2

…

Match length = MIN_MATCH_LEN + 14

28 March 11, 2019

Match length >= MIN_MATCH_LEN + 15

320 … 703 16 PTR

offset0

Floor(log

2(offset))

= 0

Match length = MIN_MATCH_LEN + 0 PTR match with

length 14 and

offset 0x8245 is

encoded as short

symbol 570

Match length = MIN_MATCH_LEN + 1

…

Match length = MIN_MATCH_LEN + 14

Match length >= MIN_MATCH_LEN + 15

16 PTR

offset1

Floor(log

2(offset))

= 1

Match length = MIN_MATCH_LEN + 0

Match length = MINMATCH_LEN + 1

…

Match length = MIN_MATCH_LEN + 14

Match length >= MIN_MATCH_LEN + 15

 …

16 PTR

offset 23

Floor(log

2 (offset))

= 23

Match length = MIN_MATCH_LEN + 0

Match length = MIN_MATCH_LEN + 1

…

Match length = MIN_MATCH_LEN + 14

Match length >= MIN_MATCH_LEN + 15

3.6.2 Long Symbols
Long symbols are used for representing match lengths greater than or equal to MIN_MATCH_LEN + 15.

Each long symbol is preceded by a short symbol that encodes a match length of MIN_MATCH_LEN + 15.

Out of the 256 long symbols, the first 232 symbols specify the match length from MIN_MATCH_LEN+15

to MIN_MATCH_LEN+246. For example, a PTR match with a length of 45 and offset 0x8245 is encoded

as short symbol 575 long symbol 26 offset “000 0010 0100 0101”.

The rest of the 24 symbols use logarithmic groupings on the length (MIN_MATCH_LEN+246) to encode

match lengths longer than MIN_MATCH_LEN+246. For example, a PTR match with a length of 345 and

offset 0x8245 is encoded as short symbol 575 long symbol 238, length “011111”, offset “000 0010 0100

0101”.

3.7 Intermediate Representation
With the symbol conversion described here, LZ77 compression stores each symbol’s match information

such as offset and length, if needed, and also histograms its frequency for further Huffman code

construction.

Open Compute Project  Project Zipline Compression Specification

http://opencompute.org 29

Table 16 summarize which symbol, offset, and length fields are required to completely express different

matches encoded to the data stream. Shaded table cells indicate fields that are packed into the byte

stream with the encoded symbol table. The short symbol is packed first, followed by long symbol, length

field, and then the offset, using the packing rule described in section 3.1.2.

Table 16: LZ77 Matches to Intermediate Symbol Mapping

Match
Type

Match
Offset

Length Range
Short

Symbol

First
Long

Symbol
Length Offset

LIT N/A N/A Y — — —

MTF N/A MIN_ MATCH_LEN + [0,14] Y — — —

MTF N/A MIN_MATCH_LEN + [15,247] Y Y — —

MTF N/A MIN_MATCH_LEN + [248,FRAME_SIZE] Y Y Y —

PTR =1 MIN_MATCH_LEN + [0,14] Y — — —

PTR =1 MIN_MATCH_LEN + [15,247] Y Y — —

PTR =1 MIN_MATCH_LEN + [248,FRAME_SIZE] Y Y Y —

PTR >1 MIN_MATCH_LEN + [0,14] Y — — Y

PTR >1 MIN_MATCH_LEN + [15,247] Y Y — Y

PTR >1 MIN_MATCH_LEN + [248,FRAME_SIZE] Y Y Y Y

The compressor uses an intermediate representation to save the preceding symbol information

effectively in the buffer. Offsets and lengths are both limited to the size of the search window;

therefore, for a smaller search window, a smaller number of bits is required to represent offset and

length. The widths of these fields are implementation-specific as long as the field has enough bits to

represent the maximum valid value for that field. For example, software may choose 2 bytes for each

field and hardware design may choose 10 bits to implement the 704 short symbols.

The rules on how the compressor needs to represent are nonetheless the same. The representation is

specified as follows.

1. For a literal, store it as it is.

2. For a short match whose length is shorter than MIN+15, save its short symbol index at the

current location. Its least 4 bits should be less than 15.

a. If the match is MTF, you don’t need any further information because MTF describes a

match completely—for example, match length and what recent offset to refer to.

b. If the match is PTR, save the offset next.

3. For a long match whose length is longer than or equal to MIN+15 and less than or equal to

MIN+246, save its short symbol index at the current location first. Its least 4 bits should be

30 March 11, 2019

exactly 15. Then, you need to store its long symbol index that ranges from 0 to 231 to the next

location.

a. If the match is MTF, you don’t need any further information because MTF describes a

match completely—for example, match length and what recent offset to refer to.

b. If the match is PTR, save the offset at the next location based on the bit length of the

offset.

