

Open CloudServer

chassis management

specification

V1.0

Authors:

Badriddine Khessib, Director of Platform Software Engineering, Microsoft

Bryan Kelly, Senior Platform Software Engineer, Microsoft

2 January 28, 2014

1 Revision History

Date Name Description

1/28/2014 Version 1.0

Open Compute Project  Open CloudServer chassis management specification

http://opencompute.org 3

© 2014 Microsoft Corporation.

As of January 28, 2014, the following persons or entities have made this Specification available under

the Open Web Foundation Final Specification Agreement (OWFa 1.0), which is available at

http://www.openwebfoundation.org/legal/the-owf-1-0-agreements/owfa-1-0 Microsoft Corporation.

You can review the signed copies of the Open Web Foundation Agreement Version 1.0 for this

Specification at http://opencompute.org/licensing/, which may also include additional parties to those

listed above.

Your use of this Specification may be subject to other third party rights. THIS SPECIFICATION IS

PROVIDED "AS IS." The contributors expressly disclaim any warranties (express, implied, or otherwise),

including implied warranties of merchantability, noninfringement, fitness for a particular purpose, or title,

related to the Specification. The entire risk as to implementing or otherwise using the Specification is

assumed by the Specification implementer and user. IN NO EVENT WILL ANY PARTY BE LIABLE TO ANY

OTHER PARTY FOR LOST PROFITS OR ANY FORM OF INDIRECT, SPECIAL, INCIDENTAL, OR

CONSEQUENTIAL DAMAGES OF ANY CHARACTER FROM ANY CAUSES OF ACTION OF ANY KIND WITH

RESPECT TO THIS SPECIFICATION OR ITS GOVERNING AGREEMENT, WHETHER BASED ON BREACH OF

CONTRACT, TORT (INCLUDING NEGLIGENCE), OR OTHERWISE, AND WHETHER OR NOT THE OTHER

PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

CONTRIBUTORS AND LICENSORS OF THIS SPECIFICATION MAY HAVE MENTIONED CERTAIN

TECHNOLOGIES THAT ARE MERELY REFERENCED WITHIN THIS SPECIFICATION AND NOT LICENSED

UNDER THE OWF CLA OR OWFa. THE FOLLOWING IS A LIST OF MERELY REFERENCED TECHNOLOGY:

INTELLIGENT PLATFORM MANAGEMENT INTERFACE (IPMI), I2C TRADEMARK OF PHILLIPS

SEMICONDUCTOR. IMPLEMENTATION OF THESE TECHNOLOGIES MAY BE SUBJECT TO THEIR OWN

LEGAL TERMS.

http://www.openwebfoundation.org/legal/the-owf-1-0-agreements/owfa-1-0
http://opencompute.org/licensing/

4 January 28, 2014

2 Scope

This document details the Open CloudServer chassis management.

3 Contents

1 Revision History ... 2

2 Scope ... 4

3 Contents .. 4

4 Overview.. 6

5 Chassis Manager .. 6

5.1 Features .. 7

5.2 Signal Interface ... 10

5.3 Blade Management .. 15

5.4 Power Control .. 15

5.5 Communication Ports ... 17

5.6 Mechanical Specifications .. 18

5.7 Chassis LEDs .. 19

6 Systems Management Operations .. 20

6.1 Rack and Chassis Manager Commands .. 21

6.2 In-Band Management Commands ... 22

6.3 Out-of-Band Management Commands .. 24

7 Chassis Manager Services .. 24

7.1 Fan Control Protocol .. 26

7.2 Blade State Management ... 30

7.3 Chassis Manager Component Failure Scenarios .. 31

8 Chassis Manager/Blade API ... 32

8.1 Blade Implementation Requirements .. 35

8.2 Request and Response Packet Formats ... 36

8.3 Packet Framing ... 38

8.4 Serial Console Redirection.. 40

8.5 Chassis Manager Serial Port Session .. 41

8.6 Command-Completion Codes .. 42

Open Compute Project  Open CloudServer chassis management specification

http://opencompute.org 5

8.7 Blade Command Payload ... 44

8.8 Command Formats ... 48

9 Chassis Manager REST API ... 64

9.1 User Roles and API Access .. 64

9.2 Encryption and Service Credentials .. 64

9.3 Client Credentials/Authentication.. 65

9.4 Role-Based API-Level Authorization ... 65

9.5 REST API: Response and Completion Codes ... 69

9.6 REST API: Descriptions, Usage Scenarios, and Sample Responses 70

10 Command Line Interface ... 135

10.1 Install the Chassis Manager Service ... 135

10.2 State and Information Commands ... 136

10.3 Blade Management Commands ... 144

10.4 Chassis Manager Management Commands ... 155

10.5 Blade and Serial Console Session Commands .. 163

10.6 CLI Over Serial (WCSCLI+) ... 166

6 January 28, 2014

4 Overview

This document describes systems management for the Open CloudServer system.

System management uses the chassis manager (CM) to present a consistent,

optimized interface for the complete rack infrastructure, including the in-band and

out-of-band (OOB) management paths.

The chassis manager provides the front end through an applications interface

(RESTful web API) for automated management and through a command-line

interface (CLI) for manual management. The chassis manager manages all devices

within the rack and communicates directly with the blade management system

through a serial multiplexor.

5 Chassis Manager

The chassis manager printed circuit board assembly (PCBA) is a general-purpose

processing assembly integrated into the plenum of the chassis and attaching directly

to the Power Distribution Backplane (PDB). The chassis manager communicates

directly with the server blades and provides management for all devices within the

rack, including power supplies and fans. Figure 1 shows a CAD representation of the

chassis manager.

Open Compute Project  Open CloudServer chassis management specification

http://opencompute.org 7

Figure 1. CAD representation of the chassis manager

5.1 Features

The chassis manager features include:

 Input/Output (I/O):

o 2 x 1GbE Ethernet (general purpose to be used for network access or for

direct connector to the top-of-rack [TOR] management ports)

o 4 x RS-232 (network switch management for boot strap initial start-up)

o Remote power control (one input signal, three output signals to the power

distribution unit [PDU] or to another chassis manager for remote power

control)

 Windows Server 2012 operating system

 Hot repair, no downtime during replacement

 Server hardware

o Embedded x86 processor

o Memory—4GB with error-correcting code (ECC)

o Storage—64GB solid-state drive (SSD)

o Trusted Platform Module—enabling a secure solution

o Embedded serial multiplexor for hard-wired communication to blades

o Blade power on/off signals hard-wired for definitive control of blade power

8 January 28, 2014

Figure 2 shows a top-level representation of the chassis manager, trays, power

supply units, and fans.

Chassis Management
General purpose and highly flexible

Chassis

Fan Tray

PSUs
1 .. 6

Tray
1 .. 12

Chassis Manager

Windows Server 2012

Serial Management

Power Control

PSU Monitoring

Fan Control and Monitoring

2 x 1GbE
General
Purpose

4 x RS232
NWK Switch

Management

Power Control
3 x Outputs
1 x Input

Figure 2. Top level representation of chassis manager

Figure 3 shows the hardware block diagram for the chassis manager.

Open Compute Project  Open CloudServer chassis management specification

http://opencompute.org 9

 Chassis Manager (CM)

Tray1_Blade_EN[3:0]
Tray2_Blade_EN[3:0]
Tray3_Blade_EN[3:0]
Tray4_Blade_EN[3:0]

Fan PWM

CMC_Fan Tach[4:1]

Fan Ctl
ADT740

0x5Eh
6 PSU 6 PSU 6 PSU 6 PSU 6 PSU 6 Fans

Tray5_Blade_EN[3:0]
Tray6_Blade_EN[3:0]
Tray7_Blade_EN[3:0]
Tray8_Blade_EN[3:0]

Tray9_Blade_EN[3:0]
Tray10_Blade_EN[3:0]
Tray11_Blade_EN[3:0]
Tray12_Blade_EN[3:0]

PCA9535C
GPIO

0x40h

PCA9535C
GPIO

0x42h

PCA9535C

GPIO

0x44h

X86 SoC

CM FRU EEPROM
0xA0h Fan Ctl

ADT7470
0x58h

CMC_Fan Tach[5:6]

CPLD_3
Altera

EPM240

1
2

23
24
 RST RX/TX

Tray7_Node1_TX/RX
Tray7_Node2_TX/RX

Tray12_Node3_TX/RX
Tray12_Node4_TX/RX

PCA9535C

GPIO
0x48h

PCA9516

I2C Hub

PMBus1
6 PSU PSU 1..2

6 PSU PSU 3..4

6 PSU PSU 5..6

PMBus2

PMBus3

AC_OK[6:1]
DC_OK[6:1]

Attention LED

Status LED
PCA9535C

GPIO

0x4Ah

PSU_PS_ON[6:1]
PCA_CPLD_WDT2
Power Switch[2:0]

CPLD_FAN_MAX

CPLD_WDT[1,3]
WDT_ENABLE_N

UART_SW_S[0:5]_N
CMC_CPU_RST_N
CPLD_EXT_RST_N
CMC_RESERVE_1

FAN_MAX_CTR
CPLD_FAN_MAX

PMB_EN_[1:3]

CPLD_2
Altera

EPM240

1
2

23
24

RST RX/TX .

Tray1_Node1_TX/RX
Tray1_Node2_TX/RX

Tray6_Node3_TX/RX
Tray6_Node4_TX/RX

WDT_LED

PSU_ALERT_N
CPLD_THRMTRIP_LOG_N
PCA9535_INT_N

SC18IM700
(RS232 to I2C)

PMB_EN_1
PMB_EN_2
PMB_EN_3
PCA9535_INT_N
FAN_MAX_CTR
CPLD_WDT_1
CPU_RST_N
CMC_RESERVE_1

GPIO0
GPIO1
GPIO2
GPIO3
GPIO4
GPIO5
GPIO6
GPIO7

RST# TX/RX

I2C

SC18IM700
(Serial Mux Ctrl)

GPIO0
GPIO1
GPIO2
GPIO3
GPIO4
GPIO5
GPIO6
GPIO7

RST# TX/RX UART_SW_S0_N
UART_SW_S1_N
UART_SW_S2_N
UART_SW_S3_N
UART_SW_S4_N
UART_SW_S5_N
WDT_EN_N
CABLE_DETECT_N

COM4

TX
/R

X
R

I
R

T
S

D
T

R

PDB
1GbE
RJ45

(metal)

COM1
RJ45

(plastic)

COM2
RJ45

(plastic)

COM5
RJ45

(plastic)

1GbE
RJ45

(metal)

COM6
RJ45

(plastic) O
N

/O
FF

o

u
tp

u
t

O
N

/O
FF

C

M
 in

p
u

t

O
N

/O
FF

o

u
tp

u
t

O
N

/O
FF

o

u
p

u
t

COM3

R
I

R
T

S
D

T
R

TX
/R

X

Figure 3. Chassis manager hardware block diagram

10 January 28, 2014

5.2 Signal Interface

The chassis manager interfaces to the power distribution board through two PCIe

x16 connectors. Table 1 and Table 2 show the pinout information for these

connectors. Refer to the schematics for connector reference designators.

Table 1. PDB Interface Connector (J18)

Pin Signal Pin Signal

B1 GND A1 GND

B2 LAN2_P1_P A2 GND

B3 LAN2_P1_N A3 LAN2_P3_P

B4 GND A4 LAN2_P3_N

B5 LAN2_P2_P A5 GND

B6 LAN2_P2_N A6 LAN2_P4_P

B7 GND A7 LAN2_P4_N

B8 GND A8 GND

B9 GND A9 POWER_SW3_PWR_CTR_12V

B10 I2C_PDB_SCL A10 POWER_SW2_PWR_CTR_12V

B11 I2C_PDB_SDA A11 POWER_SW1_PWR_CTR_12V

B12 P3V3_NODE1 A12 NC

B13 NC A13 NC

B14 NC A14 NC

B15 NC A15 NC

B16 NC A16 NC

B17 NC A17 GND

B18 GND A18 UART_RTS_RP6_L_N

B19 UART_RTS_RP5_L_N A19 UART_DSR_RP6_L_N

B20 UART_DSR_RP5_L A20 UART_RX_RP6_L

B21 UART_RX_RP5_L A21 UART_TX_RP6_L

B22 UART_TX_RP5_L A22 UART_DTR_RP6_L_N

B23 UART_DTR_RP5_L_N A23 UART_CTS_RP6_L

B24 UART_CTS_RP5_L_N A24 UART_RI_RP6_L_N

B25 UART_RI_RP5_L_N A25 GND

Open Compute Project  Open CloudServer chassis management specification

http://opencompute.org 11

Pin Signal Pin Signal

B26 GND A26 FAN4_TACH

B27 FAN1_TACH A27 FAN5_TACH

B28 FAN2_TACH A28 FAN6_TACH

B29 FAN3_TACH A29 GND

B30 GND A30 FAN_PWM

B31 T12_NODE1_EN A31 GND

B32 T12_NODE2_EN A32 I2C_PSU3_SCL

B33 T12_NODE3_EN A33 I2C_PSU3_SDA

B34 T12_NODE4_EN A34 GND

B35 GND A35 T11_NODE1_EN

B36 UART_T12_NODE1XD A36 T11_NODE2_EN

B37 UART_T12_NODE1_TXD A37 T11_NODE3_EN

B38 UART_T12_NODE2_RXD A38 T11_NODE4_EN

B39 UART_T12_NODE2_TXD A39 GND

B40 GND A40 UART_T11_NODE1_RXD

B41 UART_T12_NODE3_RXD A41 UART_T11_NODE1_TXD

B42 UART_T12_NODE3_TXD A42 UART_T11_NODE2_RXD

B43 UART_T12_NODE4_RXD A43 UART_T11_NODE2_TXD

B44 UART_T12_NODE4_TXD A44 GND

B45 GND A45 UART_T11_NODE3_RXD

B46 T10_NODE1_EN A46 UART_T11_NODE3_TXD

B47 T10_NODE2_EN A47 UART_T11_NODE4_RXD

B48 T10_NODE3_EN A48 UART_T11_NODE4_TXD

B49 T10_NODE4_EN A49 GND

B50 GND A50 T9_NODE1_EN

B51 UART_T10_NODE1_RXD A51 T9_NODE2_EN

B52 UART_T10_NODE1_TXD A52 T9_NODE3_EN

B53 UART_T10_NODE2_RXD A53 T9_NODE4_EN

B54 UART_T10_NODE2_TXD A54 GND

B55 GND A55 UART_T9_NODE1_RXD

B56 UART_T10_NODE3_RXD A56 UART_T9_NODE1_TXD

B57 UART_T10_NODE3_TXD A57 UART_T9_NODE2_RXD

B58 UART_T10_NODE4_RXD A58 UART_T9_NODE2_TXD

B59 UART_T10_NODE4_TXD A59 GND

B60 GND A60 UART_T9_NODE3_RXD

12 January 28, 2014

Pin Signal Pin Signal

B61 T8_NODE1_EN A61 UART_T9_NODE3_TXD

B62 T8_NODE2_EN A62 UART_T9_NODE4_RXD

B63 T8_NODE3_EN A63 UART_T9_NODE4_TXD

B64 T8_NODE4_EN A64 GND

B65 GND A65 T7_NODE1_EN

B66 UART_T8_NODE1_RXD A66 T7_NODE2_EN

B67 UART_T8_NODE1_TXD A67 T7_NODE3_EN

B68 UART_T8_NODE2_RXD A68 T7_NODE4_EN

B69 UART_T8_NODE2_TXD A69 GND

B70 GND A70 UART_T7_NODE1_RXD

B71 UART_T8_NODE3_RXD A71 UART_T7_NODE1_TXD

B72 UART_T8_NODE3_TXD A72 UART_T7_NODE2_RXD

B73 UART_T8_NODE4_RXD A73 UART_T7_NODE2_TXD

B74 UART_T8_NODE4_TXD A74 GND

B75 GND A75 UART_T7_NODE3_RXD

B76 T6_NODE1_EN A76 UART_T7_NODE3_TXD

B77 T6_NODE2_EN A77 UART_T7_NODE4_RXD

B78 T6_NODE3_EN A78 UART_T7_NODE4_TXD

B79 T6_NODE4_EN A79 GND

B80 GND A80 PSU_ALERT_R_N

B81 UART_T6_NODE1_RXD A81 T5_NODE1_EN

B82 UART_T6_NODE1_TXD A82 T5_NODE2_EN

Table 2. PDB Connector Interface (J35)

Pin Signal Pin Signal

B1 GND A1 GND

B2 UART_T6_NODE2_RXD A2 T5_NODE3_EN

B3 UART_T6_NODE2_TXD A3 T5_NODE4_EN

B4 GND A4 GND

B5 UART_T6_NODE3_RXD A5 UART_T5_NODE1_RXD

B6 UART_T6_NODE3_TXD A6 UART_T5_NODE1_TXD

B7 UART_T6_NODE4_RXD A7 GND

B8 UART_T6_NODE4_TXD A8 UART_T5_NODE2_RXD

B9 GND A9 UART_T5_NODE2_TXD

Open Compute Project  Open CloudServer chassis management specification

http://opencompute.org 13

Pin Signal Pin Signal

B10 I2C_PSU2_SCL A10 UART_T5_NODE3_RXD

B11 I2C_PSU2_SDA A11 UART_T5_NODE3_TXD

B12 T4_NODE1_EN A12 UART_T5_NODE4_RXD

B13 T4_NODE2_EN A13 UART_T5_NODE4_TXD

B14 T4_NODE3_EN A14 GND

B15 T4_NODE4_EN A15 T3_NODE1_EN

B16 GND A16 T3_NODE2_EN

B17 UART_T4_NODE1_RXD A17 T3_NODE3_EN

B18 UART_T4_NODE1_TXD A18 T3_NODE4_EN

B19 UART_T4_NODE2_RXD A19 GND

B20 UART_T4_NODE2_TXD A20 UART_T3_NODE1_RXD

B21 GND A21 UART_T3_NODE1_TXD

B22 UART_T4_NODE3_RXD A22 UART_T3_NODE2_RXD

B23 UART_T4_NODE3_TXD A23 UART_T3_NODE2_TXD

B24 UART_T4_NODE4_RXD A24 GND

B25 UART_T4_NODE4_TXD A25 UART_T3_NODE3_RXD

B26 GND A26 UART_T3_NODE3_TXD

B27 T2_NODE1_EN A27 UART_T3_NODE4_RXD

B28 T2_NODE2_EN A28 UART_T3_NODE4_TXD

B29 T2_NODE3_EN A29 GND

B30 T2_NODE4_EN A30 T1_NODE1_EN

B31 GND A31 T1_NODE2_EN

B32 UART_T2_NODE1_RXD A32 T1_NODE3_EN

B33 UART_T2_NODE1_TXD A33 T1_NODE4_EN

B34 UART_T2_NODE2_RXD A34 GND

B35 UART_T2_NODE2_TXD A35 UART_T1_NODE2_RXD

B36 GND A36 UART_T1_NODE2_TXD

B37 UART_T2_NODE3_RXD A37 UART_T1_NODE3_RXD

B38 UART_T2_NODE3_TXD A38 UART_T1_NODE3_TXD

B39 UART_T2_NODE4_RXD A39 GND

B40 UART_T2_NODE4_TXD A40 UART_T1_NODE4_RXD

B41 GND A41 UART_T1_NODE4_TXD

B42 I2C_PSU1_SCL A42 UART_T1_NODE1_RXD

B43 I2C_PSU1_SDA A43 UART_T1_NODE1_TXD

B44 GND A44 GND

14 January 28, 2014

Pin Signal Pin Signal

B45 PSU1_AC_OK A45 PSU1_DC_OK

B46 PSU2_AC_OK A46 PSU2_DC_OK

B47 PSU3_AC_OK A47 PSU3_DC_OK

B48 PSU4_AC_OK A48 PSU4_DC_OK

B49 PSU5_AC_OK A49 PSU5_DC_OK

B50 PSU6_AC_OK A50 PSU6_DC_OK

B51 GND A51 GND

B52 UART_RTS_P5_L_N A52 UART_RTS_P6_L_N

B53 UART_DSR_P5_L_N A53 UART_DSR_P6_L_N

B54 UART_RX_P5_L A54 UART_RX_P6_L

B55 UART_TX_P5_L A55 UART_TX_P6_L

B56 UART_DTR_P5_L_N A56 UART_DTR_P6_L_N

B57 UART_CTS_P5_L_N A57 UART_CTS_P6_L_N

B58 UART_RI_P5_L_N A58 UART_RI_P6_L_N

B59 GND A59 GND

B60 UART_RTS_P1_L_N A60 UART_RTS_P2_L_N

B61 UART_DSR_P1_L_N A61 UART_DSR_P2_L_N

B62 UART_RX_P1_L A62 UART_RX_P2_L

B63 UART_TX_P1_L A63 UART_TX_P2_L

B64 UART_DTR_P1_L_N A64 UART_DTR_P2_L_N

B65 UART_CTS_P1_L_N A65 UART_CTS_P2_L_N

B66 GND A66 GND

B67 NC A67 NC

B68 NC A68 NC

B69 NC A69 NC

B70 NC A70 NC

B71 GND A71 GND

B72 LAN1_P3_P A72 LAN1_P1_P

B73 LAN1_P3_N A73 LAN1_P1_N

B74 GND A74 GND

B75 LAN1_P4_P A75 LAN1_P2_P

B76 LAN1_P4_N A76 LAN1_P2_N

B77 GND A77 GND

B78 CM_PWR_CTL_IN A78 P12V_PDB

Open Compute Project  Open CloudServer chassis management specification

http://opencompute.org 15

Pin Signal Pin Signal

B79 P12V_PDB A79 P12V_PDB

B80 P12V_PDB A80 P12V_PDB

B81 MATE_R_N A81 P12V_PDB

B82 P12V_PDB A82 P12V_PDB

5.3 Blade Management

The chassis manager is connected to each blade via two blade enable signals and

two serial connections. Figure 4 shows the blade management connectivity from the

chassis manager to the blades via the power distribution board and tray backplane.

CM PDB

C
O
M
4

UART4_TXD

UART4_RXD

M
U
X

UART_T[1:12]_
BLAD[1:4]_TX

UART_T[1:12]_
BLAD[1:4]_RD

C
M

 C
O

N
N

C
M

 C
O

N
N

UART_T[1:12]_
BLAD[1:4]_TX

UART_T[1:12]_
BLAD[1:4]_RD

PD
B

 T
R

A
Y

CO
N

N
EC

TO
R

Motherboard
A

IR
M

A
X

BMCNODE1_SIN
NODE1_SOUT

NODE2 for
Debug Only

Blade1_EN In-Rush

Blade2_EN
+3.3V

Motherboard

A
IR

M
A

X

BMCNODE1_SIN
NODE1_SOUT

NODE2 for
Debug Only

Blade1_EN In-Rush

Blade2_EN
+3.3V

Tray Backplane

TR
A

Y
G

O
LD

 F
IN

G
ER

 C
O

N
N

EC
TO

R

NODE1_TXD
NODE1_RXD

B
LA

D
E

1
NODE2_TXD

NODE2_RXD

NODE3_TXD

NODE3_RXD

NODE4_TXD

NODE4_RXD

NODE1_EN

NODE2_EN

B
LA

D
E

1

NODE3_EN

NODE4_EN

G
P
I
O

T[1:12]_BLAD[1:4]_TX

T[1:12]_
BLAD[1:4]_EN

Figure 4. Blade management connectivity

5.4 Power Control

The chassis manager provides controls for power of the blades and remote devices.

At web-scale, definitive control over power is necessary to provide a clean reset in

the event of locked-up or hung circuits.

5.4.1 Blade Power Control

16 January 28, 2014

The blade enable signals indicate on/off to the in-rush controller on the blade to

emulate a full power off.

The blade enable signals are implemented via General Purpose I/O (GPIO) registers.

The default is to float high via pull-ups on the blade, so that when the chassis

manager is removed or when the power is cycled for service, blade operation is not

disrupted.

The signals are grouped to make it possible for all blades on a single tray to be

powered on/off coincidently, and to let blades on different trays be powered on/off

either coincidently or through timed power control.

Timed power control can be used to control servers and JBODs (for example, to

prevent incorrect errors from being reported when using a head server node and

JBOD blades). The following steps can be used:

1. Power off the head (server) node, and allow a short delay.

2. Power off the JBOD blade, and allow a five second delay.

3. Power on the JBOD blade, and allow a short delay.

4. Power on the head (server) node.

Timed delays can be easily adjusted to match the needs of the hardware and storage

though the chassis manager.

5.4.2 Remote Power Control

It is important to have full power control over remote devices such as network

switches or other chassis managers.

The remote power controls are 12V on/off signals. The default is 0V (ON). Off is 12V,

so that if a chassis manager is removed or if the power is cycled, remote device

operation is not disrupted.

The individual signals are:

 ON/OFF input: accepts the 12V signal from a remote chassis manager for

power control

 Three ON/OFF outputs: allows control of remote devices

Open Compute Project  Open CloudServer chassis management specification

http://opencompute.org 17

5.5 Communication Ports

Table 3 lists the definition and translation of the serial COM port signals of the RJ-45

connector for ports 1 and 2 (see Figure 3).

These definitions match the functionality of switch consoles that use RJ-45, but can

be used to select cables that convert from DB-9 or DB-25 connections. The system

swaps received data/transmitted data (RxD/TxD), clear to send/request to send

(CTS/RTS), and data terminal ready/data set ready (DTR/DSR) signals so a straight

Ethernet cable can be used.

Table 3. Serial RJ-45 Cable Definition for Ports 1 and 2

PDB connection

ports 1 and 2
Typical switch management port

Signal on CM

board
RJ-45 connector pin RJ-45 connector pin Switch console port

RTS 1 1 CTS

DSR 2 2 DTR

RxD 3 3 TxD

GND 4 4 GND

GND 5 5 GND

TxD 6 6 RxD

DTR 7 7 DSR

CTS 8 8 RTS

Table 4 lists the definition and translation of the serial COM port signals of the RJ-45

connector for serial COM ports 5 and 6 (see Figure 3). COM port 3 and 4 are internal

to the chassis manager board.

Table 4. Serial RJ-45 Cable Definition for Ports 5 and 6

PDB connection

ports 5 and 6
Typical switch management port

Signal on CM

board
RJ-45 connector pin RJ-45 connector pin Switch console port

RTS 1 1 CTS

18 January 28, 2014

PDB connection

ports 5 and 6
Typical switch management port

Signal on CM

board
RJ-45 connector pin RJ-45 connector pin Switch console port

DSR 2 2 DTR

RxD 3 3 TxD

RI 4 4 GND

GND 5 5 GND

TxD 6 6 RxD

DTR 7 7 DSR

CTS 8 8 RTS

5.6 Mechanical Specifications

Figure 5 shows the mechanical control outline for the chassis manager. Also shown

(circled in red) are the edge fingers that provide connectivity to the power

distribution board.

Open Compute Project  Open CloudServer chassis management specification

http://opencompute.org 19

Figure 5. Chassis manager dimensions and edge finger locations.

5.7 Chassis LEDs

Each chassis has two light-emitting diodes (LEDs) on the chassis manager: a health

status LED that is green and an attention LED that is red. Both LEDs are driven by a

single GPIO bit off the blade’s management i2c tree.

5.7.1 Chassis Health Status LED

The chassis health status LED indicates whether the chassis manager has booted.

Note that if the 12V power is off, the LEDs on the power supplies are also off.

Table 5 describes the operation of the chassis health status LED.

Table 5. Chassis Health Status LED Description

LED Status Condition

Off

 Backplane 12V power is off if power supply LEDs are off

 Backplane 12V power is on, but chassis manager never booted if power supply

LEDs are on

20 January 28, 2014

LED Status Condition

Solid green on  Backplane 12V power is on and chassis manager has booted

5.7.2 Chassis Attention LED

The chassis attention LED is visible from the rear of the chassis without opening the

fan tray. This LED directs service technicians to the correct chassis during repair.

When possible, blade diagnostics are used to direct repairs; alternately, the scale-out

management software can be used. In both cases, logs of the repair work are

available.

The chassis attention LED indicates the following conditions:

 Operator directed

An operator can manually set the chassis attention LED (for example,

identification of chassis cables)

 Power supply failure

chassis manager has detected a power supply failure

 Fan failure

chassis manager has detected a fan failure

Note that the chassis attention LED must be turned off after service is complete.

Table 6 describes the operation of the chassis attention LED.

Table 6. Chassis Attention LED Description

LED Status Condition

Off  No attention indicated

Solid red
 Operator directed

 Power supply or fan failure

6 Systems Management Operations

The following sections describe the system management operations for the rack

infrastructure, and for the in-band and out-of-band (OOB) management paths.

