

# **Alpha Networks Inc**

SNX-60x0-486F

48-port 10G SFP+ & 6-port 40G QSFP Switch (ToR/Aggregation Switch)

Author: Damon Lee, Chloe Lin



# **Revision History**

| Version | Revised<br>Date | Author    | Content Revised                                           |
|---------|-----------------|-----------|-----------------------------------------------------------|
| 0.4     | 20/09/14        | Damon Lee |                                                           |
| 0.5     | 24/09/14        | Chloe Lin | Add Fan module connector part number                      |
| 0.6     | 09/10/14        | Damon Lee | Add PSU and CPU module connectors part number and pin-out |
|         |                 |           |                                                           |
|         |                 |           |                                                           |



# Scope

This documents defines the technical specification for SNX-60x0-486F used in the Open Compute Project as 10G Top of the Rack (ToR) or as an aggregation switch

# **Contents**

| Revis | sion History  | 2                             |
|-------|---------------|-------------------------------|
| Over  | view          | 6                             |
| Licer | nse           | ε                             |
| 1     | Feature High  | lights                        |
| 2     | Physical Ove  | view                          |
|       | 2.1           | Mechanical Dimension          |
|       | 2.2           | Top View10                    |
|       | 2.3           | Front View10                  |
|       | 2.4           | Rear View11                   |
| 3     | LED Definitio | n11                           |
| 4     | Field Replace | able Components13             |
|       | 4.1           | Power Supply Modules13        |
|       | 4.2           | Fan Modules16                 |
| 5     | System Over   | view18                        |
|       | 5.1           | Main PCB18                    |
|       | 5.1           | CPU Subsystem20               |
|       |               | 5.1.1 Freescale CPU (P2020)20 |
|       |               | 5.1.1.1 DDR3 SDRAM23          |
|       |               | 5.1.1.2 PCIe Interface23      |
|       |               | 5.1.2 Intel CPU (C2558)24     |



| 771 | A A A        | Open Com    | pute Project Alpha Networks SNX-60x0-486F Sp | ecification v0.6 |
|-----|--------------|-------------|----------------------------------------------|------------------|
|     |              | 5.1.2.1     | DDR3 SDRAM                                   | 27               |
|     |              | 5.1.2.2     | PCIe Interface                               | 27               |
| 6   | IO and Conne | ectors      |                                              | 28               |
|     | 6.1          | RS232 I     | nterface                                     | 28               |
|     | 6.2          | Manage      | ement Ethernet Interfaces                    | 28               |
|     | 6.3          | USB Int     | erface                                       | 28               |
| 7   | Power/Enviro | onmental    | /Agency Certifications                       | 28               |
|     |              |             |                                              |                  |
|     |              |             |                                              |                  |
| Li  | st of Fig    | ures        |                                              |                  |
|     | Figure 1:    | SNX-60x     | 0-486F Chassis dimension                     | 9                |
|     | Figure 2:    | SNX-60x     | 0-486F top view                              | 10               |
|     | Figure 3:    | SNX-60x     | 0-486F front view                            | 10               |
|     | Figure 4:    | SNX-60x     | 0-486F rear view                             | 11               |
|     | Figure 5:    | Power Su    | upply Mechanical specification               | 14               |
|     | Figure 6:    | Fan mod     | ule mechanical specification                 | 17               |
|     | Figure 7:    | Main boa    | ard block diagram                            | 19               |
|     | Figure 8:    | Main PCI    | B top view                                   | 19               |
|     | Figure 9:    | Freescale   | e CPU board block diagram                    | 20               |
|     | Figure 10    | ): Intel CP | PU board block diagram                       | 24               |
|     |              |             |                                              |                  |
|     |              |             |                                              |                  |
| Li  | st of Ta     | bles        |                                              |                  |
|     | Table 1: I   | LED behav   | vior for system                              | 12               |
|     | Table 2: I   | LED behav   | vior for Port 1~48 10G Ethernet Port         | 12               |
|     | Table 3: I   | LED beha    | vior for Port 49~54 40G Ethernet Port        | 13               |