4. For a very long match whose length is longer than MIN+246, save its short symbol index at the

current location first. Its least 4 bits should be exactly 15. Then, you need to store its long

symbol index that ranges from 232 to 255 to the next location. As this cannot describe its exact

match length, you will need the next one or two locations based on the bit length of the match

length.

a. If the match is MTF, you don’t need any further information because MTF describes a

match completely—for example, match length and what recent offset to use.

b. If the match is PTR, save the offset at the next location based on the bit length of the

offset.

3.8 Compressed Data
After the compressor creates two sets of Huffman code (one each for the short and long symbols), it

reads the LZ77 results in the intermediate representation buffer and replaces them with the final

compressed data. The short symbol in the intermediate representation is replaced with Huffman

alphabet for short symbols. If applicable long symbols exist, they are replaced with the Huffman

alphabet for the long symbols, followed by the applicable length field that is to specify a very long match

whose length is longer than MIN_MATCH_LEN +246. The length field for the long match is represented

in (log (len – MIN_LEN – 246) number of bits. The maximum number of bits for representing the length

field is log2(max_window_size). If the match is a PTR with an offset greater than 1, the applicable offset

field is stored in Ceiling(log(offset)) number of bits. The maximum number of bits for representing the

offset field is log2(max_window size).

4 Prefixes

4.1 Predefined Prefixes
A predefined prefix is a predefined uncompressed data stream that is used to seed the hash table

initially in the match engine. This is equivalent to feeding the predefined prefix into the search window

without identifying any matches. A compressor runs a small sample of data and determines which

predefined prefix to use. The prefix data is uncompressed and uses the same search window as regular

data. It is rolled out of the window as more of the to-be-compressed data frame is processed. For

example, a window size of 4 KB with a 1 KB prefix will have the prefix data start to roll out of the window

when 3 KB of the input frame is processed in the search window. Software should use the window size

of 8 KB for a 4 KB data frame to keep the prefix data available for matching.

Open Compute Project  Project Zipline Compression Specification

http://opencompute.org 31

XP10 provides 63 predefined prefixes. The size of each predefined prefix is implementation dependent.

Prefix zero is reserved to indicate no suitable prefix for the given input could be found.

The decompressor needs to have the information for the 63 predefined prefixes. It is assumed that

higher level software will ensure that the compressor and decompressor are both using the same

prefixes. At some future point, an API may be defined to register and/or request a specific set of prefixes

known to work well with a given type of data, such as: HTML, executables from a given compiler, English

language text files, etc.

4.2 User-Defined Prefixes
The only support for a user-defined prefix in the XP10 format is if the mode field in the frame header is

set to value of 2’b01. Any additional information required to process a user-defined prefix (such as

location or length) must be supplied through the interface of that implementation (APIs, registers, and

so on). The exact means is implementation dependent. This is equivalent to feeding the user prefix into

the search window without identifying any matches. If the user-defined prefix exceeds the search

window size, only the latter part of the prefix will be referenced during compression.

There is a 4 Byte CRC32 at the end of both the User and the Predetermined prefixes. CRC32 is computed

using the polynomial listed in Appendix B.1. These 4 Bytes of CRC are not part of the prefix data and are

not included in the prefix length provided to Compressor and Decompressor. For example, a 1KB prefix

will have 1024 Bytes of prefix data and an additional 4 Bytes of CRC. The provider of User-defined or

Predefined prefixes must always provide the associated CRC32. Applications using either the User-

Defined or the Predetermined prefix may use the CRC bytes for integrity check of the associated prefix

data. The use of CRC by the compressor or decompressor is optional and is implementation dependent.

32 March 11, 2019

5 References

[1] Ziv, J., Lempel, A., “A Universal Algorithm for Sequential Data Compression,” IEEE Transactions on
Information Theory, Vol. 23, No. 3, pp. 337–343.

[2] Huffman, D. A., “A Method for the Construction of Minimum Redundancy Codes,” Proceedings of the
Institute of Radio Engineers, September 1952, Volume 40, Number 9, pp. 1098–1101.

[3] RFC 1951: Deflate Compressed Data Format Specification version 1.3
(http://www.faqs.org/rfcs/rfc1951.html).

https://tools.ietf.org/html/rfc1951
http://www.faqs.org/rfcs/rfc1951.html

Open Compute Project  Project Zipline Compression Specification

http://opencompute.org 33

6 Appendix

6.1 Appendix A: XP10 Compact Frame Header
As the XP10 frame and block headers/footers can occupy up to 20 bytes, a smaller header format is also

implemented. This compact format is intended for handling short (<= 8 KB) input frames, with only one

coding block produced in the compressed output. Note the following:

• Only one header is present—no separate frame and block headers, as in XP10. This single

header combines the frame and coding block information.

• No CRCs are included in the format—integrity checking must be done at a higher level.

• No format identifier (such as “Magic Number”) is available.

• Window size is either 4k or 8k only.

• MIN_MATCH_LEN_SEL is fixed at 4.

• MTF offset header is eliminated, but the symbol table header is still present in the coding block

portion of the header.

Table 17 defines this format.