Open Compute Project  Open CloudServer chassis management specification

http://opencompute.org 21

Systems management is designed to present a consistent, optimized interface. The

chassis manager provides the front end through an applications interface (RESTful

web API) for automated management and a CLI for manual management. The chassis

manager manages all devices within the rack and communicates directly with the

blade management system through a serial multiplexor.

There are two possible paths for systems management: in-band and out-of-band.

 The in-band management path is through the primary network interface card

(NIC) while the operating system is running.

 The out-of-band path is through the chassis manager.

In-band is the preferred path for systems management whenever possible.

6.1 Rack and Chassis Manager Commands

The chassis manager is responsible for managing the blades and the infrastructure

within the rack. It monitors the health of the power supplies and the fans and sets

the fan speeds. Because the chassis manager is the gateway into the system, it also

gathers all information necessary to perform wiring checks by identifying the nodes

in each slot and identifying their media access control (MAC) addresses, the switches,

and the cable MAC addresses.

Table 7 lists the functionality of the commands that apply to the rack infrastructure.

Table 7. Rack Infrastructure Command Functionality

Requirement Details

Switch power control

(complete ON/OFF)

Cycle the power to the switch (two 12V signals are driven by the

chassis manager)

Rack identification

Provides an inventory of rack hardware:

 Chassis manager information

 Chassis numbers installed (part number, serial number)

 Power supply unit and fan status

Blade identification

For every blade slot in every chassis:

 Present

 Type

 Location and network connections

 Network MAC addresses

 Asset information (such as globally unique identifier [GUID]),

device type, and versions)

 Fan cubic feet per minute (CFM) requirement for each blade

22 January 28, 2014

Requirement Details

Network identification

For every network switch in the rack managed by the CM:

 Status

 GUID

 Status and MAC addresses connected to each port

Power supply unit (PSU), fan

status

 PSU DC-OK

 AC-OK

 Fan tachometer

 Fan setting

Fan speed control  Required fan speed

Chassis power consumption
For use with advanced power capping, integration with rack-level

uninterrupted power supply (UPS), high temperature operation

Manageability firmware update
 To update microcontrollers within the chassis through the CM

 To update PSU and fan control firmware, if applicable

User management

 Security privilege levels for users connected to the CM (for

example, not all users logged into the CM will be able control

fan speed or powering blades ON/OFF)

 Security privilege mechanisms are still TBD

6.2 In-Band Management Commands

The primary method for managing servers is in-band through the operating system.

The system can use a unified extensible firmware interface (UEFI) that allows more

functionality through the primary NIC, though this is not considered to be in-band

and is not mandatory for interoperability. UEFI can initialize the NIC very early in the

boot sequence, and can implement serial-over-local area network (SOL) to

complement Windows 8 SOL support for system debug.

The path through the operating system uses the native Windows intelligent platform

management interface (IPMI) driver and native IPMI Windows management

instrumentation (WMI) provider. The baseboard management controller (BMC)

firmware must be compatible with the native Windows IPMI keyboard controller style

(KCS) interface driver.

A number of functions are implemented with a utility that is traditionally run under

the operating system; these utilities could be run under UEFI (method to be

determined).

Open Compute Project  Open CloudServer chassis management specification

http://opencompute.org 23

Table 8 lists command functionality that is supported by the in-band path. Note that

it is assumed that a hardware monitoring device (HMD) will be present on the

motherboard to provide management functionality.

Table 8. Command Functionality Supported by In-Band Path

Function Method Function details

Identification WMI

 HMD ID/version information

 System GUID

 HMD MAC address (only if sideband LAN access is

provided)

 Server MAC address

 Asset tag

Chassis power WMI

 Power ON

 Power OFF

 Warm reset

Console

Windows 8 and

UEFI SOL, Chassis

Manager

 Serial console

Basic input/output

system (BIOS)

firmware update

Utility  Motherboard flash

Manageability

firmware update
Utility  Motherboard flash

Host configuration

BIOS settings
Utility

 Boot order

 Power policy

 Real-time clock

Event logging WMI

 Get log in IPMI SEL format

 Clear log

 Logs for AP/FC remote management agent (RMA)

diagnosis and ticketing

Temperature

monitoring
WMI

 Inlet

 Exhaust

 CPU temperature

Power management WMI

 Set power limit

 Get power limit

 Get power reading

Performance/power

state
WMI  Power capping

24 January 28, 2014

Function Method Function details

Failure and wear

indicators
WMI

Includes HDD and SSD self-monitoring, analysis and

reporting technology (SMART) data, memory error logs,

and more

6.3 Out-of-Band Management Commands

A few server management functions use the out-of-band management path through

the serial link that is connected to the ME or HMD.

Table 9 lists the blade management command functionality that is supported by out-

of-band path.

Table 9. Command Functionality Supported by Out-of-Band Path

Function Function details Descriptions

Identification

 HMD MAC address

 Server MAC address

 Asset tag

 MAC addresses used for discovery and wiring

checks

 Asset tag is used for tax compliance audits

Blade node

power

 Hard power ON

 Hard power OFF

 Drives the Blade_EN to the in-rush controller to

perform full power ON/OFF

 OFF also turns off power to the ME/HMD

Blade node

power

 Soft power ON

 Soft power OFF

 Warm reset

 Under direction of the ME or HMD

Event logging

 Power status

(ON/OFF/sleep)

 Health status (healthy/error)

 Fan/CFM request

 Provides at-a-glance status of server

 Fan/CFM information is polled every 10 seconds

7 Chassis Manager Services

Figure 6 shows the services that the chassis manager provides.

Open Compute Project  Open CloudServer chassis management specification

http://opencompute.org 25

Figure 6. Chassis manager services

Table 10 lists the chassis manager services, and the sections that follow provide

additional description.

Table 10. Chassis manager services

Chassis manager

service
Description

Fan service

Controls the fan speed of all the fans housed in the chassis to keep the

servers cool and operational

Checks the status of every fan and alerts when a fan speed becomes

unrealistic

PSU service

Reads the status of every power supply unit (PSU) in the chassis and sends an

alert if a PSU goes down or malfunctions

Reports power reading for every PSU

Power control service Provides the service to power ON/OFF every blade in the chassis

Blade management

service

Provides the following blade management services:

 Chassis power management (ON/OFF/reset)

 Field replaceable unit (FRU) management

 Sensor management

 Serial console redirection

 Blade ID (through LED)

26 January 28, 2014

Chassis manager

service
Description

Top-of-rack (TOR)

service

Provides a serial connection to the TOR and acts as a gateway to all serial

communication to the TOR

Security
Allows for creating users, deleting users, and updating user properties such as

passwords

Chassis manager

control services

Exposes commands to manage the chassis manager itself (for example, NIC

settings of the NIC ports)

7.1 Fan Control Protocol

This section describes the fan control protocol, and provides an example for

calculating the pulse-width modulation (PWM) sensor reading.

Table 11 lists the input and output for the fan control software.

Table 11. Input and Output for Fan Control Software

Description

Input
 PWM sensor reading from each blade

 Time period for sampling

Output  Fan PWM for setting fan speed for the entire chassis

7.1.1 Determining Fan Speed

The chassis manager uses the following steps to determine the fan speed:

1. Get PWM sensor values from the blade (see the example in the section that

follows).

a. The IPMI Get Sensor Reading command is used to get the PWM sensor

values from the blade. Note that the PWM sensor ID is 1. (This sensor should

also be the first sensor enumerated in the IPMI sensor data record [SDR].)

b. This sensor reading is sampled for each blade periodically; this time period is

determined by the configuration parameter when the chassis manager starts

(currently this configuration parameter is set by default to 10 seconds, which

means each blade is polled exactly every 10 seconds).

2. Set PWM value as fan speed.

Open Compute Project  Open CloudServer chassis management specification

http://opencompute.org 27

a. The chassis manager identifies the maximum value from all its constituent

blade PWM values, and then sets the fan PWM to that value. Note that

currently all the fans are set to the same speed.

3. Correct for altitude.

a. The fan speed is corrected for altitude using linear interpolation (see the

hardware specification for more detail).

b. Current altitude is obtained from the configuration file; if no altitude is

present, this correction is not performed.

4. Correct for one fan failure if necessary.

a. If there is one fan failure, the PWM calculated from step 2 is scaled with the

multiplier (maximum number of fans)/(maximum number of fans - 1).

b. This linear scaling of fan PWM requested (within maximum limit of 100) is

sufficient to handle one fan failure.

c. The chassis manager also logs an error and sets the attention LED.

5. Correct for more than one fan failure if necessary.

a. If there is more than one fan failure, the chassis manager sets the fan speed

to maximum PWM (100). It also logs an error and sets the attention LED.

7.1.2 Sample PWM Calculation

Following is an example of calculating the blade PWM sensor ID. This value should

be exposed as a logical IPMI sensor with a lower limit of 20 and an upper limit of

100.

The algorithm is based on a feedback control loop that checks every sensor on the

list (specified as priority level 1 to N) against a target specified by the component

manufacturer for maximum reliability. The algorithm then computes the relative PWM

increase or decrease required and sends this value to the blade.

Table 12 lists the input and output for the main algorithm.

Table 12. Input and Output for Fan Control Software

Description

28 January 28, 2014

Input
 Sensor priority

 Sensor target

Output
 PWM value

 Increase/decrease request

Following is the pseudocode for the process:

1. Create a sensor reading table T[1..N]. See Table 13 for the example.

2. For each sensor (with priority 1..N), run the following statements:

 If (sensor.currentValue != sensor.target)

 Difference = sensor.currentvalue - sensor.target

 PWMstep = ExponentialFunction(Step, Difference)

 Input PWMstep into table location T[sensor.priority]

 EndIf

EndDo

3. Find the maximum value from table T[1..N], and supply the absolute PWM value

and a code that specifies whether to decrease or increase the PWM (based on

negative or positive difference value) as part of the response packet.

The function ExponentialFunction(step, difference) enables the decrease or increase in

PWM based on distance from the target value. If the current value is very close to

target value, the exponential function will return smaller step; if the current value is

very far away from target value, the exponential function will return larger step. This

keeps decay slow and controls linear swings between extremes. The exponential

function is tuned specifically for each sensor.

If none of the sensor values are valid, then the appropriate PWM should be

determined by the blade vendor (this could be maximum or minimum PWM based

on thermal profiles). Note that if the current temperature is higher than the high

temperature, the PWM value is reset to “Max PWM.”

The inlet temperature sensor is treated differently from the other sensors. It is used

to define a base fan speed relative to the intake temperature to provide cooling for

all components that are not directly monitored, and should ramp fan speeds up with

inlet temperature increases as appropriate.

Table 13 shows an example of a sensor reading table.

Open Compute Project  Open CloudServer chassis management specification

http://opencompute.org 29

Table 13. Example Sensor Readings

Sensor Target High critical Priority

Inlet 30-55 38 1

CPU 2 (downstream) 74 90 2

CPU 1 74 90 3

HDD 3 (downstream) 40 60 4

HDD 4 (downstream) 40 60 5

HDD 1 40 60 6

HDD 2 40 60 7

PCH 90 95 8

DIMM 10 (downstream) 80 90 9

DIMM 11 (downstream) 80 90 10

DIMM 12 (downstream) 80 90 11

DIMM 13 (downstream) 80 90 12

DIMM 14 (downstream) 80 90 13

DIMM 15 (downstream) 80 90 14

DIMM 16 (downstream) 80 90 15

DIMM 9 (downstream) 80 90 16

DIMM 1 80 90 17

DIMM 2 80 90 18

DIMM 3 80 90 19

DIMM 4 80 90 20

DIMM 5 80 90 21

DIMM 6 80 90 22

DIMM 7 80 90 23

DIMM 8 80 90 24

The chassis manager polls all these PWM values from each individual blade,

computes the maximum, and sets the fan speed accordingly.

30 January 28, 2014

7.2 Blade State Management

The chassis manager needs to keep track of the state of all its blades to discover

new blades and to optimize the code behavior. For example, if only one out of N

blades is powered on, the chassis manager should not try to get sensor readings

from the rest of the blades because the sensor-read command is time consuming.

Figure 7 lists states and transitions for managing the blades. The chassis manager

maintains these values for blades it controls.

Figure 7. Blade state management

Note that there are only two user-facing commands that can change the state of the

blade: power ON and power OFF (Blade Enable ON and Blade Enable OFF)

commands. IPMI commands are not part of the blade state because they are served

in operational states (probation and healthy states. See Table 14 for more detail.

Table 14. Blade States

Blade state Description

Open Compute Project  Open CloudServer chassis management specification

http://opencompute.org 31

Blade state Description

Initialize (I)

Captures the blade initialization steps when chassis manager starts or when a new

blade is inserted.

Creates client objects and of obtains IPMI session authentication, the GUID of the

blade, and the SDR, which supplies the low and high threshold values for the fan

algorithm.

Checks the power enable status of the blade and moves the blade to:

 Blade Enable Off (PEoff) if the blade is set to OFF

 Probation (P) if initialization succeeds

 Fail (F) if initialization does not succeed

Blade Enable

OFF (PEoff)

Captures the state where the blade enable is off.

All commands fail in this state except power ON.

Periodically checks the power enable state to see if it is still in Blade Enable OFF.

Probation (P)

Transitory state that logically separates the operational states, making it possible

to use a light-weight “get GUID” command as the heartbeat in the fail state.

Prevents the fail count from being reset (catching “Get GUID” success and read

sensor failure event loops).

Chassis manager tries to serve one sensor read request in this state; if that

succeeds, it moves to the healthy state.

Healthy (H)

Most blades should be in this state; transition to fail only when all temperature

sensor reads fail

Keep serving IPMI requests

Fail (F)

Non-operational, cannot serve any requests

Increment fail count every time state is encountered from outside or through self-

loops

At each iteration, try to get GUID with light-weight heartbeat:

 If heartbeat succeeds and GUID has changed, re-initialize client

 If heartbeat succeeds and GUID has not changed, blade moves to probation

and back to healthy

Note that if the fail count goes beyond a maximum (fail count > max), tries an

initialization action for IPMI; this prevents infinite loops and discovers newly

inserted blades

7.3 Chassis Manager Component Failure Scenarios

The chassis manager handles only fan failures:

 Single fan failure:

The chassis manager logs an error, sets fan speed to 6/5, and turns on the

attention LED.

32 January 28, 2014

 Two or more fan failures:

The chassis manager logs an error, sets fan speed to high, and turns on the

attention LED.

For all other failures, the chassis manager only logs an error and turns on the

attention LED; by design, the chassis manager takes no pre-emptive action (for

example, no action other than logging the error and turning on the attention LED is

taken for PSU or blade-specific failures).

8 Chassis Manager/Blade API

The chassis manager/blade protocol is a small subset of the intelligent platform

management interface (IPMI2.0) protocol. IPMI2.0 is therefore not required for the

blade and chassis manager to communicate; only message format compatibility with

IPMI2.0 is required.

The chassis manager communicates with the target blade BMC firmware using IPMI

basic mode over the IPMI Serial/Modem Interface (Reference: IPMI 2.0—14.4 Basic

Mode).

Note: For the purpose of completeness, this document contains abstracts and

references to the IPMI 2.0 specification

http://www.intel.com/content/www/us/en/servers/ipmi/ipmi-home.html and to the

DCMI 1.5 specification http://www.intel.com/content/www/us/en/data-

center/dcmi/data-center-manageability-interface.html. References to these

documents are not subject to the Microsoft OWF CLA 1.0 commitment for this

specification.

Table 15 lists the IPMI commands that are required or optional for compute blades

and storage blades. (Note that “M” is mandatory and “O” is optional.)

Note: Storage blade command requirements differ from compute blade commands.

Table 15. Required IPMI Commands for Blades

http://www.intel.com/content/www/us/en/servers/ipmi/ipmi-home.html
http://www.intel.com/content/www/us/en/data-center/dcmi/data-center-manageability-interface.html
http://www.intel.com/content/www/us/en/data-center/dcmi/data-center-manageability-interface.html

Open Compute Project  Open CloudServer chassis management specification

http://opencompute.org 33

Command name Reference Type Fn Cmd
Compute

blade

JBOD

blade

Get Device ID 20.1 App 06h 01h M M

Get System GUID 22.14 App 06h 37h M M

Get Channel

Authentication

Capabilities

22.13 App 06h 38h M M

Get Session

Challenge
22.16 App 06h 39h M N/A

Activate Session 22.17 App 06h 3Ah M N/A

Set Session Privilege

Level
22.18 App 06h 3Bh M N/A

Close Session 22.19 App 06h 3Ch M N/A

Set Channel Access 22.22 App 06h 40h M N/A

Get Channel Access 22.23 App 06h 41h M N/A

Set User Access

Command
22.26 App 06h 43h M N/A

Get User Access

Command
22.27 App 06h 44h M N/A

Set User Name 22.28 App 06h 45h M N/A

Get User Name

Command
22.29 App 06h 46h M N/A

Set User Password

Command
22.3 App 06h 47h M N/A

Get Chassis Status 28.2 Chassis 00h 01h M M

Chassis Control 28.3 Chassis 00h 02h M N/A

Chassis Identify 28.5 Chassis 00h 04h M N/A

Set Power Restore

Policy
28.8 Chassis 00h 06h M N/A

Set Power Cycle

Interval
28.9 Chassis 00h 0Bh M N/A

Get System Restart

Cause
28.11 Chassis 00h 07h M N/A

Set System Boot

Options
28.12 Chassis 00h 08h M N/A

34 January 28, 2014

Command name Reference Type Fn Cmd
Compute

blade

JBOD

blade

Get System Boot

Options
28.13 Chassis 00h 09h M N/A

Get Sensor Reading

Factors
35.5 Sensor 04h 23h M N/A

Get Sensor Threshold 35.9 Sensor 04h 27h M N/A

Get Sensor Reading 35.14 Sensor 04h 2Dh M N/A

Read FRU Data 34.2 Storage 0Ah 11h M M

Write FRU Data 34.3 Storage 0Ah 12h M M

Get SDR Repository

Info
33.9 Storage 0Ah 20h M N/A

Reserve SDR

Repository
33.11 Storage 0Ah 22h M N/A

Get SDR 33.12 Storage 0Ah 23h M N/A

Get SEL Info 31.2 Storage 0Ah 40h M N/A

Reserve SEL 31.4 Storage 0Ah 42h M N/A

Get SEL Entry 31.5 Storage 0Ah 43h M N/A

Add SEL Entry 31.6 Storage 0Ah 44h M N/A

Clear SEL 31.9 Storage 0Ah 47h M N/A

Get SEL Time 31.10 Storage 0Ah 48h M N/A

Set SEL Time 31.11 Storage 0Ah 49h M N/A

Set Serial/Modem

Configuration
25.1 Transport 0Ch 10h M N/A

Get Serial/Modem

Configuration
25.2 Transport 0Ch 11h M N/A

Set Serial/Modem

Mux
25.3 Transport 0Ch 12h M N/A

Serial/Modem

Connection Active
25.9 Transport 0Ch 18h M N/A

Get Power Reading N/A DCMI 2Ch 02h M N/A

Get Power Limit N/A DCMI 2Ch 03h M N/A

Set Power Limit N/A DCMI 2Ch 04h M N/A

Open Compute Project  Open CloudServer chassis management specification

http://opencompute.org 35

Command name Reference Type Fn Cmd
Compute

blade

JBOD

blade

Activate Power Limit N/A DCMI 2Ch 05h M N/A

Get Processor Info N/A OEM 30h 1Bh M N/A

Get Memory Info N/A OEM 30h 1Dh M N/A

Get PCIe Info N/A OEM 30h 44h M N/A

Get Nic Info N/A OEM 30h 19h M N/A

Get Disk Status N/A
OEM

Group
2Eh C4h N/A M

Get Disk Info N/A
OEM

Group
2Eh C5h N/A M

M = Mandatory, N/A = Not applicable to blade type

8.1 Blade Implementation Requirements

The following sections describe the blade implementation requirements.

Only a small subset of commands of IPMI2.0 is required to work with the chassis

manager. If a blade implements IPMI2.0 and conforms to the requirements described

in the sections that follow, it is safe to assume that the blade is compatible with the

chassis manager.

8.1.1 Serial Port Timeout

The serial line has a receiving transmission timeout of 100ms. The baseboard

management controller (BMC) must therefore respond to all serial IPMI requests

within 100ms. When it receives a response from the BMC, the chassis manager might

immediately send another request. It is therefore possible that the BMC will receive

multiple requests within a 100ms timeframe, depending on its response time.

8.1.2 Session Timeout

IPMI basic mode over a serial interface allows only one IPMI session. The IPMI

session termination and timeout must be able to be configured with the Set

36 January 28, 2014

Serial/Modem Configuration command. The timeout period is set in 30 second

increments. The termination command must allow inactivity timeout termination.

8.1.3 BMC Serial Port Baud Rate

The blade IPMI basic mode default serial port baud rate should be set to 115.2 kbps.

The IPMI serial port baud rate must be able to be configured with the Set

Serial/Modem Configuration command.

8.1.4 Sensor Data Record

The PWM sensor is the first sensor data record; however, if an alternative

temperature sensor is preferred, this sensor can be the first sensor stored in the

sensor data record. When enumerating the sensor data record, the first record

accessed (0000) must always be the PWM or the alternative temperature sensor,

depending on the PWM implementation.

8.2 Request and Response Packet Formats

Every request message from the chassis manager software has the format shown in

Figure 8.

rsAddress Function checksum rqAddress Seq cmd payload checksum

1 byte 1 byte 1 byte 1 byte 1 byte 1 byte n byte 1 byte

1 2 3 4 5 6 N N+1

Figure 8. Request packet format

Every response from the chassis manager software to a request has the format

shown in Figure 9.

Open Compute Project  Open CloudServer chassis management specification

http://opencompute.org 37

rqAddress Function checksum rsAddress Seq cmd
completion

code
checksumpayload

1 byte 1 byte 1 byte 1 byte 1 byte 1 byte 1 byte n byte 1 byte

1 2 3 4 5 6 7 N N+1

Figure 9. Response packet format

Table 16 provides details of the request and response packets.

Table 16. Details for Request and Response Packets

Number Packet Description

1 rqAddress

Requester's address, 1 byte

Least-significant (LS) bit is 0 for slave addresses and 1 for software IDs

Upper 7-bits hold slave address or software ID, respectively

Byte is 20h when the BMC is the requester

2 Function
Function code

Response function = request function +1 [debug identification]

3 Checksum

2's complement checksum of preceding bytes in the connection header

8-bit checksum algorithm: initialize checksum to 0

For each byte, checksum = (checksum + byte) modulo 256, then checksum

= - checksum

When the checksum and the bytes are added together, modulo 256, the

result should be 0

4 rsAddress

Responder's slave address, 1 byte

LS bit is 0 for slave addresses and 1 for software IDs

Upper 7-bits hold slave address or software ID, respectively

This byte is 20h when the BMC is the responder; the rqAddress will be the

software ID from the corresponding request packet

5 Seq Sequence number, generated by the requester

6 Cmd Command byte

7
Completion

code
Completion code returned in the response to indicated success/failure

status of the request

N Payload As required by the particular request or response for the command

38 January 28, 2014

Number Packet Description

N+1 Checksum

2's complement of bytes between the previous checksum

8-bit checksum algorithm: Initialize checksum to 0

For each byte, checksum = (checksum + byte) modulo 256, then checksum

= - checksum

When the checksum and the bytes are added together, modulo 256, the

result should be 0

8.3 Packet Framing

Special characters are used to delimit the start and end of a command packet.

Table 17 lists the packet framing characters. Note that the framing and data escape

characters are applied after the message fields have been formatted.

Table 17. Special Characters Used for Packet Framing

Description Value

Start character A0h

Stop character A5h

Packet handshake A6h

Data escape character AAh

Message framing is similar to inter-integrated circuit (I2C) conditional framing, but

replaced with start and stop characters and with the addition of a data byte escape

character to ensure that the framing characters are not encountered within the body

of the packet. The packet handshake character is used for implementing a level of

software flow control with the remote application that is accessing the BMC.

The start, stop, and escape characters are not allowed within the body of the

message to make sure that the beginning and end of a message is unambiguously

delimited. If a byte matching one of the special characters is encountered in the data

to be transmitted, it is encoded into a corresponding two-character sequence for

transmission. Table 18 summarizes these encoding sequences.

Table 18. Encoding Sequences for Special Characters

Data byte Encoded sequence

Open Compute Project  Open CloudServer chassis management specification

http://opencompute.org 39

The first character of the sequence is always the escape character. Only the special

characters plus the ASCII escape <ESC> character, 1Bh, are escaped. (Note that the

ASCII escape <ESC> character, 1Bh, is escaped to let the BMC snoop for certain

escape sequences in the data stream, such as the <ESC>(and <ESC>Q patterns.) All

other byte values in the message are transmitted without escaping.

When the packet is received, the process is reversed. If the two-byte escape

sequence is detected in the packet, it is converted to the corresponding data-byte

value. Note that the BMC will reject any messages that have illegal character

combinations or that exceed message buffer length limits. The BMC may not send an

error response for these conditions.

The handshake character is used to signal that the BMC has freed space in its input

buffers for a new incoming message. The BMC typically returns a handshake

character within one millisecond of being able to accept a new message, unless the

controller has already initiated a message transmission or an operation such as

firmware update. Note that the handshake character is used in the system for flow

control and error detection. Even if unauthenticated IPMI messages are being

rejected (or dropped) by the BMC, the BMC is expected to respond with a handshake

to indicate its buffers are ready for a new incoming message.

Figure 10 shows the message payload encapsulated with the serial start and stop

bytes.

Request packet:

rsAddress Function checksum rqAddress Seq cmd payload checksum

1 byte 1 byte 1 byte 1 byte 1 byte 1 byte n byte 1 byte

2 3 4 5 6 7 N N+1

Start
(A0h)

1 byte

1

Stop
(A5h)

1 byte

N+2

A0h AAh (ESC), B0h

A5h AAh (ESC), B5h

AAh AAh (ESC), BAh

A6h AAh (ESC), B6h

1Bh <ESC> AAh (ESC), 3Bh

40 January 28, 2014

Response packet:

rqAddress Function checksum rsAddress Seq cmd
completion

code
checksumpayload

1 byte 1 byte 1 byte 1 byte 1 byte 1 byte 1 byte n byte 1 byte

2 3 4 5 6 7 8 N N+1

Start
(A0h)

1 byte

1

Stop
(A5h)

1 byte

N+2

Sample framed request packet

Get Chassis Status Request
0xA02000E08104017AA5

Sample Request

Sample framed response packet

Chassis Status Response
0xA081047B20040100011000507AA5

Handshake
0xA6

100 ms0 ms

Sample Response

Figure 10. Message payload encapsulated with the serial start and stop bytes

8.4 Serial Console Redirection

To support serial console redirection, a blade should support serial port sharing.

Serial port sharing is a mechanism in which the BMC controls logic that lets a serial

controller on the baseboard and a serial controller for the BMC share a single serial

connector. To support serial console redirection, the blade BMC should be able to

switch serial port control to and from the system baseboard.

Serial port sharing lets the IPMI basic mode messaging and system console

redirection coexist on the same physical serial port. The BMC firmware should let the

Set Serial/Modem Mux command switch the serial port from “BMC” to “SYS” for

terminal console redirection. When the multiplexer (mux) is switched to the system

(SYS), the firmware should snoop the in-bound traffic to detect IPMI message

patterns (such as the IPMI Get Channel Authentication Capabilities and the Get

Open Compute Project  Open CloudServer chassis management specification

http://opencompute.org 41

Session Challenge commands). If it detects an IPMI message pattern, the BMC

firmware should take control of the serial port from the system and respond to the

IPMI message. The BMC firmware should retain control of the serial port until it

receives a new request to switch control of the serial port back to the system.

When the BMC has control of the serial port, the messaging protocol should comply

with the chassis manager API (see Open CloudServer chassis manager user interface

specification). When in console redirection mode, the system should support VT100

console output.

Table 19 lists the conditions that determine the blade BMC behavior and the

switching mechanism that enables the transitions between BMC messaging and

console redirection.

Table 19. Conditions Causing Switching

Switching Conditions

Switch to system

 IPMI Set Serial/Modem Mux (to SYS) is received from either local area

network (LAN) or serial

 <ESC> Q is received from serial

Switch to BMC

 IPMI Set Serial/Modem Mux (to BMC) is received from LAN

 The pattern "<ESC> (" is received over the serial console

 The IPMI message pattern {0xA0, 0x20} is received over serial (this byte

pattern represents the “start byte” framing character and the BMC address in

a basic mode IPMI request message

8.5 Chassis Manager Serial Port Session

The chassis manager lets a client establish a serial port session to a target device (for

example, a top of rack [TOR] network switch) that is physically connected to the

chassis manager board. The chassis manager API provides four serial port session

methods: StartSerialPortConsole, StopSerialPortConsole, SendSerialPortData, and

ReceiveSerialPortData.