| Table 4: Power supply LED definition               | 13 |
|----------------------------------------------------|----|
| Table 5: Power supplies details                    | 14 |
| Table 6: Power supply connector pin out            | 14 |
| Table 7: LED definition on power supply            | 15 |
| Table 8: Power Supply EEPROM FRU data format       | 16 |
| Table 9: Fan Modules part number                   | 16 |
| Table 10: Fan Modules connector pin out            | 17 |
| Table 11: PCBs for SNX-60x0-486F                   | 18 |
| Table 12: CPU subsystem key Components             | 20 |
| Table 13: Freescale CPU module connector pin out   | 23 |
| Table 14: Intel CPU module connector pin out       | 27 |
| Table 15: Intel CPU module power connector pin out | 27 |
| Table 16: Power consumption and environment table  | 29 |
| Table 17: Regulatory Standards Compliance table    | 29 |



# **Overview**

The SNX-60x0-486F Series Data Center, Top-of-Rack (ToR)/aggregation switches, with a total combined bandwidth of 720 Gbps, feature 48 ports of 10 Gbps and 6 ports of 40 Gbps Ethernet wire-speeds. The Layer 3 capable, bare metal system also provides an RJ-45 console port and an Out-Of-Band (OOB) management port. It also provides a micro USB interface in the front panel for the administrators to upgrade code by using an extended cable. The SNX-60x0-486F switch is a PHY-less design with SFP+ and QSFP+ connections directly attached to the SERDES interface of Broadcom BCM56854.

# License

All semiconductor devices that may be referred to in this specification, or required to manufacture products described in this specification, will be considered referenced only, and no intellectual property rights embodied in or covering such semiconductor devices shall be licensed as a result of this specification or such references.

Notwithstanding anything to the contrary in the CLA, the licenses set forth therein do not apply to the intellectual property rights included in or related to the semi-conductor devices identifies in the specification. These references include without limitation the reference to devices listed below. For clarity, no patent claim that reads on such semiconductor devices will be considered a "Granted Claim" under the applicable Contributor License Agreement for this specification.

| Manufacturer | Description             |
|--------------|-------------------------|
| Broadcom     | BCM56854                |
| Intel        | x86 CPU C2538-2.4GHz    |
| Freescale    | P2020NSN2MHC            |
| Marvell      | 88E1112                 |
| Transcend    | SODIMM TS512MSK72V3N    |
| Transcend    | SD Card TS8GUSDC10M     |
| Macronix     | Flash MX29LV640EBTI-70G |
| Renesas      | EEPROM R1EX24002ASAS0I  |
| Atmel        | AT24C128C-SSHM-T        |
| Lattice      | LCMXO256C-3TN100C       |





As of July 11, 2014, the following persons or entities have made this Specification available under the Open Web Foundation Final Specification Agreement (OWFa 1.0), which is available at

http://www.openwebfoundation.org/legal/the-owf-1-0-agreements/owfa-1-0:

Alpha Networks Inc.

You can review the signed copies of the Open Web Foundation Agreement Version 1.0 for this Specification at http://opencompute.org/licensing/, which may also include additional parties to those listed above.

Your use of this Specification may be subject to other third party rights. THIS SPECIFICATION IS PROVIDED "AS IS." No support of any kind will be provided by the contributors. The contributors expressly disclaim any warranties (express, implied, or otherwise), including implied warranties of merchantability, non-infringement, fitness for a particular purpose, or title, related to the Specification. The entire risk as to implementing or otherwise using the Specification is assumed by the Specification implementer and user. IN NO EVENT WILL ANY PARTY BE LIABLE TO ANY OTHER PARTY FOR LOST PROFITS OR ANY FORM OF INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES OF ANY CHARACTER FROM ANY CAUSES OF ACTION OF ANY KIND WITH RESPECT TO THIS SPECIFICATION OR ITS GOVERNING AGREEMENT, WHETHER BASED ON BREACH OF CONTRACT, TORT (INCLUDING NEGLIGENCE), OR OTHERWISE, AND WHETHER OR NOT THE OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.



