[image:]

Open Compute Project  Open Network Linux
[image:]

[bookmark: _Toc403725742]Open Network Linux
[bookmark: _Toc403725743]A Reference Network Operating System for OCP

[bookmark: _Toc403725744]Executive Summary
Open Network Linux is a reference Network Operating System (NOS) for Open Compute compatible network hardware, e.g. switches and routes. ONL’s goal is to provide a collective home and staging area for the code needed to run these devices, including all user and kernel-space drivers, boot utilities, ONIE-compatibility, and eventually packet forwarding agents. We believe that a reference NOS will be useful to the community for (a) hardware testing, (b) encouraging DIY-style innovation, and (c) improving engineering efficiencies and time-to-market for OCP-based commercial efforts. Open Network Linux leverages and is compatible with the OCP’s Open Network Install Environment (ONIE) project and fulfills a necessary part of the software ecosystem.
[bookmark: _Toc403725745]Contents
Open Network Linux	1
A Reference Network Operating System for OCP	1
Executive Summary	2
Contents	2
Figures	2
Revision History	2
Overview	4
License	4
Background	4
Design	5
Test Plan	6
Checklist for Maintenance	6
Checklist for Governance	6
Roadmap	6
Supporting Documents	6

[bookmark: _Toc403725746]Figures
Figure 1: High-Level ONL Overview	3

[bookmark: _Toc403725747]
Revision History
	Name
	Date
	Version
	Description

	Rob Sherwood
	2014-11-13
	0.1
	Initial Release

	Carlos Cardenas
	2014-11-14
	0.2
	Minor formatting.
Added additional sections.

[bookmark: _Toc403725748]Overview
Hardware without software is not useful. The Networking project of the Open Compute Project (OCP) is accepting a growing collection of switch hardware that needs software to function. Open Network Linux is intended to be a reference collection of software needed to operate OCP switches. This software includes everything from the build systems, to hooks into the ONIE project, drivers, and forwarding utilities. The goal is to produce a network operating system (NOS) that is both usable on its own (e.g., for reference hardware testing and DIY open source development) as well as has functional re-usable pieces that can be incorporated into commercial products. Many of the re-usable pieces of ONL are highlighted in Figure 1.

[image:]
[bookmark: _Toc275434057]Figure 1: High-Level ONL Overview
[bookmark: _Toc403725749]License
All of the user-space code in ONL is released under the Eclipse 1.0 license (http://www.eclipse.org/legal/epl-v10.html) and all of the Linux kernel-space code maintains the Linux Kernel’s GPL license (https://www.kernel.org/pub/linux/kernel/COPYING). The intent of using Eclipse is both to encourage developers to contribute their patches back to the community (by requiring that they publish their changes) but also to have a clear definition of where a contribution begins and ends, making the license acceptable for commercial applications as well.
[bookmark: _Toc403725750]Background
The barrier to entry for creating even the most basic Network Operating System (NOS) is both prohibitively high – excluding the time and skill of the average DIY hobbyist or student – and non-differentiated from a commercial perspective. This is because the litany of software drivers and algorithms is both too complex and is considered “table stakes” for any commercial implementation. For example, fan drivers are annoying to write correctly and no one ever bought one box over another because of a superior fan driver. Besides forwarding packets, an OCP NOS must:
· Manage the thermal feedback loop between temperature sensors, fans, and field-replaceable units (FRUs) like power supplies
· Manage optics and cable life cycles (detection, hardware capability negotiation, PHY programming, etc.)
· Manage the LEDs of the various switch components
· Correctly install onto an ONIE-enabled switch (taking the hand-off from ONIE, discovering the underlying hardware and correctly installing the NOS)
· Abstract away platform-level differences so that packet forwarding agents do not have to be aware of low-level (e.g., memory address offsets) differences between platforms
As a result, the decision was made that an open source, reference operating system would be of significant use to the community. A lot of effort was made to make pieces modular so that consumers of ONL could use the software like a buffet table, picking and choosing only the pieces that they want.
[bookmark: _Toc403725751][bookmark: _GoBack]Design
ONL is a collection of scripts, programs, libraries, and Makefiles to build an ONIE-compatible install image that will boot as many OCP and non-OCP bare metal switches as possible. While each component has its own design decisions, a few are worth documenting here:
Decoupled Packet Forwarding Agents:
ONL initially shipped with no packet forwarding agents, that is, it does not even initialize the on-board ASIC. While this might seem counter-intuitive for a Network Operating System (whose main function is to forward packets), this choice to decouple the base operating system from the packet forwarding agent was quite intentional so that ONL could be re-used with many potentially different packet forwarding agents. Plans are underway to ship ONL with a number of example forwarding agents, including the Open Route Cache (ORC) to enable L3 routing, and an Indigo-based (http://projectfloodlight.org/indigo) OpenFlow forwarding agent with more coming. Also, the plan is to support as many open API (but often closed source) ASIC SDKs so that developers can write their own forwarding agents.

ONL Platform (ONLP) API:
This library abstracts access to many of the lower-level platform-specific internals such as fans, SFPs, sensors, specific ONIE implementation, and power supplies. One critical design goal was to simplify the writing of the ONLP south-facing driver so that as much existing code (e.g., from diagnostic kits) could be re-used. As a result, many existing ODM equipment manufacturers have been able to write the platform-specific ONLP drivers in-house with existing (typically limited) software engineering resources.