Note that the serial port session API services devices attached to universal

asynchronous receiver/transmitter (UART) 1, 2, 5, and 6. UART 4, which services blade

devices populated in the chassis, uses a separate API. Note also that the ports

allocated for the serial port session are COM 1, 2, 5, and 6.

42 January 28, 2014

Before attempting to communicate with the target device, the client should explicitly

open a serial port session using StartSerialPortConsole with a parameter specifying

the target serial port. The chassis manager will then attempt to open and initialize

the target serial port. Currently, the serial baud rate supported for the serial port

session is 9600 bps. When it receives the response for the StartSerialPortConsole

request, the client must check the completion code to see if the serial port session

has been successfully established. In addition, the client should use the session token

stored in the response when issuing subsequent requests to the chassis manager

throughout the session.

When a serial port session has been successfully established, the client can issue

commands to the target device using SendSerialPortData. The client can also receive

data packets from the target device using ReceiveSerialPortData. Note that

ReceiveSerialPortData is designed to operate asynchronously with

SendSerialPortData, which means that the client can invoke ReceiveSerialPortData

even if there is no preceding or matching invocation SendSerialPortData. The

asynchronous design ensures that the client can reliably receive the data packets sent

by the target device even without an explicit command (for example, console output

messages generated while the target device is booting up).

After all the packets of interest have been communicated, the client should explicitly

close the session with StopSerialPortConsole. The chassis manager will then release

the target serial port and make it available for other clients.

8.6 Command-Completion Codes

Table 20 lists the completion codes, follows the IPMI 2.0 completion codes.

Table 20. Command-Completion Codes

Code Description

Generic completion codes (00h, C0h-FFh)

00h  Command completed normally

C0h

 Node busy

 Command could not be processed because command processing resources are

temporarily unavailable

Open Compute Project  Open CloudServer chassis management specification

http://opencompute.org 43

Code Description

C1h
 Invalid command

 Used to indicate an unrecognized or unsupported command

C2h  Command invalid for given logical unit number (LUN)

C3h
 Timeout while processing command

 Response unavailable

C4h

 Out of space

 Command could not be completed because of a lack of storage space required to

execute the given command operation

C5h  Reservation canceled or invalid reservation ID

C6h  Request data truncated

C7h  Request data length invalid

C8h  Request data field length limit exceeded

C9h

 Parameter out of range

 One or more parameters in the data field of the request are out of range (different

from the invalid data field [CCh] code in that it indicates that the erroneous field(s)

has a contiguous range of possible values)

CAh  Cannot return number of requested data bytes

CBh  Requested sensor, data, or record not present

CCh  Invalid data field in request

CDh  Command illegal for specified sensor or record type

Ceh  Command response could not be provided

CFh

 Cannot execute duplicated request

 This completion code is for devices which cannot return the response that was

returned for the original instance of the request; such devices should provide

separate commands that allow the completion status of the original request to be

determined

 An event receiver does not use this completion code, but returns the 00h completion

code in the response to (valid) duplicated requests

D0h  Command response could not be provided; SDR repository in update mode

D1h  Command response could not be provided; device in firmware update mode

D2h
 Command response could not be provided; BMC initialization or initialization agent

in progress

44 January 28, 2014

Code Description

D3h

 Destination unavailable; cannot deliver request to selected destination (for example,

this code can be returned if a request message is targeted to SMS but the receive

message queue reception is disabled for the particular channel)

D4h
 Cannot execute command due to insufficient privilege level or other security-based

restriction (for example, disabled for firmware firewall)

D5h
 Cannot execute command

 Command, or request parameter(s), not supported in present state

D6h

 Cannot execute command

 Parameter is illegal because command sub -function has been disabled or is

unavailable (for example, disabled for firmware firewall)

FFh  Unspecified error

Device-specific (OEM) codes (01h-7Eh)

01h-7Eh

 Device-specific (OEM) completion codes

 This range is used for command-specific codes that are also specific to a particular

device and version (prior knowledge of the device command set is required for

interpretation)

Command-specific codes (80h-BEh)

80h-BEh

 Standard command-specific codes

 This range is reserved for command-specific completion codes for commands

specified in this document

8.7 Blade Command Payload

The chassis manager protocol payload carries the blade commands, as shown in

Figure 11.

rqAddress Function checksum rsAddress Seq cmd
completion

code
checksumpayload

1 byte 1 byte 1 byte 1 byte 1 byte 1 byte 1 byte n byte 1 byte

2 3 4 5 6 7 8 N N+1

Start
(A0h)

1 byte

1

Stop
(A5h)

1 byte

N+2

Payload

Figure 11. Chassis manager payload

Open Compute Project  Open CloudServer chassis management specification

http://opencompute.org 45

Certain support commands are required for blade identification and session

establishment. The following commands should always be accepted by the blade,

whether sent outside of an active session or within the context of an active session:

 Get System GUID

 Get Channel Authentication Capabilities

 Get Session Challenge

 Activate Session

8.7.1 Blade Identification Commands

The Get Channel Authentication Capabilities command is used to identify the blade

type (compute or “just a bunch of disks” [JBOD]). A blade should respond to this

command before and after a session has been established. The response message

should use byte 9 (OEM auxiliary data) to advertise the blade type: 0x04 for compute

or 0x05 for storage. When response message byte 9 is combined with the OEM ID

(bytes 6:8), the chassis manager will know both the OEM and type of blade.

Compute blade implementations are required to support session-based

authentication, while JBOD blades are not required to support-session based

authentication. A blade advertises its authentication support through the Get

Channel Authentication Capabilities command, byte 3 and byte 4. If a JBOD blade

does not support authentication, then byte 3 and byte 4 should equal zero. If

authentication is not supported on a JBOD blade, all mandatory (M) IPMI commands

listed in this specification should be supported without a session initialization

processes.

Note that user session-based authentication is required for all system compute

blades. Per-message-based authentication is not supported because session headers

are not support over serial IPMI.

8.7.2 Session Establishment Commands

Before general messaging can occur, a session must be activated through a set of

session setup commands: Activate Session, Get Session Challenge, and Set Session

46 January 28, 2014

Privilege Level. These commands can be thought of as always being

unauthenticated. Note that Activate Session is the first, and in some cases only,

authenticated command for a session. Figure 12 shows the process.

1

2

3

4

5

6

Get
Session

Challenge,
Rq

Get
Session

Challenge,
Rs

Activate
Session, Rq

Activate
Session, Rs

Session
Privilege
Level, Rq Session

Privilege
Level, Rs

Chassis
Manager

Sled
BMC

Figure 12. Session establishment process

The following steps are used to establish a session:

1. The chassis manager sends a Get Channel Authentication Capabilities to the

blade to get information about the blade type and session authentication

support.

If sessions are supported, the chassis manager advances to step 2.

If the blade is a sessionless JBOD (some JBOD blades require no authentication or

session establishment), the chassis manager skips steps 2-7 during the

initialization process.

Open Compute Project  Open CloudServer chassis management specification

http://opencompute.org 47

2. The chassis manager sends a Get Session Challenge request to the BMC with an

authentication type of “none” and a username that selects which set of user

information should be used for the session (UserId 1). This is the only place

where the username is used during the process.

3. The BMC looks up the user information associated with the username. If the user

is found and allowed access via the given channel, the BMC returns a Get

Session Challenge response that includes a randomly generated challenge string

and a temporary session ID. The BMC keeps track of the username associated

with the session ID; the session ID is used to look up the user’s information in

step 4.

4. The chassis manager then issues an Activate Session request. The request

contains the temporary session ID plus the authentication information (None).

(For example, the serial/modem connection might only pass a simple clear-text

password in the activate session data.) The authentication format for different

authentication types is specified in the description of the Activate Session

command. Note that the system specification only supports authentication type

None (0x00).

5. The BMC uses the temporary session ID to look up the information for the user

identified in the Get Session Challenge request (for example, the user’s

password/key data and a stored copy of the earlier challenge string) and uses it

to verify that the packet signature or password is correct.

6. The chassis manager then sends a Set Session Privilege Level command to the

BMC. This command is sent in authenticated format. After the session is activated,

the session is set to an initial privilege level. A session that is activated is initially

set to USER level, regardless of the maximum privilege level requested in the

Activate Session command. The chassis manager must raise the privilege level of

the session using this command to execute commands that require a higher level

of privilege.

7. The BMC looks up the privilege level set for the user. If the privilege level

requested matches the level set for the user, the BMC responses to the chassis

manager Set Session Privilege Level with a positive completion code. Note that

48 January 28, 2014

Set Session Privilege Level cannot be used to set a privilege level higher than

the lowest of the privilege level set for the user.

8.7.3 Session Termination

If the blade BMC supports IPMI single-session serial connections and a session is

established, the BMC should accept a Close Session command and immediately

terminate the session, freeing up resources for another session to be established.

If a session is not closed using Close Session, the session should time out and close

itself after a specified time interval. This time interval should be configurable with the

Set Serial/Modem Configuration command. (Note that the IPMI firmware should

support all Set Serial/Modem Configuration command parameters defined in this

specification.)

8.8 Command Formats

The following sections describe the formats of the chassis manager protocol payload

commands.

Note that the following sections copy command formats from the IPMI 2.0

specification. In addition to IPMI-defined command formats, this section details

system-defined OEM commands and modifications to IPMI command payloads, such

as the Get Channel Authentication Capabilities command.

8.8.1 Get Device ID

Refer to the IPMI 2.0 specification.

8.8.2 Get System GUID

Refer to the IPMI 2.0 specification.

Open Compute Project  Open CloudServer chassis management specification

http://opencompute.org 49

8.8.3 Get Channel Authentication Capabilities

The blade should respond to the Get Channel Authentication Capabilities

command outside of an active session. The command can also be executed within

the context of an active session.

Note: Byte 9 is a purposeful deviation from the IPMI 2.0 specification.

Table 21 describes the Get Channel Authentication Capabilities command request.

Table 21. Get Channel Authentication Capabilities Command Request

Byte Description

1 Channel number

[7] – 1b = get IPMI v2.0+ extended data

If the given channel supports authentication but does not support RMCP+ (for example, a

serial channel), then the response data should return with bit [5] of byte 4 = 0b, and byte

5 should return 01h

0b = Backward compatible with IPMI v1.5

Result response data only returns bytes 1:9, bit [7] of byte 3 (authentication type support)

and bit [5] of byte 4 returns as 0b, bit [5] of byte byte 5 returns 00h.

[6:4] – reserved

[3:0] – channel number

0h-7hBh, Fh = channel numbers

Eh = retrieve information for channel this request was issued on.

2 Requested maximum privilege level

[7:4] – reserved

[3:0] – requested privilege level

0h = reserved

1h = Callback level

2h = User level

3h = Operator level

4h = Administrator level

5h = OEM proprietary level

50 January 28, 2014

Table 22 describes the Get Channel Authentication Capabilities command response.

Table 22. Get Channel Authentication Capabilities Command Response

Byte Description

1 Completion code

2 Channel number

Channel number that the authentication capabilities are being returned for.

If the channel number in the request was set to Eh, this will return the channel number

on which the request was received

3 Authentication type support

Returns the setting of the authentication type enable field from the configuration

parameters for the given channel that corresponds to the requested maximum privilege

level

[7] - 1b = IPMI v2.0+ extended capabilities available (See extended capabilities field

below)

0b = IPMI v1.5 support only

[6] - reserved

[5:0] - IPMI v1.5 authentication type(s) enabled for given requested maximum privilege

level

All bits: 1b = supported

0b = authentication type not available for use.

[5] - OEM proprietary (per OEM identified by the IANAOEM ID in the RMCPPing

Response)

[4] - straight password / key

[3] - reserved

[2] - MD5

[1] - MD2

[0] - none

4 [7:6] – reserved

[5] - KG status (two-key login status). Applies to v2.0/RMCP+ RAKP authentication only

(otherwise, ignore as “reserved”)

0b = KG is set to default (all 0’s). User key KUID will be used in place of KG in RAKP

(knowledge of KG not required for activating session)

1b = KG is set to non -zero value (knowledge of both KG and user password (if not

anonymous login) required for activating session)

Open Compute Project  Open CloudServer chassis management specification

http://opencompute.org 51

Byte Description

The following bits apply to IPMI v1.5 and v2.0:

[4] -Per-message authentication status

0b = Per-message authentication is enabled; packets to the BMC must be authenticated

per authentication type used to activate the session and user level authentication setting

1b = Per-message authentication is disabled; Authentication Type is “none” accepted for

packets to the BMC after the session has been activated.

[3] - User Level Authentication status

0b = User Level Authentication is enabled. User Level commands must

be authenticated per Authentication Type used to activate the session.

1b = User Level Authentication is disabled. Authentication Type “none” is accepted for

User Level commands to the BMC.

[2:0] -Anonymous Login status; this parameter returns values that tells the remote

console whether there are users on the system that have “null” usernames. This can be

used to guide the way the remote console presents login options to the user. (see IPMI

v1.5 specification sections 6.9.1, “Anonymous Login” Convention and 6.9.2, Anonymous

Login)

[2] - 1b = Non-null usernames enabled. (One or more users are enabled that have non-

null usernames).

[1] - 1b = Null usernames enabled (One or more users that have a null username, but

non-null password, are presently enabled)

[0] - 1b = Anonymous Login enabled (A user that has a null username and null password

is presently enabled)

5 For IPMI v1.5: -reserved

For IPMI v2.0+: -extended capabilities

[7:2] - reserved

[1] - 1b = channel supports IPMI v2.0 connections.

[0] - 1b = channel supports IPMI v1.5 connections

6:8 OEM ID Identification bytes:

IANA Enterprise number for OEM/organization.

This field must return an OEM Id irrespective of authentication type available.

9 Compute blade = 0x04, JBOD blade = 0x05

52 January 28, 2014

8.8.4 Get Session Challenge

Refer to the IPMI 2.0 specification.

8.8.5 Activate Session

Refer to the IPMI 2.0 specification.

8.8.6 Set Session Privilege Level

Refer to the IPMI 2.0 specification.

8.8.7 Close Session

Refer to the IPMI 2.0 specification.

8.8.8 Set Channel Access

Refer to the IPMI 2.0 specification.

8.8.9 Get Channel Access

Refer to the IPMI 2.0 specification.

8.8.10 Set User Access

Refer to the IPMI 2.0 specification.

8.8.11 Get User Access

Refer to the IPMI 2.0 specification.

Open Compute Project  Open CloudServer chassis management specification

http://opencompute.org 53

8.8.12 Set User Name

Refer to the IPMI 2.0 specification.

8.8.13 Get User Name

Refer to the IPMI 2.0 specification.

8.8.14 Set User Password

Refer to the IPMI 2.0 specification.

8.8.15 Get Chassis Status

Refer to the IPMI 2.0 specification.

8.8.16 Chassis Control

Refer to the IPMI 2.0 specification.

8.8.17 Chassis Identify

Refer to the IPMI 2.0 specification.

8.8.18 Set Power Restore Policy

Refer to the IPMI 2.0 specification.

8.8.19 Get System Restart Cause

Refer to the IPMI 2.0 specification.

8.8.20 Set System Boot Options

Refer to the IPMI 2.0 specification.

54 January 28, 2014

8.8.21 Get System Boot Options

Refer to the IPMI 2.0 specification.

8.8.22 Get Sensor Reading Factors

Refer to the IPMI 2.0 specification.

8.8.23 Get Sensor Thresholds

Refer to the IPMI 2.0 specification.

8.8.24 Get Sensor Reading

Refer to the IPMI 2.0 specification.

8.8.25 Read FRU Data

Refer to the IPMI 2.0 specification. Offset should be in bytes no WORD. Fru

Inventory Area Info command is not required..

8.8.26 Write FRU Data

Refer to the IPMI 2.0 specification. Offset should be in bytes no WORD. Fru

Inventory Area Info command is not required..

8.8.27 Get SDR Repository

Refer to the IPMI 2.0 specification.

8.8.28 Reserve SDR Repository

Refer to the IPMI 2.0 specification.

Open Compute Project  Open CloudServer chassis management specification

http://opencompute.org 55

8.8.29 Get SDR

Refer to the IPMI 2.0 specification.

Note: Sensor types supported are Full (01h), Compact (02h), and Event Only (03h).

8.8.30 Get SEL Info

Refer to the IPMI 2.0 specification.

8.8.31 Reserve SEL

Refer to the IPMI 2.0 specification.

The reservation process provides a limited amount of protection when records are

being deleted or incrementally read.

A Reservation ID value is returned in response to this command. This value is

required in other requests, such as the Clear SEL command (commands will not

execute unless the correct Reservation ID value is provided).

As an example, if the chassis manager wants to clear the SEL, it first reserves the

repository by issuing a Reserve SEL command. The application checks to see if all

SEL entries have been handled before issuing the Clear SEL command. If a new event

had been placed in the SEL after the records were checked but before the Clear SEL

command, it is possible for the event to be lost. However, the addition of a new

event to the SEL causes the present Reservation ID to be canceled, preventing the

Clear SEL command from executing. The chassis manager can then repeat the

reserve-check-clear process until it succeeds.

8.8.32 Get SEL Entry

Refer to the IPMI 2.0 specification.

8.8.33 Add SEL Entry

Refer to the IPMI 2.0 specification.

56 January 28, 2014

8.8.34 Clear SEL

Refer to the IPMI 2.0 specification.

8.8.35 Get SEL Time

Refer to the IPMI 2.0 specification.

Note: The time is an unsigned 32-bit value representing the local time as the

number of seconds from 00:00:00, January 1, 1970 GMT. This format, which is based

on a long-standing UNIX-based standard for time keeping, is sufficient to maintain

time stamping with 1-second resolution past the year 2100. Similar time formats are

used in ANSI C.

8.8.36 Set SEL Time

Refer to the IPMI 2.0 specification.

8.8.37 Set Serial/Modem Configuration

The Set Serial/Modem Configuration command is used for setting parameters such

as the session inactivity timeout.

Refer to the IPMI 2.0 specification.

Note: The Set Serial/Modem Configuration parameters required are as follows:

0. Set In Progress.

2. Authentication type enables.

If hard set privilege to Administrator with Authentication straight password / key.

This parameter can be optional.

4. Session Inactivity Timeout.

Default should be 6 = 180 seconds.

6. Session Termination.

Default should be inactivity timeout enabled.

Open Compute Project  Open CloudServer chassis management specification

http://opencompute.org 57

7. Used to set Baud-rate.

Default should be 115.2K.

8.8.38 Get Serial/Modem Configuration

The Get Serial/Modem Configuration command is used for retrieving the

configuration parameters from the Set Serial/Modem Configuration command.

Refer to the IPMI 2.0 specification.

8.8.39 Set Serial/Modem Mux

The Set Serial/Modem Mux command switches control of the IPMI serial port to the

system for console redirection. The command must response to the request message

before transferring control of the serial port to the system for console redirection.

Refer to the IPMI 2.0 specification.

8.8.40 Serial/Modem Connection Active

Refer to the IPMI 2.0 specification.

8.8.41 Get Power Reading

Refer to the DCMI 1.5 specification.

8.8.42 Get Power Limit

Refer to the DCMI 1.5 specification.

8.8.43 Set Power Limit

Refer to the DCMI 1.5 specification.

8.8.44 Activate Power Limit

58 January 28, 2014

Refer to the DCMI 1.5 specification.

8.8.45 Get Processor Info

The Get Processor Info command returns the processor type and status.

Table 23 describes the Get Processor Info request.

Table 23. Get Processor Info Request

Table 24 describes the Get Processor Info response.

Table 24. Get Processor Info Response

Bytes Description

1 Completion code

2 Processor type (see Table 60)

3:4 Processor frequency (in MHz); LSB first

5 Processor status:

01h is present

FFh is not present

Table 25 lists the processor types.

Table 25. Processor Types

Byte Description

1 Processor index (0-based index)

Code Processor make and model Code Processor make and model

00h Celeron (Intel) 0Eh Lynnfield (Intel)

01h Pentium III (Intel) 0Fh Libson (AMB)

02h Pentium 4 (Intel) 10h Phenom II (AMD)

03h Xeon (Intel) 11h Athlon II (AMD)

Open Compute Project  Open CloudServer chassis management specification

http://opencompute.org 59

8.8.46 Get Memory Info

The Get Memory Info command returns information about a given memory DIMM.

The command uses 1-based indexing.

If zero is used as the DIMM index input parameter, the response message will follow

Table 26.

Table 26. Get Memory Info Response

(if a zero index is provided in the request message as the DIMM index)

Bytes Description

1 Completion code

2 DIMM slot number

3 DIMM presence info in bit map for DIMM1 to DIMM8

4 DIMM presence info in bit map for DIMM9 to DIMM16

Table 27 describes the Get Memory Info request.

Table 27. Get Memory Info Request

04h Prestonia (Intel) 12h Operation (AMB)

05h Nocona (Intel) 13h SUZUKA (AMD)

06h Opteron (AMB) 14h Core i3 (Intel)

07h Dempsey (Intel) 15h Sandy Bridge (Intel)

08h Clovertown (Intel) 16h Ivy Bridge (Intel)

09h Tigerton (Intel) 17h Centerton (Intel)

0Ah Dunnington (Intel) FFh No CPU present

0Bh Harpertown (Intel)

Byte Description

1 DIMM index (1-based index)

60 January 28, 2014

Table 28 describes the Get Memory Info response.

Table 28. Get Memory Info Response (when 1+ index is provided as the DIMM index)

Bytes Description

1 Completion code

2 Bit[7]: Is Low Voltage DIMM

00h: Normal Voltage (1.5V)

01h: Low Voltage (1.35V)

Bit[6]: Actual DIMM running speed

00h: Not 1333Mhz

01h: 1333Mhz

Bit[5]: Type

00h: SDRAM

01h: DDR-1 RAM

02h: Rambus

03h: DDR-2 RAM

04h: FBDIMM

05h: DDR-3 RAM

FFh: No DIMM present

3:4 DIMM speed (in MHz); LSB first

5:6 DIMM size (in Megbytes); LSB first

7 DIMM status:

00h: Reserved

01h: Unknown DIMM type

02h: Ok

03h: Not present

05h: Single bit error

07h: Multi bit error

8.8.47 Get PCIe Info

Open Compute Project  Open CloudServer chassis management specification

http://opencompute.org 61

The Get PCIe Info command returns the device type and status.

Table 29 describes the Get PCIe Info request.

Table 29. Get PCIe Info Request

Table 30 describes the Get PCIe Info response.

Table 30. Get PCIe Info Response

Bytes Description

1 Completion code

2:3 Vendor ID; LSB

4:5 Device ID; LSB

6:7 System ID; LSB

8:9 Sub-system ID; LSB

8.8.48 Get NIC Info

The Get NIC Info command returns the device type and status.

Table 31 describes the Get NIC Info request.

Table 31. Get NIC Info Request

Table 32 describes the Get NIC Info response.

Byte Description

1 PCIe Slot Index (1-based index)

1. PCIEX 16

2. 10G Mezz

3. SAS Mezz

Byte Description

1 NIC index (0-based index)

62 January 28, 2014

Table 32. Get NIC Info Response

8.8.49 Get Disk Status

The Get Disk Status command returns the status of each disk in the JBOD. Each disk

will add 1 byte to the response (see byte 4+ in the response below). The byte that

represents the disk will be split, with bits 7-6 representing the disk status and bits 5-

0 representing the unique disk number.

The channel parameter in the request packet is used to select the target SAS

controller/disk backplane for JBODs. The Get Disk Status command uses NetFn:

2Eh/2Fh and command identifier C4h.

Table 33 describes the Get Disk Status request.

Table 33. Get Disk Status Request

Table 34 describes the Get Disk Status response.

Table 34. Get Disk Status Response

Bytes Description

1 Completion code

2 Channel number

Default for this specification is 0x00

3 Disk count (total number of disks)

4+N 7-6: disk status

0=normal, 1=failed, 2=error

5-0: disk number

Bytes Description

1 Completion code

2:7 6-byte MAC address

Byte Description

1 [7:0] – reserve for channel number 0x00

Open Compute Project  Open CloudServer chassis management specification

http://opencompute.org 63

Bytes Description

Disk number/location ID

8.8.50 Get Disk Info

The Get Disk Info command returns sensor information regarding disks in the JBOD

such as temperature.

To conform with the communication protocol this command uses OEM reserved IPMI

commands:

 The Get Disk Status command uses NetFn: 2Eh/2Fh and command identifier

C5h.

 The Get Disk Temperature command is expected to return the status of each

disk in the JBOD if disk temperatures are available. If not available, the

command should report the JBOD temperature. The multiplier byte in the

response message will be multiplied against the MS byte of the reading to

assist in storing large and negative numbers.

Table 35 describes the Get Disk Info request.

Table 35. Get Disk Info Request

Table 36 describes the Get Disk Info response.

Table 36. Get Disk Info Response

Bytes Description

1 IPMI completion code

2 Reading unit (see IPMI table for Table 15. Required IPMI Commands for BladesTable

15: sensor unit type codes)

3 MS byte multiplier (byte 4); byte should represent unsigned int

Byte Description

1 Channel number

00h for single channel

2 Disk number (if per-disk temperatures are available, otherwise 00h got JBOD)

64 January 28, 2014

Bytes Description

[7] 1b = negative multiplier

0b = positive multiplier

[6-0] reading MS byte multiplier

4 Reading LS byte first

5 Reading MS byte

Following are examples of disk packets:

Request Packet:

0xA0202EB28104C50000B6A5

Example Response Packet for 32.00 degrees C:

A0812F502004C50001000020F6A5

Example Response Packet for -5.02 degrees C:

A0812F502004C500018102058EA5

9 Chassis Manager REST API

The sections that follow describe the chassis manager Rest API.

9.1 User Roles and API Access

The chassis manager web service provides a full set of security features, including

encryption, integrity, authentication, and fine-grained API-level authorization.

9.2 Encryption and Service Credentials

All data communication between the chassis manager web service and clients (web

browser or command-line interface) is encrypted using secure socket layers (SSL).

The system uses signature-based checksum (signed packets) to prevent tampering

and sends data secure HTTP (HTTPS) to ensure integrity. The chassis manager web

service is also authenticated against the client using Microsoft Certificate Services.

Open Compute Project  Open CloudServer chassis management specification

http://opencompute.org 65

9.3 Client Credentials/Authentication

Client authentication is based on either machine-local or domain-user Windows

credentials. Client Windows credentials are automatically obtained from the client

computer based on the context of the logged-in user.

9.4 Role-Based API-Level Authorization

Client authorization to the chassis manager web service is provided at the granularity

of the service APIs. The chassis manager APIs are categorized into three security

domains:

 U1─APIs that perform chassis manager management functions and manage

devices that are connected to the chassis manager (for example, blades and

power supply units).

 U2─APIs that manage devices (for example, blades and power supply units) that

are connected to the chassis manager.

 U3─APIs that perform only read-only operations.

Note: U1 includes all chassis manager APIs, while U2 and U3 include only a subset of

the chassis manager APIs. Note also that U3 is a subset of U2, which is a subset of

U1.

Users authorized to perform chassis manager functions can be categorized into three

Windows security domains or groups:

 AcsCmAdmin─Users in this group are authorized to perform functions in U1.

They have access to all APIs, including APIs for chassis manager management

functions like “add-user” and “set-NIC.”

 AcsCmOperator─Users in this group are authorized to perform functions in U2,

and have access to all APIs except those for chassis manager management

functions.

 AcsCmUser─Users in this group are authorized to perform functions in U3, and

can only access read-only APIs.

66 January 28, 2014

Any user attempting to access the chassis manager APIs will be authorized based on

their role or group. Users who do not belong to any of the three authorization roles

or groups are denied access to chassis manager API functionalities.

The three Windows groups are available in each chassis manager, and local chassis

manager users can be assigned to any of the three local roles (CM-1/AcsCmAdmin,

CM-1/AcsCmOperator, and CM-1/AcsCmUser) using the “add user” and “change

user” APIs.

The three authorization roles can also be created in each domain that wants to

communicate with the chassis manager. For example, Domain-1/User-1 will be

checked against the corresponding domain’s authorization roles (Domain-

1/AcsCmAdmin, Domain-1/AcsCmOperator, or Domain-1/AcsCmUser). By default, a

chassis manager administrator has privileges that are equal to the authorization role

AcsCmAdmin.

Table 37 lists the APIs and the corresponding authorized user roles.

