

OPEN Compute Engineering Workshop March 9, 2015 San Jose

Mellanox OCP Contribution Overview

OCP Engineering Workshop, Mar 2015 Kevin Deierling

Vice President, Mellanox Technologies

Mellanox Overview

Public company (Nasdaq: MLNX)

- Founded in 1999
- ~1700 employees

End to end provider of interconnect solutions Leading provider of InfiniBand & Ethernet solutions

- Silicon, Adapters/NICs, Switches
- State of the art Ethernet solutions
 - Dominant provider of 40GbE adapters
- Cables and QSFP Modules - Copper, VCSEL Optics, Silicon Photonic

Mellanox and Open Compute Project

2011

Contribution of 10GbE OCP ConnectX-3 specification

2012

- UEFI supports for OCP platform
- Mechanical adjustment of OCP NIC to triplet servers

2013

Enablement of Shared NIC functionality with ConnectX-3 device

2014

- 1'st 40GbE OCP Mezz card with ConnectX-3 PRO
- Switch design specification contribution
 - 36x 40GbE or 48x 10G and 12x 40G switch
- ONIE and SAI contributions

2015

1st 25GbE, 50GbE and 100GbE Network Adapter Multi-Host design contributions and announcement OpenOptics WDM technical contribution

Exponential Data Growth – Requires Platform Innovation

We Live in a World of Data

Data Needs to be Accessible Always and in Real-Time

More Data

Big, Fast, Real-Time Data Needs Innovation Too!

Data Center Evolution Over Time

tot 1

From Compute Centric to Data Centric Data Center (DCDC)

Compute-centric architecture

- CPU at the center with attached peripherals
- Developed for transactional processing
 - Small, slow, fixed-format data
- Data is an afterthought!
- Not equipped for Big-Fast-Unstructured Data

Focus is on server-level optimization

- Compute-centric optimization focus is the server
- Secondary focus is the storage chassis

A higher level view is huge advantage!

- From compute to data centric architecture
- Explicitly considers Big-Fast-Unstructured Data
- Higher efficiency and better CapEx and OpEx

Compute Centric Center Architecture

Networking

I/O

Storage

CPU

Compute

Data Centric Data Center Enables Rack Level Optimization

Data centric view allows rack and data center level optimization

- Higher level means better optimization possible than at the server level
- Disaggregation of server resources
 - Allows sharing of CPU, storage, memory, and I/O resources
 - Flexibility to scale each element independently

Intelligent interconnect is at the heart of this transformation

Storage

Rack & Data Center Level Optimization

Rack Level Optimization For The Data Centric Data Center

Three key requirements for rack & data center level optimization

- Server disaggregation enabled by network sharing 1.
- 2. Efficient data movement with RDMA and virtualization acceleration
- 3. High speed data connectivity100Gb/s copper, optical, & silicon photonics

Server Disaggregation Enabled by Resource Sharing

- Enables efficient sharing of network & compute resources & efficient data transport
- Single socket CPU significantly reduces costs

1.1

Symmetric data access means deterministic performance under all circumstances

Efficient Data Movement: eSwitch, RDMA, Network Virtualization

Embedded Switch Hardware OVS Switch Virtual Overlay Network Acceleration

Efficient Data Handling

- eSwitch: Embedded hardware OVS switch flow steering engine
- 2. Virtual network acceleration
- 3. RDMA Efficient Data Exchange Low Latency, Low CPU Overhead

Efficient Data Movement With RDMA

OpenOptics WDM Contribution to OCP

End to end connectivity allows innovation and optimization at rack and data center level

- Standard QSFP form factors for adapters, switches, and cables
- Copper & fiber cable, single & multi-mode, VCSEL & silicon photonics
 - Use the best technology
- Advanced silicon photonics platform offers a future-proof roadmap
 - WDM, higher speed modulation

ConnectX-4 Multi-Host Contribution

ConnectX-4

Multi-Host Technology

Mellanox ConnectX-4 100GbE Network Adapter

ConnectX-4: Highest Performance Adapter in the Market

InfiniBand: QDR, FDR, EDR

Ethernet: 10 / 25 / 40 / 50 / 56 / 100GbE

100Gb/s, <0.7us latency

150 million messages per second (8B)

100 million packets per second (64B)

RDMA, RoCE

Multi-Host technology

CORE-Direct technology

GPUDirect RDMA

Overlay Networks offload

ConnextX-4 OCP Adapter with **Multi-Host Technology**

Mellanox ConnectX-4 100GbE Network Adapter

ConnectX-4: Highest Performance Adapter in the Market

OCP 2.0 compliant

Automatic self-configuring for legacy and Multi-Host platforms

Host management support

- NC-SI compliant multi-instance BMC
- MCTP (MCTPoSMBus and MCTPoPCIe) compliant multiinstance **BMC**
- Dedicated management resources per each managed host Supports:
- Single 16x Gen 3.0 PCle
- Dual 8x Gen 3.0 PCIe
- Quad 4x Gen 3.0 PCIe

ConnextX-4 OCP Adapter with **Multi-Host Technology**

Mellanox Multi-Host[™] Technology

the the

Multi-Host Technology

New Compute Rack / Data Center Architecture

Scalable Data Center with Multi-Host

- The future of data center design •
- •
- •
- •
- •

Traditional Data Center

- Expensive design for scalable data centers
- Requires many ports on ToR switch
- Dedicated NIC / cable per server

Modular, share components CPU & NIC Flexible, configurable, application optimized **Optimized networking configurations** Enabled by high-throughput network

New Scalable Rack Design

Smart Interconnect to Unleash the Power of All Compute Architectures

Complete Architectural Flexibility

Highest Performance and Scalability X86, Power, GPU, ARM and FPGA-based **Compute and Storage Platforms**

10/25/40/50/100 Gb/s

Smart Interconnect Enables Single Platform to Support Broad Range of Workloads

Higher Performance Data Center

Overcoming CPU-to-CPU Connectivity Bottlenecks Lower Application Latency

Smart Interconnect for a High Variety of Compute Architectures

Multi Host and BMC Management

Single BMC for Multi-host

- Most efficient and lowest cost solution. A single BMC operates as multiple instances. Each instance controls a separate host. Each instance has dedicated management resources on ConnectX-4.

Dedicated BMC for each host

- Easiest migration to Multi-host platforms. Each BMC has dedicated management resources on ConectX-4

Chassis MGMT BMC

 Additional BMC for managing common chassis resources. Chassis manager also has dedicated management resources on ConnectX-4.

Independent medium migration

• Each BMC (or BMC instance) is fully independent. Each BMC can migrate between mediums (RBT, SMBus or PCIe) independently – allows optimizing management resources and system power for each host

Multiple BMCs sharing a common interface

- Common medium can be shared by multiple BMCs (or BMC instances) - allows minimizing the number of connections

Summary

Next generation compute and storage rack design

- Multi-host allows server disaggregation and resource sharing
- **Enables Data Centric Data Center (DCDC)**
- Enables scalable high performance, Cloud and Web 2.0 data centers
- Enables rack level optimization full disaggregation of system elements
- Complete flexibility: x86, ARM, Power, GPU data centers
- Independent Host management, individual QoS per server
- Reduces cabling reducing cost, easing deployment, simplifying maintenance
- **Reduces switch port count**

ConnextX-4 OCP Adapter with Multi-Host Technology

Thank You

OPEN Compute Engineering Workshop March 9, 2015 San Jose