

Project Zipline – Huffman Encoder
Micro Architecture Specification

Authors:

Microsoft Corporation

Broadcom Corporation

http://opencompute.org 1

Revision History

Date Description

03/11/2019 Version 1.0

 -

2 March 11, 2019

License

Contributions to this Specification are made under the terms and conditions set forth in the Open Web Foundation

Contributor License Agreement (“OWF CLA 1.0”) (“Contribution License”) by:

Microsoft Corporation
Broadcom Corporation

Usage of this Specification is governed by the terms and conditions set forth in Open Web Foundation Final Specification

Agreement (“OWFa 1.0”) (“Specification License”).

 Note: The following clarifications, which distinguish technology licensed in the Contribution License and/or Specification

License from those technologies merely referenced (but not licensed), were accepted by the Incubation Committee of the OCP:

None.

NOTWITHSTANDING THE FOREGOING LICENSES, THIS SPECIFICATION IS PROVIDED BY OCP "AS IS" AND OCP EXPRESSLY

DISCLAIMS ANY WARRANTIES (EXPRESS, IMPLIED, OR OTHERWISE), INCLUDING IMPLIED WARRANTIES OF MERCHANTABILITY,

NON-INFRINGEMENT, FITNESS FOR A PARTICULAR PURPOSE, OR TITLE, RELATED TO THE SPECIFICATION. NOTICE IS HEREBY

GIVEN, THAT OTHER RIGHTS NOT GRANTED AS SET FORTH ABOVE, INCLUDING WITHOUT LIMITATION, RIGHTS OF THIRD

PARTIES WHO DID NOT EXECUTE THE ABOVE LICENSES, MAY BE IMPLICATED BY THE IMPLEMENTATION OF OR COMPLIANCE

WITH THIS SPECIFICATION. OCP IS NOT RESPONSIBLE FOR IDENTIFYING RIGHTS FOR WHICH A LICENSE MAY BE REQUIRED IN

ORDER TO IMPLEMENT THIS SPECIFICATION. THE ENTIRE RISK AS TO IMPLEMENTING OR OTHERWISE USING THE

SPECIFICATION IS ASSUMED BY YOU. IN NO EVENT WILL OCP BE LIABLE TO YOU FOR ANY MONETARY DAMAGES WITH RESPECT

TO ANY CLAIMS RELATED TO, OR ARISING OUT OF YOUR USE OF THIS SPECIFICATION, INCLUDING BUT NOT LIMITED TO ANY

LIABILITY FOR LOST PROFITS OR ANY CONSEQUENTIAL, INCIDENTAL, INDIRECT, SPECIAL OR PUNITIVE DAMAGES OF ANY

CHARACTER FROM ANY CAUSES OF ACTION OF ANY KIND WITH RESPECT TO THIS SPECIFICATION, WHETHER BASED ON BREACH

OF CONTRACT, TORT (INCLUDING NEGLIGENCE), OR OTHERWISE, AND EVEN IF OCP HAS BEEN ADVISED OF THE POSSIBILITY OF

SUCH DAMAGE.

Open Compute Project  Project Zipline Huffman Encoder Micro Architecture Specification

http://opencompute.org 3

Contents
1 Huffman Encoder Top Level ... 8

1.1 Overview .. 8

1.2 Interface Description .. 8

1.3 Processing Flow .. 11

1.4 XP10 Processing Overview ... 13

1.4.1 XP10 General ... 13

1.4.2 XP10 CFH Mode Handling .. 14

1.4.3 CFH Append Mode ... 16

2 Symbol Mapper ... 17

2.1 Symbol Mapper Overview .. 17

2.1.1 XP10 Symbol Mapping ... 18

2.1.2 Deflate Symbol Mapping ... 24

3 Symbol Collapser ... 30

3.1 Overview .. 30

4 Insertion Sort .. 35

4.1 Overview .. 35

4.2 Block Diagram .. 35

4.2.1 Pointer to Lowest Non-Zero Entry ... 40

4.3 Resources ... 41

4.4 Parameters ... 41

5 Tree Builder ... 42

5.1 Overview .. 42

5.2 Block Diagram .. 45

5.3 Error Handling .. 48

5.4 Resources ... 48

5.5 Parameters ... 49

6 Tree Walker ... 50

6.1 Overview .. 50

6.2 Block Diagram .. 50

6.2.1 Header Symbol Generation Algorithms ... 56

6.3 Error Handling .. 58

6.4 Resources ... 58

7 Huffman Encoder Look Up Table ... 60

7.1 Overview .. 60

4 March 11, 2019

7.2 Block Diagram .. 60

7.3 Resources ... 63

7.4 Parameters ... 64

8 Symbol Table ... 65

8.1 Overview .. 65

8.2 Block Diagram .. 65

8.2.1 Final Encode ... 69

8.3 Error Handling .. 71

8.4 Resources ... 71

8.5 Parameters ... 72

9 Symbol Queue ... 73

9.1 Overview .. 73

10 Reconstructor .. 74

10.1 Overview .. 74

11 Stream Assembler ... 75

11.1 Overview .. 75

11.2 Final Encoding Decision .. 75

11.2.1 Deflate GZIP/ZLIB .. 76

11.2.2 XP10 ... 76

11.3 State Machine .. 79

11.4 XP10 Framing ... 79

11.4.1 XP10 Frame Header ... 79

11.4.2 XP10 Block Header .. 80

11.4.3 XP10 Frame Footer .. 81

11.5 GZIP Framing .. 82

11.5.1 GZIP Frame Header.. 82

11.5.2 GZIP Frame Footer ... 82

11.6 ZLIB Framing... 82

11.6.1 ZLIB Frame Header .. 82

11.6.2 ZLIB Frame Footer ... 83

11.7 Deflate Framing.. 83

11.7.1 Deflate Block Header ... 83

11.7.2 Deflate Block Footer .. 84

12 Debug and Configuration ... 85

12.1 Overview .. 85

12.2 SW accessible registers .. 85

12.3 SW accessible table reads .. 87

Open Compute Project  Project Zipline Huffman Encoder Micro Architecture Specification

http://opencompute.org 5

12.4 Local Statistics Counters and Registers (clear on read, Non roll over) ... 87

12.5 Global Statistics .. 87

12.6 Interrupts.. 90

12.7 Debug Inter Stage Monitors (ISM) ... 90

13 Resource Estimates ... 92

6 March 11, 2019

Table of Figures
Figure 1 : Huffman Encoder Block Diagram .. 8

Figure 2 : CFH Reduced Mode 1 Block Header ... 16

Figure 3: Symbol Mapper Functionality .. 18

Figure 4 : XP10 Symbol Mapping .. 19

Figure 5 : Deflate Symbol Mapping ... 24

Figure 6 : Symbol Collapser Block Diagram ... 31

Figure 7 : Insertion Sort Block Diagram .. 35

Figure 8: Insertion sort with one symbol inserted per cycle. ... 36

Figure 9: Insertion Sort with up to four symbols per cycle. .. 37

Figure 10: Insertion of two new symbols, and creation of reorder tables for each symbol and for the pair

of symbols. .. 38

Figure 11: Per-symbol reorder table elements used in the creation of the final reorder table. 39

Figure 12: Huffman Tree Builder Block Diagram .. 45

Figure 13 : Tree Builder Logic .. 46

Figure 14 : Two instances of Tree Builder ... 48

Figure 15 : Tree Walker Block Diagram ... 50

Figure 16 : Tree Walker Bit Length Bins .. 51

Figure 17 : Tree Walker State Transitions ... 53

Figure 18 : Tree Walker Output .. 56

Figure 19 : LUT Block Diagram Short Symbols .. 61

Figure 20 : LUT Block Diagram Long Symbols ... 62

Figure 21 : Symbol Table Block Diagram ... 65

Figure 22 : Symbol Table Tree Builder State Transitions .. 67

Figure 23 : Reconstructor .. 74

Figure 24 : Stream Assembler Overview ... 75

Figure 25 : Bus monitors inside Huffman encoder ... 91

Open Compute Project  Project Zipline Huffman Encoder Micro Architecture Specification

http://opencompute.org 7

Table of Tables
Table 1 : CFH Reduced Header Support .. 14

Table 2 : XP10 CFH Options ... 15

Table 3 : XP10 CFH Prefix .. 16

Table 4 : LZ77 Payload TLV Header Type .. 17

Table 5 : Symbol Collapser Details .. 30

Table 6 : Symbol Collapser Short Symbol FIFO Format ... 33

Table 7 : Symbol Collapser Long Symbol FIFO Format .. 34

Table 8 : Symbol Collapser FIFO Sizing .. 34

Table 9 : Insertion Sort Parameters .. 41

Table 10: Tree Builder Initial Data Structure .. 42

Table 11 : Tree Builder Max Code Lengths ... 47

Table 12 : Tree Builder Parameters .. 49

Table 13 : Tree Walker Max Symbols .. 52

Table 14 : Tree Walker Max Code Lengths ... 53

Table 15 : Tree Walker Max Bit Lengths per Encode Method .. 54

Table 16 : Tree Walker Symbol Set ... 57

Table 17 : LUT Entry Format ... 62

Table 18 : LUT Parameters ... 64

Table 19 : Header Table Symbol Queue Entry .. 67

Table 20 : Symbol Table Extra Bit Encoding .. 69

Table 21 : Symbol Table Walk Order ... 70

Table 22 : Symbol Table Parameters .. 72

Table 23 : XP10 Frame Header .. 80

Table 24 : XP10 Block Header ... 80

Table 25 : XP10 MTF Header ... 81

Table 26 : XP10 Symbol Code Length and Code Table .. 81

Table 27 : XP10 Frame Footer ... 82

Table 28 : GZIP Frame Header .. 82

Table 29 : GZIP Frame Footer ... 82

Table 30 : ZLIB Frame Header ... 83

Table 31 : ZLIB Frame Footer .. 83

Table 32 : Deflate Block Header .. 83

Table 33 : Configuration Registers .. 86

Table 34 : Local Stats Counters and Registers .. 87

Table 35 : Global Stats Counters ... 90

Table 36 : Resource Estimates .. 93

8 March 11, 2019

1 Huffman Encoder Top Level

1.1 Overview

The Huffman Encoder is responsible for the Huffman encoding of the LZ77 output. The encoder will

break the incoming data frames into blocks (referred to as Huffman blocks throughout) and encode

them in either the XP or DEFLATE format as specified in the Compression Header TLV. A pass-through

mode is also supported. Depending on the encode format specified as well as other directives in the

Compression Header TLV, the encoder will evaluate several encoding options (e.g. Retrospective,

Predetermined, RAW) and select the option which results in the smallest overall output stream size.

The Verilog RTL being contributed refers to XP10 instead of Project Zipline. To remain consistent with

the source code, XP10 will be referred to in this document.

Insertion
Sort

Tree
BuilderTree

Builder
Tree

Walker

Symbol
Table

&
 Header
Builder

Insertion
Sort

Tree
BuilderTree

Builder
Tree

Walker

Symbol
Table

&
Header
Builder

LUTx4x2

Stream
Assembler

LUTx1x2

path for Deflate

Predetermined Tables
short entries: 60w x 48d x 10 seq ID

long entries: 60w x 22d x 10 seq ID

short
entries

long
entries

sorted
symbols

Huffman length
and frequency

per
symbol

Header
symbol
counts

Header
symbol

code
lengths

Insertion Sort Tree Builder Tree Walker Symbol Table Stream Assembler

Sequence ID Control Buffer
SOF,EOF,EOW,lengths,etc x 10 seq ID

broadcast & used by all sub blocks for control, based on the seq ID

Symbol Queue

Reconstructor

Configuration and Status
Registers

to
Encrypt

&
ISM

Debug Mux
(to Huffman Encoder ISM)

Stats Collector
(to Global Stats Module)

3 4 5 6

7

9
8

Select Between
Insertion Sort
Tree Builder
Tree Walker

Symbol Table

Symbol
Collapser

&
FIFO

/4

Symbol
Collapser

&
FIFO

/1

Control Path
symbols, side band signals,

seq ID

packed
symbols

2

Symbol
Mapper

from
LZ77

Symbol Mapper / Collapser

Data Path
prefix data,

TLV headers,
side band signals,

symbols

RDB

1

seq ID return

Figure 1 : Huffman Encoder Block Diagram

1.2 Interface Description

Open Compute Project  Project Zipline Huffman Encoder Micro Architecture Specification

http://opencompute.org 9

Name I/

O

Description

Clocks, resets and test

clk I 800MHz clock

rst_n I Active low reset

scan_rst_n I Scan test reset

scan_mode I Scan test mode

scan_en I Scan test shift enable

ovstb I Memory test over-strobe

mlvm I Memory test signal

lvm I Memory test signal

Interrupts

huf_comp_int.tlvp_err O Internal protocol error

huf_comp_int.uncor_ecc_err O Uncorrectable ECC error

huf_comp_int.bimc_int O Memory controller interrupt

Top level, from LZ77 Encoder

huf_comp_ib_in.tvalid I Bus Qualifier

• 0 – not valid

• 1 – valid

huf_comp_ib_in.tlast I End of frame signaling for pass through mode, where lz77_henc_tlv_data[63:0]

will be packed with 8-bytes

huf_comp_ib_in.tstrb[7:0] I End of frame byte valids for pass through mode

huf_comp_ib_in.tuser[7:0] I Multi-purpose user bits, used for signaling start and end of frames and sub-

frames.

huf_comp_ib_in.tid I Transaction ID

huf_comp_ib_in.tdata[63:0] I TLV Header Data, depends on the Token Type

Note, the “LZ77 Payload” TLV header is described in Table 4.

huf_comp_ib_out.tready O Huffman Encoder block cannot accept any more data from the LZ77 Encoder

Top level, to Encryption Block

huf_comp_ob_in.tready I The Encryption Block cannot accept any more data from the Huffman Encoder

huf_comp_ob_out.tvalid O Bus Qualifier

• 0 – not valid

• 1 – valid

huf_comp_ob_out.tdata[63:0] O TLV Header Data, depends on the Token Type

huf_comp_ob_out.tstrb[7:0] O Byte valids

10 March 11, 2019

huf_comp_ob_out.tuser[7:0] O Multi-purpose user bits, used for signaling start and end of frames and sub-
frames.

huf_comp_ob_out.tid O Frame ID

huf_comp_ob_out.last O Last beat of frame

Top level, to Scheduler

su_ready I Scheduler interface ready

huf_comp_sch_update.valid O Scheduler update valid

huf_comp_sch_update.rqe_sched_handle[15:0] O Identifier from the RQE TLV

huf_comp_sch_update.last O Last update in a frame

huf_comp_sch_update.tlv_frame_number[10:0] O Frame number from the RQE TLV

huf_comp_sch_update.tlv_eng_id[3:0] O Engine ID from the RQE TLV

huf_comp_sch_update.tlv_seq_num[7:0] O Sequence from the RQE TLV

huf_comp_sch_update.byte_in[23:0] O Frame or block input byte count

huf_comp_sch_update.byte_out[23:0] O Frame or block output byte count

huf_comp_sch_update.basis[23:0] O Frame or block input raw byte count

RDB Interface

cfg_start_addr[19:0] I Hardwired start of address space for Huffman Encoder block

cfg_end_addr[19:0] I Hardwired end of address space for Huffman Encoder block

rbus_ring_i.addr[19:0] I RDB ring address input

rbus_ring_i.wr_strb I RDB ring write strobe input

rbus_ring_i.wr_data[31:0] I RDB ring write data input

rbus_ring_i.rd_strb I RDB ring read strobe input

rbus_ring_i.rd_data[31:0] I RDB ring read data input

rbus_ring_i.ack I RDB ring ack input

rbus_ring_i.err_ack I RDB ring error input

rbus_ring_o.addr[19:0] O RDB ring address output

rbus_ring_o.wr_strb O RDB ring write strobe output

rbus_ring_o.wr_data[31:0] O RDB ring write data output

rbus_ring_o.rd_strb O RDB ring read strobe output

rbus_ring_o.rd_data[31:0] O RDB ring read data output

rbus_ring_o.ack O RDB ring ack output

rbus_ring_o.err_ack O RDB ring error output

Open Compute Project  Project Zipline Huffman Encoder Micro Architecture Specification

http://opencompute.org 11

Stats Accumulator Output

huf_comp_stat_events[63:0] O Statistic strobes sent to the global Statistics Accumulator block. See Table 35
for details.

huf_comp_XP10_decomp_lz77d_stat_events[63:0] O Reconstructor specific statistic strobes sent to the global Statistics
Accumulator block. See Decompressor document for details.