Table 37. Chassis Manager APIs and Corresponding Authorized Roles

APIs AcsCmAdmin AcsCmOperator AcsCmUser

Health/status information APIs

GetChassisInfo X X X

GetBladeInfo X X X

GetAllBladesInfo X X X

Blade management APIs

GetBladeHealth X X X

SetBladeAttentionLEDOn X X

SetAllBladesAttentionLEDOn X X

SetBladeAttentionLEDOff X X

SetAllBladesAttentionLEDOff X X

SetBladeDefaultPowerStateOn X X

SetAllBladesDefaultPowerStateOn X X

Open Compute Project  Open CloudServer chassis management specification

http://opencompute.org 67

APIs AcsCmAdmin AcsCmOperator AcsCmUser

SetBladeDefaultPowerStateOff X X

SetAllBladesDefaultPowerStateOff X X

GetBladeDefaultPowerState X X X

GetAllBladesDefaultPowerState X X X

GetPowerState X X X

GetAllPowerState X X X

SetPowerOn X X

SetAllPowerOn X X

SetPowerOff X X

SetAllPowerOff X X

GetBladeState X X X

GetAllBladesState X X X

SetBladeOn X X

SetAllBladesOn X X

SetBladeOff X X

SetAllBladesOff X X

SetBladeActivePowerCycle X X

SetAllBladesActivePowerCycle X X

ReadBladeLog X X X

ReadBladeLogWithTimeStamp X X X

ClearBladelog X X

GetBladePowerReading X X X

GetAllBladesPowerReading X X X

GetBladePowerLimit X X X

GetAllBladesPowerLimit X X X

68 January 28, 2014

APIs AcsCmAdmin AcsCmOperator AcsCmUser

SetBladePowerLimit X X

SetAllBladesPowerLimit X X

SetBladePowerLimitOn X X

SetAllBladesPowerLimitOn X X

SetBladePowerLimitOff X X

SetAllBladesPowerLimitOff X X

GetNextBoot X X X

SetNextBoot X X

StartBladeSerialSession X

SendBladeSerialData X

ReceiveBladeSerialData X

StopBladeSerialSession X

Serial console device APIs

StartSerialPortConsole X X

StopSerialPortConsole X X

SendSerialPortData X X

ReceiveSerialPortData X X

Chassis management APIs

SetChassisAttentionLEDOn X X

SetChassisAttentionLEDOff X X

GetChassisAttentionLEDStatus X X X

ReadChassisLog X X X

ClearChassisLog X X

ReadChassisLogWithTimeStamp X X X

Open Compute Project  Open CloudServer chassis management specification

http://opencompute.org 69

APIs AcsCmAdmin AcsCmOperator AcsCmUser

GetChassisHealth X X X

SetACSocketPowerStateOn X X

SetACSocketPowerStateOff X X

GetACSocketPowerState X X X

GetChassisNetworkProperties X X

AddChassisControllerUser X

ChangeChassisControllerUserPassword X

ChangeChassisControllerUserRole X

RemoveChassisControllerUser X

9.5 REST API: Response and Completion Codes

The chassis manager interface is based on REST to more easily interface with the

machines. The sections that follow describe the chassis manager functionality and

provide the corresponding APIs and descriptions.

Each REST API call has the following information encapsulated in its return packet to

provide high-level response status information:

 <byte>

completion code

 <string>

status description (a textual description of the result) when completion code is

anything other than success.

 <int>

API version

Version number of the REST API. Currently, this has value ‘1’; it will be updated

upon future API or response packet structure changes.

Note: The NoActiveSerialSession = 0xB2 // error is thrown for Stop/Send/Receive

serial session commands for both the blade and the port console when there is no

active serial session. If you see this error, use a startserialsession API to create an

active session.

70 January 28, 2014

9.6 REST API: Descriptions, Usage Scenarios, and Sample Responses

The sections that follow provide information about the chassis manager REST APIs.

9.6.1 Gets Information about Chassis

ChassisInfoResponse GetChassisInfo(bool bladeInfo, bool psuInfo, bool chassisInfo)

https://localhost:8000/GetChassisInfo?bladeinfo=true&psuInfo=true&chassisInfo=true

Usage scenario:

This API is used to get the status of chassis components including blades (for example, GUID

and power status), power supplies (for example, power draw, status, and serial number), and

chassis manager (for example, MAC/IP address of the network interfaces, and version

information).

Input parameters: (If no parameters are specified, the command fetches result for all)

 bladeInfo (shows information about blades, optional)

 psuInfo (shows information about power supplies, optional)

 chassisInfo (show chassis manager information, optional)

Sample response:

<ChassisInfoResponse

xmlns="http://schemas.datacontract.org/2004/07/Microsoft.GFS.ACS.Contracts"

xmlns:i="http://www.w3.org/2001/XMLSchema-instance">

 <CompletionCode>Success</CompletionCode>

 <statusDescription></statusDescription>

 <apiVersion>1</apiVersion>

<bladeCollections>

<BladeInfo>

 <CompletionCode>Success</CompletionCode>

 <statusDescription></statusDescription>

 <apiVersion>1</apiVersion>

 <bladeGuid>ffffffff-ffff-ffff-ffff-ffffffffffff</bladeGuid>

 <bladeName>BLADE1</bladeName>

 <bladeMacAddress>Not Applicable</bladeMacAddress>

 <id>1</id>

 <powerState>ON</powerState>

 </BladeInfo>

<BladeInfo>

https://localhost:8000/GetChassisInfo?bladeinfo=true&psuInfo=true&chassisInfo=true

Open Compute Project  Open CloudServer chassis management specification

http://opencompute.org 71

 <CompletionCode>Success</CompletionCode>

 <statusDescription></statusDescription>

 <apiVersion>1</apiVersion>

 <bladeGuid>ffffffff-ffff-ffff-ffff-ffffffffffff</bladeGuid>

 <bladeName>BLADE2</bladeName>

 <bladeMacAddress>Not Applicable</bladeMacAddress>

 <id>2</id>

 <powerState>ON</powerState>

 </BladeInfo>

...

<BladeInfo>

 <CompletionCode>Success</CompletionCode>

 <statusDescription></statusDescription>

 <apiVersion>1</apiVersion>

 <bladeGuid>ffffffff-ffff-ffff-ffff-ffffffffffff</bladeGuid>

 <bladeName>BLADE24</bladeName>

 <bladeMacAddress>Not Applicable</bladeMacAddress>

 <id>24</id>

 <powerState>ON</powerState>

 </BladeInfo>

 </bladeCollections>

<chassisController>

 <CompletionCode>Success</CompletionCode>

 <statusDescription></statusDescription>

 <apiVersion>1</apiVersion>

 <assetTag />

 <firmwareVersion />

 <hardwareVersion>0</hardwareVersion>

- <networkProperties>

- <ChassisNetworkPropertiesResponse>

 <completionCode>Success</completionCode>

 <statusDescription></statusDescription>

 <apiVersion>1</apiVersion>

 <ipAddress i:nil="true" />

 <macAddress>08:9E:01:18:0C:07</macAddress>

 <dhcpEnabled>false</dhcpEnabled>

72 January 28, 2014

 <dhcpServer i:nil="true" />

 <dnsAddress i:nil="true" />

 <dnsDomain i:nil="true" />

 <dnsHostName i:nil="true" />

 <gatewayAddress i:nil="true" />

 <subnetMask i:nil="true" />

 </ChassisNetworkPropertiesResponse>

- <ChassisNetworkPropertiesResponse>

 <completionCode>Success</completionCode>

 <statusDescription></statusDescription>

 <apiVersion>1</apiVersion>

 <ipAddress>xxx.xxx.xxx.xx</ipAddress>

 <macAddress>xx:xx:xx:xx:xx:xx</macAddress>

 <dhcpEnabled>true</dhcpEnabled>

 <dhcpServer>xxx.xxx.xxx.x</dhcpServer>

 <dnsAddress i:nil="true" />

 <dnsDomain>xxx.lab</dnsDomain>

 <dnsHostName>MACHINE2</dnsHostName>

 <gatewayAddress i:nil="true" />

 <subnetMask>xxx.xxx.xxx.x</subnetMask>

 </ChassisNetworkPropertiesResponse>

 </networkProperties>

 <serialNumber />

 <systemUptime>00:00:41.4301650</systemUptime>

 </chassisController>

<psuCollections>

<PsuInfo>

 <CompletionCode>Success</CompletionCode>

 <statusDescription></statusDescription>

 <apiVersion>1</apiVersion>

 <id>1</id>

 <powerOut>1011</powerOut>

 <serialNumber>46-49-51-44-31-32-32-32-30-30-30-31-33-32</serialNumber>

 <state>ON</state>

 </PsuInfo>

Open Compute Project  Open CloudServer chassis management specification

http://opencompute.org 73

<PsuInfo>

 <CompletionCode>Success</CompletionCode>

 <statusDescription></statusDescription>

 <apiVersion>1</apiVersion>

 <id>2</id>

 <powerOut>960</powerOut>

 <serialNumber>46-49-51-44-31-32-32-32-30-30-30-31-30-35</serialNumber>

 <state>ON</state>

 </PsuInfo>

...

<PsuInfo>

 <CompletionCode>Success</CompletionCode>

 <statusDescription></statusDescription>

 <apiVersion>1</apiVersion>

 <id>6</id>

 <powerOut>925</powerOut>

 <serialNumber>46-49-51-44-31-32-32-32-30-30-30-31-30-37</serialNumber>

 <state>ON</state>

 </PsuInfo>

 </psuCollections>

 </ChassisInfoResponse>

9.6.2 Gets Information about Blade

BladeInfoResponse GetBladeInfo(int bladeId)

https://localhost:8000/GetBladeInfo?bladeid=1

Usage scenario:

This API is used to get information about the blade (for example serial number and version

information).

Input parameters:

 bladeId (blade index 1-48)

Sample response:

<BladeInfoResponse

xmlns="http://schemas.datacontract.org/2004/07/Microsoft.GFS.ACS.Contracts"

xmlns:i="http://www.w3.org/2001/XMLSchema-instance">

 <bladeResponse>

 <CompletionCode>Success</CompletionCode>

https://localhost:8000/GetBladeInfo?bladeid=1&allBlades=false

74 January 28, 2014

 <statusDescription></statusDescription>

 <apiVersion>1</apiVersion>

 <bladeNumber>1</bladeNumber>

 </bladeResponse>

 <detailedBladeInfo>

 <alertEnabled>true</alertEnabled>

 <assetTag> Will be added </assetTag>

 <bladeBmc>

 <gateway>Not applicable</gateway>

 <guid>4647ff2b-cb75-4ad6-85de-c612c5abdf87</guid>

 <ipAddress>Not applicable</ipAddress>

 <ipmiVersion>Not applicable</ipmiVersion>

 <macAddress>Not applicable</macAddress>

 <netmask>Not applicable</netmask>

 <solEnabled>true</solEnabled>

 <vlanTag>1</vlanTag>

 </bladeBmc>

 <dhcp>false</dhcp>

 <firmwareVersion>01.03</firmwareVersion>

 <hardwareVersion>V1.0</hardwareVersion>

 <id>1</id>

 <ipAddress>0.0.0.0</ipAddress>

 <ipmiEnabled>true</ipmiEnabled>

 <logEnabled>true</logEnabled>

 <macAddress>00-00-00-00-00-00</macAddress>

 <numberComputeNodes>1</numberComputeNodes>

 <serialNumber>MH822400349</serialNumber>

 </detailedBladeInfo>

 </BladeInfoResponse>

9.6.3 Gets Information about All Blades

GetAllBladesInfoResponse GetAllBladesInfo()

https://localhost:8000/GetAllBladesInfo?

Usage scenario:

https://localhost:8000/GetAllBladesInfo?

Open Compute Project  Open CloudServer chassis management specification

http://opencompute.org 75

This API is used to get information about all blades (for example serial numbers and version

information).

Input parameters:

 bladeId (blade index 1-48)

Sample response:

<GetAllBladesInfoResponse

xmlns="http://schemas.datacontract.org/2004/07/Microsoft.GFS.ACS.Contracts"

xmlns:i="http://www.w3.org/2001/XMLSchema-instance">

 <BladeInfoResponse>

 <bladeResponse>

 <CompletionCode>Success</CompletionCode>

 <statusDescription></statusDescription>

 <apiVersion>1</apiVersion>

 <bladeNumber>1</bladeNumber>

 </bladeResponse>

 <detailedBladeInfo>

 <alertEnabled>true</alertEnabled>

 <assetTag>Will be added</assetTag>

 <bladeBmc>

 <gateway>Not applicable</gateway>

 <guid>b560b268-c9e0-46da-8029-5f8d2eeed61e</guid>

 <ipAddress>Not applicable</ipAddress>

 <ipmiVersion>Not applicable</ipmiVersion>

 <macAddress>Not applicable</macAddress>

 <netmask>Not applicable</netmask>

 <solEnabled>true</solEnabled>

 <vlanTag>1</vlanTag>

 </bladeBmc>

 <dhcp>false</dhcp>

 <firmwareVersion>01.03</firmwareVersion>

 <hardwareVersion>V1.0</hardwareVersion>

 <id>1</id>

 <ipAddress>0.0.0.0</ipAddress>

 <ipmiEnabled>true</ipmiEnabled>

 <logEnabled>true</logEnabled>

 <macAddress>00-00-00-00-00-00</macAddress>

 <numberComputeNodes>1</numberComputeNodes>

76 January 28, 2014

 <serialNumber>MH822400349</serialNumber>

 </detailedBladeInfo>

 </BladeInfoResponse>

...

 <BladeInfoResponse>

 <bladeResponse>

 <CompletionCode>Success</CompletionCode>

 <statusDescription></statusDescription>

 <apiVersion>1</apiVersion>

 <bladeNumber>24</bladeNumber>

 </bladeResponse>

 <detailedBladeInfo>

 <alertEnabled>true</alertEnabled>

 <assetTag>Blank For Now, need to locate in FRU</assetTag>

 <bladeBmc>

 <gateway>Not applicable</gateway>

 <guid>c7954895-cb36-4a79-a5b3-8fa2fbb0795a</guid>

 <ipAddress>Not applicable</ipAddress>

 <ipmiVersion>Not applicable</ipmiVersion>

 <macAddress>Not applicable</macAddress>

 <netmask>Not applicable</netmask>

 <solEnabled>true</solEnabled>

 <vlanTag>1</vlanTag>

 </bladeBmc>

 <dhcp>false</dhcp>

 <firmwareVersion>01.03</firmwareVersion>

 <hardwareVersion>V1.0</hardwareVersion>

 <id>24</id>

 <ipAddress>0.0.0.0</ipAddress>

 <ipmiEnabled>true</ipmiEnabled>

 <logEnabled>true</logEnabled>

 <macAddress>00-00-00-00-00-00</macAddress>

 <numberComputeNodes>1</numberComputeNodes>

 <serialNumber>MH822400334</serialNumber>

 </detailedBladeInfo>

 </BladeInfoResponse>

Open Compute Project  Open CloudServer chassis management specification

http://opencompute.org 77

 </GetAllBladesInfoResponse>

9.6.4 Turns Chassis Attention LED ON

ChassisResponse SetChassisAttentionLEDOn()

https://localhost:8000/SetChassisAttentionLEDOn?

Usage scenario:

This API is used to turn the chassis attention LED ON.

The attention LED indicates that the chassis manager needs attention. It directs service

technicians to the correct chassis for repair. chassis manager logs are available through the

management system to direct repair (through the ReadChassisLog() API). Users can also flag a

service requirement by turning ON the attention LED. When possible, repairs will also be self-

directed by the chassis management system. Operators/users must make sure that the chassis

attention LED is turned OFF after service is complete.

Input parameters:

 None

Sample response:

<ChassisResponse

xmlns="http://schemas.datacontract.org/2004/07/Microsoft.GFS.ACS.Contracts"

xmlns:i="http://www.w3.org/2001/XMLSchema-instance">

 <completionCode>Success</completionCode>

 <statusDescription></statusDescription>

 <apiVersion>1</apiVersion>

 </ChassisResponse>

9.6.5 Turns Chassis Attention LED OFF

ChassisResponse SetChassisAttentionLEDOff()

https://localhost:8000/SetChassisAttentionLEDOff?

Usage scenario:

This API is used to turn the chassis attention LED OFF.

The attention LED indicates that the chassis manager needs attention. It directs service

technicians to the correct chassis for repair. chassis manager logs are available through the

management system to direct repair (through the ReadChassisLog() API). Users can also flag a

service requirement by turning ON the attention LED. When possible, repairs will also be self-

directed by the chassis management system. Operators/users must make sure that the chassis

attention LED is turned OFF after service is complete.

https://localhost:8000/SetChassisAttentionLEDOn?
https://localhost:8000/SetChassisAttentionLEDOff?

78 January 28, 2014

Input parameters:

 None

Sample response:

<ChassisResponse

xmlns="http://schemas.datacontract.org/2004/07/Microsoft.GFS.ACS.Contracts"

xmlns:i="http://www.w3.org/2001/XMLSchema-instance">

 <completionCode>Success</completionCode>

 <statusDescription></statusDescription>

 <apiVersion>1</apiVersion>

 </ChassisResponse>

9.6.6 Gets Chassis Attention LED Status

LEDStatusResponse GetChassisAttentionLEDStatus()

https://localhost:8000/GetChassisAttentionLEDStatus?

Usage scenario:

This API gets the chassis attention LED status (whether ON or OFF).

The attention LED indicates that the chassis manager needs attention. It directs service

technicians to the correct chassis for repair. chassis manager logs are available through the

management system to direct repair (through the ReadChassisLog() API). Users can also flag a

service requirement by turning ON the attention LED. When possible, repairs will also be self-

directed by the chassis management system. Operators/users must make sure that the chassis

attention LED is turned OFF after service is complete.

Input parameters:

 None

Sample response:

<LEDStatusResponse

xmlns="http://schemas.datacontract.org/2004/07/Microsoft.GFS.ACS.Contracts"

xmlns:i="http://www.w3.org/2001/XMLSchema-instance">

 <completionCode>Success</completionCode>

 <statusDescription></statusDescription>

 <apiVersion>1</apiVersion>

 <ledState>OFF</ledState>

 </LEDStatusResponse>

https://localhost:8000/GetChassisAttentionLEDStatus?

Open Compute Project  Open CloudServer chassis management specification

http://opencompute.org 79

9.6.7 Turns Blade Attention LED ON

BladeResponse SetBladeAttentionLEDOn(int bladeId)

https://localhost:8000/SetBladeAttentionLEDOn?bladeId=1

Usage scenario:

This API turns the blade attention LED ON.

The attention LED indicates that the blade needs attention. It directs service technicians to the

correct blade for repair. Blade logs are available through the management system to direct

repair (through the ReadBladeLog() API). Users can also flag a service requirement by turning

ON the attention LED. Operators/users must make sure that the blade attention LED is turned

OFF after service is complete.

Input parameters:

 bladeId (blade index 1-48)

Sample response:

<BladeResponse

xmlns="http://schemas.datacontract.org/2004/07/Microsoft.GFS.ACS.Contracts"

xmlns:i="http://www.w3.org/2001/XMLSchema-instance">

 <CompletionCode>Success</CompletionCode>

 <statusDescription></statusDescription>

 <apiVersion>1</apiVersion>

 <bladeNumber>1</bladeNumber>

 </BladeResponse>

9.6.8 Turns All Blade Attention LEDs ON

AllBladesResponse SetAllBladesAttentionLEDOn()

https://localhost:8000/SetAllBladesAttentionLEDOn?

Usage scenario:

This API turns the attention LEDs on all blades ON.

The attention LED indicates that the blade needs attention. It directs service technicians to the

correct blade for repair. Blade logs are available through the management system to direct

repair (through the ReadBladeLog() API). Users can also flag a service requirement by turning

ON the attention LED. Operators/users must make sure that the blade attention LED is turned

OFF after service is complete.

https://localhost:8000/SetBladeAttentionLEDOn?
https://localhost:8000/SetAllBladesAttentionLEDOn?

80 January 28, 2014

Note that when multiple users are actively trying to access/modify the same state of a single

blade or of different blades, ordering is not guaranteed.

Input parameters:

 None

Sample response:

- <AllBladesResponse

xmlns="http://schemas.datacontract.org/2004/07/Microsoft.GFS.ACS.Contracts"

xmlns:i="http://www.w3.org/2001/XMLSchema-instance">

- <BladeResponse>

 <CompletionCode>Success</CompletionCode>

 <statusDescription></statusDescription>

 <apiVersion>1</apiVersion>

 <bladeNumber>1</bladeNumber>

 </BladeResponse>

- <BladeResponse>

 <CompletionCode>Success</CompletionCode>

 <statusDescription></statusDescription>

 <apiVersion>1</apiVersion>

 <bladeNumber>2</bladeNumber>

 </BladeResponse>

…

- <BladeResponse>

 <CompletionCode>Success</CompletionCode>

 <statusDescription></statusDescription>

 <apiVersion>1</apiVersion>

 <bladeNumber>24</bladeNumber>

 </BladeResponse>

 </AllBladesResponse>

9.6.9 Turns Blade Attention LED OFF

BladeResponse SetBladeAttentionLEDOff(int bladeId)

https://localhost:8000/SetBladeAttentionLEDOff?bladeId=1

Usage scenario:

https://localhost:8000/SetBladeAttentionLEDOff?

Open Compute Project  Open CloudServer chassis management specification

http://opencompute.org 81

This API turns the blade attention LED OFF.

The attention LED indicates that the blade needs attention. It directs service technicians to the

correct blade for repair. Blade logs are available through the management system to direct

repair (through the ReadBladeLog() API). Users can also flag a service requirement by turning

ON the attention LED. Operators/users must make sure that the blade attention LED is turned

OFF after service is complete.

Input parameters:

 bladeId (blade index 1-48)

Sample response:

<BladeResponse

xmlns="http://schemas.datacontract.org/2004/07/Microsoft.GFS.ACS.Contracts"

xmlns:i="http://www.w3.org/2001/XMLSchema-instance">

 <CompletionCode>Success</CompletionCode>

 <statusDescription></statusDescription>

 <apiVersion>1</apiVersion>

 <bladeNumber>1</bladeNumber>

 </BladeResponse>

9.6.10 Turns All Blade Attention LEDs OFF

AllBladesResponse SetAllBladesAttentionLEDOff()

https://localhost:8000/SetAllBladesAttentionLEDOff?

Usage scenario:

This API is used to turn the attention LED on all blades OFF.

The attention LED indicates that the blade needs attention. It directs service technicians to the

correct blade for repair. Blade logs are available through the management system to direct

repair (through the ReadBladeLog() API). Users can also flag a service requirement by turning

ON the attention LED. Operators/users must make sure that the blade attention LED is turned

OFF after service is complete.

Note that when multiple users are actively trying to access/modify the same state of a single

blade or of different blades, ordering is not guaranteed.

Input parameters:

 None

Sample response:

- <AllBladesResponse

xmlns="http://schemas.datacontract.org/2004/07/Microsoft.GFS.ACS.Contracts"

xmlns:i="http://www.w3.org/2001/XMLSchema-instance">

https://localhost:8000/SetAllBladesAttentionLEDOff?

82 January 28, 2014

- <BladeResponse>

 <CompletionCode>Success</CompletionCode>

 <statusDescription></statusDescription>

 <apiVersion>1</apiVersion>

 <bladeNumber>1</bladeNumber>

 </BladeResponse>

- <BladeResponse>

 <CompletionCode>Success</CompletionCode>

 <statusDescription></statusDescription>

 <apiVersion>1</apiVersion>

 <bladeNumber>2</bladeNumber>

 </BladeResponse>

…

- <BladeResponse>

 <CompletionCode>Success</CompletionCode>

 <statusDescription></statusDescription>

 <apiVersion>1</apiVersion>

 <bladeNumber>24</bladeNumber>

 </BladeResponse>

 </AllBladesResponse>

9.6.11 Sets Default Blade Power State ON

BladeResponse SetBladeDefaultPowerStateOn(int bladeId)

https://localhost:8000/SetBladeDefaultPowerStateOn?bladeId=1

Usage scenario:

This API sets the default power state of a blade ON.

The default power state of the blade is the state of the blade after it receives AC power,

either when a blade is initially inserted in the slot or when power returns after a utility failure.

If the default state is set to OFF, the blade will not be powered ON after receiving AC input

power, and an explicit SetBladeActivePowerOn() API will need to be sent to power ON the

blade. Note that the blade default power state does not affect the active power state of the

blade, only their behavior after a power recycle.

https://localhost:8000/SetBladeDefaultPowerStateOn?bladeId=1

Open Compute Project  Open CloudServer chassis management specification

http://opencompute.org 83

Input parameters:

 bladeId (blade index 1-48)

Sample response:

<BladeResponse

xmlns="http://schemas.datacontract.org/2004/07/Microsoft.GFS.ACS.Contracts"

xmlns:i="http://www.w3.org/2001/XMLSchema-instance">

 <CompletionCode>Success</CompletionCode>

 <statusDescription></statusDescription>

 <apiVersion>1</apiVersion>

 <bladeNumber>1</bladeNumber>

 </BladeResponse>

9.6.12 Sets Default Power State of All Blades ON

AllBladesResponse SetAllBladesDefaultPowerStateOn()

https://localhost:8000/SetAllBladesDefaultPowerStateOn?

Usage scenario:

This API sets the default power state of all blades ON.

The default power state of the blade is the state of the blade after it receives AC power,

either when a blade is initially inserted in the slot or when power returns after a utility failure.

If the default state is set to OFF, the blade will not be powered ON after receiving AC input

power, and an explicit SetBladeActivePowerOn() API will need to be sent to power ON the

blade. Note that the blade default power state does not affect the active power state of the

blade; the default power state only affects their behavior after a power recycle.

Note that when multiple users are actively trying to access/modify the same state of a single

blade or of different blades, ordering is not guaranteed.

Input parameters:

 None

Sample response:

- <AllBladesResponse

xmlns="http://schemas.datacontract.org/2004/07/Microsoft.GFS.ACS.Contracts"

xmlns:i="http://www.w3.org/2001/XMLSchema-instance">

- <BladeResponse>

 <CompletionCode>Success</CompletionCode>

 <statusDescription></statusDescription>

 <apiVersion>1</apiVersion>

https://localhost:8000/SetAllBladesDefaultPowerStateOn?

84 January 28, 2014

 <bladeNumber>1</bladeNumber>

 </BladeResponse>

- <BladeResponse>

 <CompletionCode>Success</CompletionCode>

 <statusDescription></statusDescription>

 <apiVersion>1</apiVersion>

 <bladeNumber>2</bladeNumber>

 </BladeResponse>

...

- <BladeResponse>

 <CompletionCode>Success</CompletionCode>

 <statusDescription></statusDescription>

 <apiVersion>1</apiVersion>

 <bladeNumber>24</bladeNumber>

 </BladeResponse>

 </AllBladesResponse>

9.6.13 Sets Default Blade Power State OFF

BladeResponse SetBladeDefaultPowerStateOff(int bladeId)

http://localhost:8000/SetBladeDefaultPowerStateOff?bladeId=1

Usage scenario:

This API sets the default power state of a blade OFF.

The default power state of the blade is the state of the blade after it receives AC power,

either when a blade is initially inserted in the slot or when power returns after a utility failure.

If the default state is set to OFF, the blade will not be powered ON after receiving AC input

power, and an explicit SetBladeActivePowerOn() API will need to be sent to power ON the

blade. Note that the blade default power state does not affect the active power state of the

blade; the default power state of a blade only affects the behavior after a power recycle.

Input parameters:

 bladeId (blade index 1-48)

Sample response:

<BladeResponse

xmlns="http://schemas.datacontract.org/2004/07/Microsoft.GFS.ACS.Contracts"

http://localhost:8000/SetBladeDefaultPowerStateOff?bladeId=1&allBlades=false

Open Compute Project  Open CloudServer chassis management specification

http://opencompute.org 85

xmlns:i="http://www.w3.org/2001/XMLSchema-instance">

 <completionCode>Success</completionCode>

 <statusDescription></statusDescription>

 <apiVersion>1</apiVersion>

 <bladeNumber>1</bladeNumber>

 </BladeResponse>

9.6.14 Sets Default Power State of All Blades OFF

AllBladesResponse SetAllBladesDefaultPowerStateOff()

http://localhost:8000/SetAllBladesDefaultPowerStateOff?bladeId=1

Sets the default power state of all blades OFF

Usage scenario:

This API sets the default power state of all blades OFF.

The default power state of the blade is the state of the blade after it receives AC power,

either when a blade is initially inserted in the slot or when power returns after a utility failure.

If the default state is set to OFF, the blade will not be powered ON after receiving AC input

power, and an explicit SetBladeActivePowerOn() API will need to be sent to power ON the

blade. Note that the blade default power state does not affect the active power state of the

blade; the default power state only affects the behavior after a power recycle.

Note also that when multiple users are actively trying to access/modify the same state of a

single blade or of different blades, ordering is not guaranteed.