Support for Multiple CPU Architectures
Because bare metal and OCP switches come with a variety of CPUs (PowerPC, x86, ARM, etc.), ONL has been built to support multiple CPU architectures. At the time of this writing, ONL supports both PowerPC and x86 builds and is waiting for hardware that requires ARM.
[bookmark: _Toc403725752]Test Plan
The test plan is multi-part. Most of the code has per-package unit tests. As a whole, the ONL installers are built nightly through automated scripts and tested against a number of reference platforms (see the HCL list for the subset of platforms that are tested nightly). As the ONL program grows, we expect this testing program will increase substantially.
[bookmark: _Toc403725753]Checklist for Maintenance
Currently the code is maintained in GitHub and the development uses GitHub-based best practices. All code changes are reviewed publicly (using GitHub’s online code review tools) and approved by someone with commit rights. The current list of committers includes:
· Rob Sherwood
· Jeff Townsend
And we are open to expanding the committers list as other contributors emerge.

In the event that all maintainers are permanently unavailable, a duly appointed representative of the Open Compute Project may take over the project.

Software releases will be made as time and major features are committed. While many open source projects with regular committers have a time-based release model, at least for the near future until the projects popularity increases, we will follow a feature-based release schedule.
[bookmark: _Toc403725754]Checklist for Governance
This is the list of current governance sites which may change with acceptance into OCP.
Website: http://www.opennetlinux.org
Mailing list: opennetworklinux@googlegroups.com
IRC: n/a
Mirror: n/a
GitHub: github.com/opennetworkinglinux/ONL
Wiki: n/a
[bookmark: _Toc403725755][bookmark: _Toc403725756]Roadmap
There are three different future directions that make sense with ONL: expanding the ONL Platform interface, expanding the HCL, and adding forwarding agents.
ONL Platform Interface:
· Additional optics information, e.g., power usage
· Support for breakout cables (dynamic ports)
Hardware Compatibility List (HCL):
· Support for all OCP-approved switch hardware (and match over time)
· Support for Facebook Wedge switch (as is available)
· Support for additional lower cost switches (to enable the DIY hobbyists)
Forwarding Agents:
· Support for Silicon SDK’s (e.g., Broadcom’s OF-DPA, Mellanox’s OpenEthernet)
· Support for Linux routing table hardware/software syncing (e.g., Open Router Cache)
· Support for Facebook’s FBoss (pending its release)
Supporting Documents
The majority of the technical documents live in the $ONL/docs directory in the source, including:
· Build instructions and build process details
· Porting instructions to new hardware
· Booting documentation
· List of Supported Hardware
· ONL Platform APIs and driver APIs

2	2014-11-14
http://opencompute.org	1

image2.emf
Kernel Patches Anatomy of ‘make onI-Sa rch’

All components: SWI: ‘make —C
‘make —C SONL/builds/components’ SONL/builds/swi/Sarch/aII‘ Installer:

Linux 3.9.6

‘make —C
. ONL-Specific)
Linux 3.8.13 _depbs ' $ONL/builds/
$ONL/debian/repo Switch installer/Sarch/all’

; Open Route Cache 95'”3 Image
Architecture Mu|t|strap and (SWI)
Infrastructure ‘onl-mkws" . ONL

Module (AIM) FaultD
: ONIE
Generic

Specific component: : Platform-* debs From Installer
(installers, etc.) Emdebian.org ONIE

‘make —C
SONL/components/ ONLP and Installer
Sarch/Scomponent/ |- R A o) Debian.org SHAR
deb’ Via wrapper

" | New from ONL
W 3 Pparty 0SS

ONLP-Svendor apt-cacher-ng

Busybox
Buildroot
Etc. ONL Loader " ONL Loader

Linux	3.9.6	

Linux	3.8.13	

Open	Route	Cache	

FaultD	

Architecture	

Infrastructure	

Module	(AIM)	

Pla orm-*	

(installers,	etc.)	

ONLP	

(Plaorm	API	Library)	

ONLP-$vendor	

ONL-Specific 	 	

.debs

	

$ONL/debian/repo	

Generic		

.debs	From	

Emdebian.org	

and	

Debian.org	

Via		

apt-cacher-ng	

Switch	

Image	

(.swi)	

ONL	Loader	

Using	

Mul strap	and	

`onl-mkws`	

ONIE	

Installer	

SHAR	

wrapper	

ONL	Loader	

ONL	

ONIE	

Installer	

All	components:	

`make	–C	$ONL/builds/components`	

SWI:	`make	–C		

$ONL/builds/swi/$arch/all`	

Installer:	

`make	–C		

$ONL/builds/	

installer/$arch/all`	

Anatomy	of	`make	onl-$arch`		

Specific	component:	

		

`make	–C	

$ONL/components/	

$arch/$component/	

deb`	

Busybox	

Buildroot	

Etc.	

New	from	ONL	

3rd	Party	OSS	

Linux	3.9.6	

Kernel	Patches	

Mixed	

image1.png
Compute Project

image3.png
Compute Project