# 1 Feature Highlights

The SNX-60x0-486F Series Data Center, Top-of-Rack (ToR)/aggregation switches, with a total combined bandwidth of 720 Gbps, feature 48 ports of 10 Gbps and 6 ports of 40 Gbps Ethernet wire-speeds. The Layer 3 capable, bare metal system also provides an RJ-45 console port and an Out-Of-Band (OOB) management port. Administrators can selectively access the Command Line Interface (CLI) through the RJ-45 console port. It also provides a micro USB interface in the front panel for the administrators to upgrade code by using an extended cable.

- Modular CPU board with large flash and memory
- Temperature warning
- Software-readable thermal monitor
- Real time clock (RTC) support
- Two Hot-swappable redundant power supply
- Four redundant (3+1) fan modules
- One 10/100/1000 Mbps management port
- One RJ45 type console port in the front panel
- One Micro USB port in the front panel for hosting an external USB flash via micro USB to USB cable
- One Reset button in the front panel



# 2 Physical Overview

# 2.1 Mechanical Dimension

|                        | Dimension                     |
|------------------------|-------------------------------|
| Height x Width x Depth | 44mm(H)440mm(W) x 487.4 mm(D) |

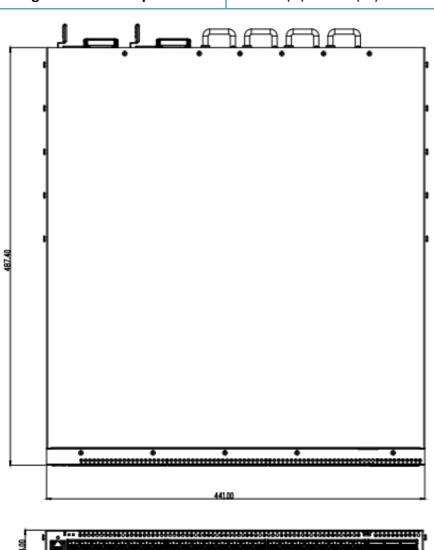
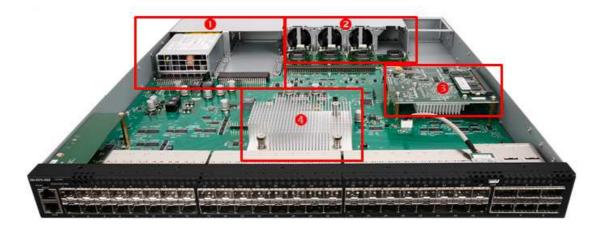




Figure 1: SNX-60x0-486F Chassis dimension



# 2.2 Top View



1: Hot swappable power supply

2: Hot swappable fan modules

3: CPU module

4: Switch MAC - Trident 2

Figure 2: SNX-60x0-486F top view

## 2.3 Front View



1: Out of band management port

**6**: 6\* 40G QSFP ports

2: Console Port

3: 48\* 10G SFP+ ports

Mini USB port for storage

Figure 3: SNX-60x0-486F front view



## 2.4 Rear View



1: Hot swappable fan modules

2: Hot swappable power supply

Figure 4: SNX-60x0-486F rear view

# 3 LED Definition

The following table defines the per device LEDs' behaviors:

| Items | LED<br>Indication | Color | Behavior    | Description                                                                                    |
|-------|-------------------|-------|-------------|------------------------------------------------------------------------------------------------|
|       | Locator           | Blue  | Blinking    | Locator function is enable                                                                     |
|       | LUCALUI           | blue  | Light off   | Locator function is disable                                                                    |
|       |                   |       | Solid Light | POST Passed, normal operation                                                                  |
|       |                   | Green | Blinking    | POST in progress                                                                               |
|       | STAT              |       | Light off   | Power off                                                                                      |
| 1     |                   | Amber | Blinking    | POST failed or overheat or<br>power supply failed or Fan<br>module fail or over<br>temperature |
|       | PWR .             | Green | Solid Light | Power On                                                                                       |
|       |                   |       | Light off   | Power Off and no power attached                                                                |
|       |                   | Amber | Blinking    | Power supply failures, over voltage, over current, over temperature                            |



|   | FAN  | Green    | Solid Light | The fan modules are operating normally   |
|---|------|----------|-------------|------------------------------------------|
|   |      | Amber    | Blinking    | There is any fan module failed           |
|   | MGMT | Green(R) | Solid Light | Connection is active                     |
| 2 |      |          | Blinking    | Packet transmitting or receiving         |
|   |      |          | Light off   | No connection detected. Port is disabled |
| 3 | CON  | Green(R) | Solid Light | Console is on                            |
|   |      |          | Light off   | No link up or port disable               |

Table 1: LED behavior for system

The following defines the 10G SFP+ Ethernet port LEDs' behaviors:

| Location         | LED Indication | Color | Behavior    | Description                                                                                                |
|------------------|----------------|-------|-------------|------------------------------------------------------------------------------------------------------------|
| LED<br>Port 1~48 | Link/Act/Speed | Green | Solid Light | A transceiver module or cable has been correctly installed. The port has a link and is operating at 10Gbps |
| (10G bps)        |                |       | Blinking    | The port is sending or receiving data at 10Gbps                                                            |
|                  |                | Off   | Light off   | Link down or no link                                                                                       |

Table 2: LED behavior for Port 1~48 10G Ethernet Port

The following table defines the 40G QSFP+ Ethernet port LEDs' behaviors:

| Location                    | LED Indication | Color | Behavior | Description                                                                                                |
|-----------------------------|----------------|-------|----------|------------------------------------------------------------------------------------------------------------|
| LED<br>Port 1~6<br>(40Gbps) | Link/Act/Speed | Green | Solid    | A transceiver module or cable has been correctly installed. The port has a link and is operating at 40Gbps |
|                             |                |       | Blinking | The port is sending or receiving data at 40Gbps                                                            |
|                             |                | Amber | Solid    | A transceiver module or cable has been correctly installed. The port has a link and is operating at 10Gbps |



|     | Blinking  | Packet is transmitting or receiving at 10Gbps |
|-----|-----------|-----------------------------------------------|
| Off | Light off | Link down or no link                          |

Table 3: LED behavior for Port 49~54 40G Ethernet Port

Each power supply module has a bi-color LED, which behavior is descript in the following:

| LED Color | Behavior    | Description                                                                                                             |  |
|-----------|-------------|-------------------------------------------------------------------------------------------------------------------------|--|
|           | Solid Light | Output ON and OK                                                                                                        |  |
| Green     | Blinking    | AC present / AC Line 12VSB Holdup                                                                                       |  |
|           | Light off   | No AC power to all power supplies                                                                                       |  |
|           | Solid Light | Power supply critical event causing a shutdown; failure, Fan Fail                                                       |  |
| Amber     | Blinking    | Power supply warning events where the power supply continues to operate; high temp, high power, high current, slow fan. |  |

Table 4: Power supply LED definition

# 4 Field Replaceable Components

# **4.1 Power Supply Modules**

Then SNX-60x0-486F supports two hot swappable power supplies plugged in at the same time for redundancy. The details of the power supplies are as following:

| Power Supply                    |                                                                                                                                          |  |  |  |
|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Number of power supply          | 2                                                                                                                                        |  |  |  |
| Power supply types              | AC version (forward and reversed airflow)  DPS-460KB C  DPS-460KB B  DC version (forward and reversed airflow)  DPS-800KB C  DPS-800KB B |  |  |  |
| AC PSUs                         |                                                                                                                                          |  |  |  |
| <ul><li>Input voltage</li></ul> | • 100 to 240 VAC                                                                                                                         |  |  |  |
| • Frequency                     | • 50 to 60 Hz                                                                                                                            |  |  |  |
| Efficiency                      | • 89 to 91% at 220V                                                                                                                      |  |  |  |