Input parameters:

 None

Sample response:

- <AllBladesResponse

xmlns="http://schemas.datacontract.org/2004/07/Microsoft.GFS.ACS.Contracts"

xmlns:i="http://www.w3.org/2001/XMLSchema-instance">

- <BladeResponse>

 <completionCode>Success</completionCode>

 <statusDescription></statusDescription>

 <apiVersion>1</apiVersion>

 <bladeNumber>1</bladeNumber>

 </BladeResponse>

- <BladeResponse>

 <completionCode>Success</completionCode>

http://localhost:8000/SetAllBladesDefaultPowerStateOff?bladeId=1

86 January 28, 2014

 <statusDescription></statusDescription>

 <apiVersion>1</apiVersion>

 <bladeNumber>2</bladeNumber>

 </BladeResponse>

...

- <BladeResponse>

 <completionCode>Success</completionCode>

 <statusDescription></statusDescription>

 <apiVersion>1</apiVersion>

 <bladeNumber>24</bladeNumber>

 </BladeResponse>

 </AllBladesResponse>

9.6.15 Gets Default Blade Power State

BladeStateResponse GetBladeDefaultPowerState(int bladeId)

https://localhost:8000/GetBladeDefaultPowerState?bladeId=1

Usage scenario:

This API gets the default power state of the blade.

The default power state of the blade is the state of the blade after it receives AC power,

either when a blade is initially inserted in the slot or when power returns after a utility failure.

If the default state is set to OFF, the blade will not be powered ON after receiving AC input

power, and an explicit SetBladeActivePowerOn() API will need to be sent to power ON the

blade. Note that the blade default power state does not affect the active power state of the

blade; the default power state only affects the behavior after a power recycle.

Input parameters:

 bladeId (blade index 1-48)

Sample response:

BladeStateResponse

xmlns="http://schemas.datacontract.org/2004/07/Microsoft.GFS.ACS.Contracts"

xmlns:i="http://www.w3.org/2001/XMLSchema-instance">

- <bladeResponse>

 <completionCode>Success</completionCode>

 <statusDescription></statusDescription>

https://localhost:8000/GetBladeDefaultPowerState?bladeId=1&allBlades=false

Open Compute Project  Open CloudServer chassis management specification

http://opencompute.org 87

 <apiVersion>1</apiVersion>

 <bladeNumber<

>1</bladeNumber>

 </bladeResponse>

 <bladeState>ON</bladeState>

 </BladeStateResponse>

9.6.16 Gets the Default Power State of All Blades

GetAllBladesStateResponse GetAllBladesDefaultPowerState()

https://localhost:8000/GetAllBladesDefaultPowerState?

Usage scenario:

The default power state of the blade is the state of the blade after it receives AC power,

either when a blade is initially inserted in the slot or when power returns after a utility failure.

If the default state is set to OFF, the blade will not be powered ON after receiving AC input

power, and an explicit SetBladeActivePowerOn() API will need to be sent to power ON the

blade. Note that the blade default power state does not affect the active power state of the

blade; the default power state only affects the behavior after a power recycle.

Note also that when multiple users are actively trying to access/modify the same state of a

single blade or of different blades, ordering is not guaranteed.

Input parameters:

 None

Sample response:

- <GetAllBladesStateResponse

xmlns="http://schemas.datacontract.org/2004/07/Microsoft.GFS.ACS.Contracts"

xmlns:i="http://www.w3.org/2001/XMLSchema-instance">

- <BladeStateResponse>

- <bladeResponse>

 <completionCode>Success</completionCode>

 <statusDescription></statusDescription>

 <apiVersion>1</apiVersion>

 <bladeNumber>1</bladeNumber>

 </bladeResponse>

 <bladeState>ON</bladeState>

 </BladeStateResponse>

https://localhost:8000/GetAllBladesDefaultPowerState?

88 January 28, 2014

- <BladeStateResponse>

- <bladeResponse>

 <completionCode>Success</completionCode>

 <statusDescription></statusDescription>

 <apiVersion>1</apiVersion>

 <bladeNumber>2</bladeNumber>

 </bladeResponse>

 <bladeState>ON</bladeState>

 </BladeStateResponse>

...

- <BladeStateResponse>

- <bladeResponse>

 <completionCode>Success</completionCode>

 <statusDescription></statusDescription>

 <apiVersion>1</apiVersion>

 <bladeNumber>24</bladeNumber>

 </bladeResponse>

 <bladeState>ON</bladeState>

 </BladeStateResponse>

 </GetAllBladesStateResponse>

9.6.17 Gets Outlet Power State of Blade

PowerStateResponse GetPowerState(int bladeId)

https://localhost:8000/GetPowerState?bladeId=1

Usage scenario:

This API gets the AC outlet power state of a blade (whether or not the blade is receiving AC

power).

When ON, the blade is receiving AC power (hard-power state). When AC power is supplied to

the blade and when the default power state of the blade is ON, the blade chipset will receive

power and the boot process will be initiated. If the default power state of the blade is OFF

when AC power is applied, the blade chipset will not receive power (and the boot process will

https://localhost:8000/GetPowerState?bladeId=1

Open Compute Project  Open CloudServer chassis management specification

http://opencompute.org 89

not be initiated) unless an explicit “SetBladeOn” command is sent to the blade.

When OFF, the blade is not receiving AC power

Input parameters:

 bladeId (blade index 1-48)

Sample response:

<PowerStateResponse

xmlns="http://schemas.datacontract.org/2004/07/Microsoft.GFS.ACS.Contracts"

xmlns:i="http://www.w3.org/2001/XMLSchema-instance">

- <bladeResponse>

 <completionCode>Success</completionCode>

 <statusDescription></statusDescription>

 <apiVersion>1</apiVersion>

 <bladeNumber>1</bladeNumber>

 </bladeResponse>

 <powerState>ON</powerState>

 </PowerStateResponse>

9.6.18 Gets AC Outlet Power State of All Blades

GetAllPowerStateResponse GetAllPowerState()

https://localhost:8000/GetAllPowerState?

Usage scenario:

This API gets the AC outlet power state of all blades (whether or not the blades are receiving

AC power).

When ON, the blade is receiving AC power (hard-power state). When AC power is supplied to

the blade and when the default power state of the blade is ON, the blade chipset will receive

power and the boot process will be initiated. If the default power state of the blade is OFF

when AC power is applied, the blade chipset will not receive power (and the boot process will

not be initiated) unless an explicit “SetBladeOn” command is sent to the blade.

When OFF, the blade is not receiving AC power.

Note that when multiple users are actively trying to access/modify the same state of a single

blade or of different blades, ordering is not guaranteed.

Input parameters:

 None

Sample response:

- < GetAllPowerStateResponse

https://localhost:8000/GetAllPowerState?

90 January 28, 2014

xmlns="http://schemas.datacontract.org/2004/07/Microsoft.GFS.ACS.Contracts"

xmlns:i="http://www.w3.org/2001/XMLSchema-instance">

- <PowerStateResponse>

- <bladeResponse>

 <completionCode>Success</completionCode>

 <statusDescription></statusDescription>

 <apiVersion>1</apiVersion>

 <bladeNumber>1</bladeNumber>

 </bladeResponse>

 <powerState>ON</powerState>

 </PowerStateResponse>

- <PowerStateResponse>

- <bladeResponse>

 <completionCode>Success</completionCode>

 <statusDescription></statusDescription>

 <apiVersion>1</apiVersion>

 <bladeNumber>2</bladeNumber>

 </bladeResponse>

 <powerState>ON</powerState>

 </PowerStateResponse>

...

- <PowerStateResponse>

- <bladeResponse>

 <completionCode>Success</completionCode>

 <statusDescription></statusDescription>

 <apiVersion>1</apiVersion>

 <bladeNumber>24</bladeNumber>

 </bladeResponse>

 <powerState>ON</powerState>

 </PowerStateResponse>

 </ GetAllPowerStateResponse>

Open Compute Project  Open CloudServer chassis management specification

http://opencompute.org 91

9.6.19 Turns AC Outlet Power ON for Blade

BladeResponse SetPowerOn(int bladeId)

https://localhost:8000/SetPowerOn?bladeId=1

Usage scenario:

This API turns the AC power outlet power ON for a blade.

When ON, the blade is receiving AC power (hard-power state). When AC power is supplied to

the blade and when the default power state of the blade is ON, the blade chipset will receive

power and the boot process will be initiated. If the default power state of the blade is OFF

when AC power is applied, the blade chipset will not receive power (and the boot process will

not be initiated) unless an explicit “SetBladeOn” command is sent to the blade.

When OFF, the blade is not receiving AC power.

Input parameters:

 bladeId (blade index 1-48)

Sample response:

<BladeResponse

xmlns="http://schemas.datacontract.org/2004/07/Microsoft.GFS.ACS.Contracts"

xmlns:i="http://www.w3.org/2001/XMLSchema-instance">

 <completionCode>Success</completionCode>

 <statusDescription></statusDescription>

 <apiVersion>1</apiVersion>

 <bladeNumber>1</bladeNumber>

 </BladeResponse>

9.6.20 Turns the AC Outlet Power ON for All Blades

AllBladesResponse SetAllPowerOn()

https://localhost:8000/SetAllPowerOn?

Usage scenario:

This API turns the AC power outlet ON for all blades.

When ON, the blade is receiving AC power (hard-power state). When AC power is supplied to

the blade and when the default power state of the blade is ON, the blade chipset will receive

power and the boot process will be initiated. If the default power state of the blade is OFF

when AC power is applied, the blade chipset will not receive power (and the boot process will

not be initiated) unless an explicit “SetBladeOn” command is sent to the blade.

https://localhost:8000/SetPowerOn?bladeId=1
https://localhost:8000/SetAllPowerOn?

92 January 28, 2014

When OFF, the blade is not receiving AC power.

Note that when multiple users are actively trying to access/modify the same state of a single

blade or of different blades, ordering is not guaranteed.

Input parameters:

 None

Sample response:

- <AllBladesResponse

xmlns="http://schemas.datacontract.org/2004/07/Microsoft.GFS.ACS.Contracts"

xmlns:i="http://www.w3.org/2001/XMLSchema-instance">

- <BladeResponse>

 <completionCode>Success</completionCode>

 <statusDescription></statusDescription>

 <apiVersion>1</apiVersion>

 <bladeNumber>1</bladeNumber>

 </BladeResponse>

- <BladeResponse>

 <completionCode>Success</completionCode>

 <statusDescription></statusDescription>

 <apiVersion>1</apiVersion>

 <bladeNumber>2</bladeNumber>

 </BladeResponse>

...

- <BladeResponse>

 <completionCode>Success</completionCode>

 <statusDescription></statusDescription>

 <apiVersion>1</apiVersion>

 <bladeNumber>24</bladeNumber>

 </BladeResponse>

 </AllBladesResponse>

9.6.21 Turns AC Outlet Power OFF for Blade

Open Compute Project  Open CloudServer chassis management specification

http://opencompute.org 93

BladeResponse SetPowerOff(int bladeId)

https://localhost:8000/SetPowerOff?bladeId=1

Usage scenario:

This API turns the AC power OFF for a blade.

When ON, the blade is receiving AC power (hard-power state). When AC power is supplied to

the blade and when the default power state of the blade is ON, the blade chipset will receive

power and the boot process will be initiated. If the default power state of the blade is OFF

when AC power is applied, the blade chipset will not receive power (and the boot process will

not be initiated) unless an explicit “SetBladeOn” command is sent to the blade.

When OFF, the blade is not receiving AC power.

Input parameters:

 bladeId (blade index 1-48)

Sample response:

<BladeResponse

xmlns="http://schemas.datacontract.org/2004/07/Microsoft.GFS.ACS.Contracts"

xmlns:i="http://www.w3.org/2001/XMLSchema-instance">

 <completionCode>Success</completionCode>

 <statusDescription></statusDescription>

 <apiVersion>1</apiVersion>

 <bladeNumber>1</bladeNumber>

 </BladeResponse>

9.6.22 Turns AC Outlet Power OFF for All Blades

AllBladesResponse SetAllPowerOff()

https://localhost:8000/SetAllPowerOff?

Usage scenario:

This API turns the AC power OFF for all blades.

When ON, the blade is receiving AC power (hard-power state). When AC power is supplied to

the blade and when the default power state of the blade is ON, the blade chipset will receive

power and the boot process will be initiated. If the default power state of the blade is OFF

when AC power is applied, the blade chipset will not receive power (and the boot process will

not be initiated) unless an explicit “SetBladeOn” command is sent to the blade.

When OFF, the blade is not receiving AC power.

https://localhost:8000/SetPowerOff?bladeId=1
https://localhost:8000/SetAllPowerOff?

94 January 28, 2014

Note that when multiple users are actively trying to access/modify the same state of a single

blade or of different blades, ordering is not guaranteed.

Input parameters:

 None

Sample response:

- <AllBladesResponse

xmlns="http://schemas.datacontract.org/2004/07/Microsoft.GFS.ACS.Contracts"

xmlns:i="http://www.w3.org/2001/XMLSchema-instance">

 <completionCode>Success</completionCode>

 <statusDescription></statusDescription>

 <apiVersion>1</apiVersion>

- <BladeResponse>

 <completionCode>Success</completionCode>

 <statusDescription></statusDescription>

 <apiVersion>1</apiVersion>

 <bladeNumber>1</bladeNumber>

 </BladeResponse>

- <BladeResponse>

 <completionCode>Success</completionCode>

 <statusDescription></statusDescription>

 <apiVersion>1</apiVersion>

 <bladeNumber>2</bladeNumber>

 </BladeResponse>

...

- <BladeResponse>

 <completionCode>Success</completionCode>

 <statusDescription></statusDescription>

 <apiVersion>1</apiVersion>

 <bladeNumber>24</bladeNumber>

 </BladeResponse>

 </AllBladesResponse>

Open Compute Project  Open CloudServer chassis management specification

http://opencompute.org 95

9.6.23 Gets the ON/OFF State of Blade

BladeState GetBladeState(int bladeId)

https://localhost:8000/GetBladeState?bladeId=1

Usage scenario:

This API is used to get the ON/OFF state of a blade (whether or not blade chipset is receiving

power).

When ON, the blade is receiving AC power (hard-power state) and the chipset is receiving

power (soft-power state).

When OFF, the blade chipset is not receiving power.

Input parameters:

 bladeId (blade index 1-48)

Sample response:

<BladeStateResponse

xmlns="http://schemas.datacontract.org/2004/07/Microsoft.GFS.ACS.Contracts"

xmlns:i="http://www.w3.org/2001/XMLSchema-instance">

- <bladeResponse>

 <completionCode>Success</completionCode>

 <statusDescription></statusDescription>

 <apiVersion>1</apiVersion>

 <bladeNumber>1</bladeNumber>

 </bladeResponse>

 <powerState>ON</powerState>

 </BladeStateResponse>

9.6.24 Gets the ON/OFF State of All Blades

GetAllBladesStateResponse GetAllBladesState()

https://localhost:8000/GetAllBladesState?

Usage scenario:

This API gets the ON/OFF state of all blades (whether or not blade chipsets are receiving

power).

When ON, the blades are receiving AC power (hard-power state) and the chipsets are

receiving power (soft-power state).

https://localhost:8000/GetBladeState?bladeId=1
https://localhost:8000/GetAllBladesState?

96 January 28, 2014

When OFF, the blade chipsets are not receiving power.

Note that when multiple users are actively trying to access/modify the same state of a single

blade or of different blades, ordering is not guaranteed.

Input parameters:

 None

Sample response:

- <GetAllBladesStateResponse

xmlns="http://schemas.datacontract.org/2004/07/Microsoft.GFS.ACS.Contracts"

xmlns:i="http://www.w3.org/2001/XMLSchema-instance">

 <completionCode>Success</completionCode>

 <statusDescription></statusDescription>

 <apiVersion>1</apiVersion>

- <BladeStateResponse>

- <bladeResponse>

 <completionCode>Success</completionCode>

 <statusDescription></statusDescription>

 <apiVersion>1</apiVersion>

 <bladeNumber>1</bladeNumber>

 </bladeResponse>

 <powerState>ON</powerState>

 </BladeStateResponse>

- <BladeStateResponse>

- <bladeResponse>

 <completionCode>Success</completionCode>

 <statusDescription></statusDescription>

 <apiVersion>1</apiVersion>

 <bladeNumber>2</bladeNumber>

 </bladeResponse>

 <powerState>ON</powerState>

 </BladeStateResponse>

...

- <BladeStateResponse>

- <bladeResponse>

Open Compute Project  Open CloudServer chassis management specification

http://opencompute.org 97

 <completionCode>Success</completionCode>

 <statusDescription></statusDescription>

 <apiVersion>1</apiVersion>

 <bladeNumber>24</bladeNumber>

 </bladeResponse>

 <powerState>ON</powerState>

 </BladeStateResponse>

 </GetAllBladesStateResponse>

9.6.25 Supplies Power to the Blade Chipset

BladeResponse SetBladeOn(int bladeId)

https://localhost:8000/SetBladeOn?bladeId=1

Usage scenario:

This API is used to supply power to the blade chipset (initialize the boot process).

When ON, the blade is receiving AC power (hard-power state) and the chipset is receiving

power (soft-power state).

When OFF, the blade chipset is not receiving power.

Input parameters:

 bladeId (blade index 1-48)

Sample response:

<BladeResponse

xmlns="http://schemas.datacontract.org/2004/07/Microsoft.GFS.ACS.Contracts"

xmlns:i="http://www.w3.org/2001/XMLSchema-instance">

 <completionCode>Success</completionCode>

 <statusDescription></statusDescription>

 <apiVersion>1</apiVersion>

 <bladeNumber>1</bladeNumber>

 </BladeResponse>

9.6.26 Supplies Power to All Blade Chipsets

AllBladesResponse SetAllBladesOn()

https://localhost:8000/SetAllBladesOn?

https://localhost:8000/SetBladeOn?bladeId=1
https://localhost:8000/SetAllBladesOn?

98 January 28, 2014

Usage scenario:

This API is used to supply power to the chipsets (initialize the boot process).

When ON, the blades are receiving AC power (hard-power state) and the chipsets are

receiving power (soft-power state).

When OFF, the blade chipsets are not receiving power.

Note that when multiple users are actively trying to access/modify the same state of a single

blade or of different blades, ordering is not guaranteed.

Input parameters:

 None

Sample response:

- <AllBladesResponse

xmlns="http://schemas.datacontract.org/2004/07/Microsoft.GFS.ACS.Contracts"

xmlns:i="http://www.w3.org/2001/XMLSchema-instance">

 <completionCode>Success</completionCode>

 <statusDescription></statusDescription>

 <apiVersion>1</apiVersion>

- <BladeResponse>

 <completionCode>Success</completionCode>

 <statusDescription></statusDescription>

 <apiVersion>1</apiVersion>

 <bladeNumber>1</bladeNumber>

 </BladeResponse>

- <BladeResponse>

 <completionCode>Success</completionCode>

 <statusDescription></statusDescription>

 <apiVersion>1</apiVersion>

 <bladeNumber>2</bladeNumber>

 </BladeResponse>

...

- <BladeResponse>

 <completionCode>Success</completionCode>

 <statusDescription></statusDescription>

 <apiVersion>1</apiVersion>

 <bladeNumber>24</bladeNumber>

Open Compute Project  Open CloudServer chassis management specification

http://opencompute.org 99

 </BladeResponse>

 </AllBladesResponse>

9.6.27 Stops Power to Blade Chipset

BladeResponse SetBladeOff(int bladeId)

https://localhost:8000/SetBladeOff?bladeId=1

Usage scenario:

This API is used to remove or stop power to the chipset.

When ON, the blade is receiving AC power (hard-power state) and the chipset is receiving

power (soft-power state).

When OFF, the blade chipset is not receiving power.

Input parameters:

 bladeId (blade index 1-48)

Sample response:

<BladeResponse

xmlns="http://schemas.datacontract.org/2004/07/Microsoft.GFS.ACS.Contracts"

xmlns:i="http://www.w3.org/2001/XMLSchema-instance">

 <completionCode>Success</completionCode>

 <statusDescription></statusDescription>

 <apiVersion>1</apiVersion>

 <bladeNumber>1</bladeNumber>

 </BladeResponse>

9.6.28 Stops Power to All Blade Chipsets

AllBladesResponse SetAllBladesOff()

https://localhost:8000/SetAllBladesOff?

Usage scenario:

This API is used to remove or turn OFF power to the chipsets.

When ON, the blades are receiving AC power (hard-power state) and the chipsets are

receiving power (soft-power state).

When OFF, the blade chipsets are not receiving power.

Note that when multiple users are actively trying to access/modify the same state of a single

blade or of different blades, ordering is not guaranteed.

https://localhost:8000/SetBladeOff?bladeId=1
https://localhost:8000/SetAllBladesOff?

100 January 28, 2014

Input parameters:

 None

Sample response:

- <AllBladesResponse

xmlns="http://schemas.datacontract.org/2004/07/Microsoft.GFS.ACS.Contracts"

xmlns:i="http://www.w3.org/2001/XMLSchema-instance">

 <completionCode>Success</completionCode>

 <statusDescription></statusDescription>

 <apiVersion>1</apiVersion>

- <BladeResponse>

 <completionCode>Success</completionCode>

 <statusDescription></statusDescription>

 <apiVersion>1</apiVersion>

 <bladeNumber>1</bladeNumber>

 </BladeResponse>

- <BladeResponse>

 <completionCode>Success</completionCode>

 <statusDescription></statusDescription>

 <apiVersion>1</apiVersion>

 <bladeNumber>2</bladeNumber>

 </BladeResponse>

...

- <BladeResponse>

 <completionCode>Success</completionCode>

 <statusDescription></statusDescription>

 <apiVersion>1</apiVersion>

 <bladeNumber>24</bladeNumber>

 </BladeResponse>

 </AllBladesResponse>

9.6.29 Power Cycle Blade

Open Compute Project  Open CloudServer chassis management specification

http://opencompute.org 101

BladeResponse SetBladeActivePowerCycle(int bladeId, uint offTime)

https://localhost:8000/SetBladeActivePowerCycle?bladeId=1&offTime=0

Usage scenario:

This API is used to power cycle (or soft reset) a blade.

Power cycle resets the blade (causing a software reboot sequence). The blade AC power

signal remains ON throughout the process. Any serial session active on that blade will

continue to be active during this process.

Input parameters:

 bladeId (blade index 1-48)

 offTime (time interval [in seconds] when the blade is powered off; if not specified, the

default interval is 0 [optional])

Sample response:

<BladeResponse

xmlns="http://schemas.datacontract.org/2004/07/Microsoft.GFS.ACS.Contracts"

xmlns:i="http://www.w3.org/2001/XMLSchema-instance">

 <completionCode>Success</completionCode>

 <statusDescription></statusDescription>

 <apiVersion>1</apiVersion>

 <bladeNumber>1</bladeNumber>

 </BladeResponse>

9.6.30 Power Cycle All Blades

AllBladesResponse SetAllBladesActivePowerCycle(uint offTime)

https://localhost:8000/SetAllBladesActivePowerCycle?offTime=0

Usage scenario:

This API power cycles (or soft resets) all blades.

Power cycle resets the blade (causing a software reboot sequence). The blade AC power

signal remains ON throughout the process. Any serial session active on that blade will

continue to be active during this process.

Note that when multiple users are actively trying to access/modify the same state of a single

blade or of different blades, ordering is not guaranteed.

Input parameters:

 offTime (time interval [in seconds] when the blade is powered off; if not specified, the

default interval is 0 [optional])

Sample response:

https://localhost:8000/SetBladeActivePowerCycle?bladeId=1&offTime=0
https://localhost:8000/SetAllBladesActivePowerCycle?

102 January 28, 2014

- <AllBladesResponse

xmlns="http://schemas.datacontract.org/2004/07/Microsoft.GFS.ACS.Contracts"

xmlns:i="http://www.w3.org/2001/XMLSchema-instance">

 <completionCode>Success</completionCode>

 <statusDescription></statusDescription>

 <apiVersion>1</apiVersion>

- <BladeResponse>

 <completionCode>Success</completionCode>

 <statusDescription></statusDescription>

 <apiVersion>1</apiVersion>

 <bladeNumber>1</bladeNumber>

 </BladeResponse>

- <BladeResponse>

 <completionCode>Success</completionCode>

 <statusDescription></statusDescription>

 <apiVersion>1</apiVersion>

 <bladeNumber>2</bladeNumber>

 </BladeResponse>

...

- <BladeResponse>

 <completionCode>Success</completionCode>

 <statusDescription></statusDescription>

 <apiVersion>1</apiVersion>

 <bladeNumber>24</bladeNumber>

 </BladeResponse>

 </AllBladesResponse>

9.6.31 Turns Chassis AC Sockets (TOR Switches) ON

ChassisResponse SetACSocketPowerStateOn(uint portNo)

https://localhost:8000/SetACSocketPowerStateOn?portNo=1

Usage scenario:

https://localhost:8000/SetACSocketPowerStateOn?portNo=

Open Compute Project  Open CloudServer chassis management specification

http://opencompute.org 103

This API turns the chassis AC sockets (TOR switches) ON.

The AC socket power state refers to the active power state of the COM ports (and therefore

to the power state of the device connected to the port) on the chassis manager. For example,

the TOR switch is connected to COM1 (port number 1).

Power ON/OFF APIs for the AC sockets makes it possible to remotely power-reset the device

The power ON/OFF APIs are also used for enabling/disabling.

Input parameters:

 portNo (port number of the AC socket)

Sample response:

<ChassisResponse

xmlns="http://schemas.datacontract.org/2004/07/Microsoft.GFS.ACS.Contracts"

xmlns:i="http://www.w3.org/2001/XMLSchema-instance">

 <completionCode>Success</completionCode>

 <statusDescription></statusDescription>

 <apiVersion>1</apiVersion>

 </ChassisResponse>

9.6.32 Turns Chassis AC Sockets (TOR Switches) OFF

ChassisResponse SetACSocketPowerStateOff(uint portNo)

https://localhost:8000/SetACSocketPowerStateOff?portNo=2

Usage scenario:

This API turns the chassis AC sockets (TOR switches) OFF.

The AC socket power state refers to the active power state of the COM ports (and therefore

to the power state of the device connected to the port) on the chassis manager. For example,

the TOR switch is connected to COM1 (port number 1).

Power ON/OFF APIs for the AC sockets makes it possible to remotely power-reset the device

The power ON/OFF APIs are also used for enabling/disabling.

Input parameters:

 portNo (port number of the AC socket)

Sample response:

<ChassisResponse

xmlns="http://schemas.datacontract.org/2004/07/Microsoft.GFS.ACS.Contracts"

xmlns:i="http://www.w3.org/2001/XMLSchema-instance">

 <completionCode>Success</completionCode>

 <statusDescription></statusDescription>

https://localhost:8000/SetACSocketPowerStateOff?portNo=

104 January 28, 2014

 <apiVersion>1</apiVersion>

 </ChassisResponse>

9.6.33 Gets Status of Chassis AC Sockets (TOR Switches)

ACSocketStateResponse GetACSocketPowerState(uint portNo)

https://localhost:8000/GetACSocketPowerState?portNo=1

Usage scenario:

This API gets the status of the chassis AC sockets (TOR switches).

The AC socket power state refers to the active power state of the COM ports (and therefore

to the power state of the device connected to the port) on the chassis manager. For example,

the TOR switch is connected to COM1 (port number 1).

Power ON/OFF APIs for the AC sockets makes it possible to remotely power-reset the device

The power ON/OFF APIs are also used for enabling/disabling.

Input parameters:

 portNo (port number of the AC socket)

Sample response:

<ACSocketStateResponse

xmlns="http://schemas.datacontract.org/2004/07/Microsoft.GFS.ACS.Contracts"

xmlns:i="http://www.w3.org/2001/XMLSchema-instance">

 <completionCode>Success</completionCode>

 <statusDescription></statusDescription>

 <apiVersion>1</apiVersion>

 <portNo>1</portNo>

 <powerState>ON</powerState>

 </ACSocketStateResponse>

9.6.34 Starts Serial Session to Blade

StartSerialResponse StartBladeSerialSession(int bladeId)

https://localhost:8000/StartBladeSerialSessions?bladeId=1

Usage scenario:

This API starts a serial session to a blade.

Users might want to open a serial session to a blade to debug, to view blade boot messages,

https://localhost:8000/GetACSocketPowerState?portNo=
https://localhost:8000/StartBladeSerialSessions?bladeId=1

Open Compute Project  Open CloudServer chassis management specification

http://opencompute.org 105

or to execute BIOS commands. A provided VT100 console client continuously polls the blade

for serial session data (using the ReceiveBladeSerialData API). Any user command entered

using the VT100 console is sent to the blade (using the SendBladeSerialData API).

Note that this session might close unexpectedly if there are any simultaneous IPMI

commands issued to any of the chassis blades or if the session is inactive (no

SendBladeSerialData request from client) for more than two minutes.

Input parameters:

 bladeId (blade index 1-48)

Sample response:

StartSerialResponse.sessionToken: 11234

StartSerialResponse.CompletionCode: success

9.6.35 Stop Serial Session to Blade

ChassisResponse StopBladeSerialSession(int bladeId, string sessionToken, bool

forceKill=false)

https://localhost:8000/StopBladeSerialSessions?bladeId=1

Usage scenario:

This API stops a serial session to a blade.

