


## **OPEN** Compute Engineering Workshop March 9, 2015 San Jose



### Express Fabric within an Open Compute Project and hybrid architecture based on **x86/ARM** The DaaP project

Jean-Marie Verdun **Horizon Computing Solutions** President



# Project background

- Started in June 2014 with the intend to study new generation fabric based on PCI-Express Gen 3
- Released under OCP license
- Specifications and Implementations are open
- This project is designed in collaboration with OCP community members in Europe, Thales and Horizon **Computing Solutions**

### THALES

ENGINEERING WORKSHOP May - 2014

### Data center as a PCB

- Run the PCB up to 35 degrees celsius ambiant using air cooling or even more using immersive cooling
- Share any expensive features like I/O boards or management between multiple compute nodes
- Remove as much as possible cabling which does represent up to 70% of datacenter failures
- High resiliency capabilities through CPU count increase

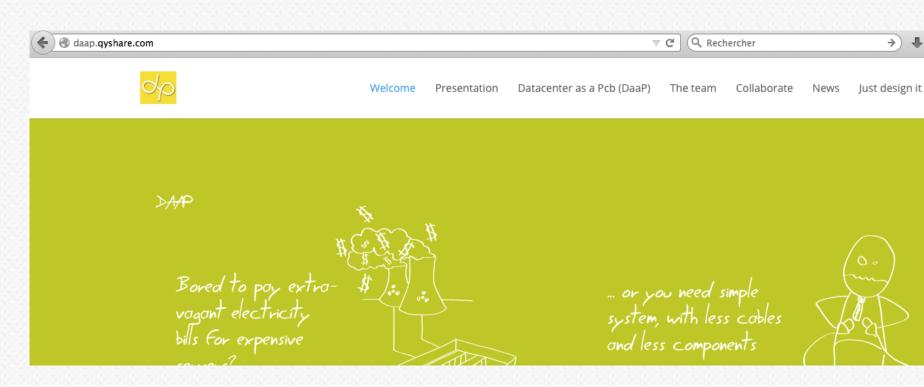


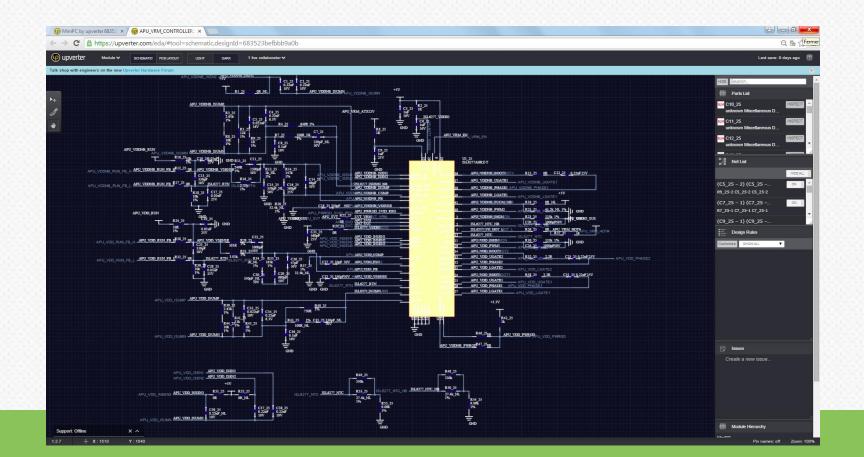
ENGINEERING WORKSHOP May - 2014

# How to work together ?

- We build up from ground a VM that is providing:
- Project Management based on OpenProject
- Email to team members and calendar based on SOGo
- Web server with private content creation for team exchange
- Cloud storage for data exchange
- SSO to the various tool
- 3D WebGL player for mechanical