Huffman Internal ISM

ism_consumed_huf[1:0] I Huff Comp inter-stage monitor diagnostic ready signal from CPU

ism_consumed_he_st_sh[1:0] I Huffman Encoder Engine inter-stage monitor diagnostic ready signal from CPU

ism_consumed_he_st_lng[1:0] I Huffman Encoder Engine inter-stage monitor diagnostic ready signal from CPU

ism_consumed_he_sh[1:0] I Huffman Encoder Engine inter-stage monitor diagnostic ready signal from CPU

ism_consumed_he_lng[1:0] I Huffman Encoder Engine inter-stage monitor diagnostic ready signal from CPU

ism_available_huf[1:0] O Huff Comp inter-stage monitor diagnostic ready signal to CPU

ism_available_he_st_sh[1:0] O Huffman Encoder Engine inter-stage monitor diagnostic ready signal to CPU

ism_available_he_st_lng[1:0] O Huffman Encoder Engine inter-stage monitor diagnostic ready signal to CPU

ism_available_he_sh[1:0] O Huffman Encoder Engine inter-stage monitor diagnostic ready signal to CPU

ism_available_he_lng[1:0] O Huffman Encoder Engine inter-stage monitor diagnostic ready signal to CPU

1.3 Processing Flow

The following section lists the flow through the Huffman Encoder for a frame. The numbering
corresponds to the color coded numbers in Figure 1.

1. When a frame enters the Huffman encoder (always beginning with a Compression Header TLV

received on the input interface), the Compression Header TLV is sent to the Symbol Mapper for

parsing. The Symbol Mapper will use this information to break each frame into blocks (if

necessary), and then guide each block through the pipe and ensure each block has the correct

control signals it needs to properly process the block.

2. Prefix data may follow the Compression Header TLV. Prefix data is used in upstream units to

seed the history buffer and enable possible matches at the start of a frame. The encoder writes

any prefix data into the Symbol Queue. When the output data is assembled, the stream

assembler will send the prefix data to downstream units immediately after the Compression

Header TLV is sent. Additionally, in cases where sending RAW (unencoded) data is determined

to be the best option, the prefix data will be preloaded into the reconstructor unit’s history

buffer to properly reconstruct the RAW data stream from the incoming symbols.

12 March 11, 2019

Following the prefix data (or after the Compression Header TLV if no prefix data is present) the

data stream begins. The data stream itself is written into the symbol queue for retrieval by the

Stream Assembler after the Huffman codes are available and all decisions regarding the type of

stream output have been made.

The extra offset and length bits in the data stream (bits that are not a part of the symbols which

are Huffman encoded…see DEFLATE and XP specs for details) are also counted for each Huffman

block. These counts are used in calculations of the encoded data stream size for making final

encoding decisions (e.g. retrospective Huffman encoding vs. RAW). These counters are

maintained in the Symbol Mapper.

The symbols themselves are also divided by type and sent down one of two pipes. For XP, the

pipes are divided between short and long symbols. For DEFLATE, the pipes are divided between

literal/length and distance symbols. In the rest of this document, the short symbol (XP) and

literal/length symbol (DEFLATE) pipe will be referred to as the short pipe. The long symbol (XP)

and distance symbol (DEFLATE) pipe will be referred to as the long pipe. The first step of each

symbol pipe is the Collapser unit. This unit combines any non-unique symbol values in

preparation for sorting in the next stage. In addition, it contains a FIFO to smooth out stalls

from downstream units.

The Compression Header TLV and other side band information are stored in an 8 deep,

Sequence ID Control Buffer. A corresponding 3 bit sequence ID will be passed with each Symbol

Set through the Control Path. If Predetermined Table data is present in the Prefix TLV, the data

will be written to one of 8 Predetermined Table entries to be used by the Tree Walker. Note, the

Compression TLV must be first in order to determine how to process the subsequent TLVs.

3. After the Collapser block, symbols enter the insertion sort unit, where they are accumulated and
sorted based on their frequency within the Huffman block. Once a Huffman window trigger
point is reached (based on the entry count in the symbol buffer, receiving an EOF, or the total
size of the uncompressed data), the sorted symbol list and frequency counts are forwarded to
the Tree Builder stage.

Note that starting with the tree builder stage, there are two copies of each unit until reaching
the stream assembler. Two copies are needed in order to keep throughput on 2kB frames. For
2kB frames, a new frame could be received every 2048/4 = 512 cycles. The latency of some
steps may exceed 576 cycles. With the exception of pathological cases, each stage will need to
have a latency of less than 1024 cycles in order to maintain throughput for 2kB frames. For each
of the duplicated stages (Huffman Tree Builder, Huffman Tree Walker/Symbol Table Builder),
the data can switch between the two sub-pipes within the same symbol pipe based on
availability as long as they enter the stream assembly unit in the correct order. With a single
exception, there are no dependencies between the two symbol pipes, the exception is DEFLATE

Open Compute Project  Project Zipline Huffman Encoder Micro Architecture Specification

http://opencompute.org 13

mode, where the encoding of the symbol tables is done with a single encoding across both the
literal/length and distance symbols.

4. The Tree Builder will use the sorted output of the Insertion Sort block to create a tree structure,
with symbols having the highest frequency nearest the top of the tree and symbols with the
lowest frequency near the bottom of the tree.

5. The Tree Walker block will walk the Huffman tree created by the previous block and generate
canonical codes for both predetermined and retrospective encoding methods. The canonical
codes are loaded into memory based look up tables for eventual use by the Stream Assembler.
The Huffman code lengths are also passed to the Symbol Table generator for the retrospective
method.

6. The Symbol Table block takes in the header symbols (compressed symbol table) from the
Huffman Tree Walker and generates the Huffman encoded symbol table for the stream
assembler. This is a multi-step process that will reuse the Insertion Sort, Tree Builder and Tree
Walker blocks to encode the compressed Huffman symbol (code lengths) table. The final
Huffman Header will be constructed for use by the Stream Assembler.

7. When both the Short and Long symbol control paths are ready for a given Sequence ID, the
Stream Assembler will begin reading data from Symbol Queue. TLV type data will be passed as is
through to the Encrypt block. When payload data is reached, data will begin to be processed as
well as sent through the Reconstructor block.

8. The Stream Assembler will decode and process short and long symbols through the LUT. Up to
four lookups will be performed to the short LUT per clock cycle as well as one lookup to the long
LUT.

9. The Stream Assembler will wait for the Header Builder in each symbol path to finish before
starting the stream assembly process. The Stream Assembler will read data out of the Symbol
Queue and will process the TLV encoded data. All of the TLV types not associated with
compression will be passed through to the Encryption interface unmodified. The only TLV types
of interest to the Stream Assembler block are the Compression and Payload TLV types. The
Stream Assembler will modify the XP10_uncompressible_data field in the Compression TLV if
the payload data is sent raw instead of compressed. When the Stream Assembler has completed
all processing for a frame, the Sequence ID is returned to the Symbol Mapper.

1.4 XP10 Processing Overview
XP10 Processing mode refers to both “normal” and CFH mode frames (via compound commands) submitted that

request XP10 headers to be built. The following options and frame handling are specified below:

1.4.1 XP10 General

14 March 11, 2019

1. When XP10 frames are generated, the encoder will make a block-by-block determination of the

encoding method, always choosing the smallest from the available options, which are:

a) Predetermined Huffman Encoding (using the trees provided from the prefix selector)

b) Retrospective Huffman Encoding (using all combinations of the SHORT/LONG and Simplified

encoding schemes)

c) Raw (uncompressed data)

2. The Encoder will always minimize the unoccupied symbol locations in the Retrospective Huffman

trees by using the largest number of zero table fill commands possible.

3. The Encoder will only transmit the MTF fields upon a transition from a RAW block to a Compressed

Coding block. Back to Back Coding blocks will not have the MTF fields populated on the second (or

subsequent sequential coding block), nor will RAW frames ever carry the MTF fields. The first coding

block of a frame will never have the MTF fields populated. This will minimize the size of the XP10

block header.

4. Coding Block boundaries will be dictated by a programmable watermark (or end of frame) which is

based on the number of symbols (not bytes) in the compressed coding block. This shall be at least 8K

symbols, where a symbol is a PTR/MTF/Literal.

1.4.2 XP10 CFH Mode Handling

1. Compact Frame Header (CFH) mode frames will be limited to either 4KB or 8KB of Raw data. This

check will be enforced at the hardware level and there will be an error indicator propagated in the

metadata that accompanies the frame. Frame headers populated by software will specify that this

mode is enabled for the frames.

2. CFH Frames will always only be encoded as a single Huffman Coding block that handles all the frame
data. The CFH Frames have several header options that are described in Table 1.

CFH Mode Block Header Frame Header CRC Present/Type

CFH XP10 CFH Block Header XP10 Frame Header CRC32
No CRC

Table 1 : CFH Reduced Header Support

Note: CFH XP10 Reduced Mode headers are not parsable and rely on having metadata with the

frame in order to understand what the header stack up is (unlike XP10).

3. CFH Frames have additional handling requirements which XP10 Normal mode does not have, the

following code points exist and apply to only CFH Frames:

Open Compute Project  Project Zipline Huffman Encoder Micro Architecture Specification

http://opencompute.org 15

CFH Frame
Size

Threshold Usage

4KB 4096 Bytes Compressible Threshold is CFH Frame Size (4KB or 16KB)

4080 Bytes This mode reserves 16B at the end of the buffer for SW use.
- Minus 16 byte mode

Infinite This forces a Huffman Encoding – either Retrospective, Simple or
Predetermined to be used so that SW doesn’t need to check if
the frame is RAW

8KB 8192 Bytes Compressible Threshold is CFH Frame Size (4KB or 16KB)

8178 Bytes This mode reserves 16B at the end of the buffer for SW use.
- Minus 16 byte mode

Infinite This forces a Huffman Encoding – either Retrospective, Simple or
Predetermined to be used so that SW doesn’t need to check if
the frame is RAW

Table 2 : XP10 CFH Options

4. When a CFH Frame has been deemed to be uncompressible (aka the compressed frame with

headers is larger than the raw frame), the frame shall be output without block coding or CFH

(XP10/CFH Reduced 0 or 1 headers).

- In this case, the UNCOMPRESSIBLE bit shall be set in the TLV Header

- There exists a mode (Infiinte) that forces CFH frames to always be compressed even if the frame

is inflated post compression.

1.4.2.1 XP10 CFH Header

This header is defined as follows:

1) This reduced CFH Header has 3 fields:
2) OUTPUT SIZE (16 bits), measured in units of bits is like the XP10 OUTPUT_SIZE field. This field

indicates how many bits in size the compressed CFH frame is. The size is computed as the sum of the
entire GREEN area below

3) USER_PREFIX (6-bits), prefix selector which shall be interpreted as in Table 3:
4) RAW (1 bit), value of 1 means raw, value of 0 means compressed mode
5) CHF_MODE, 1 means 8K, 0 means 4K

Value Usage

0 No Prefix and Coding is Retrospective

16 March 11, 2019

1-63 Prefix # = Value and Coding may be Retrospective or Predetermined.
This selection is from the SHORT_SYMBOL_ENCODE_TYPE field as
defined by XP10.

Table 3 : XP10 CFH Prefix

USER_PREFIXl
(6-bits)

Output Size (16-bits)

Small Short Lengths (variable)
Retrospective Only

Short Symbol Encode Type
(2-bits)

Small Huffman Symbol (variable)
Retrospective Only

Small Long Lengths (variable)
Retrospective Only

Long Symbol Encode Type
(2-bits)

Long Huffman Symbol (variable)
Retrospective Only

CHU
Block

Compressed Data Bitstream (variable)

RAWCFH
MODE

Figure 2 : CFH Reduced Mode 1 Block Header

1.4.3 CFH Append Mode
CFH Append mode is similar to the XP10 CFH Mode with the following differences:

- For each frame of the compound command the LZ77 Compressor and Decompressor Window
will not be reset.

- The MTF cache will be reset in between frames; this implies that each coding block emitted by
the Huffman Encoder will NOT contain the MTF table for the compound command.

- Only the first frame in the compound command will be run through he prefix engine and have
the predetermined prefix attached to it.

- All the frames within the compound command may use the Predetermined Prefix that was
determined by the 1st frame in the compound command, but will not have the ability to use a
different predetermined prefix.

Open Compute Project  Project Zipline Huffman Encoder Micro Architecture Specification

http://opencompute.org 17

- Coding Blocks will be delineated on the compound command frame boundary; data from one
frame will never be mingled with data from another frame in the same Huffman Coding Block.

2 Symbol Mapper

lz77_henc_tlv_data LZ77 Payload TLV

Header Type

Description

63:60 lz77_framing[3:0] Framing information:

• [0,4] – 0 through 4 lanes valid

• [15] – EOF only, no data associated with transfer

59:52

51:44

43:36

35:28

lz77_data0[7:0]

lz77_data1[7:0]

lz77_data2[7:0]

lz77_data3[7:0]

Literal data or lower bits of back reference offset

• For PTR – ptr_offset[7:0]

• For MTF – mtf_num[1:0]

27 lz77_backref_vld Bus Qualifier

• 0 – back reference is not present

• 1 – back reference is present

26 lz77_backref_type Back reference type

• 0 – PTR

• 1 – MTF

25:24 lz77_backref_lane[1:0] Lane number containing the back reference

• 0 – Lane 0

• 1 – Lane 1

• 2 – Lane 2

• 3 – Lane 3

23:16 lz77_offset_msb[7:0] Upper bits of PTR offset

15:0 lz77_length[15:0] Back reference length

Table 4 : LZ77 Payload TLV Header Type

2.1 Symbol Mapper Overview
The Symbol Mapper will translate literal and LZ77 length and offset data from the LZ77 Encoder block
into symbols for Deflate and the specific XP10 formats. The Symbol Mapper will also be responsible for
breaking up large frames into smaller Huffman blocks as set by software configuration registers. The
outputs of the Symbol Mapper are symbols for the Symbol Collapser and Symbol Queue, and various
control information written to the Sequence ID memory. The Symbol Mapper will only process inputs
from the LZ77 Encoder if there is room in the Symbol Mapper and Symbol Queue blocks and there is a
free Sequence ID returned from the Stream Assembler. Otherwise, the Huffman encoder will assert a
stall signal to the LZ77 Encoder. The Sequence ID is used to track Huffman windows through the Control

18 March 11, 2019

and Data paths. The Stream Assembler will only start the Huffman block evaluation and output process
when the Sequence ID is present on the short and long symbol control paths.

The functionality of the Symbol Mapper is shown in Figure 3.

XP/Deflate Mapping Function

Data from LZ77 can produce up
to 4 short & 1 long symbol

From LZ77

To Symbol Collapser

Sequence ID Information x 10

Only at SOF
Compression TLV Header[63:0]

Predetermined Table Short[59:0][0:47]
Predetermined Table Long[59:0][0:21]

Per Huffman Block or EOF
Raw Byte Count[23:0]
Extra Bit Count[17:0]
MTF Offset[15:0][3:0]

Is MTF last Pointer

Compression Header TLV or Prefix Data or Payload Data or Pass -through TLV

To Symbol Queue Broadcast to All Blocks

Sequence ID and Stall Manager

Stall LZ77 if no Sequence ID available or backpressure from
Symbol Collapser or Symbol Queue

Count Entries

Sequence ID return from
Stream Assembler

Figure 3: Symbol Mapper Functionality

 The Huffman Encoder will determine Huffman block sizes as follows, using software configuration
registers:

symbol_entry_count >=

 HENC_HUFF_WIN_SIZE_IN_ENTRIES

2.1.1 XP10 Symbol Mapping
The Symbol Mapper will process map LZ77 data into XP10 long and short symbols as shown in Figure 4.

Open Compute Project  Project Zipline Huffman Encoder Micro Architecture Specification

http://opencompute.org 19

Figure 4 : XP10 Symbol Mapping

The pseudo code for mapping the short and long symbols for the Symbol Collapser and calculating the

raw byte count and extra length and offset bit counts is described below.