Users might want to open a serial session to a blade to debug, to view blade boot messages,

or to execute BIOS commands. A provided VT100 console client continuously polls the blade

for serial session data (using the ReceiveBladeSerialData API). Any user command entered

using the VT100 console is sent to the blade (using the SendBladeSerialData API).

Note that this session might close unexpectedly if there are any simultaneous IPMI

commands issued to any of the chassis blades (when the config. parameter forceKill is set to

true) or if the session is inactive (no SendBladeSerialData request from client) for more than

two minutes. However, when forceKill is set to false, an already existing blade serial console

session will not be interrupted, and an incoming IPMI command will be ignored.

Input parameters:

 bladeId (blade index 1-48)

 sessionToken (generated as part of the StartBladeSerialSession API)

 forceKill (true or false with semantics explained above)

Sample response:

 <completionCode>Success</completionCode>

https://localhost:8000/StopBladeSerialSessions?bladeId=1

106 January 28, 2014

 <statusDescription></statusDescription>

9.6.36 Sends Data to Blade Serial Device

ChassisResponse SendBladeSerialData(int bladeId, string sessionToken, byte[] data)

https://localhost:8000/SendBladeSerialData?bladeId=1?sessionToken?

Usage scenario:

This API sends the data entered by user on the serial console to the blade serial device

(internal API used by the serial-client-proxy)

Users might want to open a serial session to a blade to debug, to view blade boot messages,

or to execute BIOS commands. A provided VT100 console client continuously polls the blade

for serial session data (using the ReceiveBladeSerialData API). Any user command entered

using the VT100 console is sent to the blade (using the SendBladeSerialData API).

Note that this session might close unexpectedly if there are any simultaneous IPMI

commands issued to any of the chassis blades or if the session is inactive (no

SendBladeSerialData request from client) for more than two minutes.

Input parameters:

 bladeId (blade index 1-48)

 sessionToken (generated as part of the StartBladeSerialSession API)

 data (data to be sent)

Sample response:

ChassisResponse .completionCode: Success

9.6.37 Receives Data from Blade

SerialDataResponse ReceiveBladeSerialData(int bladeId, string sessionToken)

https://localhost:8000/ReceiveBladeSerialData?bladeId=1?sessionToken?

Usage scenario:

This API receives data from the blade (internal API used by the serial-client-proxy).

Users might want to open a serial session to a blade to debug, to view blade boot messages,

or to execute BIOS commands. A provided VT100 console client continuously polls the blade

for serial session data (using the ReceiveBladeSerialData API). Any user command entered

using the VT100 console is sent to the blade (using the SendBladeSerialData API).

Note that this session might close unexpectedly if there are any simultaneous IPMI

commands issued to any of the chassis blades or if the session is inactive (no

SendBladeSerialData request from client) for more than two minutes.

https://localhost:8000/SendBladeSerialData?bladeId=1?sessionToken
https://localhost:8000/ReceiveBladeSerialData?bladeId=1?sessionToken

Open Compute Project  Open CloudServer chassis management specification

http://opencompute.org 107

Input parameters:

 bladeId (blade index 1-48)

 sessionToken (token id generated as part of the StartBladeSerialSession API)

Sample response:

SerialDataResponse .bladeResponse.bladeCompletionCode: Success

SerialDataResponse .data

9.6.38 Starts Serial Port Console

StartSerialResponse StartSerialPortConsole(string portId)

https://localhost:8000/StartSerialPortConsole?PorId=3

Usage scenario:

This API is used to open a serial-port console terminal to serial devices that are connected to

the chassis manager (for example, TOR network switches). Note that the serial console might

close if session is inactive (no SendSerialPortData request from client) for more than two

minutes.

A provided VT100 console client continuously polls the serial device for data (using the

ReceiveSerialPortData API). Any user command entered using the VT100 console is sent to

the device (using the SendSerialPortData API).

Input parameters:

 portId (com1-com2)

Sample response:

StartSerialResponse.sessionToken: 32656

StartSerialResponse.CompletionCode: success

9.6.39 Stops Serial Port Console

StartSerialResponse StopSerialPortConsole(string portId, string sessionToken, bool

forceKill)

https://localhost:8000/StopSerialPortConsole?PorId=1

Usage scenario:

This API is used to close a serial-port console terminal to serial devices that are connected to

the chassis manager (for example, TOR network switches). Note that the serial console might

close if session is inactive (no SendSerialPortData request from client) for more than two

minutes.

A provided VT100 console client continuously polls the serial device for data (using the

ReceiveSerialPortData API). Any user command entered using the VT100 console is sent to

https://localhost:8000/StartSerialPortConsole?PorId=3
https://localhost:8000/StopSerialPortConsole?PorId=

108 January 28, 2014

the device (using the SendSerialPortData API).

Input parameters:

 portId (com1-com2)

 sessionToken

 forceKill

Sample response:

ChassisResponse.CompletionCode: success

9.6.40 Sends Serial Port Data

ChassisResponse SendSerialPortData(string portId, string sessionToken, byte[] data)

https://localhost:8000/SendSerialPortData?portId=1?sessionToken?

Sends the serial data to the blade

Usage scenario:

This is an internal API used for sending data from the user serial-client terminal to serial

devices connected to the chassis manager (for example, user commands executed on the TOR

network switch serial console). Note that the serial console might close if session is inactive

(no SendSerialPortData request from client) for more than two minutes.

A provided VT100 console client continuously polls the serial device for data (using the

ReceiveSerialPortData API). Any user command entered using the VT100 console is sent to

the device (using the SendSerialPortData API).

Input parameters:

 portId (com1-com2)

 sessionToken (token id)

 data (data to be sent)

Sample response:

ChassisResponse.CompletionCode: Success

9.6.41 Receives Serial Port Data

SerialDataResponse ReceiveSerialPortData(string portId, string sessionToken)

https://localhost:8000/ReceiveSerialPortData?portId=1?sessionToken?

Usage scenario:

This is an internal API used for receiving data on the terminal from serial devices connected

to the chassis manager (for example, user commands executed on the TOR network switch

serial console). Note that the serial console might close if session is inactive(no

https://localhost:8000/SendSerialPortData?portId=1?sessionToken
https://localhost:8000/ReceiveSerialPortData?portId=1?sessionToken

Open Compute Project  Open CloudServer chassis management specification

http://opencompute.org 109

SendSerialPortData request from client) for more than two minutes.

A provided VT100 console client continuously polls the serial device for data (using the

ReceiveSerialPortData API). Any user command entered using the VT100 console is sent to

the device (using the SendSerialPortData API).

Input parameters:

 portId (com1-com2)

 sessionToken (token id)

Sample response:

ChassisResponse.CompletionCode: Success

SerialData.data

9.6.42 Reads the Chassis Log (with timestamp parameter)

LogResponse ReadChassisLog()

LogResponse ReadChassisLogWithTimestamp(Datetime startTimestamp, Datetime

endTimestamp)

https://localhost:8000/ReadChassisLog?

Usage scenario:

This API reads the chassis log.

The chassis log contains information about the various alerts and warning messages

associated with devices connected to the chassis manager (for example, blades overheating,

and fan/PSU failure). The chassis log also contains user audit information, such as

timestamp/activity performed by the user.

Input parameters:

 startTimestamp (read log from the start timestamp, optional)

 endTimestamp (read log till the given end timestamp, optional)

Sample response:

- <ChassisLogResponse

xmlns="http://schemas.datacontract.org/2004/07/Microsoft.GFS.ACS.Contracts"

xmlns:i="http://www.w3.org/2001/XMLSchema-instance">

 <completionCode>Success</completionCode>

 <statusDescription></statusDescription>

 <apiVersion>1</apiVersion>

- <logEntries>

- <LogEntry>

 <eventDescription>CM\admin,Invoked </eventDescription>

 <eventTime>2012-09-11T21:04:33.024</eventTime>

https://localhost:8000/ReadChassisLog?startTimestamp=null&endTimestamp=null

110 January 28, 2014

 </LogEntry>

- <LogEntry>

 <eventDescription>CM\admin,Invoked </eventDescription>

 <eventTime>2012-09-11T21:04:33.117</eventTime>

 </LogEntry>

...

- <LogEntry>

 <eventDescription>CM\admin,Invoked ReadChassisLog()</eventDescription>

 <eventTime>2012-09-11T21:20:03.366</eventTime>

 </LogEntry>

 </logEntries>

 </ChassisLogResponse>

9.6.43 Clears the Chassis Log

ClearResponse ClearChassisLog()

https://localhost:8000/ClearChassisLog?

Usage scenario:

This API clears the chassis log. Users must periodically clear the consumed log entries

because there are size restrictions on the chassis manager storage space.

Input parameters:

 None

Sample response:

<ChassisResponse

xmlns="http://schemas.datacontract.org/2004/07/Microsoft.GFS.ACS.Contracts"

xmlns:i="http://www.w3.org/2001/XMLSchema-instance">

 <completionCode>Success</completionCode>

 <statusDescription></statusDescription>

 <apiVersion>1</apiVersion>

 </ChassisResponse>

9.6.44 Reads Log from Blade (with timestamp parameter)

https://localhost:8000/ClearChassisLog?

Open Compute Project  Open CloudServer chassis management specification

http://opencompute.org 111

LogResponse ReadBladeLog(int bladeId)

LogResponse ReadBladeLogWithTimestamp(int bladeId, uint logType, Datetime

startTimestamp, Datetime endTimestamp)

https://localhost:8000/ReadBladeLog?bladeId=1

Usage scenario:

This API reads the log of a blade. Blade logs (system event logs) contain information about

events, warning, and alerts pertaining to that blade (for example, thermal throttling of blades

because of overheating).

Input parameters:

 bladeId (blade index, 1-48)

 startTimestamp (read log from this given start timestamp, optional)

 endTimestamp (read log till the given end timestamp, optional)

Sample response:

- <ChassisLogResponse

xmlns="http://schemas.datacontract.org/2004/07/Microsoft.GFS.ACS.Contracts"

xmlns:i="http://www.w3.org/2001/XMLSchema-instance">

 <completionCode>Failure</completionCode>

 <statusDescription>The CM did not respond</statusDescription>

 <apiVersion>1</apiVersion>

- <logEntries>

- <LogEntry>

 <eventDescription>Sensor_SpecificDrive_Slot2433328Assertion111</eventDescription>

 <eventTime>2012-08-23T14:35:21</eventTime>

 </LogEntry>

- <LogEntry>

 <eventDescription>Sensor_SpecificDrive_Slot2443328Assertion111</eventDescription>

 <eventTime>2012-08-23T14:35:21</eventTime>

 </LogEntry>

...

- <LogEntry>

 <eventDescription>DiscreteTemperature187257Desertion3</eventDescription>

 <eventTime>2012-08-23T16:11:08</eventTime>

 </LogEntry>

 </logEntries>

 </ChassisLogResponse>

https://localhost:8000/ReadBladeLog?

112 January 28, 2014

9.6.45 Clears Log from Blade

BladeResponse ClearBladelog(int bladeId)

https://localhost:8000/ClearBladeLog?bladeId=1

Usage scenario:

This API clears the log from a blade.

Blade logs (system event logs) contain information about events, warning, and alerts

pertaining to that blade (for example, thermal throttling of blades because of overheating).

Input parameters:

 bladeId (blade index, 1-48)

Sample response:

- <BladeResponse

xmlns="http://schemas.datacontract.org/2004/07/Microsoft.GFS.ACS.Contracts"

xmlns:i="http://www.w3.org/2001/XMLSchema-instance">

 <completionCode>Success</completionCode>

 <statusDescription></statusDescription>

 <apiVersion>1</apiVersion>

 <bladeNumber>1</bladeNumber>

 </BladeResponse>

9.6.46 Gets Power Reading from Blade

BladePowerReadingResponse GetBladePowerReading(int bladeId)

https://localhost:8000/GetBladePowerReading?bladeId=1

Usage scenario:

This API is used to get the power reading of a blade. It can be used for monitoring or for

other power-control mechanisms (see the SetBladePowerLimit() API).

Input parameters:

 bladeId (blade index, 1-48)

Sample response:

- <BladePowerReadingResponse

xmlns="http://schemas.datacontract.org/2004/07/Microsoft.GFS.ACS.Contracts"

xmlns:i="http://www.w3.org/2001/XMLSchema-instance">

 <completionCode>Success</completionCode>

 <statusDescription></statusDescription>

https://localhost:8000/ClearBladeLog?bladeId=1&allblades=false
https://localhost:8000/GetBladePowerReading?bladeId=1&allblades=false

Open Compute Project  Open CloudServer chassis management specification

http://opencompute.org 113

 <apiVersion>1</apiVersion>

- <bladeResponse>

 <completionCode>Success</completionCode>

 <statusDescription></statusDescription>

 <apiVersion>1</apiVersion>

 <bladeNumber>1</bladeNumber>

 </bladeResponse>

 <powerReading>308</powerReading>

 </BladePowerReadingResponse>

9.6.47 Gets Power Readings from All Blades

GetAllBladesPowerReadingResponse GetAllBladesPowerReading()

https://localhost:8000/GetAllBladesPowerReading?

Usage scenario:

This API can be used for monitoring or for other power-control mechanisms (see the

SetBladePowerLimit() API).

Note that when multiple users are actively trying to access/modify the same state of a single

blade or of different blades, ordering is not guaranteed.

Input parameters:

 None

Sample response:

- <GetAllBladesPowerReadingResponse

xmlns="http://schemas.datacontract.org/2004/07/Microsoft.GFS.ACS.Contracts"

xmlns:i="http://www.w3.org/2001/XMLSchema-instance">

- <BladePowerReadingResponse>

 <completionCode>Success</completionCode>

 <statusDescription></statusDescription>

 <apiVersion>1</apiVersion>

- <bladeResponse>

 <completionCode>Success</completionCode>

 <statusDescription></statusDescription>

 <apiVersion>1</apiVersion>

 <bladeNumber>1</bladeNumber>

https://localhost:8000/GetAllBladesPowerReading?

114 January 28, 2014

 </bladeResponse>

 <powerReading>308</powerReading>

 </BladePowerReadingResponse>

- <BladePowerReadingResponse>

 <completionCode>Success</completionCode>

 <statusDescription></statusDescription>

 <apiVersion>1</apiVersion>

- <bladeResponse>

 <completionCode>Success</completionCode>

 <statusDescription></statusDescription>

 <apiVersion>1</apiVersion>

 <bladeNumber>2</bladeNumber>

 </bladeResponse>

 <powerReading>311</powerReading>

 </BladePowerReadingResponse>

...

- <BladePowerReadingResponse>

 <completionCode>Success</completionCode>

 <statusDescription></statusDescription>

 <apiVersion>1</apiVersion>

- <bladeResponse>

 <completionCode>Success</completionCode>

 <statusDescription></statusDescription>

 <apiVersion>1</apiVersion>

 <bladeNumber>24</bladeNumber>

 </bladeResponse>

 <powerReading>310</powerReading>

 </BladePowerReadingResponse>

 </GetAllBladesPowerReadingResponse>

Open Compute Project  Open CloudServer chassis management specification

http://opencompute.org 115

9.6.48 Gets Power Limit of Blade

GetBladeLimitResponse GetBladePowerLimit(int bladeId)

https://localhost:8000/GetBladePowerLimit?bladeId=1

Usage scenario:

This API can be used to get the power limit that is set on a particular blade.

Input parameters:

 bladeId (blade index, 1-48)

Sample response:

- <BladePowerLimitResponse

xmlns="http://schemas.datacontract.org/2004/07/Microsoft.GFS.ACS.Contracts"

xmlns:i="http://www.w3.org/2001/XMLSchema-instance">

 <completionCode>Success</completionCode>

 <statusDescription></statusDescription>

 <apiVersion>1</apiVersion>

- <bladeResponse>

 <completionCode>Success</completionCode>

 <statusDescription></statusDescription>

 <apiVersion>1</apiVersion>

 <bladeNumber>1</bladeNumber>

 </bladeResponse>

 <powerReading>750</powerReading>

 </BladePowerLimitResponse>

9.6.49 Gets Power Limit of All Blades

GetAllBladesPowerLimitResponse GetAllBladesPowerLinit()

https://localhost:8000/GetAllBladesPowerLimit?

Usage scenario:

This API can be used to get the power limit that is set on all blades in a chassis.

Note: When multiple users are actively trying to access/modify the same state of a single

blade or of different blades, ordering is not guaranteed.

Input parameters:

 None

https://localhost:8000/GetBladePowerLimit?bladeId=1
https://localhost:8000/GetAllBladesPowerLimit?

116 January 28, 2014

Sample response:

- <GetAllBladesPowerLimitResponse

xmlns="http://schemas.datacontract.org/2004/07/Microsoft.GFS.ACS.Contracts"

xmlns:i="http://www.w3.org/2001/XMLSchema-instance">

- <BladePowerLimitResponse>

 <completionCode>Success</completionCode>

 <statusDescription></statusDescription>

 <apiVersion>1</apiVersion>

- <bladeResponse>

 <completionCode>Success</completionCode>

 <statusDescription></statusDescription>

 <apiVersion>1</apiVersion>

 <bladeNumber>1</bladeNumber>

 </bladeResponse>

 <powerReading>750</powerReading>

 </BladePowerLimitResponse>

- <BladePowerLimitResponse>

 <completionCode>Success</completionCode>

 <statusDescription></statusDescription>

 <apiVersion>1</apiVersion>

- <bladeResponse>

 <completionCode>Success</completionCode>

 <statusDescription></statusDescription>

 <apiVersion>1</apiVersion>

 <bladeNumber>2</bladeNumber>

 </bladeResponse>

 <powerReading>750</powerReading>

 </BladePowerLimitResponse>

...

- <BladePowerLimitResponse>

 <completionCode>Success</completionCode>

 <statusDescription></statusDescription>

Open Compute Project  Open CloudServer chassis management specification

http://opencompute.org 117

 <apiVersion>1</apiVersion>

- <bladeResponse>

 <completionCode>Success</completionCode>

 <statusDescription></statusDescription>

 <apiVersion>1</apiVersion>

 <bladeNumber>24</bladeNumber>

 </bladeResponse>

 <powerReading>750</powerReading>

 </BladePowerLimitResponse>

 </GetAllBladesPowerLmitResponse>

9.6.50 Sets Power Limit on Blade

BladeResponse SetBladePowerLimit(int bladeId, double powerLimitInWatts)

https://localhost:8000/SetBladePowerLimit?bladeId=1&powerLimitInWatts=750

Usage scenario:

This API is used to set the power limit for a blade; if the user wants to set the same power

limit for all the blades, the SetAllBladesPowerLimit() API can be used. SetBladePowerLimitOn

API has to be executed to actually realize the set power limit in the device.

Power limits can be set for a variety of reasons, including energy savings and under-

provisioning (consolidating more servers under a power hierarchy).

Input parameters:

 bladeId (blade index 1-48

 powerLimitInWatts

Sample response:

- <BladeResponse

xmlns="http://schemas.datacontract.org/2004/07/Microsoft.GFS.ACS.Contracts"

xmlns:i="http://www.w3.org/2001/XMLSchema-instance">

 <completionCode>Success</completionCode>

 <statusDescription></statusDescription>

 <apiVersion>1</apiVersion>

 <bladeNumber>1</bladeNumber>

 </BladeResponse>

https://localhost:8000/SetBladePowerLimit?bladeId=1&powerLimitInWatts=750&allblades=false

118 January 28, 2014

9.6.51 Sets Power Limit on All Blades

AllBladesResponse SetAllBladesPowerLimit(double powerLimitInWatts)

https://localhost:8000/SetAllBladesPowerLimit?powerLimitInWatts=750

Usage scenario:

This API is used to set the power limit for all blades in a chassis; if the user wants to set

heterogeneous power limits, the SetBladePowerLimit() API can be used Power limits can be

set for a variety of reasons, including energy savings and under-provisioning (consolidating

more servers under a power hierarchy). SetBladePowerLimitOn API has to be executed to

actually realize the set power limit in the device.

Note that when multiple users are actively trying to access/modify the same state of a single

blade or of different blades, ordering is not guaranteed.

Input parameters:

 powerLimitInWatts

Sample response:

- <AllBladesResponse

xmlns="http://schemas.datacontract.org/2004/07/Microsoft.GFS.ACS.Contracts"

xmlns:i="http://www.w3.org/2001/XMLSchema-instance">

 <completionCode>Success</completionCode>

 <statusDescription></statusDescription>

 <apiVersion>1</apiVersion>

- <BladeResponse>

 <completionCode>Success</completionCode>

 <statusDescription></statusDescription>

 <apiVersion>1</apiVersion>

 <bladeNumber>1</bladeNumber>

 </BladeResponse>

- <BladeResponse>

 <completionCode>Success</completionCode>

 <statusDescription></statusDescription>

 <apiVersion>1</apiVersion>

 <bladeNumber>2</bladeNumber>

 </BladeResponse>

...

https://localhost:8000/SetAllBladesPowerLimit?powerLimitInWatts=750

Open Compute Project  Open CloudServer chassis management specification

http://opencompute.org 119

- <BladeResponse>

 <completionCode>Success</completionCode>

 <statusDescription></statusDescription>

 <apiVersion>1</apiVersion>

 <bladeNumber>24</bladeNumber>

 </BladeResponse>

 </AllBladesResponse>

9.6.52 Activates Blade Power Limit

BladeResponse SetBladePowerLimitOn(int bladeId)

https://localhost:8000/SetBladePowerLimitOn?bladeId=1

Usage scenario:

This API activates the power limit for a blade and enables power throttling.

Power limits can be set for a variety of reasons, including energy savings and under-

provisioning (consolidating more servers under a power hierarchy).

Input parameters:

 bladeId (blade index 1-48

Sample response:

<BladeResponse

xmlns="http://schemas.datacontract.org/2004/07/Microsoft.GFS.ACS.Contracts"

xmlns:i="http://www.w3.org/2001/XMLSchema-instance">

 <completionCode>Success</completionCode>

 <statusDescription></statusDescription>

 <apiVersion>1</apiVersion>

 <bladeNumber>1</bladeNumber>

 </BladeResponse>

9.6.53 Activates Power Limit on All Blades

AllBladesResponse SetAllBladesPowerLimitOn()

https://localhost:8000/SetAllBladesPowerLimitOn?

Usage scenario:

This API activates the power limit for all blades in a chassis and enables power throttling.

https://localhost:8000/SetBladeActivatePowerLimitOn?bladeId=1
https://localhost:8000/SetAllBladesPowerLimitOn?

120 January 28, 2014

Power limits can be set for a variety of reasons, including energy savings and under-

provisioning (consolidating more servers under a power hierarchy).

Input parameters:

 None

Sample response:

- <AllBladesResponse

xmlns="http://schemas.datacontract.org/2004/07/Microsoft.GFS.ACS.Contracts"

xmlns:i="http://www.w3.org/2001/XMLSchema-instance">

 <completionCode>Success</completionCode>

 <statusDescription></statusDescription>

 <apiVersion>1</apiVersion>

- <BladeResponse>

 <completionCode>Success</completionCode>

 <statusDescription></statusDescription>

 <apiVersion>1</apiVersion>

 <bladeNumber>1</bladeNumber>

 </BladeResponse>

- <BladeResponse>

 <completionCode>Success</completionCode>

 <statusDescription></statusDescription>

 <apiVersion>1</apiVersion>

 <bladeNumber>2</bladeNumber>

 </BladeResponse>

...

- <BladeResponse>

 <completionCode>Success</completionCode>

 <statusDescription></statusDescription>

 <apiVersion>1</apiVersion>

 <bladeNumber>24</bladeNumber>

 </BladeResponse>

 </AllBladesResponse>

Open Compute Project  Open CloudServer chassis management specification

http://opencompute.org 121

9.6.54 Deactivates Blade Power Limit

BladeResponse SetBladePowerLimitOff(int bladeId)

https://localhost:8000/SetBladePowerLimitOff?bladeId=1

Usage scenario:

This API deactivates the power limit for a blade and disables power throttling.

Power limits can be set for a variety of reasons, including energy savings and under-

provisioning (consolidating more servers under a power hierarchy).

Input parameters:

 bladeId (blade index 1-48)

Sample response:

<BladeResponse

xmlns="http://schemas.datacontract.org/2004/07/Microsoft.GFS.ACS.Contracts"

xmlns:i="http://www.w3.org/2001/XMLSchema-instance">

 <completionCode>Success</completionCode>

 <statusDescription></statusDescription>

 <apiVersion>1</apiVersion>

 <bladeNumber>1</bladeNumber>

 </BladeResponse>

9.6.55 Deactivates Power Limit on All Blades

AllBladesResponse SetAllBladesPowerLimitOff()

https://localhost:8000/SetAllBladesPowerLimitOff?

Usage scenario:

This API deactivates the power limit for all blades in a chassis and disables power throttling.

Power limits can be set for a variety of reasons, including energy savings and under-

provisioning (consolidating more servers under a power hierarchy).

Input parameters:

 None

Sample response:

- <AllBladesResponse

xmlns="http://schemas.datacontract.org/2004/07/Microsoft.GFS.ACS.Contracts"

xmlns:i="http://www.w3.org/2001/XMLSchema-instance">

 <completionCode>Success</completionCode>

https://localhost:8000/SetBladePowerLimitOff?bladeId=1
https://localhost:8000/SetAllBladesPowerLimitOff?

122 January 28, 2014

 <statusDescription></statusDescription>

 <apiVersion>1</apiVersion>

- <BladeResponse>

 <completionCode>Success</completionCode>

 <statusDescription></statusDescription>

 <apiVersion>1</apiVersion>

 <bladeNumber>1</bladeNumber>

 </BladeResponse>

- <BladeResponse>

 <completionCode>Success</completionCode>

 <statusDescription></statusDescription>

 <apiVersion>1</apiVersion>

 <bladeNumber>2</bladeNumber>

 </BladeResponse>

...

- <BladeResponse>

 <completionCode>Success</completionCode>

 <statusDescription></statusDescription>

 <apiVersion>1</apiVersion>

 <bladeNumber>24</bladeNumber>

 </BladeResponse>

 </AllBladesResponse>

9.6.56 Gets Chassis Controller Network Properties

ChassisNetworkPropertiesResponse GetChassisNetworkProperties()

https://localhost:8000/GetChassisNetworkProperties?

Usage scenario:

This API gets the chassis controller network properties including MAC address, IP address,

subnet mask, DHCP Enabled/Disabled.

Note that Microsoft does not support setting network properties of the chassis manager and

encourages users to use standard Windows interface/APIs for this.

https://localhost:8000/GetChassisNetworkProperties?

Open Compute Project  Open CloudServer chassis management specification

http://opencompute.org 123

Input parameters:

 None

Sample response:

- <ChassisNetworkPropertiesResponse

xmlns="http://schemas.datacontract.org/2004/07/Microsoft.GFS.ACS.Contracts"

xmlns:i="http://www.w3.org/2001/XMLSchema-instance">

 <completionCode>Success</completionCode>

 <statusDescription></statusDescription>

 <apiVersion>1</apiVersion>

- <ChassisNetworkProperty>

<completionCode>Success</completionCode>

 <statusDescription></statusDescription>

 <apiVersion>1</apiVersion>

 <ipAddress>xxx.xxx.xxx.xx</ipAddress>

 <macAddress>xx:xx:xx:xx:xx:xx</macAddress>

 <dhcpEnabled>true</dhcpEnabled>

 <dhcpServer>xxx.xxx.xxx.x</dhcpServer>

 <dnsAddress i:nil="true" />

 <dnsDomain>XXX.lab</dnsDomain>

 <dnsHostName>MACHINE1</dnsHostName>

 <gatewayAddress i:nil="true" />

 <subnetMask>xxx.xxx.xxx.x</subnetMask>

 </ChassisNetworkProperty>

 </ChassisNetworkPropertiesResponse>

9.6.57 Adds New Chassis Controller User

ChassisResponse AddChassisControllerUser(string userName, string passwordString,

ACSSecurityRole role)

https://localhost:8000/AddChassisControllerUser?userName=xxx&passwordString

=yyyy&role=1

Usage scenario:

This API is used to add a new chassis controller user with a specified password with privileges

for accessing the chassis manager command line interface. The role parameter indicates the

requested ACS user privilege level for this user (see below).

124 January 28, 2014

 public enum ACSSecurityRole : int

 {

 // ACS Roles

 AcsCmAdmin = 2,

 AcsCmOperator = 1,

 AcsCmUser = 0

 }

Input parameters:

 userName – username associated with the user

 passwordString – password for this user. Password that do not adhere to standard

windows user complexity requirements will result in API failure with appropriate error

message thrown.

 role - indicates the requested ACS user privilege level for this user.