 Need an example: <u>http://daap.qyshare.com</u> or http://ruggedpod.gyshare.com





### Participate ?





ruggedpod\_extussion - panier\_asm - 1 chassis, MB\_asm - 1 entretoise\_m3x6-1 STL ruggedpod\_extussion - panier\_asm - 1 chassis, MB\_asm - 1 entretoise\_m3x6-6 STL ruggedpod\_extussion - panier\_asm - 1 chassis, MB\_asm - 1 entretoise\_m3x6-6 STL ruggedpod\_extussion - panier\_asm - 1 chassis, MB\_asm - 1 mfg assembly: 1 m7g-1 STL ruggedpod\_extussion - panier\_asm - 1 chassis, MB\_asm - 1 mfg assembly: 1 m7g-1 STL ruggedpod\_extussion - panier\_asm - 1 chassis, MB\_asm - 2 ST HDD - 1 SSL ruggedpod\_extussion - panier\_asm - 1 chassis, MB\_asm - 2 ST HDD - 1 SSL ruggedpod\_extussion - panier\_asm - 1 chassis, MB\_asm - 2 ST HDD - 1 SSL ruggedpod\_extussion - panier\_asm - 1 chassis, MB\_asm - 2 ST HDD - 1 socket button head cap screw\_am-4 SSL ruggedpod\_extussion - panier\_asm - 1 chassis, MB\_asm - 2 ST HDD - 1 socket button head cap screw\_am - 4 SSL ruggedpod\_extussion - panier\_asm - 1 chassis, MB\_asm - 2 ST HDD - 1 socket button head cap screw\_am - 6 SSL ruggedpod\_extussion - panier\_asm - 1 chassis, MB\_asm - 2 ST HDD - 1 socket button head cap screw\_am - 6 SSL ruggedpod\_extussion - panier\_asm - 1 chassis, MB\_asm - 2 ST HDD - 1 socket button head cap screw\_am - 6 SSL ruggedpod\_extussion - panier\_asm - 1 chassis, MB\_asm - 2 ST HDD - 1 socket button head cap screw\_am - 6 SSL ruggedpod\_extussion - panier\_asm - 1 chassis, MB\_asm - 2 forgue Dar - 240000, 1-1 STL ruggedpod\_extussion - panier\_asm - 1 chassis, MB\_asm - 2 forgue Dar - 240000, 1-1 STL ruggedpod\_extussion - panier\_asm - 1 chassis, MB\_asm - 2 forgue Dar - 240000, 1-1 STL ruggedpod\_extussion - panier\_asm - 1 chassis, MB\_asm - 2 forgue Dar - 240000, 1-1 STL ruggedpod\_extussion - panier\_asm - 1 chassis, MB\_asm - 2 forgue Dar - 240000, 1-1 STL ruggedpod\_extussion - panier\_asm - 1 chassis, MB\_asm - 2 forgue Dar - 240000, 1-1 STL ruggedpod\_extussion - panier\_asm - 1 chassis, MB\_asm - 2 forgue Dar - 240000, 1-1 STL ruggedpod\_extussion - panier\_asm - 1 chassis, MB\_asm - 2 forgue Dar - 240000, 1-1 STL ruggedpod\_extussion - panier\_asm - 1 chassis, MB\_asm - 3 ST HDD - 1 socket button head cap sc





### Up to 35 degrees

- Control W/mm2 and use high Tj components
- Xeon or Opteron are low Tcase chips around 65 C
- dT with ambiant is crucial and low thermal resistance heatsink are required
- Mobile chips have a much higher Tj which may vary between 95 to 105 C.
- Increase the number of PWM stages from VRM.



### Shared I/O **PCle Fabric**

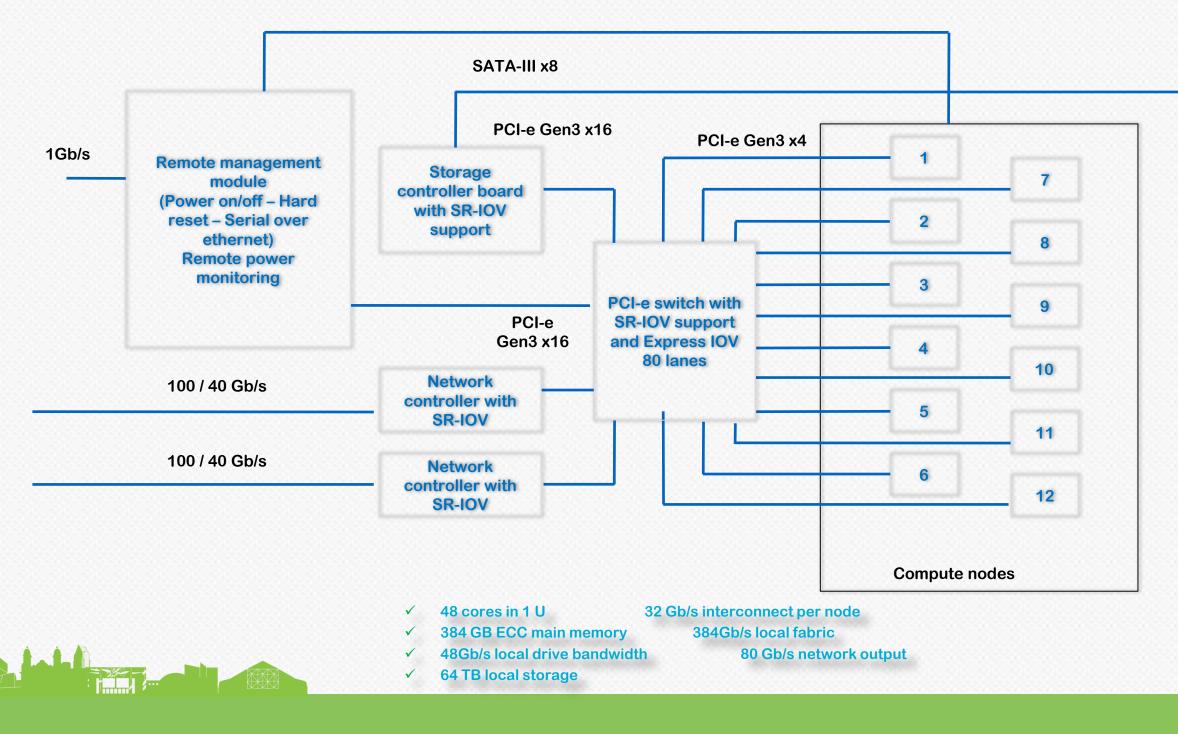
- Any modern chip is coming up with a PCIe interface
- Cost of the PCIe interface is 0 \$US against 300 \$US for a 40Gb/s NIC
- PLX technology is currently developing an SR-IOV with multi root support PCIe switch which might provide tremendous results.