// XP10 LZ77 to Huffman Encoder Symbol Mapping

// At the start of Payload TLV clear the symbol and raw byte counts

if (Payload TLV) {

 raw_byte_cnt[23:0] = 0;

 sym_entry_cnt[12:0] = 0;

 extra_bits_len[17:0] = 0;

 extra_bits_ofs[17:0] = 0;

 extra_bits[17:0] = 0;

 for (int i=0; i<4; i++) {

 mtf_offset[i] = 0;

 }

}

if (lz77_henc_tlv_vld) {

20 March 11, 2019

 sym_entry_cnt = sym_entry_cnt + 1;

if ((lz77_framing == 1 || lz77_framing == 6 || lz77_framing == 11) && !(lz77_backref_vld && lz77_backref_lane == 0)) {

 raw_byte_cnt++;

 sm_sc_shrt_vld[0] = 1;

 sm_sc_shrt0 = lz77_framing_data0;

 }

 if ((lz77_framing == 2 || lz77_framing == 7 || lz77_framing == 12) && !(lz77_backref_vld && lz77_backref_lane == 1)) {

 raw_byte_cnt++;

 sm_sc_shrt_vld[1] = 1;

 sm_sc_shrt1 = lz77_framing_data1;

 }

 if ((lz77_framing == 3 || lz77_framing == 8 || lz77_framing == 13) && !(lz77_backref_vld && lz77_backref_lane == 2)) {

 raw_byte_cnt++;

 sm_sc_shrt_vld[2] = 1;

 sm_sc_shrt2 = lz77_framing_data2;

 }

 if ((lz77_framing == 4 || lz77_framing == 9 || lz77_framing == 14) && !(lz77_backref_vld && lz77_backref_lane == 3)) {

 raw_byte_cnt++;

 sm_sc_shrt_vld[3] = 1;

 sm_sc_shrt3 = lz77_framing_data3;

 }

// MTF or PTR

if (lz77_backref_vld) {

// common stuff for MTF or PTR

raw_byte_cnt = raw_byte_cnt + lz77_length;

 // load MTF number, offset and length fields

 case (lz77_backref_lane) {

 2'b00 : {

lz77_mtf_num[1:0] = lz77_framing_data0;

Open Compute Project  Project Zipline Huffman Encoder Micro Architecture Specification

http://opencompute.org 21

lz77_offset[15:0] = { lz77_offset_msb, lz77_framing_data0};

sm_sc_shrt_vld[0] = 1;

 }

 2'b01 : {

lz77_mtf_num[1:0] = lz77_framing_data1;

lz77_offset[15:0] = { lz77_offset_msb, lz77_framing_data1};

sm_sc_shrt_vld[1] = 1;

 }

 2'b10 : {

lz77_mtf_num[1:0] = lz77_framing_data2;

lz77_offset[15:0] = { lz77_offset_msb, lz77_framing_data2};

sm_sc_shrt_vld[2] = 1;

 }

 2'b11 : {

lz77_mtf_num[1:0] = lz77_framing_data3;

lz77_offset[15:0] = { lz77_offset_msb, lz77_framing_data3};

sm_sc_shrt_vld[3] = 1;

 }

 }

 sm_length_vld = lz77_length > 246+m;

 sm_length = lz77_length & {(floor(log(lz77_length-m-246))+1){1}};

 extra_bits_len = extra_bits_len + floor(log(lz77_length-m-246))+1;

 raw_byte_cnt = raw_byte_cnt + lz77_length;

 // PTR specific

 if (lz77_symbol_type == PTR) {

 sm_offset_vld = floor(log(lz77_offset)) > 0;

 sm_offset = lz77_offset & {floor(log(lz77_offset)){1}};

 extra_bits_ofs = extra_bits_ofs + floor(log(lz77_offset));

 is_mtf_last_ptr = 0;

 if (lz77_length < 15+m) {

22 March 11, 2019

 sm_sc_shrt_temp = 320 + floor(log(lz77_offset))*16+lz77_length-m;

 } else {

 sm_sc_shrt_temp = 320 + floor(log(lz77_offset))*16+15;

 sm_sc_long_vld = 1'b1;

 if (lz77_length <= 246+m) {

 sm_sc_long = lz77_length-m;

 } else

 sm_sc_long = 232 + {floor(log(lz77_length-m-246)){1}};

 }

 }

 // Now update MTF Offset Table

 offset_mtch = 0;

 // check for match in table

 for (int i=1; i<4; i++) {

 if ((offset_mtch == 0) && (lz77_offset == mtf_offset[i])) {

 offset_mtch = 1;

 // shift older entries down one location

 for (int j = 0; j < i; j++) {

 mtf_offset[j+1] = mtf_offset[j];

 }

 }

 }

 // put newest entry at top

 mtf_offset[0] = lz77_offset;

 }

 }

 // MTF Specific

 } else {

 is_mtf_last_ptr = 1;

Open Compute Project  Project Zipline Huffman Encoder Micro Architecture Specification

http://opencompute.org 23

 if (lz77_length < 15+m) {

 sm_sc_shrt_temp = 256 + lz77_mtf_num*16+lz77_length-m;

 } else {

 sm_sc_shrt_temp = 256 + lz77_mtf_num*16+15;

 sm_sc_long_vld = 1'b1;

 if (lz77_length <= 246+m) {

 sm_sc_long = lz77_length-m;

 } else {

 sm_sc_long = 232 + {floor(log(lz77_length-m-246)){1}};

 }

 }

 }

 // Load short symbol to correct lane

 case (lz77_backref_lane) {

 2’b00 : sm_sc_shrt0 = sm_sc_shrt_temp;

 2’b01 : sm_sc_shrt1 = sm_sc_shrt_temp;

2’b10 : sm_sc_shrt2 = sm_sc_shrt_temp;

2’b11 : sm_sc_shrt3 = sm_sc_shrt_temp;

 }

}

 // Now check for Huffman block boundaries

if ((sym_entry_cnt >= HENC_HUFF_WIN_SIZE)) {

 if (lz77_framing >= 10) {

 sm_sc_eob == 2’b11:

 } else {

 sm_sc_eob = 2’b10;

 }

 seq_id = seq_id + 1;

 // Now load control information and counts into the Seq ID buffer and clear the counters

 extra_bits = extra_bits_len + extra_bits_ofs;

24 March 11, 2019

 raw_byte_cnt[23:0] = 0;

 sym_entry_cnt[12:0] = 0;

 extra_bits_len[17:0] = 0;

 extra_bits_ofs[17:0] = 0;

 }

}

2.1.2 Deflate Symbol Mapping
The Symbol Mapper will process map LZ77 data into Deflate long and short symbols as shown in Figure
5.

Figure 5 : Deflate Symbol Mapping

Open Compute Project  Project Zipline Huffman Encoder Micro Architecture Specification

http://opencompute.org 25

The pseudo code for mapping the short and long symbols for the Symbol Collapser and calculating the

raw byte count and extra length and offset bit counts is described below.

// Deflate LZ77 to Huffman Encoder Symbol Mapping

// At the start of Payload TLV clear the symbol and raw byte counts

if (Payload TLV) {

 raw_byte_cnt[23:0] = 0;

 sym_entry_cnt[12:0] = 0;

extra_bits_ofs[17:0] = 0;

 extra_bits_len[17:0] = 0;

 extra_bits = 0;

}

// Literals

if (lz77_henc_tlv_vld) {

 sym_entry_cnt = sym_entry_cnt + 1;

if ((lz77_framing == 1 || lz77_framing == 6 || lz77_framing == 11) && !(lz77_backref_vld && lz77_backref_lane == 0)) {

 raw_byte_cnt++;

 sm_sc_shrt_vld[0] = 1;

 sm_sc_shrt_temp = lz77_framing_data0;

 }

 if ((lz77_framing == 2 || lz77_framing == 7 || lz77_framing == 12) && !(lz77_backref_vld && lz77_backref_lane == 1)) {

 raw_byte_cnt++;

 sm_sc_shrt_vld[1] = 1;

 sm_sc_shrt1 = lz77_framing_data1;

 }

 if ((lz77_framing == 3 || lz77_framing == 8 || lz77_framing == 13) && !(lz77_backref_vld && lz77_backref_lane == 2)) {

 raw_byte_cnt++;

 sm_sc_shrt_vld[2] = 1;

 sm_sc_shrt2 = lz77_framing_data2;

 }

 if ((lz77_framing == 4 || lz77_framing == 9 || lz77_framing == 14) && !(lz77_backref_vld && lz77_backref_lane == 3)) {

26 March 11, 2019

 raw_byte_cnt++;

 sm_sc_shrt_vld[3] = 1;

 sm_sc_shrt3 = lz77_framing_data3;

 }

// Length & Distance (offset)

if (lz77_backref_vld) {

case (lz77_backref_lane) {

 2'b00 : {

lz77_offset[15:0] = { lz77_offset_msb, lz77_framing_data0};

sm_sc_shrt_vld[0] = 1;

 }

 2'b01 : {

lz77_offset[15:0] = { lz77_offset_msb, lz77_framing_data1};

sm_sc_shrt_vld[1] = 1;

 }

 2'b10 : {

lz77_offset[15:0] = { lz77_offset_msb, lz77_framing_data2};

sm_sc_shrt_vld[2] = 1;

 }

 2'b11 : {

lz77_offset[15:0] = { lz77_offset_msb, lz77_framing_data3};

sm_sc_shrt_vld[3] = 1;

 }

 }

raw_byte_cnt = raw_byte_cnt + lz77_length;

 // Process length

 if (lz77_length < 11) {

 sm_sb_shrt_temp = 256 + lz77_length-2;

 } else if (lz77_length < 19) {

Open Compute Project  Project Zipline Huffman Encoder Micro Architecture Specification

http://opencompute.org 27

 sm_sb_shrt_temp = 256 + ((lz77_length-11)/11);

 sm_sb_length = (lz77_length-11)%2;

 extra_bits_len = extra_bits_len + 1;

 } else if (lz77_length < 35) {

 sm_sb_shrt_temp = 256 + ((lz77_length-19)/17);

 sm_sb_length = (lz77_length-19)%4;

 extra_bits_len = extra_bits_len + 2;

} else if (lz77_length < 67) {

 sm_sb_shrt_temp = 256 + ((lz77_length-35)/25);

 sm_sb_length = (lz77_length-35)%8;

 extra_bits_len = extra_bits_len + 3;

 } else if (lz77_length < 131) {

 sm_sb_shrt_temp = 256 + ((lz77_length-67)/37);

 sm_sb_length = (lz77_length-67)%16;

 extra_bits_len = extra_bits_len + 5;

 } else if (lz77_length < 258) {

 sm_sb_shrt_temp = 256 + ((lz77_length-131)/57);

 sm_sb_length = (lz77_length-131)%32;

 extra_bits_len = extra_bits_len + 5;

 } else {

 sm_sb_shrt_temp = 256 + ((lz77_length-11)/11);

 }

 // Process Offset (distance)

 if (lz77_offset <= 4) {

 sm_sb_long = lz77_offset – 1;

 } else (

 for (i=3; i < 16; i++) {

 if ((lz77_offset <= 1<<i) && (lz77_offset > 1<<(i-1))) {

 sm_sb_long = i+1+ (((lz77_offset-((1<<(i-1))+1))

/ (1<<(i-2)));

28 March 11, 2019

 extra_bits_ofs = extra_bits_ofs + i - 2;

 sm_sb_offset = ((lz77_offset-((1<<(i-1))+1)) % (1<<(i-2));

 }

 }

 }

 // Load short symbol to correct lane

 case (lz77_backref_lane) {

 2’b00 : sm_sc_shrt0 = sm_sc_shrt_temp;

 2’b01 : sm_sc_shrt1 = sm_sc_shrt_temp;

2’b10 : sm_sc_shrt2 = sm_sc_shrt_temp;

2’b11 : sm_sc_shrt3 = sm_sc_shrt_temp;

 }

 }

 // Now check for Huffman block boundaries

 if ((sym_entry_cnt >= HENC_HUFF_WIN_SIZE) || (lz77_framing >= 10)) {

 if (lz77_framing >= 10) {

 sm_sc_eob == 2’b11:

 } else {

 sm_sc_eob = 2’b10;

 }

 seq_id = seq_id + 1;

 extra_bits = extra_bits_len + extra_bits_ofs;

 raw_byte_cnt[23:0] = 0;

 sym_entry_cnt[12:0] = 0;

 extra_bits_len[17:0] = 0;

 extra_bits_ofs[17:0] = 0;

 }

}

Open Compute Project  Project Zipline Huffman Encoder Micro Architecture Specification

http://opencompute.org 29

30 March 11, 2019

3 Symbol Collapser

3.1 Overview

The Symbol Collapser is the interface between the input data stream and the Insertion Sort block. There

is a separate collapser unit for the A symbol set pipe and the B symbol set pipe. The collapser takes the

symbols presented on the input interface each cycle and reduces them to a set of unique symbol values.

Each collapser also has a FIFO which can absorb additional input symbols in case of a stall downstream.

If the FIFO fills, then a stall must be asserted upstream. When the FIFO depth is greater than 2 entries,

additional combining between successive cycles of symbols on the input interface is attempted through

a combine register.

The table below describes the differences between the short symbol and long symbol collapsers.

Symbol
Pipe

I/O max
symbols/cycle

Max count per symbol Size of FIFO entry
(symbols)

short
(A)

4 4 4

long
(B)

1 1 1

Table 5 : Symbol Collapser Details

The description that follows is for the collapser in the short symbol pipe. The long symbol pipe is a

straightforward simplification of the short symbol pipe case.

Open Compute Project  Project Zipline Huffman Encoder Micro Architecture Specification

http://opencompute.org 31

symbol_val[0]

symbol[0]

symbol_val[1]

symbol[1]

symbol_val[2]

symbol[2]

symbol_val[3]

symbol[3]

Collapser

FIFO

256*

entries

Collapse/

Combine

Logic

symbol_val[0]

symbol[0]

symbol_val[1]

symbol[1]

symbol_val[2]

symbol[2]

symbol_val[3]

symbol[3]

symbol_cnt[0]

symbol_cnt[1]

symbol_cnt[2]

symbol_cnt[3]

Combine Register

sc_sm_stall

From Symbol Mapper

To Insertion Sort

sm_sc_eob[1:0]

sm_sc_seq_id[2:0]

sm_sc_eob[1:0]

sm_sc_seq_id[2:0]

sm_sc_rdy

sm_sc_rd

Figure 6 : Symbol Collapser Block Diagram

The general idea is to pass the symbol data straight through, using only one location in the FIFO. Once

the FIFO starts to back up, the collapse/combine logic (along with the combine register) will aggressively

attempt to condense symbols as much as possible. Note that when combining symbols across multiple

cycles, the crossing of a block boundary is not allowed.

If the FIFO is less than 2 entries deep and the combine register is not valid, then the FIFO input data is

collapsed according to the following rules:

• Valid duplicate symbols will be removed.
o The valid of the symbol with the larger index will be invalidated.
o The count of the symbol with the lower index will be incremented by 1.

• The holes left by invalidated symbols will be filled by shifting down valid symbols from
higher indexes to lower indexes.

32 March 11, 2019

For example, if symbol[0] = 2, symbol[1] = 2, symbol[2] = 5, and symbol[3] = 2, the resulting output

would be symbol[0] = 2, symbol_cnt[0] = 3, symbol[1] = 5, symbol_cnt[1] = 1. symbol_val[2] =

symbol_val[3] = 0.

If the FIFO is greater than 2 entries deep, then the actions taken depend on whether or not the contents

of the combine register are valid and the end of block signal. Note that if the combine register valid bit

is set and the combine register end_of_block bit is signaled, action will still be taken on the FIFO input

for that cycle even if there are no valid input symbols.

• If Combine register valid == 0
o Collapse the input as if the collapser were in bypass mode (If no valid input symbols,

do nothing and skip the rest of the steps below).
o If eob == 0

▪ Write the combine register with the results and mark the combine register
as valid (do not write the FIFO or update the FIFO write pointer).

o If eob == 1
▪ Write the output of the collapser logic directly into the FIFO and update the

collapser FIFO write pointer. (do not write the combine register or mark it
valid)

▪ Write a 1 to the EOB bit for the FIFO entry.

• If Combine register valid == 1
o If combine register end_of_block == 0

▪ Combine the contents of the FIFO combine register with the current inputs
as described in the Multi Cycle Combining Rules below.

▪ If internal eob == 1

• if there are still valid input symbols after collapsing/combining:
o Set the combine register valid and end_of_block bits

• If there are not still valid input symbols after collapsing/combining:
o Set the FIFO entry EOB bit and clear the combine register

valid bit
o If combine register end_of_block == 1

▪ Collapse the inputs as if in bypass mode (if valid)
▪ Write the current contents of the combine register into the FIFO and update

the FIFO write pointer. Set the EOB bit in the entry
▪ Clear the combine register end_of_block bit
▪ if there are valid input symbols this cycle:

• Set the combine register valid bit.
▪ If there are no valid input symbols this cycle

• Clear the combine register valid bit

Multi Cycle Combining Rules: When combining the current contents of the combination register with the

current symbol inputs, use the following rules:

• Starting with the input symbol at index zero (and sweeping through all 4 symbols)

Open Compute Project  Project Zipline Huffman Encoder Micro Architecture Specification

http://opencompute.org 33

o If there is a match with a symbol in the combine register AND the count for the
symbol in the combine register is < 4

▪ invalidate the input symbol.
▪ Add 1 to the matching symbol count from the combine register

• Combine the remaining valid input symbols as described above for bypass mode.

• If there are any unused (invalid) symbols currently in the updated combine register,
promote the lowest valid symbol index (and count) from the remaining collapsed input
symbols to the lowest invalid index in the current combine register contents as long as the
input symbol does not match any symbol currently in the combine register. Mark the
promoted input symbol as invalid and the new combine register symbol as valid. Repeat as
long as there are invalid combine register symbols and valid input collapsed input symbols.

• If there are still valid input symbols after combining:
o Write the updated contents of the combine register into the FIFO and update the

write pointer.
o Write the remaining input symbols into the combine register and set the combine

register valid bit.

