# OCP ORv3 Power BBU Concept Proposal

Gary Sapia – Director of Comms Power Systems Eng. gary.sapia@analog.com



AHEAD OF WHAT'S POSSIBLE™

# **Rack Power System Diagram**





2 // 13 March 2020 ©2020 Analog Devices, Inc. All rights reserved. OCP ORv3 Power Spec BBU Concept Proposal

### Battery Shelf: 15kW (N+1) Redundant Modules





Li-Ion 12s6p Stack

3 // 13 March 2020 ©2020 Analog Devices, Inc. All rights reserved. OCP ORv3 Power Spec BBU Concept Proposal

### **BBU Shelf Functional Concept Proposal**





4 // 13 March 2020 ©2020 Analog Devices, Inc. All rights reserved. OCP ORv3 Power Spec BBU Concept Proposal

# **BBU v3 Module Proposal**







#### Battery

- Lithium Ion 12s6p (72 cell pack)
  - 18650 VTC4 12AHr
  - 18650 VTC5 15AHr
- Battery size easily fits mechanical requirements.
- Enables efficient boost architecture
- Enables fast switch over to BBU
- Sized to meet system requirements with adequate margin over lifetime.
- Compatible with high performance automotive battery monitors

| Parameter              | Spec<br>Requirement      | 12s – 6p<br>VTC4 | 12s – 6p<br>VTC5 |
|------------------------|--------------------------|------------------|------------------|
| Voltage<br>Range Float | 48V                      | 49.2V            | 49.2V            |
| Voltage 90%<br>@15A    |                          | 45V              | 45V              |
| Cell ESR               |                          | 12mohm           | 12mohm           |
| Pack ESR               |                          | 36mohm           | 36mohm           |
| Cont. Current          | 85A                      | 120amps          | 135amps          |
| Ahr                    | 7                        | 12Ahr            | 15Ahr            |
| Pack Energy            | 305Whr<br>(min required) | 514Whr           | 617Whr           |
| Cycle Life             |                          | 500              | 500              |



#### **Busbar side Hot Swap/Reverse Current Controller**

- Enables initial battery connection during BBU event
- Controls inrush during BBU Shelf insertion onto a live Busbar
- Controls inrush during BBU Module insertion onto a live Shelf
- Isolates Busbar from BBU Module Fault condition
- Provides Boost output disconnect and short circuit protection
- Reverse current protection, busbar to BBU system, shelf and module
- Provides protection from PSU system over voltage condition
- MOSFET failure detection
- Reverse voltage protection
- Protection for n+1 redundancy



#### **Bidirectional Regulator Controller**

- 3.3kW boost voltage generation from battery pack input to busbar output
- Buck voltage charging/current control from busbar to battery pack
- Seamless/instant/no-glitch switchover from buck mode to boost mode and back
- Provides CC/CV control for battery charging
- Adjustable discharge control for battery pack SOH testing
- Accurate analog current sharing between phases and BBU modules/shelves
- Adjustable charging current/voltage control
- Switching MOSFETs short circuit detection, protection and reporting
- Bi-Directional Programmable Current Regulation and Monitoring
- Capable of n-phases for operation in high power applications



#### **Battery Pack Hot Swap and Reverse Current Control**

- Enables initial battery connection during BBU event
- Inrush control from battery pack to DC/DC boost input capacitance
- Over current protection
- Battery pack disconnect for redundant power
- Isolates Battery pack from boost and busbar Fault condition
- Provides Battery pack short circuit protection
- MOSFET failure detection
- Reverse voltage protection
- Protection for n+1 redundancy



#### Battery System Management(BMS) and Voltage/Current Monitor

- Measures Up to 12 Battery Cells in Series
- Low Total Measurement Error over system lifetime
- Manages/Controls/Reports battery functions, i.e. SOC, SOH
- Passive Cell Balancing with Programmable Timer to ease compute time on uController
- Many General Purpose Digital I/O and/or Analog Inputs
  - Temperature, voltage, current or other Sensor Inputs
  - I2C or SPI Communications protocol
- Very low Iq and Supply Current
- Monitor system level failures, open wire, battery failure, degraded measure accuracy, etc.



#### **BBU System uController**

- Manages battery charging functions
- Reports BBU information to System Management Controller(SMC)
  - Battery SOH, SOC
  - Electronics Health, diagnostics and fault detection
  - Real Time system Telemetry
- Monitors current sharing between BBU modules
- Manages battery charging and discharging algorithm



#### **BBU System Communications**

- Current sharing
- State of Charge
- Battery Status
- Power Metrics

# OCP BBU v3 Spec Review Summary/Concerns



#### Summary

- Battery pack stack 12s6P
  - Optimal capacity for back up requirement with margin
  - Fastest switchover time due to max charge voltage exceeding BBU boost voltage
  - 18650 VT4/VT5 cells are commonly used and well tested for this application
  - Many vendors support a 12Cell stack with common BMS products
- Non-isolated Bidirectional DC/DC power architecture
  - Simplicity in power conversion
  - Buck mode charge/Boost mode discharge fewer MOSFETs, higher reliability
  - Single converter block for simplicity, size, and cost benefit
  - Analog current limit bus offers no droop requirement for improved voltage tolerance

#### Concerns

- PSU/BBU operational voltages and droop leaves no margin for system tolerances
- Operational voltage ranges don't include tolerance for load transition variations
- Initial BBU switchover voltage drop dominated by hold up capacitance ESR
  - Need to spec allowable minimum voltage during the switchover
  - Is 40Vmin, <1ms acceptable?</li>