- **Reliability and resiliency** Solder down everything (except RAM)
- CPU and chipset have a high reliability rate
- CPU socket requires higher footprint space than BGA solutions. Use BGA to increase node count.
- RAM are second cause of failure within datacenter



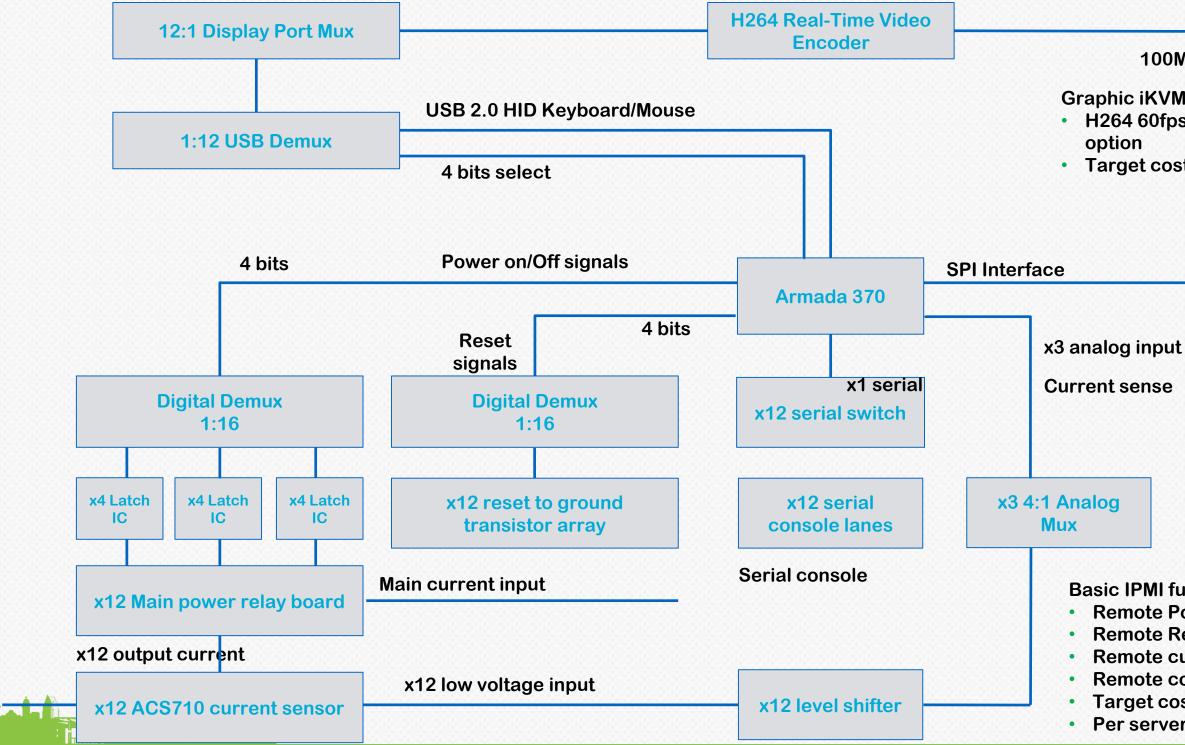
### Management Get rid of 1 BMC per node


- Traditional management systems requires 1 BMC per system board
- Moving management task out of system board might simplify
  - Node design and improve density
  - Management board design

Adapt a 2 states management for compute node

## Block diagram

✓ First generation Compute node based on AMD APU


✓ Second generation Compute node based on AMD HeroFalcon ARM and APM XGene



### APU D HeroFalcon ARM and APM XGene

2.5 Inches Hard drives 32 drives

### Remote management module



### 100Mb/s RTP stream

Graphic iKVM module • H264 60fps RTP 1080p with 3D support as an • Target cost: 60 US\$ per encoder