• If there are not any remaining valid input symbols after combining:
o Write the updated contents of the combine register back into the combine register

and keep the combine register valid bit set.
o Do not write the FIFO

The sc_sm_stall output signal is asserted when the FIFO is full and the collapser can no longer accept

input data, otherwise de-asserted.

The structure of a collapser FIFO entry (Short Symbol (A) Pipe is):

Bits Value

9:0 Symbol 0

11:10 Symbol 0 Count (2’b00 = 4)

12 Symbol 0 Valid

22:13 Symbol 1

24:23 Symbol 1 Count (2’b00 = 4)

25 Symbol 1 Valid

35:26 Symbol 2

37:36 Symbol 2 Count (2’b00 = 4)

38 Symbol 2 Valid

48:39 Symbol 3

50:49 Symbol 3 Count (2’b00 = 4)

51 Symbol 3 Valid

53:52 EOB

56:54 Seq_ID

Table 6 : Symbol Collapser Short Symbol FIFO Format

34 March 11, 2019

The structure of a collapser FIFO entry (Long Symbol (B) Pipe is):

Bits Value

7:0 Symbol 0

8 Symbol 0 Valid

10:9 EOB

13:11 Seq_ID

Table 7 : Symbol Collapser Long Symbol FIFO Format

FIFO sizes (assuming implemented with 1R/1W port memories or register arrays):

Symbol
Pipe

Size

short COLLAPSER_FIFO_SIZE x 57

long COLLAPSER_FIFO_SIZE x 14
Table 8 : Symbol Collapser FIFO Sizing

Open Compute Project  Project Zipline Huffman Encoder Micro Architecture Specification

http://opencompute.org 35

4 Insertion Sort

4.1 Overview
The Insertion Sort hardware block will sort symbols based on the count of each unique symbol in a given
Huffman block. The Insertion Sort function is important to overall latency through the Control path, in
that it allows the Huffman Tree Builder stage to have a significantly shorter critical timing path.

4.2 Block Diagram

Input
Register

Symbol
Collapser
Interface

Symbol 1

Symbol 2

Symbol 3

Symbol 4

Sorted
symbol list

Symbol low

Symbol High

Unique
symbol
count

Sequence id in

Eob in

Sequence id
out

Eob_out

Huffman
Tree

Builder
Interface

0

sob

Ht_not_ready

stallstall

rd

Final sort merger

Symbol 1

Frequency sorter

Symbol 2

Frequency sorter

Symbol 3

Frequency sorter

Symbol 4

Frequency sorter

Frequency

 counter #1

Frequency

 counter #2

Frequency

 counter #3

Frequency

 counter #4

Figure 7 : Insertion Sort Block Diagram

The symbols are read from the collapser interface with one transaction per “rd” strobe. Read requests
are returned with the entire symbol valids de-asserted if the collapser FIFO is empty. Control
information like sequence id and eob code are also read along with the symbols. Sequence id remains
static throughout the Huffman block. These inputs are shown in the interface section and are passed
along the pipe to the downstream hardware blocks.

The start of block (sob) and xp/deflate information are read from the context memories external to this
hardware block and are indexed with sequence id input. The latency for this context fetch should be 0
cycle.

36 March 11, 2019

The input symbols are compared and sorted against the last sorted list.

At sob, the inputs are compared against zeroed sort list. Zeroed sort list is the symbol order list with 0
frequencies.

NOTE: For the DEFLATE literal/length insertion sort unit, symbol 256 (EOB) starts with a value of 1.
This symbol will never show up on the input interface to the Huffman encoder, but is inserted into the
encoded bit stream once at the end of the block to indicate the termination of the Huffman block.

The symbols are sorted as per the functions described below.

The symbol frequency-of-occurrences sort order depicted in the diagrams below is top-to-bottom

lowest-to-highest. Sorting is done,

1) First, based on the frequency-of-occurrence of the symbols, and

2) Second, in case of ties, based on the symbol order.

To illustrate this, assume that there are 10 possible symbols, and we receive only one symbol each cycle.

Initially, the frequency count for each symbol (red box) will be zero, since no symbols have been

received yet. The array of symbol frequencies will be still be sorted, however, based on the symbol order

(blue box) which, in the example below, happens to match the values assigned to the symbols (green

box).

Figure 8: Insertion sort with one symbol inserted per cycle.

To make these drawings more human-readable in decimal notation, the total number of symbols was

set to 10 and the TieBreakerValue (blue box) was set to be the same value as the Symbol (green box).

Notation shown here is “Symbol:Frequency*10+TieBreakerValue” and “Symbol (NumInserted)”.

When the first symbol arrives at the input (in this case we receive one instance of the symbol “08”), it is

matched the frequency counter that currently stores the value “08”. That frequency counter will

increase by one. As a result of the increase, the order must be re-sorted.

We want to perform the re-sort in a single cycle, so the logic must determine that the frequency counter

that stores symbol “09” must move up by one, and the newly incremented symbol “08” must be

inserted into the bottom of the array.

Open Compute Project  Project Zipline Huffman Encoder Micro Architecture Specification

http://opencompute.org 37

The frequency counters become more complex with an insertion sort that can accept multiple symbols

in parallel.

Figure 9: Insertion Sort with up to four symbols per cycle.

To make these drawings more human-readable in decimal notation, the total number of symbols was
set to 10 and the TieBreakerValue was set to be the same value as the Symbol. Notation shown here is
“Symbol:Frequency*10+TieBreakerValue” and “Symbol:IncrementedFrequency*10+TieBreakerValue
(NumInserted)”.

To achieve this goal, each frequency counter bus must provide the following information:

a) The symbol,

b) The original frequency associated with the symbol,

c) The new frequency for the symbol

d) A “valid” flag.

Each sort engine first creates an array of four two-bit values that capture the relationship between each

frequency count in the sort list and the original and new frequency counts of the symbol on the

frequency counter bus. The code below illustrates how this is done (covers all four input symbols). This

code doesn’t illustrate order based tie breaker.

for (s = 0; s<num_list_symbols; s++) {
 for (i = 0; i<num_input_symbols; i++) {
 if (list_freq[s] < in_sym[i].orgfrq) {
 array[s][i] = 0;
 }
 else if ((s+1 < num_list_symbols) && (list_freq[s+1] <= in_sym[i].newfrq)) {
 array[s][i] = 1;
 }
 else if (list_freq[s] > in_sym[i].newfrq) {
 array[s][i] = -2; // binary '10'
 }

38 March 11, 2019

 else {
 array[s][i] = -1; // binary '11'
 }
 }
}

Figure 10: Insertion of two new symbols, and creation of reorder tables for each symbol and for
the pair of symbols.

Referring to Figure 10, the single instance of the symbol ‘07’ (within the top red box) causes the creation

of another corresponding reorder table (within bottom red box). Likewise, three instances of the symbol

‘01’ (within the top green box) cause the creation of a corresponding reorder table (within bottom green

box). Each of these two reorder tables would be useful for indicating how to shuffle values around to

correctly insert the new symbols individually while maintaining the sort order of all the symbols. The

values ‘00’ and ‘-2’ indicate that the previous value should be retained. The value ‘01’ indicates that the

next value down should be shifted up and used. Finally, the value ‘-1’ indicates that that the new value

should be inserted.

Open Compute Project  Project Zipline Huffman Encoder Micro Architecture Specification

http://opencompute.org 39

However, because in this example we are inserting two symbols at the same time, we need the reorder

table contained within the blue box. In this reorder table, the value ‘00’ indicates no change to the data

set in the sort list. The values ‘01’ through ‘04’ represent that a data set down in line should be shifted

up and in. For example, ’01’ means first data set after this value in the list should be shifted up and in,

‘02’ means second data set after this value in the list should be shifted up and in and so on. The

“pointer” values ‘*0’ through ‘*3’ indicate that a frequency count on one of the frequency counter

busses should be selected and brought in.

The algorithm for creating each element of the final reorder table (blue) takes as input the nearby values

in the per-symbol reorder tables (red and green).

Figure 11 illustrates how the algorithm for creating the final reorder table from the per-symbol reorder

tables is supported in the cases of two, three and four new symbols per clock.

-2

 01 00 00 01
 01 00 00 02
 01 01 00 02
 01 01 00 02

01 01 00 *0
 -1 01 00 01
 -2 01 00 01
 -2 01 00 *1
 -2 -1 01 01
 -2 -2 -1 *2

 00 00 00
 00 00 00

 00 00 00
 00 01 01
 00 01 02
 01 01 02
 01 01 *0
 -1 01 01
 -2 01 01
 -2 -1 *1

 00 00 00 00 00
 01 00 00 00 01

 01 00 00 00 *0
 -1 01 00 00 01
 -2 -1 00 00 *1
 -2 -2 01 00 02
 -2 -2 01 01 02
 -2 -2 01 01 *2
 -2 -2 -1 -1 *3
 -2 -2 -2 -2 00

Figure 11: Per-symbol reorder table elements used in the creation of the final reorder table.

40 March 11, 2019

4.2.1 Pointer to Lowest Non-Zero Entry
There is also a need to track the number of unique symbols used (sym_unique) in each Huffman block.

One way to maintain this count is by maintaining a pointer to the lowest non-zero frequency, which it

will pass on to the next stage along with all of the sorted symbols and their frequencies at the end of the

Huffman Window. This pointer needs to be designed to handle the initial state where all of the

frequency counts are zero. For example, it could initialize to ‘N’ if there were a maximum of ‘N’ possible

symbols, since only values of 0 through ‘N-1’ would be valid. In the small example table below, where

there are only 4 symbols supported, N would start out being 4 because all frequencies are zero. It would

be become 3 after the first symbol was inserted, and gradually move “up” as more symbols are inserted

and their respective frequency counts increase.

Row Pntr Freq Pntr Freq Pntr Freq Pntr Freq Pntr Freq

0 0 0 0 0 -> 2

1 0 0 0 -> 3 4

2 0 0 -> 1 7 19

3 0 -> 1 1 44 125

4 ->

In case of no downstream stalls, the insertion sort unit is able to perform sort on each transaction of

input symbols in one clock cycle.

In addition to performing the insertion sort, this hardware block is also responsible for tracking the

lowest numbered and highest numbered symbol used within a Huffman block. To do this, 2 registers

are implemented: sym_low and sym_high. Note: So far there is no need for the sym_low tracking

other than debug. Each cycle, the lowest and highest symbol value should be calculated across all

input symbols. These values are then compared against the sym_low/sym_high registers and the

registers updated accordingly. These values will be passed to the Tree Builder unit along with the sorted

frequency data.

The sorted list is read by Huffman tree builder at eob.

Open Compute Project  Project Zipline Huffman Encoder Micro Architecture Specification

http://opencompute.org 41

If the tree builder is not ready at eob on sort-tree interface, it asserts not_ready. Not_ready stalls the

insertion sort pipeline and hence also de-asserts “rd” strobe to the collapser interface.

In case of pass through mode, sob is don’t care and the tree builder will read the control information

without waiting for the eob.

4.3 Resources
Flops:

Short path

Input register 53

Sort list 14405

Total 14458

Long path

Input register 13

Sort list 5213

Total 5226

4.4 Parameters

Parameter Symbol
Pipe A

Symbol
Pipe B

Symbol
Table

Builder

Comment

IS_SORT_ROWS 576 248 33 Symbol table depth

IS_SORT_IPC 4 1 2 Insertions per cycle

IS_SORT_MAX_FREQ_BITS 15 13 10 Max frequency of symbols

Table 9 : Insertion Sort Parameters

42 March 11, 2019

5 Tree Builder

5.1 Overview
The Tree Builder will use the sorted output of the Insertion Sort block to create a tree structure, with
symbols having the highest frequency nearest the top of the tree and symbols with the lowest frequency
near the bottom of the tree.

Huffman tree builder receives a pointer to the lowest non-zero frequency (sym_unique) from the

insertion sort engine. This allows the Huffman Tree Builder to start building the tree immediately

without spending cycles to find the lowest non-zero frequency.

The tree is created in approximately the same number of clock cycles as there are symbols with non-

zero frequency counts in the table.

Data structure:

For each row of the table received from insertion sort, the following data structure is assigned.

Top Node fields are initialized to “invalid”, and “Depth in Tree” fields are initialized to zero.

Lowest
non-zero

Name of What’s at
this Address

Stored Value A Stored Value B Top Node Depth In
Tree

 Symb7 Freq *Symb7 0 (Freq0) - 0

 Symb6 Freq *Symb6 0 (Freq1) - 0

...is here Symb3 Freq *Symb3 3 (Freq2) - 0

 Symb1 Freq *Symb1 4 (Freq3) - 0

 Symb0 Freq *Symb0 5 (Freq4) - 0

 Symb2 Freq *Symb2 6 (Freq5) - 0

 Symb5 Freq *Symb5 8 (Freq6) - 0

 Symb4 Freq *Symb4 9 (Freq7) - 0

Table 10: Tree Builder Initial Data Structure

Each cycle, the two least frequently occurring symbols are converted into a “Node” with two “Leaves”. It

is not necessary to retain the frequencies for the individual leaves; however, their node will receive a

frequency value that is the sum of their individual frequencies. Therefore, the bits that were used to

store a symbol’s frequency can be reclaimed as tree creation progresses, and used to store pointers to

other symbols or nodes instead. Blue cells are changed. Note that the “Top Node” field will be assigned

the ID of the Node that points to it, and the “Depth In Tree” field will be set to one.

Open Compute Project  Project Zipline Huffman Encoder Micro Architecture Specification

http://opencompute.org 43

Lowest
non-zero

Name of What’s at
this Address

Stored Value A Stored Value B Top Node Depth In
Tree

 Symb7 Freq *Symb7 0 (Freq0) - 0

 Symb6 Freq *Symb6 0 (Freq1) - 0

 Node0 Ptrs *Symb3 *Symb1 Node0 1

...is
here?

Node0 Freq *Node0 Ptrs 7 (Freq2 +
Freq3)

- 0

 Symb0 Freq *Symb0 5 (Freq4) - 0

 Symb2 Freq *Symb2 6 (Freq5) - 0

 Symb5 Freq *Symb5 8 (Freq6) - 0

 Symb4 Freq *Symb4 9 (Freq7) - 0

However, the above table is potentially not in the correct sort order. In order to be able to go into the

next clock cycle properly prepared, we need to finish off the current clock cycle with an ordered list, as

shown below.

Lowest
non-zero

Name of What’s at
this Address

Stored Value A Stored Value B Top Node Depth In
Tree

 Symb7 Freq *Symb7 0 (Freq0) - 0

 Symb6 Freq *Symb6 0 (Freq1) - 0

 Node0 Ptrs *Symb3 *Symb1 Node0 1

...is here Symb0 Freq *Symb0 5 (Freq4) - 0

 Symb2 Freq *Symb2 6 (Freq5) - 0

 Node0 Freq *Node0 Ptrs 7 (Freq2 +
Freq3)

- 0

 Symb5 Freq *Symb5 8 (Freq6) - 0

 Symb4 Freq *Symb4 9 (Freq7) - 0

Therefore, during its creation, the row labeled “Node0 Freq” really needs to be pulled out and re-

inserted into the list at the correct location. In case of ties, a newly inserted entry will be treated as if it

were larger than the values that it tied with. Note that this behavior differs from the technique used in

the prior “Insertion Sort” block, as in this case the Symbol’s value is not used for breaking ties. Insertion

will cause rows below the insertion point in the table to be shifted down. Now the table is ready for the

next clock cycle…

Lowest
non-zero

Name of What’s at
this Address

Stored Value A Stored Value B Top Node Depth In
Tree

 Symb7 Freq *Symb7 0 (Freq0) - 0

44 March 11, 2019

 Symb6 Freq *Symb6 0 (Freq1) - 0

 Node0 Ptrs *Symb3 *Symb1 Node0 1

 Node1 Ptrs *Symb0 *Symb2 Node1 1

...is here Node0 Freq *Node0 Ptrs 7 (Freq2 +
Freq3)

- 0

 Symb5 Freq *Symb5 8 (Freq6) - 0

 Symb4 Freq *Symb4 9 (Freq7) - 0

 Node1 Freq *Node1 Ptrs 11 (Freq4 +
Freq5)

- 0

Note the pattern here. The blue cell in the “Stored Value B” column always receives its value from the

Stored Value A cell of the row below in the previous table. The beige cells are receiving their values from

the cells directly below in the previous table. The yellow cells represent the newly inserted rows. The

“Stored Value A” part of the newly inserted row is the sum of the two lowest two frequencies from the

previous table. The Stored Value B part of the newly inserted row is a pointer that happens to increment

by one every time a new row is inserted.