Table 17: XP10 Compact Frame Fields

Field Bits Description

Flags OUTPUT_SIZE [15:0] If compressed, this field contains the size of the
compressed frame only and does not include the 24 bits
used for the CFH header. If the data is uncompressible,
bits [15:3] of this field contains the byte count of the
uncompressed data only, and bits [2:0] are reserved for
CFH version. (Currently 0 for Xpress 10 spec 1.0).

PREDEF_SEL [21:16] When MODE == 0, this field chooses which of the 64
predefined prefixes is used. A value of 0 means that no
suitable predefined prefix and no predefined Huffman is
found, so normal decompression should be performed.
If MODE == 1, PREDEF_SEL == 0 indicates uncompressed
data output. All other PREDEF_SEL encodings are
reserved.

MODE [22] If this bit is set, and PREDEF_SEL == 0, then the
Xpress10_block will contain the original, uncompressed,
data. The OUTPUT_SIZE field [15:3] will contain the byte
count of this data. (Does not include the three bytes of
header information, in order to accommodate a full 8KB
uncompressed frame). If this bit is clear, PREDEF_SEL is
used to select a prefix as described above.

 WINDOW_SIZE_SEL [23] Selects 8k match window size when set, or 4k window
size when clear. Reserved encoding when data is not
compressed.

34 March 11, 2019

XP10 Compact Frame
Coding Block or
Uncompressed data

 If PREDEF_SEL == 0 and MODE == 1, then this is the
original uncompressed data from the input frame.
Otherwise, it is XP10 Compact Frame Coding block that
contains the compressed data.

Table 18: XP10 Compact Frame Coding Block Fields

Field Bits Description

SHORT_SYMBOL_ENCODE_TYPE [1:0] Present if PREDEF_SEL != 0 and MODE == 0

2’b00: simple encode

2’b01: predefined Huffman

2’b10: retrospective Huffman

2’b11: reserved

Short Huffman Symbol Table Present if SHORT_SYMBOL_ENCODE_TYPE == 2’b10

LONG_SYMBOL_ENCODE_TYPE [3:2] Present if PREDEF_SEL != 0 and MODE == 0

2’b00: simple encode

2’b01: predefined Huffman

2’b10: retrospective Huffman

2’b11: reserved

Long Huffman Symbols Present if LONG_SYMBOL_ENCODE_TYPE == 2’b10

6.2 Appendix B: CRC Calculation

The following code is used for calculating the CRC field in the footer of XP10.

6.2.1 CRC32 Calculation Code

const uint32_t POLY32 = 0x82f63b78ULL;

static uint32_t XP10Crc32(const unsigned char* data, const size_t length)

{

 uint32_t crc = 0xFFFFFFFFULL;

 for (size_t i = 0; i < length; i++)

 {

 crc ^= data[i];

 for (int j = 0; j < 8; j++)

 {

 if (crc & 1)

 {

 crc = (crc >> 1) ^ POLY32;

 }

 else

Open Compute Project  Project Zipline Compression Specification

http://opencompute.org 35

 {

 crc = (crc >> 1);

 }

 }

 }

 return (crc ^ 0xFFFFFFFFULL);

}

6.2.2 CRC64 Calculation Code

onst uint64_t POLY64 = 0x9a6c9329ac4bc9b5ULL;

static uint64_t XP10Crc64(const unsigned char* data, const size_t length)

{

 uint64_t crc = 0xFFFFFFFFFFFFFFFFULL;

 for (size_t i = 0; i < length; i++)

 {

 crc ^= data[i];

 for (int j = 0; j < 8; j++)

 {

 if (crc & 1)

 {

 crc = (crc >> 1) ^ POLY64;

 }

 else

 {

 crc = (crc >> 1);

 }

 }

 }

 return (crc ^ 0xFFFFFFFFFFFFFFFFULL);

}

6.3 Appendix C: Frame Header Example

The following is a sample frame header for the following settings:

• Window size: 64 KB

• Minimum match length: 4

• Mode: normal (no prefix or predetermined Huffman)

• CRC: CRC32

36 March 11, 2019

Input Byte #

7 6 5 4 3 2 1 0

00 00 00 0B C0 39 E5 10

Flags XP10_ID

6.4 Appendix D: Block Header Example

The following is a sample block header for the following values:

• Output size (bits): 391

• BLK_TYPE: compressed

• MTF header present: yes

• Last block: no

• MTF offsets:
Offset0: 0, Offset1: 65, Offset2: 53791, Offset3: 2468

Note: The yellow box in this header example is a symbol table header. The orange box has bits 31:28 of
the fixed block header.

Input Byte #

10 9 8 7 6 5 4 3 2 1 0

0 1a 45 d2 1f 78 26 60 00 01 87

 MTF Header

OUTPUT_SIZE (bits)

Open Compute Project  Project Zipline Compression Specification

http://opencompute.org 37

6.5 Appendix E: Example of a Predefined Huffman Table Data

Structure

38 March 11, 2019

6.6 Appendix F: Known Predefined Prefixes

TBD: There are currently no well know predefined prefixes specified.

