
Potential OCP server approach
•Build entire platform from web content

•Boot open & shrinkwrap OS’s via ACPI & UEFI
spec www.uefi.org
EDKII – existing upstream/open source core at
https://github.com/tianocore/edk2
•And platform code w/ SMBIOS, ACPI + board
https://github.com/tianocore/edk2-platforms
•Overview of design approach Min_platform

•Closed source SI Intel binary FSP for early IP-
protected code https://github.com/intelfsp
and/or other blobs
https://github.com/tianocore/edk2-non-osi
(e.g., binary PEI boot fw volume, other drivers)
•Can boot any UEFI OS from network, block
media. Can embed OS (e.g., Linux) in flash for
direct launch.
•Generic features – UEFI secure boot, TCG
measured, pxe/http boot (including TLS),
signed capsule update for host and device fw

ACPI + UEFI Specification

Hardware/Silicon

OS

Open source UEFI core

Silicon
Component

Modules

Open source

Platform Pkgs

PEIMsIntel® FSP

1

http://opencompute.org/
http://www.uefi.org/
https://github.com/tianocore/edk2
https://github.com/tianocore/edk2-platforms
https://github.com/tianocore/edk2-platforms/blob/devel-MinPlatform/Platform/Intel/MinPlatformPkg/Docs/A_Tour_Beyond_BIOS_Open_Source_IA_Firmware_Platform_Design_Guide_in_EFI_Developer_Kit_II - V2.pdf
https://github.com/intelfsp
https://github.com/tianocore/edk2-non-osi

Power on [. . Platform initialization . .] [. . . . OS boot] Shutdown

Run Time

(RT)

OS-Present
App

Final OS
Environment

Final OS
Boot Loader

Driver
Execution

Environment
(DXE)

Boot Dev

Select
(BDS)

Transient
System Load

(TSL)

OS-Absent
App

UEFI Shell

Transient
OS Boot
Loader

Boot
Manager

Device,
Bus, or
Service
Driver

UEFI Interfaces

Boundary

for PM_AUTH/

EndOfDxe
Event

EFI Driver
Dispatcher

Architectural
Protocols

Pre EFI
Initialization

(PEI)

CPU
Init

Chipset
Init

Board
Init

Security
(SEC)

PEI
Core

SEC

OEM/PM extensible 3rd party extensible

UEFI PI based boot flow

Non-host
processor

Verifier
(Cerberus,

Titan,..)

Code running on host CPU

Service
Processor/

BMC
(Aspeed,

other)

UEFI / ACPI PI Firmware Flow

SEC

Pre-EFI Init
(PEI)

Driver Exec
Env (DXE)

Boot Dev Select
(BDS)

Runtime / OS

Init caches/MTRRs; Cache-as-RAM (NEM); Recovery;

S-CRTM (if no BtG): Measure DXE/BDS
Early CPU/PCH Init
Memory (DIMMs, DRAM) Init

Optoinal SMM init. Continue initialization of platform & devices
Enum FV, dispatch drivers (network, I/O, service..)
Produce Boot and Runtime Services for UEFI Spec.

Boot Manager (Select Boot Device)
EFI Shell/Apps; OS Boot Loader(s)

ExitBootServices. Minimal UEFI services (Variable) w/ possible
SMM traps/invocations

Most runtime interactions are via ACPI

ACPI, UEFI SystemTable, SMBIOS table

CPU Restart. (SI pre-verified like AMD PSP, Intel Boot Guard (BtG) and/or OCP Cerberus,
Google Titan

HOB List from PEI into
DXE

PPI or HOB list into PEI

Lock down ROM
And/or Validated by
pre-Verifier (e.g.,
Boot Guard)

Validated by
Code in PEI.
Implements verifier
For OS load

OS loader verified by UEFI Secure Boot 3

4

File System for FLASH Devices (FV’s, FFS files)

FLASH
Devices

Chipset
Resources

PCI Devices

System
Memory

0x0000_0000

0xFFFF_FFFF (4GB)

Boot
Firmware

Volume (PEI)

Main
Firmware
Volume(s)
DXE, UEFI
Drivers,

Embedded
OS’s

File #1

File #2

. . .

File #n

Section #1

Section #2

Section #1

Section #2

• Flexible FLASH Layout

• Flat File System
• Files Named by GUID
• Updateable

• Extensible File Format

OS launch

• Can have an OS loader on network, disk, or in the SPI NOR flash
• EFI Device path points to where to find the OS loader

• Can be a fixed device path or updatable via UEFI variable

• Linux can be launched as a single executable
https://wiki.archlinux.org/index.php/EFISTUB

• UEFI Secure Boot allows for adding different OS loaders to a post ship
system and maintain the chain of trust
• Or can fix the certificates to lock down only a single OS target

• Firmware volumes (FVs) in flash can be partitioned at manufacture time to
have minimum DXE to support – core, BDS, secure boot – in order to leave
space for embedded OS target, or have alternate FV’s with full feature UEFI
drivers for devices in case of launching shrinkwrap OS’s from various media

5

https://wiki.archlinux.org/index.php/EFISTUB

Approach – community discussion

• Have the binary blobs, recipes, and source code to build a full
platform public

• Have the DXE FV’s segregated so easy to have embedded OS or full
UEFI support for shrink-wrap OS

• Use UEFI Secure boot and extensible key store to enable post-ship OS
change

6

Challenges

• Extensibility in early part of system flow for post-ship devices

• Updates – OS specific, UEFI Capsule, Redfish,…

7

8