Repeating the procedure again, we produce…

Lowest
non-zero

Name of What’s at
this Address

Stored Value A Stored Value B Top Node Depth In
Tree

 Symb7 Freq *Symb7 0 (Freq0) - 0

 Symb6 Freq *Symb6 0 (Freq1) - 0

 Node0 Ptrs *Symb3 *Symb1 Node0 1

 Node1 Ptrs *Symb0 *Symb2 Node1 1

 Node2 Ptrs *Node0 Ptrs *Symb5 Node2 1

...is here Symb4 Freq *Symb4 9 (Freq7) - 0

 Node1 Freq *Node1 Ptrs 11 (Freq4 +
Freq5)

- 0

 Node 2 Freq *Node2 Ptrs 15 (Freq6+
Freq2+ Freq3)

- 0

In this case something new happened. We made a row out of a Symbol and a Node (*Node0 Ptrs) as

opposed making a row out of two Symbols. Let this node, shown above in red, be referred to as a

“Subsumed Node”. When a node is subsumed, its ID is broadcast to all the other nodes along with the ID

of the node that is subsuming it (“*Node2 Ptrs” in this case). All rows will receive the broadcast. Any row

whose current Top Node matches the ID if a subsumed node should: a) increment its “DepthInTree”

value by one, and b) replace its current Top Node with the ID of the new top node that is subsuming the

previous one. Note that it is possible for IDs from up to two subsumed nodes to be broadcast, but both

of these will share the same new top node. Therefore, all rows must check their current Top Node

against up to two subsumed node IDs.

After this additional rule is applied, the Table looks like this (note that the rule affected the green cells)…

Open Compute Project  Project Zipline Huffman Encoder Micro Architecture Specification

http://opencompute.org 45

Lowest
non-zero

Name of What’s at
this Address

Stored Value A Stored Value B Top Node Depth In
Tree

 Symb7 Freq *Symb7 0 (Freq0) - 0

 Symb6 Freq *Symb6 0 (Freq1) - 0

 Node0 Ptrs *Symb3 *Symb1 Node2 2

 Node1 Ptrs *Symb0 *Symb2 Node1 1

 Node2 Ptrs *Node0 Ptrs *Symb5 Node2 1

...is here Symb4 Freq *Symb4 9 (Freq7) - 0

 Node1 Freq *Node1 Ptrs 11 (Freq4 +
Freq5)

- 0

 Node 2 Freq *Node2 Ptrs 15 (Freq6+
Freq2+ Freq3)

- 0

5.2 Block Diagram

Working
table

Rebuild Copy

Top Node /
Depth

Walking
logic

Insertion sorted
frequencies

Rebuild required

Update while walking table

Tree Walker

Divider

Frequencies read by table
walkerInitial

Frequency
Table

Memory

Figure 12: Huffman Tree Builder Block Diagram

46 March 11, 2019

Huffman Tree builder is initially loaded directly from the insertion sort stage by loading the symbol

values into the a_value registers and the frequencies into the b_value registers. They are loaded on

end of window (eow) from insertion sort engine. Additionally, the depth registers should be initialized

to 0 on the load cycle. The top_node registers are a don’t care (they will be filled in as the table_row

counter traverses the table). A table_row counter will be initialized to sym_unique in order to skip

processing for unused symbols (sym_unique is an output of the insertion sort stage) as unused rows will

remain in the lowest index rows of the structure. A successful tree build will then complete in 576-

sym_unique cycles for symbol set A and 256-sym_unique cycles for symbol set B. If no rebuild is

required, then ht_hw_eob = 2’b01/2’b10 is asserted at this time and the build is complete.

The a_value registers will contain either symbols or node pointers. To indicate whether or not the value

is a symbol or a node, the symbol values are extended by 1b, and the msb will be set to 1’b1 if it is a

node, and remain 1’b0 if it is a symbol. Each a_value register is then 11b wide for symbol set A, and 9b

wide for symbol set B.

The top_node and depth registers are kept in a separate structure from the a_value and b_value

registers. This structure consists of entries in symbol row order (e.g. entry N will always contain the

top_node and depth registers for symbol N). The top_node and depth registers are updated each cycle

as shown below for entry N. Note that it will be common for multiple entries in this structure to be

updated as many symbols will share the same top node.

Top Node

SYMBOL N

=

=

=

=

Depth

+1

value_a
@ row_ptr

value_a
@ row_ptr + 1 row_ptr

Load row_ptr and increment depth

Top Node

>

MAX_CODE_LENGTH

Rebuild

Figure 13 : Tree Builder Logic

If at any time, any row’s depth value is > MAX_CODE_LENGTH for the symbol set, then the tree build is

restarted and the starting frequencies are halved (specifically, MAX (1, freq >> div_reg)). div_reg is

initialized to 1 and increments by one each time a tree build is terminated due to MAX_CODE_LENGTH

being exceeded. Note that this means a copy of the original frequencies and symbols in sorted order

Open Compute Project  Project Zipline Huffman Encoder Micro Architecture Specification

http://opencompute.org 47

from the insertion sort stage needs to be retained in order to reload the table on a restart. A copy of

the sym_unique value will also need to be retained.

This iterative process will repeat until the tree is valid, and the process may potentially cause the

pipeline to stall in the event that it takes many iterations to produce a valid tree.

MAX_CODE_LENGTH is defined as follows:

Context MAX_CODE_LENGTH

XP short/long symbol 27

XP table symbol 8

DEFLATE literal/length/symbol/distance 15

DEFLATE table 7

Table 11 : Tree Builder Max Code Lengths

Symbol set A: XP short or DEFLATE literal/length

Symbol set B: XP long or DEFLATE distance

While the table is being generated, the initial frequency values (before any division for rebuilds) are

copied into an output array for retrieval by the tree walker for final encode-size calculations. Writes of

this memory occur during the first table build for the block only (not during rebuilds). As the tree table

is undergoing its initial build, the symbol value (a_value) is used to generate the write location, and the

frequency value (b_value) is the frequency to be written to the memory. Since the code length will be 0

for unused symbols and these values are ultimately multiplied by their code length, there is no need to

invalidate entries that are not used in each block.

There are two set of memories for the frequency values. An on-line memory which is written by the tree

builder and the other, off-line memory which is read by the tree walker. The memories can switch

between being on-line and off-line based on which one is free and which one is filled. If both the

memories are filled, they backpressure the tree builder and the upstream blocks.

Once the tree is built, it is passed to the corresponding Huffman tree walker (HTW) stage. If the HTW is
busy working on previous data, it will backpressure HTB by asserting not_ready. This can lead to back
pressuring of Insertion sort engine if both the HTBs are not free.

In case of pass through mode, the tree builder will pass the control information (sequence id and eob)

immediately to the downstream block and will not attempt tree build.

48 March 11, 2019

Two copies of Huffman Tree Builder(HTB) logic will be instantiated in order to meet the throughput

requirements for small independent data streams (i.e. maintain throughput for 4K files, so a minimum of

one small (<=4K) file can be processed every 512 clocks). A free instance will start working on building

the tree when the Huffman Window ends, and it will be tagged as a busy instance until it has completed

its work, at which time it will be marked free once again. If there is no free instance, then the Huffman

Tree Builder stage will exert backpressure to Insertion sort engine, potentially causing upstream stages

of the pipeline to stall.

Huffman tree
builder#1

Huffman tree
builder#2

Insertion sort
interface

Mux

Not ready

To Huffman Tree
Walker#1

To Huffman Tree
Walker#2

Not ready

Not ready

Huffman tree
walker

interface

Figure 14 : Two instances of Tree Builder

5.3 Error Handling
If the tree builder fails to build the tree even after the maximum number of rebuilds (See SW accessible
registers), it will set error signal ht_hw_build_error to the next stage along with the valid eob to end the
build.

5.4 Resources
Flops:

Short path

Freq_table 14400

Copy 14400

Output code table 2880

Other flops 45

Open Compute Project  Project Zipline Huffman Encoder Micro Architecture Specification

http://opencompute.org 49

Total 31725

Long path

Freq_table 5376

Copy 5376

Output code table 1280

Other flops 37

Total 12069

RAM:

Short path

Output frequency

table 2x288x30

Long path

Output frequency

table 2x128x26

5.5 Parameters

Parameter Symbol
Pipe A

Symbol
Pipe B

Symbol
Table

Builder

Comment

IS_SORT_ROWS 576 248 33 Symbol table depth

TW_MAX_DEPTH 27 27 8 Maximum bit length for any format

Table 12 : Tree Builder Parameters

50 March 11, 2019

6 Tree Walker

6.1 Overview
This block will walk the Huffman tree created by the previous block and generate canonical codes for
both predetermined and retrospective encoding methods. The canonical codes are loaded into memory
based look up tables for use by the Output Control block stream assembler.

The Huffman code lengths are also passed to the Huffman header generator for the retrospective
method.

6.2 Block Diagram

Simple encode
lengths

Size tracking
logic

Retro

Bit length
histogram

Start code / Final code gen

Pre

Bit Length
Histogram

Header Table
Symbol Generation To Symbol Table

generation

HLIT/HDIST to LUT

Pipe B depth
(Pipe A only)
for deflate

Retro/Predetermined
lengths, 2 per cycle

Retro/Predetermined
lengths, 2 per cycle

Lengths rom
predetermined
Huffman unit

To LUT

Lengths from
tree builder

Length table

Retro/Predetermined
lengths, 2 per cycle

Frequencies
from table

builder

Total encoded block size
Simple/retrospective/simple

Not ready

Length table

To LUT

On-line/off-
line FIFO

read

Figure 15 : Tree Walker Block Diagram

Open Compute Project  Project Zipline Huffman Encoder Micro Architecture Specification

http://opencompute.org 51

The Tree Walker and canonical code generation stage is a 3 step procedure which is kicked off by eob

from Huffman tree builder, performed in the following sequence:

1. Sum Code lengths: Each row in the top node/depth table generated in the tree builder step
broadcasts a 1b count for each of the 27 possible non-zero depths. It broadcasts a value of
1’b1 for the depth contained in its depth register, and a value of 1’b0 for all others. For
each potential Huffman code length (1 to 27), these values are summed across all rows. The
accumulation for each code length is done in parallel. Multiple cycles may be needed to
complete the addition across the entire table structure. The end result is a histogram of the
frequency of each of the possible 27 Huffman code lengths.

Symbol 0 Depth
Symbol 1 Depth
Symbol 2 Depth

...

Symbol MAX-1 Depth

+ + + + +

BL 1 BL 2 BL 3 ... BL MAX

1b per BL

Figure 16 : Tree Walker Bit Length Bins

2. Code length Starting Codes: Each bin in the Code Length histogram computes the starting
Huffman code for its code length (algorithm below). Since each bin has a dependency on
the previous bin for determining its value, this is done 1 bin per cycle. The process can be
stopped once the maximum code length has been reached, for a maximum total latency of
27 cycles.

code = 0;
bl_count[0] = 0;
for (bits = 1; bits <= MAX_CODE_LENGTH; bits++) {
code = (code + bl_count[bits-1]) << 1;
next_code[bits] = code;
}

3. Final Code Gen: The symbols are swept through in symbol order, 2 per cycle (for a total

latency of MAX_SYMBOLS_TABLE / 2). The Final Code Gen stage always start with symbol 0
and proceeds all the way to MAX_SYMBOLS_TABLE regardless of which symbols are actually
used in order to support the first step of the Symbol Table build. The canonical code
assigned to each data symbol is determined by the current value of Huffman code for the
code length. Each time a code length is assigned, the bin code for that bit-length is
incremented by 1. If both symbols chosen this cycle (symbol n and symbol n+1) have the

52 March 11, 2019

same code length, then Symbol n gets the current Huffman code value for that bin and
Symbol n+1 gets value code+1 and the current code for that bit length is incremented by 2.
In parallel to the symbol code generation, the sequence of symbol table symbols for
implementing the symbol table is generated. Note: If in DEFLATE mode, this step for the
Distance Codes symbols (symbol B pipe) cannot be entered until the Literal/Length codes
(symbol A pipe) have completed this step since the symbol table is generated across both
symbol sets in sequence in DEFLATE.

4. MAX_SYMBOLS_USED/MAX_SYMBOLS_TABLE is format dependent and defined as follows:

Symbol Set Search Window
Size

MAX_SYMBOLS_USED MAX_SYMBOLS_TABLE

XP10 short 64kB 576 576

XP10 long 64kB 248 248

XP10 short 16kB 544 544

XP10 long 16kB 246 246

XP10 short 8kB 528 528

XP10 long 8kB 245 245

XP10 short 4kB 512 512

XP10 long 4kB 244 244

XP table Any 33 33

DEFLATE
literal/length

32kB 286 286

DEFLATE distance 32kB 30 30

DEFLATE table 32kB 19 19

Table 13 : Tree Walker Max Symbols

In the table above, MAX_SYMBOLS_USED used represents the maximum number of symbols that could

be used for processing the block. MAX_SYMBOLS_TABLE represents the maximum number of symbols

that need to be defined in the symbol tables when inserted into the output stream. For XP10,

MAX_SYMBOLS_TABLE symbols will always be defined. In DEFLATE, the actual number defined in the

table may be less (As specified in the HCLEN/HLIT/HDIST fields of the header).

MAX_CODE_LENGTH is defined as follows:

Context MAX_CODE_LENGTH

XP short/long symbol 27

XP table symbol 8

DEFLATE literal/length/symbol/distance 15

DEFLATE table 7

Open Compute Project  Project Zipline Huffman Encoder Micro Architecture Specification

http://opencompute.org 53

Table 14 : Tree Walker Max Code Lengths

IDLE
Sum code

lengths

Final
code
gen

Code length
starting codes

Cycles = maximum code length used
across all symbols.

If Deflate, symbol set B pipe must
pause here until symbol set A has
completed it s final code gen step.

Cycles =
CEILING(MAX_SYMBOLS_TABLE/2)

Figure 17 : Tree Walker State Transitions

As the Canonical codes are generated in the Final Code Gen stage (2 per cycle), the codes are written

into the LUT via the LUT interface. Note that a set of LUTs must be available prior to starting the Final

Code Gen stage otherwise the pipe is stalled. In addition to the bit-code, the bit length of the code will

also be written into the LUT for each symbol. LUT entries are not written for symbols that are >

MAX_SYMBOLS_USED – 1.

At every start of block, SOF fields are read out of a set of eight SOF contexts residing external to this

block which are indexed by the sequence id. These fields provide various control information.

If predetermined Huffman is found to be enabled for the block being processed, the canonical code for

the predetermined set of code lengths is generated in parallel. To accomplish this, a parallel table of

code lengths will be loaded with the values from the local Predetermined Huffman buffer based on the

sequence id.

For XP10 formats where the symbol space is reduced, it is expected that the predetermined Huffman

table delivered will still be the max size predetermined table that Corisca supports (a XP10 64k window)

with the trimmed symbols zeroed out.

54 March 11, 2019

The steps for the Canonical Huffman code generation for the predetermined case are then the same as

the retrospective case and are controlled by the same state machine as the retrospective case and

calculated in parallel.

In addition to the generation of the canonical codes for each symbol in the Final Code Gen stage, the

total size of the encoded data symbols for both retrospective, predetermined Huffman, and simple

encode mode is calculated. As the symbols are stepped through 2 at a time, the predetermined code

lengths, retrospective code lengths, and simple encode code lengths are multiplied by the frequency

count for each symbol. These values are read from the symbol frequency memory in the Tree Builder.

A separate count for retrospective, predetermined, and simple encode is maintained. Each cycle, the

calculated total for each symbol (up to two) is added to the total count. The absolute worst case sum

(which is impossible to actually achieve) would be 27*32768=884736 bits, so a 20 bit counter for each

will suffice (For symbol pipe B, an 18 bit counter will suffice). The final value of the three counts is

written to the LUT unit when the canonical code generation is completed.

The bit lengths for simple encode are defined as follows (Simple encode mode is only a feature of XP,

not DEFLATE):

Symbols Bit-length

XP10 64k short

0-447 9

448-575 10

XP10 64k long

0-7 7

8-247 8

XP10 16k short

0-479 9

480-543 10

XP10 16k long

0-9 7

10-245 8

XP10 8k short

0-495 9

496-527 10

XP10 8k long

0-10 7

11-244 8

XP10 4k short

0-511 9

XP10 4k long

0-11 7

12-243 8

Table 15 : Tree Walker Max Bit Lengths per Encode Method

Open Compute Project  Project Zipline Huffman Encoder Micro Architecture Specification

http://opencompute.org 55

As the Symbol Lengths are walked through in symbol order in the Final Code Gen stage, the lengths will

also be mapped into Huffman table symbols two at a time using the mapping algorithms in the

subsections below. The mapping is dependent on which output format is being used (DEFLATE or XP).

Note that in XP mode, this step is run in parallel for each symbol table. However, in DEFLATE, the

Literal/Length symbols will be stepped through first, followed by the Distance symbols.