Sample response:

<ChassisResponse

xmlns="http://schemas.datacontract.org/2004/07/Microsoft.GFS.ACS.Contracts"

xmlns:i="http://www.w3.org/2001/XMLSchema-instance">

 <completionCode>Success</completionCode>

 <statusDescription></statusDescription>

 <apiVersion>1</apiVersion>

 </ChassisResponse>

9.6.58 Changes Password for Existing Chassis Controller User

ChassisResponse ChangeChassisControllerUserPassword(string userName, string

newPassword)

https://localhost:8000/ChangeChassisControllerUserPassword?userName=xxx

&newPassword=yyyy

Usage scenario:

Changes the username and password for an existing user in the chassis controller.

Input parameters:

 userName

 newpassword

Sample response:

<ChassisResponse

xmlns="http://schemas.datacontract.org/2004/07/Microsoft.GFS.ACS.Contracts"

Open Compute Project  Open CloudServer chassis management specification

http://opencompute.org 125

xmlns:i="http://www.w3.org/2001/XMLSchema-instance">

 <completionCode>Success</completionCode>

 <statusDescription></statusDescription>

 <apiVersion>1</apiVersion>

 </ChassisResponse>

9.6.59 Changes Role for Existing Chassis Controller User

ChassisResponse ChangeChassisControllerUserRole(string userName, ACSSecurityRole

role)

https://localhost:8000/ChangeChassisControllerUserRole?userName=xxx &role=1

Usage scenario:

This API is used to change the role associated with the user (see below).

 public enum ACSSecurityRole : int

 {

 // ACS Roles

 AcsCmAdmin = 2,

 AcsCmOperator = 1,

 AcsCmUser = 0

 }

Input parameters:

 userName

 role

Sample response:

<ChassisResponse

xmlns="http://schemas.datacontract.org/2004/07/Microsoft.GFS.ACS.Contracts"

xmlns:i="http://www.w3.org/2001/XMLSchema-instance">

 <completionCode>Success</completionCode>

 <statusDescription></statusDescription>

 <apiVersion>1</apiVersion>

 </ChassisResponse>

9.6.60 Removes Existing Chassis Controller User

126 January 28, 2014

ChassisResponse RemoveChassisControllerUser(string userName)

https://localhost:8000/RemoveChassisControllerUser?userName=xxx

Usage scenario:

This command is used to remove an existing chassis controller user.

Input parameters:

 userName

Sample response:

<ChassisResponse

xmlns="http://schemas.datacontract.org/2004/07/Microsoft.GFS.ACS.Contracts"

xmlns:i="http://www.w3.org/2001/XMLSchema-instance">

 <completionCode>Success</completionCode>

 <statusDescription></statusDescription>

 <apiVersion>1</apiVersion>

 </ChassisResponse>

9.6.61 Get health of Chassis

ChassisHealthResponse GetChassisHealth(bool bladeHealth, bool psuHealth, bool

fanHealth)

https://localhost:8000/GetChassisHealth

Usage Scenario:

This API can be used for status/health monitoring of chassis devices such as blade, psu and

fan.

The BladeState attribute specified as part of the BladeShellResponse refers to one of the

following five blade states, Initialize, Blade Enable Off, Probation, Healthy and Fail. Please refer

to the blade state management diagram in ACS Software Architecture manual for more

details.

The BladeType attribute specified as part of the BladeShellResponse refers to the type of

blade, server (compute server), JBod (storage server) or unknown (device not reachable or not

populated) .

Input Parameters:

 bladeHealth

 psuHealth

 fanHealth

Open Compute Project  Open CloudServer chassis management specification

http://opencompute.org 127

Note: If none of the parameters are specified, the API will fetch result for all components.

Sample response:

- <ChassisHealthResponse

xmlns="http://schemas.datacontract.org/2004/07/Microsoft.GFS.ACS.Contracts"

xmlns:i="http://www.w3.org/2001/XMLSchema-instance">

 <completionCode>Success</completionCode>

 <statusDescription></statusDescription>

 <apiVersion>1</apiVersion>

- <bladeShellCollection>

- <BladeShellResponse>

 <completionCode>Success</completionCode>

 <statusDescription></statusDescription>

 <apiVersion>1</apiVersion>

 <bladeId>1</bladeId>

 <bladeState>Healthy</bladeState>

 <bladeType>Server</bladeType>

 </BladeShellResponse>

- <BladeShellResponse>

 <completionCode>Success</completionCode>

 <statusDescription></statusDescription>

 <apiVersion>1</apiVersion>

 <bladeId>2</bladeId>

 <bladeState>Healthy</bladeState>

 <bladeType>Server</bladeType>

 </BladeShellResponse>

…

- <BladeShellResponse>

 <completionCode>Success</completionCode>

 <statusDescription></statusDescription>

 <apiVersion>1</apiVersion>

 <bladeId>24</bladeId>

 <bladeState>Fail</bladeState>

 <bladeType>Unknown</bladeType>

https://localhost:8000/GetChassisHealth
https://localhost:8000/GetChassisHealth
https://localhost:8000/GetChassisHealth
https://localhost:8000/GetChassisHealth
https://localhost:8000/GetChassisHealth

128 January 28, 2014

 </BladeShellResponse>

 </bladeShellCollection>

- <fanInfoCollection>

- <FanInfo>

 <completionCode>Success</completionCode>

 <statusDescription></statusDescription>

 <apiVersion>1</apiVersion>

 <fanId>1</fanId>

 <fanSpeed>4109</fanSpeed>

 <isFanHealthy>true</ isFanHealthy >

 </FanInfo>

- …

<FanInfo>

 <completionCode>Success</completionCode>

 <statusDescription></statusDescription>

 <apiVersion>1</apiVersion>

 <fanId>6</fanId>

 <fanSpeed>4094</fanSpeed>

 < isFanHealthy >true</ isFanHealthy >

 </FanInfo>

 </fanInfoCollection>

- <psuInfoCollection>

- <PsuInfo>

 <completionCode>Success</completionCode>

 <statusDescription></statusDescription>

 <apiVersion>1</apiVersion>

 <id>1</id>

 <powerOut>0</powerOut>

 <serialNumber>46-49-51-44-31-32-33-37-30-30-31-30-32-34</serialNumber>

 <state>ON</state>

 </PsuInfo>

https://localhost:8000/GetChassisHealth
https://localhost:8000/GetChassisHealth
https://localhost:8000/GetChassisHealth
https://localhost:8000/GetChassisHealth
https://localhost:8000/GetChassisHealth

Open Compute Project  Open CloudServer chassis management specification

http://opencompute.org 129

…

- <PsuInfo>

 <completionCode>Success</completionCode>

 <statusDescription></statusDescription>

 <apiVersion>1</apiVersion>

 <id>6</id>

 <powerOut>0</powerOut>

 <serialNumber>46-49-51-44-31-32-33-37-30-30-31-30-35-38</serialNumber>

 <state>ON</state>

 </PsuInfo>

 </psuInfoCollection>

 </ChassisHealthResponse>

9.6.62 Get Health of Blade

BladeHealthResponse GetBladeHealth(int bladeId, bool cpuInfo, bool memInfo, bool

diskInfo, bool pcieInfo, bool sensorInfo, bool temp, bool fruInfo)

https://localhost:8000/GetBladeHealth?bladeid=2&cpuInfo=true&memInfo=true&diskInf

o=true&pcieInfo=true&sensorInfo=true&temp=true&fruInfo=true

Usage Scenario:

This API can be used for status/health monitoring of blade components such as cpu, memory,

disk, pci, sensor, temperature, and FRU.

Input Parameters:

 bladeId

 cpuInfo

 memInfo

 diskInfo

 pcieInfo

 sensorInfo

 temp

 fruInfo

Note: Except for bladeId, other parameters are optional. If none of the other parameters are

specified, the API will fetch result for all components.

Sample response:

https://localhost:8000/GetChassisHealth
https://localhost:8000/GetBladeHealth?bladeid=2&cpuInfo=true&memInfo=true&diskInfo=true&pcieInfo=true&sensorInfo=true&temp=true&fruInfo=true
https://localhost:8000/GetBladeHealth?bladeid=2&cpuInfo=true&memInfo=true&diskInfo=true&pcieInfo=true&sensorInfo=true&temp=true&fruInfo=true

130 January 28, 2014

- <BladeHealthResponse

xmlns="http://schemas.datacontract.org/2004/07/Microsoft.GFS.ACS.Contracts"

xmlns:i="http://www.w3.org/2001/XMLSchema-instance">

 <completionCode>Success</completionCode>

 <statusDescription></statusDescription>

 <apiVersion>1</apiVersion>

 <assetTag />

- <bladeDisk>

- <diskInfo>

 <completionCode>Success</completionCode>

 <statusDescription></statusDescription>

 <apiVersion>1</apiVersion>

 <diskId>243</diskId>

 <diskStatus>0</diskStatus>

 </diskInfo>

- <diskInfo>

 <completionCode>Success</completionCode>

 <statusDescription></statusDescription>

 <apiVersion>1</apiVersion>

 <diskId>245</diskId>

 <diskStatus>0</diskStatus>

 </diskInfo>

- <diskInfo>

 <completionCode>Success</completionCode>

 <statusDescription></statusDescription>

 <apiVersion>1</apiVersion>

 <diskId>246</diskId>

 <diskStatus>0</diskStatus>

 </diskInfo>

 </bladeDisk>

- <bladeShell>

 <completionCode>Success</completionCode>

https://localhost:8000/GetBladeHealth?bladeid=2
https://localhost:8000/GetBladeHealth?bladeid=2
https://localhost:8000/GetBladeHealth?bladeid=2
https://localhost:8000/GetBladeHealth?bladeid=2
https://localhost:8000/GetBladeHealth?bladeid=2
https://localhost:8000/GetBladeHealth?bladeid=2

Open Compute Project  Open CloudServer chassis management specification

http://opencompute.org 131

 <statusDescription></statusDescription>

 <apiVersion>1</apiVersion>

 <bladeId>2</bladeId>

 <bladeState>Healthy</bladeState>

 <bladeType>Server</bladeType>

 </bladeShell>

 <hardwareVersion>V1.0</hardwareVersion>

 <JbodDiskInfo i:nil="true" />

 <JbodInfo i:nil="true" />

- <memoryInfo>

- <memoryInfo>

 <actualSpeed>false</actualSpeed>

 <completionCode>Success</completionCode>

 <statusDescription></statusDescription>

 <apiVersion>1</apiVersion>

 <dimm>0</dimm>

 <dimmType>DDR3</dimmType>

 <memVoltage>V13</memVoltage>

 <size>8192</size>

 <speed>1333</speed>

 <status>Reserved</status>

 </memoryInfo>

- …

<memoryInfo>

 <actualSpeed>false</actualSpeed>

 <completionCode>Success</completionCode>

 <statusDescription></statusDescription>

 <apiVersion>1</apiVersion>

 <dimm>9</dimm>

 <dimmType>DDR3</dimmType>

 <memVoltage>V13</memVoltage>

 <size>8192</size>

https://localhost:8000/GetBladeHealth?bladeid=2
https://localhost:8000/GetBladeHealth?bladeid=2
https://localhost:8000/GetBladeHealth?bladeid=2

132 January 28, 2014

 <speed>1333</speed>

 <status>Reserved</status>

 </MemoryInfo>

 </MemoryInfo>

- <PcieInfo>

- <PCIeInfo>

 <completionCode>Success</completionCode>

 <statusDescription></statusDescription>

 <apiVersion>1</apiVersion>

 <pcieNumber>1</pcieNumber>

 <deviceId>65535</deviceId>

 <subSystemId>65535</subSystemId>

 <systemId>65535</systemId>

 <vendorId>65535</vendorId>

 </PCIeInfo>

- <PCIeInfo>

 <completionCode>Success</completionCode>

 <statusDescription></statusDescription>

 <apiVersion>1</apiVersion>

 <pcieNumber>2</pcieNumber>

 <deviceId>5463</deviceId>

 <subSystemId>35221</subSystemId>

 <systemId>5421</systemId>

 <vendorId>32902</vendorId>

 </PCIeInfo>

- <PCIeInfo>

 <completionCode>Success</completionCode>

 <statusDescription></statusDescription>

 <apiVersion>1</apiVersion>

 <pcieNumber>3</pcieNumber>

 <deviceId>65535</deviceId>

https://localhost:8000/GetBladeHealth?bladeid=2
https://localhost:8000/GetBladeHealth?bladeid=2
https://localhost:8000/GetBladeHealth?bladeid=2
https://localhost:8000/GetBladeHealth?bladeid=2

Open Compute Project  Open CloudServer chassis management specification

http://opencompute.org 133

 <subSystemId>65535</subSystemId>

 <systemId>65535</systemId>

 <vendorId>65535</vendorId>

 </PCIeInfo>

 </PCIeInfo>

- <processorInfo>

- <processorInfo>

 <completionCode>Failure</completionCode>

 <statusDescription>Device did not return result</statusDescription>

 <apiVersion>1</apiVersion>

 <frequency>0</frequency>

 <procId>0</procId>

 <procType i:nil="true" />

 <state i:nil="true" />

 </processorInfo>

 <productType />

 <sensors />

 <serialNumber>QTFCTM2350003</serialNumber>

 </BladeHealthResponse>

9.6.63 Get Next Boot Device

BootResponse GetNextBoot(int bladeId)

https://localhost:8000/GetNextBoot?bladeid=2

Usage Scenario:

This API gets the boot device of the blade after the next reboot.

This command does not reflect the BIOS boot order. The SetNextboot command acts as an

interrupt before the BIOS boot order is initialized. If the SetNextBoot order is flagged with

persistence it interrupts boot every time, until manual user intervention to change the BIOS

manually (then the SetNextBoot is overridden and must be executed again). If it is not

flagged with persistence the command will do a 1 time volatile override (if you hard power

cycle volatile memory is lost, hence it needs to be a BMC power cycle).

Input Parameters:

 bladeId

https://localhost:8000/GetBladeHealth?bladeid=2
https://localhost:8000/GetBladeHealth?bladeid=2
https://localhost:8000/GetNextBoot?bladeid=2

134 January 28, 2014

Sample response:

<BootResponse

xmlns="http://schemas.datacontract.org/2004/07/Microsoft.GFS.ACS.Contracts"

xmlns:i="http://www.w3.org/2001/XMLSchema-instance">

 <completionCode>Success</completionCode>

 <statusDescription></statusDescription>

 <apiVersion>1</apiVersion>

 <nextBootString>NoOverRide</nextBootString>

 </BootResponse>

9.6.64 Set Next Boot Device

BootResponse SetNextBoot(int bladeId, BladeBootType bootType, bool uefi, bool

persistent, int bootInstance)

https://localhost:8000/SetNextBoot?bladeid=2&bootType=2&uefi=false&persistent=false

Usage Scenario:

This API sets the boot device of the blade upon its next reboot. The boot device can be set

using the bootType parameter from the list of devices specified in the enum below.

This command does not change the BIOS boot order. This command acts as an interrupt

before the BIOS boot order is initialized. If the SetNextBoot order is flagged with persistence

it interrupts boot every time, until manual user intervention to change the BIOS manually

(then the SetNextBoot is overridden and must be executed again). If it is not flagged with

persistence the command will do a 1 time volatile override (if you hard power cycle volatile

memory is lost, hence it needs to be a BMC power cycle).

 /// <summary>

 /// Boot type for blades.

 /// The boot should follow soon (within one minute) after the boot type is set.

 /// </summary>

 public enum BladeBootType : int

 {

 Unknown = 0,

 NoOverRide = 1,

 Pxe = 2,

 Hdd = 3,

 HddSafeMode = 4,

Open Compute Project  Open CloudServer chassis management specification

http://opencompute.org 135

 DiagPartition = 5,

 Dvd = 6,

 BiosSetup = 7,

 FloppyOrRemovable = 8

 }

Input Parameters:

 bladeId

 bootType: type of the boot device

 uefi: true sets UEFI BIOS, false sets legacy BIOS

 persistent: true sets it for all subsequent reboots, false sets it just for the next reboot

 bootInstance: the instance of the boot device (for example, the second NIC card)

Sample response:

<BootResponse

xmlns="http://schemas.datacontract.org/2004/07/Microsoft.GFS.ACS.Contracts"

xmlns:i="http://www.w3.org/2001/XMLSchema-instance">

 <completionCode>Success</completionCode>

 <statusDescription></statusDescription>

 <apiVersion>1</apiVersion>

<nextBootString>ForcePxe</nextBootString>

</BootResponse>

10 Command Line Interface

The CLI is intended for service technicians or testers who need quick access to the

chassis manager services and capabilities without having to use a browser or write a

REST client.

10.1 Install the Chassis Manager Service

Table 38 lists the commands to install, start, stop, and uninstall the chassis manager

service and to launch the command-line interface.

Table 38. Commands to Install Chassis Manager Service and Launch the CLI

136 January 28, 2014

Action Command

Install

service

CM-Binary-Directory>

C:\Windows\Microsoft.NET\Framework\v4.0.30319\InstallUtil.exe

Microsoft.GFS.WCS.ChassisManager.exe

Start

service
net start chassismanager

Stop

service
net stop chassismanager

Uninstall

service

CM-Binary-Directory>

C:\Windows\Microsoft.NET\Framework\v4.0.30319\InstallUtil.exe

/u Microsoft.GFS.WCS.ChassisManager.exe

Launch CLI

WcsCli-Binary-Directory> wcscli –h <hostname> -p <port> -s<SSL

encryption option> [[-u] <username> [-x] <password>] [-b

<batch_file_name>]

-h <hostname>

Host name of computer on which the chassis manager service is running

-p <port>

Port on which chassis manager Service is listening (It is usually 8000)

-s

<SSL encryption option>

 Select 0- To disable SSL encryption.

 Select 1-To enabled SSL encryption.

-u and -x

Optional parameters, user credentials (username(-u) and password(-x)) to connect to

CM service. If not specified default credentials are used.

B<Batch file name>

Optional argument, use to execute commands from a batch file.

Note that host name, port, and SSL encryption options are mandatory and should be

supplied to launch the CLI.

10.2 State and Information Commands

The sections that follow describe the ACS system CLI commands, which provide

information about the system state.`

10.2.1 GetChassisInfo

Open Compute Project  Open CloudServer chassis management specification

http://opencompute.org 137

Description:

This command gets information about the whole chassis, including:

 Blades – for example, GUID and power status

 Power supplies – for example, power draw status and serial number

 chassis manager – version information, IP information, and system uptime

Syntax:

wcscli –getchassisinfo [-s] [-p] [-c] [-h]

-s – Show information about blades

-p – Show information about power supplies

-c – Show chassis manager information

-h – Help, display the correct syntax

Sample usage:

wcscli# wcscli –s –p –c

Sample output:

== Compute Nodes ==

| Name | GUID | State | BMC MAC | Completion Code

1 | BLADE1 | 71cd4e40-a900-11e1-9856-089e013a37e8 | On

| DeviceID: 0MAC Address: 08:9E:01:22:FB:42 | Success

2 | BLADE2 | 590fbcc0-a910-11e1-b117-089e013a37f8 | On

| DeviceID: 0MAC Address: 08:9E:01:22:FB:32 | Success

3 | BLADE3 | b56945e0-a93d-11e1-be83-089e013a3809 | On

| DeviceID: 0MAC Address: 08:9E:01:22:FB:3E | Success

4 | BLADE4 | 9f7f0a40-a83d-11e1-a8ad-089e013a3798 | On

| DeviceID: 0MAC Address:

08:9E:01:29:60:32 | Success

5 | BLADE5 | ae7ee0a0-d50c-11e1-b27d-089e015a2876 | On

| DeviceID: 0MAC Address: 08:9E:01:5A:2C:16 | Success

6 | BLADE6 | 506d99c0-d4fd-11e1-b020-089e015a2872 | On

| DeviceID: 0MAC Address: 08:9E:01:5A:2C:1C | Success

7 | BLADE7 | 07c79a60-d505-11e1-a944-089e015a2874 | On

| DeviceID: 0MAC Address: 08:9E:01:5A:2C:0A | Success

8 | BLADE8 | 7b7398a0-d4e8-11e1-aa7a-089e015a286c | On

| DeviceID: 0MAC Address: 08:9E:01:5A:2C:18 | Success

9 | BLADE9 | 3d54f900-d4df-11e1-a52d-089e015a286a | On

| DeviceID: 0MAC Address: 08:9E:01:5A:2C:1E | Success

10 | BLADE10 | dcfaf040-d4f3-11e1-8ce3-089e015a2870 | On

| DeviceID: 0MAC Address: 08:9E:01:5A:2C:40 | Success

….....

== Power Supplies ==

138 January 28, 2014

| Serial Num | State | Pout (W) | Completion Code

1 | 46-49-51-44-31-32-33-37-30-30-31-31-32-33 | On | 194

| Success

2 | 46-49-51-44-31-32-33-37-30-30-31-31-32-38 | On | 228

| Success

3 | 46-49-51-44-31-32-33-37-30-30-31-30-36-30 | On | 190

| Success

4 | 46-49-51-44-31-32-33-37-30-30-31-30-38-33 | On | 214

| Success

5 | 46-49-51-44-31-32-33-37-30-30-31-30-33-30 | On | 188

| Success

6 | 46-49-51-44-31-32-33-37-30-30-31-30-32-39 | On | 203

| Success

== Chassis Controller ==

Firmware Version : 02.02

Hardware Version : 1

Serial Number : 33333333

Asset Tag :

IP Address : 192.168.100.23

IP Address Source : 192.168.100.8

System Uptime : 00:21:32.5127429

10.2.2 GetBladeInfo

Description:

This command gets information about the blades, including serial number and version

information.

Syntax:

wcscli -getbladeinfo [-i <blade_index> | -a] [-h]

-i – Blade index (1-24)

-a – Get information for all blades

-h – Help, display the correct syntax

Sample usage:

To get information on blade 1, execute the following command:

WcsCli# wcscli -getbladeinfo -i 2

Sample output:

Open Compute Project  Open CloudServer chassis management specification

http://opencompute.org 139

== Compute Node Info ==

Firmware Version : 03.02

Hardware Version : MASFJ

Serial Number : SDJKJ2350005

Asset Tag :

== MAC Address ==

Device Id : 0

MAC Address : 08:9E:01:22:FB:32

10.2.3 GetChassisHealth

Description:

This command gets health status for blades, power supplies, and fans.

Syntax:

wcscli -getchassishealth [-b] [-p] [-f] [-h]

-b – Show blade health

-p – Show PSU health

-f – Show fan health

-h – Help, display the correct syntax

Sample usage:

To get information about blade 1, execute the following command:

wcscli# wcscli –getchassishealth–b –p -f

Sample output:

== Blade Health ==

Blade Id : 1

Blade State : Healthy

Blade Type : Server

Blade Id : 2

Blade State : Healthy

Blade Type : Server

Blade Id : 3

Blade State : Healthy

Blade Type : Server

140 January 28, 2014

Blade Id : 4

Blade State : Fail

Blade Type : Server

Blade Id : 5

Blade State : Fail

Blade Type : Unknown

Blade Id : 6

Blade State : Fail

Blade Type : Unknown

……

……….

== PSU Health ==

Psu Id : 1

Psu Serial Number : 46-49-51-44-31-32-33-37-30-30-31-3

Psu State : ON

PSU Power Out : 0

Psu Completion code: Success

Psu Id : 2

Psu Serial Number : 46-49-51-44-31-32-33-37-30-30-31-3

Psu State : ON

PSU Power Out : 0

Psu Completion code: Success

Psu Id : 3

Psu Serial Number : 46-49-51-44-31-32-33-37-30-30-31-3

Psu State : ON

PSU Power Out : 0

Psu Completion code: Success

Psu Id : 4

Psu Serial Number : 46-49-51-44-31-32-33-37-30-30-31-3

Psu State : ON

PSU Power Out : 0

Psu Completion code: Success

Psu Id : 5

Psu Serial Number : 46-49-51-44-31-32-33-37-30-30-31-3

Open Compute Project  Open CloudServer chassis management specification

http://opencompute.org 141

Psu State : ON

PSU Power Out : 0

Psu Completion code: Success

Psu Id : 6

Psu Serial Number : 46-49-51-44-31-32-33-37-30-30-31-3

Psu State : ON

PSU Power Out : 0

Psu Completion code: Success

== Fan Health ==

Fan Id : 1

Fan Speed: 3670

Fan status: ON

Fan Id : 2

Fan Speed: 3683

Fan status: ON

Fan Id : 3

Fan Speed: 3474

Fan status: ON

Fan Id : 4

Fan Speed: 3468

Fan status: ON

Fan Id : 5

Fan Speed: 3633

Fan status: ON

Fan Id : 6

Fan Speed: 3571

Fan status: ON

10.2.4 GetBladeHealth

Description:

This command gets health information about the blade, including CPU, memory, disk, PCIe,

142 January 28, 2014

sensor, and FRU information. The information can be requested separately using specific

command options.

Syntax:

wcscli -getbladehealth [-i <blade_index>] [-a] [-m] [-d] [-p] [-s] [-t]

[-f] [-h]

-a – Show blade CPU information

-m – Show blade memory information

-d – Show blade disk information

-p – Show blade PCIe information

-s – Show blade sensor information

-t – Show temperature sensor information

-f – Show blade FRU information

-h – Help, display the correct syntax

Sample usage:

To get information on blade 1, execute the following command:

wcscli# wcscli –getbladehealth –i 1

Sample output:

== Blade 2 Health Information ==

Blade ID : 2

Blade State : Healthy

Blade Type : Server

== Memory Information ==

Dimm : 0

Dimm Type : DDR3

Memory Voltage : V13

Size : 8192

Speed : 1333

Memory Status : Reserved

Actual Speed : False

Dimm : 1

Dimm Type : DDR3

Memory Voltage : V13

Size : 8192

Speed : 1333

Memory Status : Reserved

Open Compute Project  Open CloudServer chassis management specification

http://opencompute.org 143

Actual Speed : False

Dimm : 2

Dimm Type : DDR3

Memory Voltage : V13

Size : 8192

Speed : 1333

Memory Status : Reserved

Actual Speed : False

== Disk information ==

Disk Id : 243

Disk Speed : 0

Disk Id : 244

Disk Speed : 0

Disk Id : 245

Disk Speed : 0

Disk Id : 246

Disk Speed : 0

== PCIE Information ==

PCIE Id : 65535

PCIE Number : 1

PCIE Sub System Id: 65535

PCIE System Id : 65535

PCIE Vendor Id : 65535

PCIE Id : 5463

PCIE Number : 2

PCIE Sub System Id : 35221

PCIE System Id : 5421

PCIE Vendor Id : 32902

PCIE Id : 114

PCIE Number : 3

PCIE Sub System Id : 35206

PCIE System Id : 5421

PCIE Vendor Id : 4096

== FRU Information ==

144 January 28, 2014

Blade Serial Number : SADTR2370293

Blade Asset Tag :

Blade Product Type :

Blade Hardware Version : ASFAS

Note that some of the fields populated are blank as complete FRU data is not available for

the on which the sample command was executed.

10.3 Blade Management Commands

The sections that follow describe the ACS system CLI blade management commands.

10.3.1 SetPowerOn

Description:

This command turns the AC outlet power ON for the blades.

When AC power gets supplied to the blade and the default blade power state is set to ON,

the blade chipset will start to receive power and boot process will be initiated. If the default

blade power state is set to OFF when AC power is applied, the blade chipset will not receive

power (and the boot process will not be initiated). You can explicitly send a SetBladeOn

command to power the blade on.

Syntax:

wcscli –setpoweron [-i <blade_index> | -a] [-h]

-i – Blade index (1-24)

-a – Get information for all blades

-h – Help, display the correct syntax

Sample usage:

To turn the power ON on blade 3, use the following command:

wcscli# wcscli –setpoweron –i 3

Sample output:

OK

10.3.2 SetPowerOff

Description:

Open Compute Project  Open CloudServer chassis management specification

http://opencompute.org 145

This command turns the AC outlet power OFF for the blades.

Syntax:

wcscli –setpoweroff [-i <blade_index> | -a] [-h]

-i – Blade index (1-24)

-a – Get information for all blades

-h – Help, display the correct syntax

Sample usage:

To turn the power OFF on blade 3, use the following command:

wcscli# wcscli –setpoweroff –i 3

Sample output:

OK

10.3.3 GetPowerState

Description:

This command gets the AC outlet power ON/OFF state of blades (whether or not the blades

are receiving AC power).

 When ON, blade is receiving AC power (hard power state).

 When OFF, blade is not receiving AC power.

Syntax:

wcscli –getpowerstate [-i <blade_index> | -a] [-h]

-i – Blade index (1-24)

-a – Get information for all blades

-h – Help, display the correct syntax

Sample usage:

To get the power state for blade 1, use the following command:

wcscli# wcscli –getpowerstate –i 1

Sample output:

Blade 5: On

10.3.4 SetBladeOn

Description:

146 January 28, 2014

This command supplies the power to the blade chipset, initializing the boot process. This

command is used to soft power the blade ON.