**Wiznet 5100** 

100Mb/s admin Net interface

**Basic IPMI functions: Remote Power On/Off Remote Reset Remote current sense** Remote console (Serial over LAN) Target cost: 70 US\$ for 12 ports Per server: 6 US\$

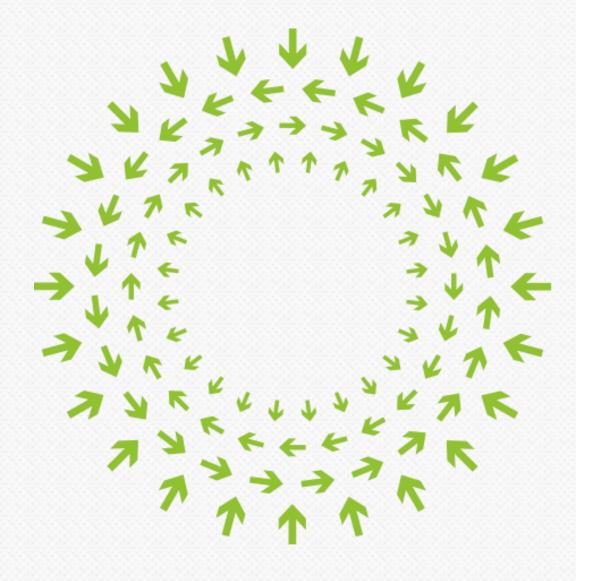
### Firmware Go OpenSource for flexibility and customer added value

- System firmware (traditionally called BIOS) are proprietary firmware which lacks of innovation. DaaP will adopt Open Source firmware
- What might be coming from OpenSource ?
  - BIOS through coreboot
  - Management node firmware through Rest API
  - Network boot firmware (PXE removal)
  - PCIe Fabric configuration firmware

### What it looks like ?

| gedPod                |                                                      |                                |                                                 |
|-----------------------|------------------------------------------------------|--------------------------------|-------------------------------------------------|
| << Back               | Serial blade 1 Serial blade 2                        | Serial blade 3 Serial blade 4  |                                                 |
| Power (W)             | Main Advanced PCIN                                   | PnP Boot Security              | Chipset Exit                                    |
| 134 200               | <ul> <li>System Overview</li> </ul>                  |                                | * Use [ENTER], [TAB]<br>*** * or [SHIFT-TAB] to |
|                       | * AMIBIOS                                            |                                | * select a field.                               |
| State                 | * Version :V1.00                                     |                                | *                                               |
| State                 | * Build Date:08/22/08                                |                                | * Use [+] or [-] to                             |
| On / Off Short        | * ID :23508000                                       |                                | * configure system Time                         |
| and the second second | * Processor                                          |                                |                                                 |
| On / Off Long         | <ul> <li>AND Turion(tm) 64 X2 Mob</li> </ul>         | oile Technology TL-62          |                                                 |
| 22 14                 | * Speed :2100MHz                                     |                                | *                                               |
| Reset                 | * Count :2                                           |                                |                                                 |
|                       | •                                                    |                                | •                                               |
|                       | * System Memory                                      |                                | * * Select Screen                               |
|                       | * Size :1920MB                                       |                                | * ** Select Item                                |
|                       | *                                                    |                                | * +- Change Field                               |
|                       | <ul> <li>System Time</li> <li>System Date</li> </ul> | [0::31:08]<br>[Sat 03/07/2015] | * Tab Select Field<br>* F1 General Help         |
|                       | - System Date                                        | [540 05/07/2015]               | * F10 Save and Exit                             |
|                       |                                                      |                                | * ESC Exit                                      |
|                       |                                                      |                                |                                                 |




## Estimated production cost

| All Cost in \$US                          | Quantities per board |    | Total |
|-------------------------------------------|----------------------|----|-------|
| Management Module (without iKVM)          | 70                   | 1  | 70    |
| Compute module                            |                      |    |       |
| 1 CPU Quad Core 4 Ghz 2MB L2              | 110                  | 12 | 1320  |
| 32 GB Main memory                         | 200                  | 12 | 2400  |
| Compute board and "accessories" (like SB) | 70                   | 12 | 840   |
| PCI-e Switch                              | 400                  | 1  | 400   |
| 40 Gb/s NIC                               | 300                  | 2  | 600   |
| Storage HSA with SR-IOV                   | 300                  | 1  | 300   |
| PCB                                       | 400                  | 1  | 400   |
| Mechanical                                | 200                  | 1  | 200   |
| Total                                     |                      |    | 6530  |
|                                           |                      |    |       |

1.1.1

Per Server (\$US) Total Power (Watts) full load Per server (Watts) full load

544 720 60



## **OPEN** Compute Engineering Workshop March 9, 2015 San Jose