In DEFLATE, the symbol table build will only continue in the symbol A pipe (literal/length pipe). A mux

control unit will coordinate the coupling of the Tree Walker unit in the B pipe to the proper A pipe

instance of the Symbol Table Builder based on the sequence id. Once pipe A’s Tree Walker has

completed its Final Code Gen step, the Final Code Gen for symbol tree B may start its Final Code Gen

step. The symbol lengths (depths) (2 per cycle) will be presented to stage A for header table symbol

generation as well as used in stage B for data symbol LUT generation and total data bit count.

The symbol table will be written into a FIFO. This FIFO module is a combination of two FIFOs where the

on-line FIFO is written by the tree walker while the off-line FIFO is being processed by the next hardware

block (Symbol table builder).

The tree walker will be stalled if none of the symbol table FIFOs or the LUTs are free for the next

Huffman block. The Huffman tree walker (HTW) block will backpressure Huffman Tree Builder (HTB) by

asserting not_ready if it is busy processing the previous Huffman block.

 The outputs to header table generator will be zero if the symbol table FIFOs are empty.

In case of pass through mode, the tree walker will pass the control information (sequence id and eob)
immediately to the downstream block and will not attempt data processing.

56 March 11, 2019

Symbol N Depth
Symbol N+1 Depth To LUTCode Gen

XP

Header Table
Symbol

Generation

PIPE A

PIPE B
Symbol N Depth

Symbol N+1 Depth To LUTCode Gen

Header Table
Symbol

Generation

DEFLATE

To Symbol Table Builder

To Symbol Table Builder

Alignment

Figure 18 : Tree Walker Output

6.2.1 Header Symbol Generation Algorithms

The number of symbols that the symbol table covers (#symbols in the algorithm below) varies by

standard and other parameters. The table below defines #symbols for all cases of interest:

Standard Window Symbol Set #symbols

XP10 64k Short 576

XP10 64k Long 248

XP10 16k Short 544

XP10 16k Long 246

XP10 8k Short 528

XP10 8k Long 245

XP10 4k Short 512

XP10 4k Long 244

DEFLATE N/A Literal/Length* hb_hw_sym_high

Open Compute Project  Project Zipline Huffman Encoder Micro Architecture Specification

http://opencompute.org 57

DEFLATE N/A Distance* MAX(1,hb_hw_sym_high)#

DEFLATE N/A Total Literal/Length + Distance

Table 16 : Tree Walker Symbol Set

* Literal/Length and Distance symbols are combined into 1 table, reflected in the Symbol Set == Total

row.

if there are zero Distance codes used, one distance code of zero must be added to the end of the

table. This case is communicated to the symbol A pipe through the hwb_hwa_no_code input signal.

The worst case number of symbols that may be produced on a cycle is 6.

This worst case occurs in if the code lengths processed this cycle are X and Y, neither are zero, and

previously there had been a run of 4 0s that did not cross a fill boundary. On this cycle 4 zero-length

symbols, and a symbol for X and Y may be generated for a total of 6.

In DEFLATE mode, HLIT, HDIST are calculated based on the sym_high inputs are sent to the LUT unit on

the same cycle as the final encoded size data.

6.2.1.1 XP10 Header Symbol Generation

Definitions of the header symbols are located in the XP10 spec.

A counter to track extra bits that will be encoded within the header symbol is needed to be sent to the

symbol table builder.

6.2.1.2 DEFLATE Header Symbol Generation

Definitions of the header symbols are located in the DEFLATE spec (rfc1951-version 1.3; Section 3.2.7-

Compression with dynamic Huffman codes (BTYPE=10)).

A counter to track extra bits that will be inserted into the header symbol table is needed to be sent to

the symbol table builder. Note that alignment logic is necessary if the size of (Encoded Literal/Length

Symbols) is odd. An odd number of Literal/Length symbols mean that the last literal/length symbol that

a symbol table code has generated cannot be processed until the distance codes arrive. (In other words,

58 March 11, 2019

the last literal/length code would be processed with the first distance code, and thereafter the second

code length received on the previous cycle from the symbol B pipe would be paired with the first code

length of symbol A pipe received on the current cycle).

6.3 Error Handling
build_error input from the tree builder stage doesn’t affect predetermined processing. The error
information bypasses retrospective processing and passes the eob and sequence id along the symbol
table builder pipe as if it is in bypass mode to the stream assembler.

In case of xp, it waits for the eob for the predetermined canonical codes to be written into the LUT
before passing the build_error to the symbol table builder.

6.4 Resources
Flops:

Short path

Input code length table 2880

Predetermined data store 60

Step 1 adder 486

Step 2 starting codes 31104

Other flops 84

Total 34614

Long path

Input code length table 1280

Predetermined data store 60

Step 1 adder 486

Step 2 starting codes 13824

Other flops 84

Total 15734

RAM:

Open Compute Project  Project Zipline Huffman Encoder Micro Architecture Specification

http://opencompute.org 59

Short path

Symbol table interface

FIFO 2X352x32

Long path

Symbol table interface

FIFO 2X128x32

60 March 11, 2019

7 Huffman Encoder Look Up Table

7.1 Overview
This block has LUTs and store all the size information and tables for Huffman encoder. It receives the

data from tree walker and symbol table builder. Stream assembler consumes the data from this block.

The Huffman Look up Table (LUT) is double buffered so that one buffer can be updated while the other

buffer is in use. The buffer that is actively being used to translate Huffman Symbols into Huffman Codes

is called the “On-line Buffer”, and the other buffer, that is potentially being updated, is called the “Off-

line Buffer”.

Each buffer is able to translate multiple Huffman Symbols into Huffman Codes every cycle. Huffman#1
supports up to four transactions per cycle and Huffman#2 supports up to two transactions per cycle.

7.2 Block Diagram
The LUT block for each pipe manages shared data for 2 blocks (Tree Walker and Symbol table builder):

• Symbol pipe A only: 4 instances of the data LUT (supports 4 simultaneous lookups per cycle)

• Symbol pipe B only: 1 instance of the data LUT

• The encoded Symbol table symbol code lengths for the header (stcl)

• The encoded Symbol table (st)

• Any other per block data needed for the stream assembler/control unit:
o Symbol table code length size (in bits)
o Symbol table size (in bits)
o HLIT
o HDIST
o HCLEN
o Retrospective Huffman encoded data size (in bits)
o Predefined Huffman encoded data size (in bits)
o Simple encoded data size (in bits)

When writing the data symbol LUT, all instances within a set are updated at the same time (red LUTs

in the diagram below), two symbols at a time. When reading the data symbol LUT (shown in green

in the diagram below), up to 4 symbols (1 symbol for the B pipe) may be read each cycle by the

Stream Assembler unit. In order to save the latency of having to calculate predetermined codes to

replace the retrospective codes, both are stored for each symbol during the tree walk.

The diagram below shows the A pipe data symbol LUTs:

Open Compute Project  Project Zipline Huffman Encoder Micro Architecture Specification

http://opencompute.org 61

LUT (x4)
576x128LUT (x4)

576x128LUT (x4)
576x128LUT (x4)

576x128

wr_data

LUT (x4)
576x128LUT (x4)

576x128LUT (x4)
576x128LUT (x4)

576x128

Symbol3_addrSymbol2_addrSymbol1_addrSymbol0_addr

length3length2length1length0

code3code2code1code0

From stream assembler
To stream assembler

Both predetermined and
retrospective

From tree walker

Figure 19 : LUT Block Diagram Short Symbols

The diagram below shows the shared XP long symbol and DEFLATE distance LUTs:

62 March 11, 2019

LUT (x1)
256x128

wr_data

LUT (x1)
256x128

Symbol0_addr

length0

code0

From stream assembler
To stream assembler

Both predetermined and
retrospective

From tree walker

Figure 20 : LUT Block Diagram Long Symbols

Each memory entry is the same regardless of symbol table. Each address holds the codes and code

lengths for 2 symbols.

Bit Field

127:101 Symbol A Retrospective Code

100:96 Symbol A Retrospective Code Length

95:69 Symbol A Predetermined Code

68:54 Symbol A Predetermined Code Length

63:37 Symbol A+1 Retrospective Code

36:32 Symbol A+1 Retrospective Code Length

31:5 Symbol A+1 Predetermined Code

4:0 Symbol A+1 Predetermined Code Length

Table 17 : LUT Entry Format

Open Compute Project  Project Zipline Huffman Encoder Micro Architecture Specification

http://opencompute.org 63

If stream assembler requests LUT read for an unknown id or for a pass through block, the valids for the

data bus are deasserted.

In pass through mode, all the size information to the stream assembler is zero.

7.3 Resources

Flops:

Short path

ST code lenth table 132

Size variables 138

Total 270

Long path

ST code lenth table 132

Size variables 124

Total 256

RAM:

Short path

Huffman code 8x288x64

Symbol table(ST) 88x64

Long path

64 March 11, 2019

Huffman code 8x128x64

Symbol table(ST) 39x64

7.4 Parameters

Parameter Symbol
Pipe A

Symbol
Pipe B

Symbol
Table

Builder

Comment

IS_SORT_ROWS 576 248 33 Symbol table depth

TW_MAX_DEPTH 27 27 8 Maximum bit length for any format

Table 18 : LUT Parameters

Open Compute Project  Project Zipline Huffman Encoder Micro Architecture Specification

http://opencompute.org 65

8 Symbol Table

8.1 Overview
This block takes in the header symbols (compressed symbol table) from the Huffman tree walker and
generate Huffman encoded symbol table for the stream assembler. This is a multi-step process that will
reuse the Insertion Sort, Tree Builder and Tree Walker blocks to encode the compressed Huffman
symbol (code lengths) table.

The final Huffman Header will be constructed for use by the Output Control block stream assembler.

8.2 Block Diagram

Symbol
table

insertion
sort

Tree Build
Tree

Walker

Size
calculations

Encoded
symbol
table

symbol
lengths

Symbol
table

symbol
LUTs

Symbol
table build

Symbol
table

st_freq

LUT unit interface

Symbol table
symbol

Huffman Tree
walker –

Symbol table
FIFO interface

To LUT

Not_ready

Symbol
table

symbol
queue

Figure 21 : Symbol Table Block Diagram

At every start of block, SOF fields are read out of a set of eight SOF contexts residing external to this

block which are indexed by the sequence id. These fields provide various control information.

There are 4 steps performed by the Header Tree Builder and Encoder stage (Only first 3 if a non-

retrospective mode is chosen), done in the following sequence (Note that before Tree build is started,

the Symbol Table Builder is receiving symbol table symbols from the Tree Walker):

1. Insertion Sort: As the Length codes are converted into header table symbols by the tree

walker stage, those symbol table symbols (up to 2 per cycle) are the inputs of an insertion

66 March 11, 2019

sort stage in the Symbol Table Builder. This block can re-use the generic insertion sort

module, parameterized as follows:

Number of insertions per cycle: 2
Max Number of Symbols: 33
Max Frequency: 10b count (576 symbols max)

2. Tree Build: The Huffman Tree build of the symbol table (33 cycles of latency for XP, 19
cycles of latency for DEFLATE. There is always potential for a rebuild due to the max code
length being exceeded).

3. Tree Walker: Canonical start codes for each bit length (1-8) are calculated. Translation of
the bit lengths calculated in step 2 to the final encoded form of the symbol table symbol
code length values that are sent in the header. At this point, all data to make the decision
on RAW vs. simple vs. predetermined vs. Retrospective is available. Additionally, the
canonical codes that will be used if the symbol tables are actually encoded, are generated.

4. Symbol Table Build: Build the actual Symbol table if retrospective was chosen as the best
encoding format. Store it in 74(32 for pipe B) x64b entries in the LUT unit.

In addition to being sent to the insertion sort unit, the generated symbol table symbols need to be

stored into a small array for the Symbol Table Build step (the symbol table symbol queue). To support

this, a 352x26 array for the Symbol A pipe and a 128x26 array for the Symbol B pipe is used (this

supports read of two at a time during the symbol table build). See the following table for the entry

description. Symbols should be packed so there are no empty symbol slots. The first two symbols will

be at address 0. A count of total symbols will be kept externally in order to know where the last entry is.

In addition, the total count of actual extra bits (encoded length of zero repeats or symbol repeats in case

of deflate) received from the header symbol generator of tree walker, needs to be stored for the final

encoded data stream size calculation (st_extra_bits).

Bits Description Content

25:19 Extra bits for Symbol 1 XP: if (symbol 0 - 29), takes on
values of 5-15 decimal. To be
translated into actual encoded extra
bits during Final Encode Stage of
The symbol table build.
DEFLATE: Represents the final extra
bits for the following symbols.
 16/17: repeat value – 3
 18: repeat value - 11

18:13 Symbol Table Symbol 1 0-33

12:6 Extra bits for Symbol 0 XP: if (symbol 0 - 29), takes on
values of 5-15 decimal. To be
translated into actual encoded extra
bits during Final Encode Stage of
The symbol table build.

Open Compute Project  Project Zipline Huffman Encoder Micro Architecture Specification

http://opencompute.org 67

DEFLATE: Represents the final extra
bits for the following symbols.
 16/17: repeat value – 3
 18: repeat value - 11

5:0 Symbol Table Symbol 0 0-33

Table 19 : Header Table Symbol Queue Entry

IDLE
Tree
Build

Final
Encode

cycles = 33 max
w/ no rebuilds

cycles = CEIL[33 / 2] max

Gen Start
Codes

cycles = 8 max

Symbol
Table
Build

Retrospective

RAW, simple,
or
predetermined

cycles =
MAX_SYMBOLS_TABLE / 2

Figure 22 : Symbol Table Tree Builder State Transitions

Tree Build: The module for creating the Huffman table tree on this histogram is the same as the

Huffman Tree Build from earlier in the pipe, with the following changes:

• Max Frequency: 10b count

• XP max rows in table is 33, DEFLATE max rows in table is 19

• Rebuilds are triggered once depth exceeds 8 in XP, 7 in DEFLATE

Note that the original frequencies will need to be maintained for size calculations once the final tree

build is complete. Similar to the tree build process for the data symbols, as each row is processed in the

sorted histogram, the original count for each symbol is stored into a 33XP10 structure. The address for

each write is the symbol value, and the data written is the frequency of that symbol (st_freq).

The histogram for the symbol table symbols is combined across Literal/Length and Distance symbols in

DEFLATE. For XP, the histograms and Huffman encodings are performed separately in each pipe.

Therefore, for DEFLATE, the symbol table generation will be done using the resources in the

literal/length pipe (symbol set A pipe) only.

68 March 11, 2019

The end result of this step is a code length for each symbol in the Huffman symbol table alphabet, which

is needed for the final table encoding and symbol table LUT generation.

Tree Walk: The engines from the generic tree walker are reused.

Gen Start Codes: Similar to the Code Length Starting Codes step in the Huffman Tree Walker. The

Initial value for each the canonical code for each bit length is calculated. For XP, this process takes 8

cycles, for DEFLATE 7 cycles.

Final Encode: The next step is to translate the symbol table symbol code lengths into their final

encoded formats as described in section 1.1.1. The final encoding is packed and written to the lut 64b

at a time. In parallel, the canonical symbol table symbol codes to encode the symbol table symbols will

be generated and stored in a symbol table symbol LUT for the symbol table build step (if needed).

In addition, the size (in bits) of the final encoded symbol table symbol code lengths is calculated

(st_stcl_size). Also, the size of the final encoded symbol table is calculated by multiplying the frequency

from the st_freq structure (built during the Tree Build stage) by the bit code length for each symbol

table symbol. This count is maintained in a st_size_sym register. At the end of the final encode step,

the total size of the encoded symbol table is sent to the LUT as st_size_sym + st_extra_bits.

Symbol Table Build: This step is only performed if the retrospective encoding mode was chosen. To

generate the symbol table, a counter is initialized to zero when entering this step and increments by 2

every cycle until the end of the symbol table symbols is reached (MAX_SYMBOLS_TABLE-1). Each cycle 2

symbol table symbols are translated into their encoded value, and along with the extra bits, assembled

into the header table for later reading by the stream assembly unit. In case of XP, the extra bits are also

encoded in this step. The data is written to the LUT unit 64b at a time.

The rules for packing into bytes are listed in section 3.1.1 of the Deflate spec (RFC 1951).

The rules for XP are similar and are located in section 4.1 of the XP10 spec.

The following table illustrates how the extra bits are translated from how they were stored in the

symbol table symbol queue for the HUFFMAN_ENCODED_TABLE_ZERO_RPT symbol.

Consecutive 0s Non-Encoded bits that follow the symbol

5 2’b00

6 2’b01

7 2’b10

8 5’b11000

9 5’b11001

10 5’b11010

11 5’b11011

12 5’b11100

Open Compute Project  Project Zipline Huffman Encoder Micro Architecture Specification

http://opencompute.org 69

13 5’b11101

14 5’b11110

15 8’b11111000

Table 20 : Symbol Table Extra Bit Encoding

The final symbol table is stored in the LUT unit for reading by the stream assembler. Worst case size for

the symbol A pipe is 584 symbols (576 + 8 table fills) * 8 bit length max in addition to the extra bits =

4672 bits + st_extra_bits. A 78x64 memory will suffice. Worst case size for the symbol B pipe is 249

symbols (248 + 1 table fill) * 8 bit length max in addition to the extra bits = 1992 bits + st_extra_bits. A

34x64 memory will suffice.