Syntax:

wcscli –setbladeon [-i <blade_index> | -a] [-h]

-i – Blade index (1-24)

-a – All connected blades

-h – Help, display the correct syntax

Sample usage:

To soft power ON blade 1, use the following command:

wcscli# wcscli –setbladeon –i 1

Sample output:

Blade 1: ON

10.3.5 SetBladeOff

Description:

This command removes the power from the blade chipset. This command is used to soft

power the blade OFF.

Syntax:

wcscli –setbladeoff [[-i <blade_index>] |[-a]] [-h]

-i – Blade index (1-48)

-a – All connected blades

-h – Help, display the correct syntax

Sample usage:

To soft power OFF blade 1, use the following command:

wcscli# wcscli –setbladeoff –i 1

Sample output:

Blade 1: OFF

10.3.6 GetBladeState

Description:

Open Compute Project  Open CloudServer chassis management specification

http://opencompute.org 147

This command gets the ON/OFF state of the blade (whether the blade chipset is receiving

power).

 When ON, blade is receiving AC power (hard power state) and the chipset is receiving

power (soft power state).

 When OFF, blade chipset is not receiving power.

Syntax:

wcscli –getbladestate [[-i <blade_index>] | [-a]] [-h]

-i – Blade index (1-24)

-a – All connected blades

-h – Help, display the correct syntax

Sample usage:

To get the ON/OFF state of blade 1, use the following command:

wcscli# wcscli –getbladestate –i 1

Sample output:

Blade State 1: ON

10.3.7 SetBladeDefaultPowerState

Description:

This command sets the default power state of the blade ON/OFF.

The default blade power state denotes the behavior of the blade after receiving AC power,

either when a blade is initially inserted in to its slot or power returns after a utility failure. If

the blade default power state is set to OFF, the blade won’t be powered ON after receiving

AC input power. An explicit SetBladeOn command needs to be sent to power ON the blade.

If the blade default power state is set to ON, the blade will be powered ON after receiving

AC input power.

Note that the blade default power state does not affect the active power state of the blade,

only their behaviors after a hard power recycle.

Syntax:

wcscli – setbladedefaultpowerstate [[-i <blade_index>] | [-a]] -s

<state>[-h]

-i – Blade index (1-24)

-a – All connected blades

-s – State, can be 0 (stay OFF) or 1 (power ON)

148 January 28, 2014

-h – Help, display the correct syntax

Sample usage:

To set the default power state of of blade 1 to ON, use the following command:

wcscli# wcscli –setbladedefaultpowerstate –i 1 -s 1

Sample output:

Blade 1 Default Power State:

ON

10.3.8 GetBladeDefaultPowerState

Description:

This command gets the default power state of the blade ON/OFF.

Syntax:

wcscli – getbladedefaultpowerstate [[-i <blade_index>] | [-a]][-h]

-i – Blade index, the number of blades (1-24)

-a – Gets information for all blades

-h – Help, display the correct syntax

Sample usage:

To set the default power state of of blade 1 to ON, use the following command:

wcscli# wcscli –getbladedefaultpowerstate –i 1

Sample output:

Blade 1 Default Power State: ON

10.3.9 SetBladeActivePowerCycle

Description:

This command power cycles or soft resets the blade(s).

Power cycle resets the blade (causing a software reboot sequence). Blade AC power signal

remains ON throughout this process. Any serial session active on that blade will continue to

be active during this process.

Syntax:

Open Compute Project  Open CloudServer chassis management specification

http://opencompute.org 149

wcscli – setbladeactivepowercycle [[-i <blade_index>]| [-a]] | [-t

<off_time>][-h]

-i – Blade index, the number of blades (1-24)

-a – Gets information for all blades

-t – Indicates the off time: the time interval in seconds for how long the blade stays OFF

before power on. If not specified, the default interval is 0 seconds.

-h – Help, display the correct syntax

Sample usage:

To power cycle blade 3, use the following command:

wcscli# wcscli – setbladeactivepowercycle –i 3

Sample output:

OK

10.3.10 SetBladeAttentionLEDOn

Description:

This command turns the blade attention LED On. The purpose of this attention LED is to

indicate that this blade needs attention. The command can also be used to identify the blade.

The blade attention LED is used to help service technicians find the blade during repair. Users

can also flag a service requirement by turning ON this LED. Operators/users must ensure that

the blade attention LED is turned OFF after service is complete.

Syntax:

wcscli – setbladeattentionledon [[-i <blade_index>]| [-a]][-h]

-i – Blade index, the number of blades (1-24)

-a – Gets information for all blades

-h – Help, display the correct syntax

Sample usage:

To turn the blade attention LED for blade 1 ON, use the following command:

wcscli# wcscli – setbladeattentionledon –i 1

Sample output:

OK

150 January 28, 2014

10.3.11 SetBladeAttentionLEDOff

Description:

This command turns the blade attention LED Off. The purpose of this attention LED is to

indicate that this blade needs attention.

The blade attention LED is used to help service technicians find the blade during repair. Users

can also flag a service requirement by turning ON this LED. Operators/users must ensure that

the blade attention LED is turned OFF after service is complete.

Syntax:

wcscli – setbladeattentionledoff [[-i <blade_index>]|[-a]][-h]

-i – Blade index, the number of blades (1-24)

-a – Gets information for all blades

-h – Help, display the correct syntax

Sample usage:

To turn the blade attention LED for blade 1 OFF, use the following command:

wcscli# wcscli – setbladeattentionledoff –i 1

Sample output:

OK

10.3.12 ReadBladeLog

Description:

This command reads the log from a blade. The blade log (system event log) contains

information about events/warnings/alerts pertaining to that blade like thermal throttling of

blades due to overheating, etc.

Syntax:

wcscli – readsclog [-i <blade_index>] [-n <entries_count>] [-h]

-i – Blade index, the number of blades (1-24)

-n – How many of the most recent entries to report. This is an optional parameter; if not

specified the command will return all existing entries.

-h – Help, display the correct syntax

Open Compute Project  Open CloudServer chassis management specification

http://opencompute.org 151

Sample usage:

To read the blade log for blade 1 and log type 1, use the following command:

wcscli# wcscli –readsclog –i 1 –l 1

Sample output:

| EventTime | EventDescription

| 2012-08-23T14:35:21| Sensor_SpecificDrive_Slot2433328Assertion111

| 2012-08-23T16:11:08| DiscreteTemperature187257Desertion3

| 2012-08-23T18:35:21| Sensor_SpecificDrive_Slot2463328Assertion111

| 2012-08-23T19:35:21| Sensor_SpecificDrive_Slot2433328Assertion111

| 2012-08-23T20:35:21| Sensor_SpecificDrive_Slot2433328Assertion111

10.3.13 ClearBladeLog

Description:

This command clears the log from a blade.

Syntax:

wcscli – clrsclog [-i <blade_index>] [-h]

-i – Blade index, the number of blades (1-24)

-h – Help, display the correct syntax

Sample usage:

To clear the blade log for blade 1, use the following command:

wcscli# wcscli –clearbladelog –i 1

Sample output:

OK

10.3.14 SetBladePowerLimit

Description:

This command sets the power limit for a blade.

The power limit can be set for a variety of reasons including energy savings and under

provisioning (consolidate more servers under a power hierarchy).

Syntax:

152 January 28, 2014

wcscli – setbladepowerlimit [[-i <blade_index>] | [-a]] -l

<power_limit> [-h]

-i – Blade index, the number of blades (1-24)

-a – Perform action for all blades

-l – Blade power limit, in W

-h – Help, display the correct syntax

Sample usage:

To set the power limit for blade 1 to 750 W, use the following command:

wcscli# wcscli –setbladepowerlimit –i 1 –l 750

Sample output:

Blade 1 power limit: 750 Watts

10.3.15 SetBladePowerLimitOn

Description:

This command activates the power limit for a blade, and enables power throttling.

Syntax:

wcscli – setbladepowerlimiton [[-i <blade_index>]|[-a]] [-h]

-i – Blade index, the number of blades (1-24)

-a – Perform action for all blades

-h – Help, display the correct syntax

Sample usage:

To activates the power limit for blade 1, use the following command:

wcscli# wcscli –setbladepowerlimiton –i 1

Sample output:

Blade 1: ON

10.3.16 SetBladePowerLimitOff

Description:

This command deactivates the power limit for a blade, and disables power throttling.

Syntax:

Open Compute Project  Open CloudServer chassis management specification

http://opencompute.org 153

wcscli – setbladepowerlimitoff [[-i <blade_index>]|[-a]] [-h]

-i – Blade index, the number of blades (1-24)

-a – Perform action for all blades

-h – Help, display the correct syntax

Sample usage:

To deactivates the power limit for blade 1, use the following command:

wcscli# wcscli –setbladepowerlimitoff –i 1

Sample output:

Blade 1: OFF

10.3.17 GetBladePowerLimit

Description:

This command gets the power limit for a blade.

Syntax:

wcscli – getbladepowerlimit [[-i <blade_index>]|[-a]] [-h]

-i – Blade index, the number of blades (1-24)

-a – Perform action for all blades

-h – Help, display the correct syntax

Sample usage:

To get the power limit for blade 1, use the following command:

wcscli# wcscli –getbladepowerlimit –i 1

Sample output:

Blade 1 power limit 750 Watts

10.3.18 GetBladePowerReading

Description:

This command gets the power reading for a blade. The command can be used for monitoring

and or other power control mechanism (refer to the SetBladePowerLimit command).

Syntax:

wcscli – getbladepowerreading [[-i <blade_index>]|[-a]] [-h]

154 January 28, 2014

-i – Blade index, the number of blades (1-24)

-a – Perform action for all blades

-h – Help, display the correct syntax

Sample usage:

To get the power reading for blade 1, use the following command:

wcscli# wcscli –getbladepowerreading –i 1

Sample output:

Blade 1 power reading: 67 Watts

10.3.19 GetNextBoot

Description:

This command gets the device type of the start boot device during the subsequent reboot for

a particular blade.

Syntax:

wcscli – getnextboot [-i <blade_index>][-h]

-i – Blade index, the number of blades (1-24)

-h – Help, display the correct syntax

Sample usage:

To get the next boot device type for blade 1, use the following command:

wcscli# wcscli –getnextbootdevice –i 1

Sample output:

OK. Next boot is ForcePxe.

10.3.20 SetNextBoot

Description:

This command sets the device boot type of the start boot device during the subsequent

reboot for a blade.

Syntax:

wcscli –setbootnext [-i <blade_index>] [-t <boot_type>] [-p

<is_persistent>] [-n <boot_instance>] [-h]

Open Compute Project  Open CloudServer chassis management specification

http://opencompute.org 155

-i – Blade index (1-24)

boot_type – One of the following:

1. NoOverRide

2. ForcePxe

3. ForceDefaultHdd,

4. ForceDefaultHddSafeMode

5. ForceDefaultDiagPartition,

6. ForceDefaultDvd

7. ForceIntoBiosSetup

8. ForceFloppyOrRemovable

is_persistent – Is this a persistent setting (set value 1) or a one-time setting (set value 0)

boot_instance – instance number of the boot device (for example, 0 or 1 for NIC if there are

two NICs)

-h – Help, display the correct syntax

Sample usage:

To set the boot device for blade 1, use the following command:

wcscli# wcscli –setnextboot –i 2 –p 1 –n 1

Sample output:

OK. Next boot is ForceDefaultHdd

10.4 Chassis Manager Management Commands

The sections that follow describe the ACS system CLI chassis manager management

commands

10.4.1 SetChassisAttentionLEDOn

Description:

This command turns the Chassis attention LED On. The purpose of this attention LED is to

indicate that this chassis manager needs attention.

The chassis attention LED is used to direct service technicians to the correct chassis during

repair. Users can also flag a service requirement by turning ON this LED. When possible,

repairs will also be self-directed by the chassis management system. Operators/users must

ensure that the Chassis Attention LED is turned OFF after service is complete.

Syntax:

156 January 28, 2014

wcscli –setchassisattentionledon [-h]

-h – Help, display the correct syntax

Sample usage:

To turn the chassis attention LED ON, use the following command:

wcscli# wcscli –setattentionledon

Sample output:

OK

10.4.2 SetChassisAttentionLEDOff

Description:

This command turns the Chassis attention LED Off. The purpose of this attention LED is to

indicate that this chassis manager needs attention.

The chassis attention LED is used to direct service technicians to the correct chassis during

repair. Users can also flag a service requirement by turning ON this LED. When possible,

repairs will also be self-directed by the chassis management system. Operators/users must

ensure that the Chassis Attention LED is turned OFF after service is complete.

Syntax:

wcscli –setchassisattentionledoff [-h]

-h – Help, display the correct syntax

Sample usage:

To turn the chassis attention LED OFF, use the following command:

wcscli# wcscli –setattentionledoff

Sample output:

OK

10.4.3 GetChassisAttentionLEDStatus

Description:

This command gets the status of the chassis attention LED (whether ON or OFF).

The chassis attention LED is used to direct service technicians to the correct chassis during

repair. Users can also flag a service requirement by turning ON this LED. When possible,

Open Compute Project  Open CloudServer chassis management specification

http://opencompute.org 157

repairs will also be self-directed by the chassis management system. Operators/users must

ensure that the Chassis Attention LED is turned OFF after service is complete.

Syntax:

wcscli –getchassisledstatus [-h]

-h – Help, display the correct syntax

Sample usage:

To get the status of the chassis attention LED, use the following command:

wcscli# wcscli –getchassisledstatus

Sample output:

Chassis LED: OFF

10.4.4 ReadChassisLog

Description:

This command reads the chassis log.

The chassis log contains information about various alerts/warning messages associated with

devices connected to the chassis manager (for example, blade overheating or fan/PSU failure).

The chassis log also contains user audit information, such as timestamp/activity performed by

that user.

Syntax:

wcscli –readchassislog [-h]

-h – Help, display the correct syntax

Sample usage:

To get the chassis user log, use the following command:

wcscli# wcscli –readchassislog

Sample output:

== Chassis Controller Log ==

Timestamp | Entry

10/3/2012 3:22:56 PM | ACS\vdsifu,Invoked

GetChassisInfo(True,True,True)

10/3/2012 3:22:57 PM | ACS\vdsifu,Invoked GetBladeState(bladeid: 1)

158 January 28, 2014

10/3/2012 3:22:57 PM | ACS\vdsifu,Invoked GetBladeState(bladeid: 2)

10/3/2012 3:22:57 PM | ACS\vdsifu,Invoked GetBladeState(bladeid: 3)

10/3/2012 3:22:58 PM | ACS\vdsifu,Invoked

GetChassisNetworkProperties()

10/3/2012 3:23:45 PM | ACS\vdsifu,Invoked ReadBladelog(bladeId: 1)

10.4.5 ClearChassisLog

Description:

This command clears the chassis log.

To comply with size restrictions on chassis manager storage space, users are expected to

periodically clear the consumed log entries.

Syntax:

wcscli –clearchassislog [-h]

-h – Help, display the correct syntax

Sample usage:

To clear the chassis user log, use the following command:

wcscli# wcscli –clearchassislog

Sample output:

OK

10.4.6 GetACSocketPowerState

Description:

This command gets the status of chassis AC sockets (TOR switches).

The AC socket power state refers to active power state of the COM ports (and therefore to

the power state of the device connected to the port) on the chassis manager. For example,

the TOR switch is connected to COM1 (port number 1). The power ON/OFF commands for

the AC sockets makes it possible to remotely power-reset the device and also for

enabling/disabling purpose.

Syntax:

wcscli – getacsocketpowerstate -p <port_no> [-h]

Open Compute Project  Open CloudServer chassis management specification

http://opencompute.org 159

-p – Port number of interest

-h – Help, display the correct syntax

Sample usage:

To get the status of the chassis AC sockets for port 2, use the following command:

wcscli# wcscli –getacsocketpowerstate –p 2

Sample output:

ON

10.4.7 SetACSocketPowerStateOn

Description:

This command turns the chassis AC sockets (TOR switches) ON.

The AC socket power state refers to active power state of the COM ports (and therefore to

the power state of the device connected to the port) on the chassis manager. For example,

the TOR switch is connected to COM1 (port number 1). The power ON/OFF commands for

the AC sockets makes it possible to remotely power-reset the device and also for

enabling/disabling purpose.

Syntax:

wcscli – setacsocketpowerstateon -p <port_no> [-h]

-p – Port number of interest

-h – Help, display the correct syntax

Sample usage:

To turn ON the chassis AC sockets for port 12, use the following command:

wcscli# wcscli –setacsocketpowerstateon –p 12

Sample output:

OK

10.4.8 SetACSocketPowerStateOff

Description:

This command turns the chassis AC sockets (TOR switches) OFF.

The AC socket power state refers to active power state of the COM ports (and therefore to

160 January 28, 2014

the power state of the device connected to the port) on the chassis manager. For example,

the TOR switch is connected to COM1 (port number 1). The power ON/OFF commands for

the AC sockets makes it possible to remotely power-reset the device and also for

enabling/disabling purpose.

Syntax:

wcscli – setacsocketpowerstateoff -p <port_no> [-h]

-p – Port number of interest

-h – Help, display the correct syntax

Sample usage:

To turn OFF the chassis AC sockets for port 12, use the following command:

wcscli# wcscli –setacsocketpowerstateoff –p 12

Sample output:

OK

10.4.9 AddChassisControllerUser

Description:

This command adds a new chassis controller user with specified password and ACS security

role for accessing the chassis manager command-line interface. The role should be Admin,

Operator, or User. Each role has access to a specific set of APIs.

Syntax:

wcscli – adduser –u <username> -p <password> -a|-o|-r [-h]

-u username – Username for the new user

-p password – Password for the new user

Select one of the ACS security roles for the user (mandatory):

-a – Admin privilege

-o – Operator privilege

-r– User privilege

-h – Help, display the correct syntax

Sample usage:

Open Compute Project  Open CloudServer chassis management specification

http://opencompute.org 161

To add a user with admin privileges, use the following command:

wcscli# wcscli – adduser –u myname –p pass!123 -a

Sample output:

OK

10.4.10 ChangeChassisControllerUserPassword

Description:

This command changes the password for an existing user in the chassis controller.

Syntax:

wcscli – changeuserpwd –u <username> -p <newpassword> [-h]

-u username – Username for which the password will be changed

-p newpassword – new password for the user

-h – Help, display the correct syntax

Sample usage:

To add a user with admin privileges, use the following command:

wcscli# wcscli – changeuserpwd –u myname –p pa##!143

Sample output:

OK

10.4.11 ChangeChassisControllerUserRole

Description:

This command changes the ACS security role for an existing user in the chassis controller.

Note that the user will be removed from other ACS security roles and added to the new role

specified. Users can belong to only one security role.

Syntax:

wcscli – changeuserrole –u <username> -a|-o|-r [-h]

-u username – Username for the new user

Select one of the ACS security roles for the user (mandatory):

-a – Admin privilege

162 January 28, 2014

-o – Operator privilege

-r – User privilege

-h – Help, display the correct syntax

Sample usage:

To change the user role to operator, use the following command:

wcscli# wcscli -changeuserrole –u myname –o

Sample output:

OK

10.4.12 RemoveChassisControllerUser

Description:

This command removes an existing user from the chassis controller.

Syntax:

wcscli – removeuser –u <username>[-h]

-u username – Username for the new user

-h – Help, display the correct syntax

Sample usage:

To remove a user, use the following command:

wcscli# wcscli -removeuser –u myname

Sample output:

OK

10.4.13 GetNetworkProperties(getnic)

Description:

This command gets the chassis controller network properties.

Syntax:

wcscli – getnic[-h]

-h – Help, display the correct syntax

Open Compute Project  Open CloudServer chassis management specification

http://opencompute.org 163

Sample usage:

To get the network configuration details for the chassis, use the following command:

wcscli# wcscli -getnic

Sample output:

Interface# 1

IP: 192.168.100.13

Subnet: 255.255.255.0

Default gateway:

DNS Domain: acs.lab

DNS Hostname: CM_B1B01_1

DHCP Server: 192.168.100.8

MAC Address: 04:7D:7B:FC:4E:60

Source :DHCP

10.5 Blade and Serial Console Session Commands

The sections that follow describe the ACS system CLI blade and serial console session

commands.

10.5.1 SetBladeSerialSession

Description:

This command is used to start serial session to a blade. The command will open a Serial-

Client-terminal for the serial session.

Users might want to open a serial session to a blade for debugging purposes, to view blade

boot messages, or for executing BIOS commands. A VT100 console will be provided that will

continuously poll the blade for any serial session data. Any user command entered using the

VT100 console will be sent to the blade.

Note that this session might close unexpectedly if there is a simultaneous IPMI command

issued to any of the chassis blades or because to inactivity of more than two minutes.

Syntax:

wcscli -startbladeserialsession [-i <blade_index>] [-h]

blade_index - the number of the blade. Typically 1-24

164 January 28, 2014

-h - help; display the correct syntax

Sample usage:

To start a serial session to the blade, use the following command:

wcscli# wcscli – startbladeserialsession -i blade_index

Sample Output:

This opens a VT100 session for that blade.

10.5.2 StartPortSerialSession

Description:

This command is used to open a serial port console terminal to serial devices that are

connected to the chassis manager (for example, TOR network switches). Note that the serial

console might close if session is inactive for more than two minutes.

Syntax:

wcscli -startportserialsession [-i <Port_index>] [-h]

Port_index - the number of the blade. Typically 1-2

-h - help; display the correct syntax

Sample usage:

To to start serial port consolel, use the following command:

wcscli# wcscli – startportserialsession -i port_index

Sample output:

This opens VT100 session for the serial port console.

10.5.3 StopPortSerialSession

Description:

Stop all existing sessions on given port.

Syntax:

wcscli -stopPortSerialSession [-i <Port_index> [-h]

-i Port number

-h - Help; display the correct syntax

Open Compute Project  Open CloudServer chassis management specification

http://opencompute.org 165

Sample usage:

To to start serial port consolel, use the following command:

wcscli# wcscli – stopPortSerialSession -i port_number

Sample output:

All existing sessions ended.

10.5.4 EstablishCmConnection

Description:

Create a connection to the chassis manager service.

Syntax:

wcscli establishCmConnection -m <host_name> -p <port> -s <SSL_option>

[-u] <username> [-x] <password> [-b] <batchfileName> [-h]

-m host_name - Specify Host name for Chassis manager (for serial

connection, localhost is assumed)

-p port - Specify a valid Port to connect to for chassis manager

(default is 8000)

-s Select SSL Encryption enable/disable

Enter 0 to disable SSl Encryption

Enter 1 to enable SSl Encryption.

-u & -x specify user credentials -- username and password -- to connect

to CM service (Optional.. will use default credentials)

-b Optional batch file option (not supported in serial mode).

-v Get CLI version information

-h help

Sample usage:

To establish a connection to the chassis manager, use the following command:

wcscli# wcscli –establishCmConnection -p 8000 -s 0 -u username -x

password

Sample output:

Connection to CM succeeded..

166 January 28, 2014

10.5.5 TerminateCmConnection

Description:

Terminate a connection to the chassis manager service.

Syntax:

wcscli terminateCmConnection [-h]

-h help

Sample usage:

To terminate a connection to the chassis manager, use the following command:

wcscli# wcscli –terminateCmConnection

Sample output:

Connection to CM terminated successfully.

10.6 CLI Over Serial (WCSCLI+)
Note that these commans are available in WCSCLI Serial mode only. Otherwise, all these commands will

fail with the following console message:

Command only supported in serial wcscli client mode..

10.6.1 StartChassisManager

Description:

This command is used to start serial Windows chassis manager service.

 Syntax:

wcscli -startchassismanager [-h]

-h - help; display the correct syntax

Sample usage:

To start the Windows chassis manager service, use the following command:

wcscli# wcscli –startchassismanager

Sample Output:

Open Compute Project  Open CloudServer chassis management specification

http://opencompute.org 167

chassis manager successfully started.

10.6.2 StopChassisManager

Description:

This command is used to stop an existing Windows chassis manager service.

Syntax:

wcscli -stopchassismanager [-h]

-h - Help; display the correct syntax

Sample usage:

To stop Windows chassis manager service, use the following command:

wcscli# wcscli –stopchassismanager

Sample output:

chassis manager service successfully stopped.

10.6.3 GetChassisManagerStatus

Description:

Get the status of Windows chassis manager service.

Syntax:

wcscli -getchassismanagerstatus [-h]

-h - Help; display the correct syntax

Sample usage:

To get the status of chassis manager service, use the following command:

wcscli# wcscli –getchassismanagerstatus

Sample output:

chassismanager service status: Running

OK

10.6.4 EnableChassisManagerSsl

168 January 28, 2014

Description:

Enable SSL for the chassis manager service.

Syntax:

wcscli -enablechassismanagerssl [-h]

-h - Help; display the correct syntax

Sample usage:

To enable SSL for the chassis manager service, use the following command:

wcscli# wcscli –enablechassismanagerssl

Sample output:

Successfully enabled SSL in the chassismanager service.

You will need to establish connection to the CM again via establishCmConnection command

to run any commands..

wcscli -establishCmConnection -m <host_name> -p <port> -s <SSL_option> [-u]

<username> [-x] <password> [-b] <batchfileName>

-m host_name - Specify Host name for Chassis manager (for serial connection, localhost is

assumed)

-p port - Specify a valid Port to connect to for chassis manager (default is 8000)

-s Select SSL Encryption enable/disable

Enter 0 to disable SSl Encryption

Enter 1 to enable SSl Encryption.

-u & -x specify user credentials -- username and password -- to connect to CM service

(Optional.. will use default credentials)

-b Optional batch file option (not supported in serial mode).

-v Get CLI version information

-h help

10.6.5 DisableChassisManagerSsl

Description:

Disable SSL for the chassis manager service.

Syntax:

Open Compute Project  Open CloudServer chassis management specification

http://opencompute.org 169

wcscli -disablechassismanagerssl [-h]

-h - Help; display the correct syntax

Sample usage:

To disable SSL for the chassis manager service, use the following command:

wcscli# wcscli –disablechassismanagerssl

Sample output:

Successfully disabled SSL in the chassismanager service.

You will need to establish connection to the CM again via establishCmConnection command

to run any commands..

wcscli -establishCmConnection -m <host_name> -p <port> -s <SSL_option> [-u]

<username> [-x] <password> [-b] <batchfileName>

-m host_name - Specify Host name for Chassis manager (for serial connection, localhost is

assumed)

-p port - Specify a valid Port to connect to for chassis manager (default is 8000)

-s Select SSL Encryption enable/disable

Enter 0 to disable SSl Encryption

Enter 1 to enable SSl Encryption.

-u & -x specify user credentials -- username and password -- to connect to CM service

(Optional.. will use default credentials)

-b Optional batch file option (not supported in serial mode).

-v Get CLI version information

-h help

10.6.6 GetNetworkProperties (getnic)

Description:

This command gets the chassis controller network properties.

Syntax:

wcscli – getnic[-h]

-h – Help, display the correct syntax

Sample usage:

170 January 28, 2014

To get the network configuration details for the chassis, use the following command:

wcscli# wcscli -getnic

Sample output:

N/w Interface# 1

IP Address: 192.168.100.13

Hostname: wcsprod

MAC Address: 04:7D:7B:FC:4E:60

Subnet Mask: 255.255.255.0

DHCP Enabled:

DHCP Server:

DNS Domain: wcs.lab

Gateway Address:

Primary: 192.168.100.8

Secondary:

DNS Server:

10.6.7 SetNetworkProperties (setnic)

Description:

This command sets the chassis controller network properties (only available over serial wcscli

client).

Syntax:

wcscli -setnic [-n] <hostname> [-g] <gateway> [-s] <subnet> [-m]

<netmask -Required!> [-i] <IP -Required!> [-p] <primary DNS -Required!>

[-d] <secondary DNS -Required!> [-a] <IP addr source DHCP/STATIC -

Required!> [-h]

-n - hostname of the chassis controller

-g - gateway of the chassis controller

-s - subnet IP of the chassis controller

-m - subnet mask of the chassis controller

-i - ip address of the chassis controller

-p - primary DNS server address for the chassis controller

Open Compute Project  Open CloudServer chassis management specification

http://opencompute.org 171

-d - secondary DNS server address for the chassis controller

-a - IP addr source DHCP/STATIC

-t - network interface number

-h – help; display the correct syntax ";

Sample usage:

To get the network configuration details for the chassis, use the following command:

wcscli# wcscli -setnic -m 255.255.0.0 -i 10.160.148.220 -p

10.160.148.220 -d 127.0.0.1 -a static

Sample output:

The command will execute successfully, and there will be intermittent connection loss to

chassis manager because of the network cofig. update.