8.2.1 Final Encode

8.2.1.1 XP

For XP, the symbol table code lengths will be stepped through 2 at a time starting with symbol 0, for a

max latency of 17 cycles.

Each cycle, the final encode for two symbols will be calculated based on the algorithm below.

What follows next is the Huffman encoded table code lengths (0-32), encoded using the following

algorithm:

Previous symbol length prev = 4

For each symbol

K= length of the the symbol

If (k == prev) Write 1’b0

Else

Write 1’b1.

If (k > prev) write 3’b(K-1) else write 3’bk

 Prev = k;

End foreach

The final encode values are assembled and stored in the LUT unit, sent 64b at a time. A max of

33*4=132 bits is needed for this storage.

70 March 11, 2019

The canonical values are also stored in a 33x8 LUT, using the same algorithm as used in the Huffman

Tree Walker.

8.2.1.2 DEFLATE

For DEFLATE, the symbol table code lengths will be stepped through 2 at a time. However, they are not

stepped through in symbol order. Instead, they are stepped through in the order specified in the

DEFLATE spec. The table below lays out the cycle by cycle symbol order walk (Symbol A is sequentially

earlier than Symbol B in the overall sequence):

Cycle Symbol A Symbol B

0 16 17

1 18 0

2 8 7

3 9 6

4 10 5

5 11 4

6 12 3

7 13 2

8 14 1

9 15 N/A

Table 21 : Symbol Table Walk Order

Each cycle, the following occurs:

• Symbol A and Symbol B code lengths are generated. They are concatenated as 3b lengths
(so 6b total between the two symbols) as described in the DEFLATE spec for the HCLEN field.
The total size cannot exceed 57b (19 *3) and is transferred to the LUT on completion of the
final encode step.

• The last non-zero value observed should be tracked to determine the value of HCLEN. It is
tracked in a 5b register as follows.

last_nonzero = 0
for (cycles = 0; cycles < 10; cycles++) {
 if (sym_b_length > 0)
 last_nonzero = cycles*2 + 1
 else if (sym_a_length > 0)
 last_nonzero = cycles*2
}

Note that by definition the first 4 codes (16, 17, 18, 0) will always need to be sent.

Open Compute Project  Project Zipline Huffman Encoder Micro Architecture Specification

http://opencompute.org 71

Once the final encode is completed, the value of HCLEN is calculated and sent to the LUT unit:

HCLEN = MIN(4,last_nonzero+1)

The value of stcl_size is HCLEN * 3 and is also sent to the LUT unit.

In parallel, the symbols are stepped through in symbol order (2 at a time) in order to generate the

canonical values to store in a 33x8 LUT (same algorithm as used to generate the canonical codes as the

Huffman Tree Walker step). The st_size calculation is also accumulated at this time.

In case of pass through mode the symbol table builder will pass the control information (sequence id
and eob) immediately to the stream assembler and will not attempt data processing.

8.3 Error Handling
In case of build_error (due to either hw_st_build_error or symbol table tree build error), the symbol
table builder will pass the control information (sequence id and eob) immediately to the stream
assembler and will not attempt data processing.

If st_sa_size_rdy is asserted with st_sa_build_error, then only the information related to predetermined
and simple encodings are valid. Stream assembler may not expect st_sa_table_rdy in such case.

8.4 Resources
Flops:

Short path

Insertion sort 545

Tree Build 990

Tree Walker 454

Internal LUT 264

Symbol queue 9152

Counters 21

Total 11426

Long path

72 March 11, 2019

Insertion sort 545

Tree Build 990

Tree Walker 454

Internal LUT 264

Symbol queue 3328

Counters 21

Total 5602

8.5 Parameters

Parameter Symbol
Pipe A

Symbol
Pipe B

Symbol
Table

Builder

Comment

IS_SORT_ROWS 576 248 33 Symbol table depth

TW_MAX_DEPTH 27 27 8 Maximum bit length for any format

Table 22 : Symbol Table Parameters

Open Compute Project  Project Zipline Huffman Encoder Micro Architecture Specification

http://opencompute.org 73

9 Symbol Queue

9.1 Overview

The Symbol Queue is a FIFO buffer to hold entries from the LZ77 interface. Side band signals will be
provided by the Symbol Mapper that will mark boundaries between frames, blocks and TLV headers.
The Symbol Queue will be sized to hold all TLV headers, including prefix data, as well as 8K payload
entries from the LZ77 Compressor.

The Huffman Window Size, measured in entries, is 8K. This is roughly equivalent to 32Kbytes of

uncompressible data.

The maximum prefix size in entries is roughly 64K/(8 bytes per entry), although it may be slightly larger

due to packing inefficiency. As a result, 8K entries will be reserved for prefix data.

Another 2K entries will be reserved for latency through the Huffman Control path stages. An additional

2K entries will be reserved for additional TLV headers that are passed through to downstream blocks.

To meet the 64Kbyte Window size requirement for the CCEIP64 design, the Symbol Queue will be sized

to store 8K+8K+2K+2K=20K entries.

74 March 11, 2019

10 Reconstructor

10.1 Overview

The Stream Assembler will configure the Reconstructor, then send prefix and compressed data to the
Reconstructor as shown in Figure 23. Note, the Reconstructor MTF and LZ77 sub-blocks are reused from
the Decompression block. Please refer to the Decompression micro architecture document for details.

MTF
LZ77

Symbols
(PTR/MTF or

literal)

PTR or
Literals

Header Info

Prefix Data

Decompressed
Data

from
Stream

Assembler

to
Stream

Assembler

MTF and LZ77 are reused from the Creole Decompression Block

Figure 23 : Reconstructor

Open Compute Project  Project Zipline Huffman Encoder Micro Architecture Specification

http://opencompute.org 75

11 Stream Assembler

11.1 Overview

The Stream Assembler will wait for the Header Builder in each symbol path to finish before starting the
stream assembly process. The Stream Assembler will read data out of the Symbol Queue and will
process the TLV encoded data. All of the TLV types not associated with compression will be passed
through to the Encryption interface unmodified. The only TLV types of interest to the Stream Assembler
block are the Compression and Payload TLV types. The Stream Assembler will modify the
XP10_uncompressible_data field in the Compression TLV if the payload data is sent raw instead of
compressed.

The Stream Assembler block will perform similar mapping functions as detailed in sections XP10 Symbol
Mapping and Deflate Symbol Mapping.

Short Symbol
LUT

Long Symbol
Header Builder

Sequence ID Buffers
(10 copies)

Reconstructor

State Machine

Short Symbol
Header Builder

Symbol Queue
Long Symbol

LUT

rdy
hdr
rd

seq_id
hdr_info rdy

short symbol
read x 4

seq_id
hdr_info

long symbol
read x 1

seq_id read
reconstructor

read
symbol queue

read

Data Formatter and Packer

hdr
rd

rdydata write

henc_encr_tlv_vld henc_encr_tlv_data[63:0] encr_henc_tlv_stall

Encryption Interface

Figure 24 : Stream Assembler Overview

11.2 Final Encoding Decision

Once the Header Builder has completed the Final Encode step (for both the short and long symbol pipes

in XP, short pipe only for DEFLATE), the final decision of the output format to use is made. If the

retrospective mode is chosen, then the Symbol Table builder will generate the final symbol table for

insertion into the block header. Note that in XP mode, the decision is independent for each symbol pipe

76 March 11, 2019

(e.g. long symbols could be encoded with simple encode while the short symbols are encoded in

retrospective mode).

The following sections will describe the necessary comparisons for each format and mode to determine

the final encoding decision.

11.2.1 Deflate GZIP/ZLIB

For each block, a decision will be made as to whether the block will be sent out encoded or raw. For the

comparison there will be up to 7 unused bits in the raw stream between BTYPE and the LEN field. The

BFINAL/BTYPE bits themselves are common to either format and are ignored in the comparison.

deflate_size_raw

The raw size in bits is the sum of:

• up to 7 (unused bits between BTYPE and LEN field)

• 32 (LEN/NLEN fields)

• block_size_raw (from the Symbol Mapper via the Sequence ID Control Buffer) * 8

deflate_size_cmp

The compressed size in bits is the sum of:

• 14 (sizeof (HLIT + HDIST+HCLEN))

• lut_sa_shrt_stcl_size[12:0] size in bits of the encoded symbol table code lengths, from the
pipe

short LUT data set

• lut_sa_shrt_st_size[12:0] size in bits of the encoded symbol table symbols, from
the pipe short

LUT data set

• lut_sa_shrt_ret_size[19:0] size in bits of the encoded symbols, from both the short and
long

LUT data set

• The extra data bit count for the block (from the Offset Length Bit Counter for the block)

Raw encoding will be used if: deflate_size_raw <= deflate_size_cmp

11.2.2 XP10

XP10 will use the 8K symbol entry boundary for all Huffman blocks. XP10 will also add a predetermined

Huffman table option and may also select raw encoding for each Huffman block. There are 2 main modes

of XP10, basic and CFH 4K/8K.

Open Compute Project  Project Zipline Huffman Encoder Micro Architecture Specification

http://opencompute.org 77

11.2.2.1 XP10 Basic
A comparison is made between the raw data and the compressed data. The smaller result is used as
output. The decision process is described below.

XP10_long_size_ret

For the long symbol pipe, retrospective is the sum of:

• lut_sa_long_ret_stcl_size[12:0]

• lut_sa_long_ret_st_size[12:0]

• lut_sa_long_ret_size[19:0]

XP10_shrt_size_ret

For the short symbol pipe, retrospective is the sum of:

• lut_sa_shrt_ret_stcl_size[12:0]

• lut_sa_shrt_ret_st_size[12:0]

• lut_sa_shrt_ret_size[19:0]

XP10_long_size_sim

For the long symbol pipe, simple encode is the sum of:

• lut_sa_long_sim_size[19:0]

XP10_shrt_size_sim

For the short symbol pipe, simple encode is the sum of:

• lut_sa_shrt_sim_size[19:0]

XP10_long_size_pre

For the long symbol pipe, simple encode is the sum of:

• lut_sa_long_pre_size[19:0]

XP10_shrt_size_pre

For the short symbol pipe, simple encode is the sum of:

78 March 11, 2019

• lut_sa_shrt_pre_size[19:0]

XP10_size_cmp

The total bit count for compressed is then the sum of:

• MIN (XP10_long_size_ret, XP10_long_size_sim,
 XP10_long_size_pre)

• MIN (XP10_shrt_size_ret, XP10_shrt_size_sim,
 XP10_shrt_size_pre)

• Extra data bit count for the block (from the Offset & Length Bit Counter for the block)

• 48 or 64 (size of the XP10 block header) If HENC_XP10_FLG_EXTRA = 1, then insert
HENC_XP10_FLG[15:0]

• 32 (size of the XP10 fixed block header)

• Variable length MTF block header, present if the current block is not the 1st block of the
frame and the previous block was sent raw.

• 6 (additional bits to specify retrospective vs simple, 3 bits for short, 3 bits for long)

XP10_size_raw

The raw size in bits is:

• block_size_raw (from the Symbol Mapper via the Sequence ID Control Buffer) * 8

Raw encoding for the frame should be used if: XP10_size_raw <=

 XP10_size_cmp

11.2.2.2 XP10 CFH 4K/8K
There are a few changes to the “XP10_size_cmp” calculation of XP10 CFH 4K/8K modes, depending on
configuration bits in the SOF token:

• CFH_reduce_max_comp_frm_size = 1 Subtract 16 from XP10_size_raw before

making the
comparison

• CFH_uncompressed_data_bypass = 0 Always select XP10_size_cmp, regardless of
XP10_size_raw

• CFH_frame_header_disable = 1 Do not send the XP10 frame header,
save 48 or 64 bits

• CFH_block_header_format = 0 Always insert an XP10 block header

• CFH_block_header_format = 1 Use reduced XP10 block header, only
include:

Open Compute Project  Project Zipline Huffman Encoder Micro Architecture Specification

http://opencompute.org 79

output_size[17:0]

• CFH_block_header_format = 2 Use reduced XP10 block header, only
include:

output_size[17:0] and prefix[5:0]

11.3 State Machine
In Idle, the State Machine will monitor the ready status signals from the Short and Long Symbol Header
Builders. When both are ready with the same sequence ID, the State machine will start processing the
TLV types stored in the Symbol Queue. The State Machine will simply pass all TLV types, unmodified to
the Encryption interface. The only exception is the Compression TLV. If an XP frame is to be sent raw,
the XP10_uncompressible_data field will be set and the CRC regenerated.

When the Payload TLV is found, the data will either be sent raw or compressed, as determined by the
final encoding decision as described in section 11.2. If data is to be sent compressed, the frame and
block headers and footers will be generated as described in a later section.

The Stream Assembler controls the output data interface and is responsible for assembling the output

data stream. The start of a transfer will be initialized when the Long and Short Header Builders are

done. All non-Compression TLVs are transmitted unmodified to the Encryption block. When the

Compression TLV is encountered, a state machine inside of the stream assembler will be triggered that

progresses through the stages below.

The sequence through the state machine is described below.

1. Send the Compression TLV
2. Send Prefix TLV (if required)
3. Insert the Frame Header (if required)
4. Repeat as needed to complete the frame

a. Insert the Block Header (if required)
b. Insert the MTF offsets header (if required)
c. Insert the Symbol tables (if required)
d. Insert the Data
e. Insert the Block Footer (if required)

5. Insert the Frame Footer (if required)

11.4 XP10 Framing

11.4.1 XP10 Frame Header

Bit(s) Field Source Notes

80 March 11, 2019

31:0 XPRESS10_ID Hardcoded HENC_XP10_ID
default: 32’hC039E510

34:32 WINDOW_SIZE_SEL Compression TLV Compression TLV

35 MIN_MATCH_LEN_SEL Compression TLV Compression TLV (Characters per n-
gram).
1’b0: 3
1’b1: 4

37:36 MODE Compression TLV Compression TLV (Prefix Mode)

43:38 PREDEF_SEL Compression TLV Compression TLV (Prefix Selector)

45:44 RSVD Hardcoded 2’b0

46 CRC_OPTION Compression TLV Compression TLV

47 FLG_EXTRA Hardcoded

HENC_FLG_EXTRA
default: 0

63:48 FLG_EXTENSION Hardcoded

HENC_FLG_EXTENSION
default: 0

Table 23 : XP10 Frame Header

11.4.2 XP10 Block Header

Bit(s) Field Source Notes

27:0 OUTPUT_SIZE Calculated by Stream
Assembler

Output size of the blocks in bits.
Includes all headers but not the
padding bits between blocks.

28 RSVD Hardcoded 1’b0

29 BLK_TYPE Stream Assembler Uncompressed: 1’b0
Compressed: 1’b1

30 MTF_HDR_PRESENT

Stream Assembler Inserted on encoded blocks that
follow unencoded blocks within the
same frame. Never asserted on the 1st
block of a frame.

31 LAST_BLK Stream Assembler Last Block in Frame: 1’b1
Not Last Block in Frame: 1’b0

Table 24 : XP10 Block Header

The XP10 MTF Header will need to be inserted when MTF_HDR_PRESENT == 1’b1.

Fields are listed in order from least significant bit to most significant bit:

Field 1st block subsequent blocks based on MTF snapshot

Open Compute Project  Project Zipline Huffman Encoder Micro Architecture Specification

http://opencompute.org 81

MTF_OFFSET_EXP0 5’b00000 FLOOR(LOG2(MTF_OFFSET_0))

MTF_OFFSET_LSB0 N/A MTF_OFFSET_0 – 2^(MTF_OFFSET_EXP)

MTF_OFFSET_EXP1 5’b00000 FLOOR(LOG2(MTF_OFFSET_1))

MTF_OFFSET_LSB1 N/A MTF_OFFSET_1 – 2^(MTF_OFFSET_EXP)

MTF_OFFSET_EXP2 5’b00000 FLOOR(LOG2(MTF_OFFSET_2))

MTF_OFFSET_LSB2 N/A MTF_OFFSET_2 – 2^(MTF_OFFSET_EXP)

MTF_OFFSET_EXP3 5’b00000 FLOOR(LOG2(MTF_OFFSET_3))

MTF_OFFSET_LSB3 N/A MTF_OFFSET_3 – 2^(MTF_OFFSET_EXP)

Table 25 : XP10 MTF Header

The LSB fields are variable length and will be represented in MTF_OFFSET_EXP0/1/2/3 bits.

The MTF snapshot is generated by the Symbol Mapper and will be updated at the end of every Huffman

block (for the header of the next Huffman Block).

Following the MTF fields, the symbol tables are written out (If BLK_TYPE == Compressed). The long

symbol table is sent first, followed by the short symbol table. The contents of the table are broken

down as follows:

Bits Field Notes

2 [LONG/SHORT]_ENCODE_TYPE 3’b00: Simple Encode
3’b01: Predefined
3’b10: Retrospective
3’b11: Reserved

stcl_size Encoded Huffman Code
Length Symbols

Include only if Encoder Select =
2’b10

st_size Encoded Huffman Code Table Include only if Encoder Select =
3’b10

Table 26 : XP10 Symbol Code Length and Code Table

11.4.3 XP10 Frame Footer

Field Source Notes

CRC64 EOF Token Insert in Frame Footer TLV

82 March 11, 2019

Table 27 : XP10 Frame Footer

11.5 GZIP Framing

11.5.1 GZIP Frame Header

Bit(s) Field Source Notes

7:0 ID1 Hardcoded 8’h1F (GZIP Identifier)

15:8 ID2 Hardcoded 8’h8B (GZIP Identifier)

23:16 CM Hardcoded 8’h08 (DEFLATE)

24 FLG.FTEXT Hardcoded 1’b0

25 FLG.FHCRC Hardcoded 1’b0

26 FLG.FEXTRA Hardcoded 1’b0

27 FLG.FNAME Hardcoded 1’b0

28 FLG.FCOMMENT Hardcoded 1’b0

31:29 FLG.reserved Hardcoded 3’d0

63:32 MTIME Hardcoded 32’d0

71:64 XFL Hardcoded 8’h02

79:65 OS Hardcoded 8’hFF

Compressed Blocks in DEFLATE format

Table 28 : GZIP Frame Header

11.5.2 GZIP Frame Footer

Bit(s) Field Source Notes

31:0 CRC32 Frame Footer Word 8 [63:32]

63:32 ISIZE Frame Footer Word 8 [31:0]

Table 29 : GZIP Frame Footer

11.6 ZLIB Framing

11.6.1 ZLIB Frame Header

Bit(s) Field Source Notes

3:0 CMF.CM Hardcoded 4’h8 (DEFLATE)

7:4 CMF.CINFO Hardcoded 4’h7 (32K window)

12:8 FLG.FCHECK Hardcoded 5’h1A

Open Compute Project  Project Zipline Huffman Encoder Micro Architecture Specification

http://opencompute.org 83

13 FLG.FDICT Hardcoded 1’ b0

15:14 FLG.FLEVEL Hardcoded 2’h3

Compressed Blocks in DEFLATE format

Table 30 : ZLIB Frame Header

11.6.2 ZLIB Frame Footer

Bit(s) Field Source Notes

31:0 ADLER32 Frame Footer Word 8 [63:32]

Table 31 : ZLIB Frame Footer

11.7 Deflate Framing
Deflate block framing, common to GZIP and ZLIB.

11.7.1 Deflate Block Header

Bit(s) Field Source Notes

0 BFINAL Stream Assembler Set if this is the final Huffman block of the frame.

2:1 BTYPE Stream Assembler 2’b00: No compression (Encoded data + header
expanded the block)
2’b01: Reserved
2’b10: Compressed with dynamic Huffman
codes
2’b11: Reserved

<16> LEN Stream Assembler Number of bytes (Max 65535). Only if BTYPE =
2’b00

<16> NLEN Stream Assembler 1’s complement of LEN. Only if BTYPE = 2’b00

<LEN*8> data Reconstructor Raw Data . Only if BTYPE = 2’b00

<5> HLIT Header Builder # of Literal/Length codes - 257

<5> HDIST Header Builder # of Distance codes - 1

<4> HCLEN Header Builder # of Code Length codes - 4

<HCLEN*3> Code Length Codes, See DEFLATE spec for order

<Variable> Literal/Length Codes

<Variable> Distance Codes

<Variable> Compressed Data

<Variable> Literal/Length symbol 256 (End of Data)

Table 32 : Deflate Block Header

84 March 11, 2019

11.7.2 Deflate Block Footer

If encoding in DEFLATE mode and BTYPE != 2’b00, then the distance/length symbol 256 (end of block

symbol) is inserted at the end of the data stream.

Open Compute Project  Project Zipline Huffman Encoder Micro Architecture Specification

http://opencompute.org 85

12 Debug and Configuration

12.1 Overview
Programmable registers, software based table reads, statistics counters and interrupt registers along with
iner stage monitors(ISM) provide debug facility to the Huffman encoder.

12.2 SW accessible registers

Parameter Bits Default Comment

HENC_FORCE_REBUILD_EN 1 0 By selecting this mode, it forces the tree builder to
undergo the selected programmed number of
rebuilds, regardless of if they were needed or not.
Used to test the rebuild and frequency division
hardware. Note, the Force Rebuild feature is
applicable to XP10 and Deflate.

HENC_FORCE_REBUILD_ SHORT 5 0 Number of rebuilds forced for the short/literal(In
case of deflate) Huffman tree builder

HENC_FORCE_REBUILD_ LONG 5 0 Number of rebuilds forced for the long/distance(In
case of deflate) Huffman tree builder

HENC_FORCE_REBUILD_ ST_SHORT 4 0 Number of rebuilds forced for the short symbol
table’s tree builder. This is also used for deflate’s
symbol table tree builder.

HENC_FORCE_REBUILD_ ST_LONG 4 0 Number of rebuilds forced for the long symbol
table’s tree builder. This is not used for deflate’s
symbol table tree builder.

HENC_XP_SHORT_MAX_CODE_LEN 5 27 Max code length for XP10 short symbols. If
exceeded, a rebuild is started.

HENC_DEFLATE_SHORT_MAX_CODE_LEN 5 15 Max code length for Deflate short symbols. If
exceeded, a rebuild is started.

HENC_XP_LONG_MAX_CODE_LEN 5 27 Max code length for XP10 long symbols. If
exceeded, a rebuild is started.

HENC_DEFLATE_LONG_MAX_CODE_LEN 5 15 Max code length for Deflate long symbols. If
exceeded, a rebuild is started.

HENC_XP_ST_MAX_CODE_LEN 4 8 Max code length for XP10 short symbol table’s tree
builder. If exceeded, a rebuild is started.

HENC_DEFLATE_ST_MAX_CODE_LEN 4 8 Max code length for Deflate short symbol table’s
tree builder. If exceeded, a rebuild is started.

HENC_XP_REBUILD_THRESHOLD_SHORT 8 255 Maximum number of rebuilds on XP10
SHORT/LITERALS pipe when the tree build is
aborted with a retrospective encoding invalid being
asserted.

HENC_DEFLATE_REBUILD_THRESHOLD_SHORT 8 255 Maximum number of rebuilds on Deflate
SHORT/LITERALS pipe when the tree build is
aborted with a retrospective encoding invalid being
asserted.

HENC_XP_REBUILD_THRESHOLD_LONG 8 255 Maximum number of rebuilds on XP10
LONG/DISTANCE pipe when the tree build is
aborted with a retrospective encoding error being
asserted.

HENC_DEFLATE_REBUILD_THRESHOLD_LONG 8 255 Maximum number of rebuilds on Deflate
LONG/DISTANCE pipe when the tree build is

86 March 11, 2019

aborted with a retrospective encoding error being
asserted.

HENC_XP_REBUILD_THRESHOLD_SHORT_ST 8 255 Maximum number of rebuilds on XP10 SHORT
symbol table pipe when the tree build is aborted
with a retrospective encoding error being asserted.

HENC_DEFLATE_REBUILD_THRESHOLD_SHORT_ST 8 255 Maximum number of rebuilds on DEFLATE SHORT
symbol table pipe when the tree build is aborted
with a retrospective encoding error being asserted.

HENC_XP_REBUILD_THRESHOLD_LONG_ST 8 255 Maximum number of rebuilds on XP10 LONG
symbol table pipe when the tree build is aborted
with a retrospective encoding error being asserted.

HENC_HUFF_WIN_SIZE_IN_ENTRIES[13:0] 14 8192 Huffman window size in Symbol queue entries.

HENC_XP10_FLG_EXTRA 1 0 Enables 16 extra flag bits to be included in the XP10
frame header

HENC_XP10_FLG 16 0 Extra bits included in the XP10 frame header if

HENC_XP10_FLG_EXTRA is set.

HENC_XP10_DISABLE_MODES 8 0 Disables particular encoding modes for XP10.
Multiple modes may be disabled. If there is no valid
mode, the encoder will default to retrospective and
set an error.
Bit mapping:
0: Disable simple encode mode
1: Disable retrospective mode
2: Disable raw mode
3: Disable Predetermined Huffman Mode

Others: Reserved

HENC_DEFLATE_DISABLE_MODES[7:0] 8 0 Disables particular encoding modes for GZIP/ZLIB.
Multiple modes may be disabled. If there is no valid
mode, the encoder will default to retrospective and
set an error.
Bit mapping:
0: Reserved
1: Disable retrospective mode
2: Disable raw mode

Others: Reserved

HENC_FORCE_BLOCK_STALL 8 0 Force a stall between internal blocks by forcing
ready to a 0.
0: Symbol Mapper to LZ77
1: Symbol Collapser to Symbol Mapper
2: Insertion Sort to Symbol Collapser
3: Tree Builder to Insertion Sort
4: Tree Walker to Tree Bulder
5: Symbol Table to Tree Walker
6: Stream Assembler to Symbol Table
7: Symbol Queue to Symbol Mapper

HENC_DISABLE_SUB_PIPE 1 0 Disable the second sub-pipe for the Tree Builder,
Tree Walker and Symbol Table blocks.

Table 33 : Configuration Registers

Open Compute Project  Project Zipline Huffman Encoder Micro Architecture Specification

http://opencompute.org 87

12.3 SW accessible table reads
All the dynamic tables (Hardware updatable) including the LUTs are readable by the software.

12.4 Local Statistics Counters and Registers (clear on read,
Non roll over)

SHORT_rebuild_threshold Number of times the SHORT/LITERAL Huffman code rebuild errored out by

hitting the max threshold.

LONG_rebuild_threshold Number of times the LONG/DISTANCE Huffman code rebuild errored out by

hitting the max threshold.

SHORT_symbol_table_rebuild_threshold Number of times the SHORT/DEFLATE symbol table Huffman code rebuild

errored out by hitting the max threshold.

LONG_ symbol_table_rebuild_threshold Number of times the LONG symbol table Huffman code rebuild errored out by

hitting the max threshold.

Number_SHORT_rebuilds Number of times the SHORT/LITERAL Huffman code rebuilds occurred.

Number_LONG_rebuilds Number of times the LONG/DISTANCE Huffman code rebuilds occurred.

Number_SHORT_symbol_table_rebuilds Number of times the SHORT/DEFLATE symbol table Huffman code rebuilds

occurred.

Number_LONG_ symbol_table_rebuilds Number of times the LONG symbol table Huffman code rebuilds occurred.

Deflate_short_max_symbol_width Max symbol width

Deflate_long_max_symbol_width Max symbol width

XP10_short_max_symbol_width Max symbol width

XP10_long_max_symbol_width Max symbol width

Symbol_Queue_high_watermark Max Symbol Queue Depth

Number_Short_Symbol_Out_of_Range Number of short symbol out of range errors

Number_Long_Symbol_Out_of_Range Number of long symbol out of range errors

Block Ready Status Live 32-bit register with live status of the ready signals between blocks

Block Ready Status Sticky 32-bit clear-on-read status of the ready signals between blocks

Table 34 : Local Stats Counters and Registers

12.5 Global Statistics

Strobes to be sent to the Global Statistics Accumulator will be generated for the events listed in Table 35

88 March 11, 2019

Global Counters Bit

Short Symbol Out of Range 0

Long Symbol Out of Range 1

XP10 Encoded Block 9

XP10 Raw Block 10

XP10 Short Simple Block 11

XP10 Long Simple Block 12

XP10 Short Retrospective Block 13

XP10 Long Retrospective Block 14

XP10 Short Predetermined Block 15

XP10 Long Predetermined Block 16

XP10 Frame 17

CFH8K Encoded Block 18

CFH8K Raw Block 19

CFH8K Short Simple Block 20

CFH8K Long Simple Block 21

CFH8K Short Retrospective Block 22

CFH8K Long Retrospective Block 23

CFH8K Short Predetermined Block 24

CFH8K Long Predetermined Block 25

CFH8K Frame 26

CFH4K Encoded Block 27

CFH4K Raw Block 28

Open Compute Project  Project Zipline Huffman Encoder Micro Architecture Specification

http://opencompute.org 89

CFH4K Short Simple Block 29

CFH4K Long Simple Block 30

CFH4K Short Retrospective Block 31

CFH4K Long Retrospective Block 32

CFH4K Short Predetermined Block 33

CFH4K Long Predetermined Block 34

CFH4K Frame 35

Deflate Encoded Block 36

Deflate Raw Block 37

Deflate Short Simple Block 38

Deflate Long Simple Block 39

Deflate Short Retrospective Block 40

Deflate Long Retrospective Block 41

Deflate Frame 42

No-compress Frame 43

Byte Lane 0 44

Byte Lane 1 45

Byte Lane 2 46

Byte Lane 3 47

Byte Lane 4 48

Byte Lane 5 49

Byte Lane 6 50

Byte Lane 7 51

Encrypt Downstream Stall 52

90 March 11, 2019

LZ77 Upstream Idle 53

Table 35 : Global Stats Counters

12.6 Interrupts

1. Uncorrectable ECC Interrupt, software will determine how to recover from an uncorrectable ECC
interrupt.

2. Memory Controller Interrupt, for debug and testing purposes.

3. TLV Error, occurs when a malformed TLV is detected. Unlikely to occur in normal operation but
may occur during software development.

12.7 Debug Inter Stage Monitors (ISM)

Open Compute Project  Project Zipline Huffman Encoder Micro Architecture Specification

http://opencompute.org 91

Insertion sort

TLV debug field
selects the Mux

output.

ISMISM
Software

access

TLV
debug
field

selects
the

Demux
output.

ready

ready ready ready ready

576x25 576x27 576x32 584x13

Data,
seq_id

and eob

Data,
seq_id

and eob

Data,
seq_id

and eob

Data,
seq_id

and eob

32

Seq_id
& eob

Huffman Tree
Builder

Huffman Tree
Walker

Symbol table
Builder

Debug data
Sequencer

Debug data
Sequencer

Debug data
Sequencer

Debug data
Sequencer

Figure 25 : Bus monitors inside Huffman encoder

The outputs of Insertion sort, Tree builder, Tree walker and Symbol table builder can be monitored for
debug by muxing them to the software accessible registers via a block called Inter stage monitor(ISM).

When the output of a selected hardware block is ready with its output, the output data is transferred to
the ISM if the ISM is ready. The hardware block being debugged cannot start processing a new Huffman
block until the ISM ready is high. So in effect ISM ready can stall the upstream pipeline.

The muxing of data and ready is done by TLV fields for debug. (TBD)

Data write to the ISM is completed with eob asserted. Sequence id which is a unique incremental
number given to every Huffman block inside the encoder is also available to the ISM to monitor.

Since the buses between the encoder blocks are two dimensional arrays, a block called as data
sequencer sits between each block that converts the array into one entry per transfer to the ISM.

92 March 11, 2019

13 Resource Estimates
The flop and memory estimates for each section of the Huffman Encoder are included in Table 36.

Block Inst Per Instance Total Notes

Flops Mem

(kB)

Flops Mem

(kB)

Symbol Mapper 1 300 0 300 0 Register inputs, pipeline stages for

mapping function

Symbol Collapser

Short

1 150 1.8 150 1.8 Includes 256x54 FIFO

Symbol Collapser

Long

1 50 0.4 50 0.3 Includes 256x13 FIFO

Symbol Queue 1 300 180 300 180

Sequence ID

Control Buffer

8 175 0 1400 0 Compression header TLV, raw byte

count, extra bit count, MTF header in

flops for access by all pipeline blocks

Insertion Sort

Short

1 14458 0 14458 0 Pipeline and short list

Insertion Sort

Long

1 5226 0 5226 0 Pipeline and long list

Tree Builder

Short

2

31725

2.2 63450 4.4

Tree Builder Long 2 12069 0.8 24138 1.6

Tree Walker Short 2 34614 2.8 69228 5.6

Tree Walker Long 2 15734 1 47202 2

Symbol Table

Short

2 11426 0 22852 0

Symbol Table

Long

2 5602 0 11204 0

LUT Short 2 270 19.2 540 38.4

LUT Long 2 256 8.6 512 17.2

Predetermined

Tables

8 12 0.525 96 4.2 Few flops for mapping

Open Compute Project  Project Zipline Huffman Encoder Micro Architecture Specification

http://opencompute.org 93

Stream Assembler 1 750 0 750 0 Header builder, pipe line staging between

packing functions, state machine

Reconstructor 1 4532 1064 4532 64

Config and local

Debug

1 1324 0 1324 0

Sub total 267712

319.5

Table 36 : Resource Estimates