### **DC PSUs**

- Input voltage range
- Efficiency

- 40.5V/23.8A 48V/19.0A -60V/15.6
- 85 to 88%

Table 5: Power supplies details

Power Supply connector: FCI 10035388-102LF

| Pin #  | Descriptin        | Pin #  | Descriptin3        |
|--------|-------------------|--------|--------------------|
| A1~9   | GND               | B1~9   | GND                |
| A10~18 | +12V              | B10~18 | +12V               |
| A19    | PMBus SDA         | B19    | A0 (SMBus Address) |
| A20    | PMBus SCL         | B20    | N/A                |
| A21    | PSON              | B21    | 12VSB              |
| A22    | SMBAlert#         | B22    | Smart_on           |
| A23    | Return Sense      | B23    | 12VLS              |
| A24    | +12V Remote Sense | B24    | No Connect         |
| A25    | PWOK              | B25    | N/A                |

Table 6: Power supply connector pin out

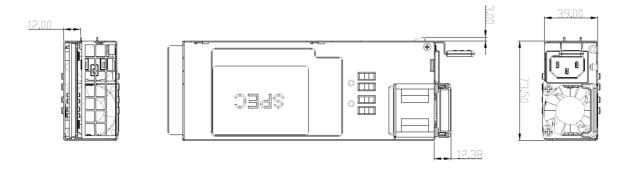



Figure 5: Power Supply Mechanical specification

### LED definition on power supply

| Power Supply Condition                                                                                         | LED Status         |
|----------------------------------------------------------------------------------------------------------------|--------------------|
| Output on and OK                                                                                               | Green              |
| No AC power to all power supplies                                                                              | Off                |
| AC present/ Only 12VSB on (PS off) or PS in Smart on state                                                     | 1Hz on Blink Green |
| AC power cord unplugged or AC power lost; with a second power supply in parallel still with AC power input     | Amber              |
| Power supply warning events where the power supply continue to operate at high temperature, high current, high |                    |



| power or slow fan                                                |                    |
|------------------------------------------------------------------|--------------------|
| Power supply critical event causing shutdown, OVP, OCP, fan fail | Amber              |
| Power supply FW updating                                         | 2Hz on Blink Green |

Table 7: LED definition on power supply

#### FRU

FRU data format compliant with IPMI ver 1.0 (per rev 1.1 from Sept. 25, 1999) specification. The FRU device will implement the same protocols as the commonly used AT24C02 device, including the Byte Read, Sequential Read, Byte Write and Page Read protocols.

### The EEPROM content is as following

| Area Type                 | Description                                            |  |  |  |
|---------------------------|--------------------------------------------------------|--|--|--|
| Common Header             | As defined by the FRU document                         |  |  |  |
| Internal Use Area         | Not required, do not reserve                           |  |  |  |
| Chassis Info Area         | Not applicable, do not reserve                         |  |  |  |
| Board Info Area           | Not applicable, do not reserve                         |  |  |  |
| Product Info Area         | As defined by the IPMI FRU document.                   |  |  |  |
| Froduct iiilo Area        | Product information is defined as following            |  |  |  |
| Field name                | Field Description                                      |  |  |  |
| Manufacturer Name         | {Formal name of manufacturer}                          |  |  |  |
| Product Name              | {Manufacturer's model number}                          |  |  |  |
| Product part/model number | Customer part number                                   |  |  |  |
| Product Version           | Customer current revision                              |  |  |  |
| Product Serial Number     | {Defined at time of manufacture}                       |  |  |  |
| Asset Tag                 | {Not used, code is zero length byte}                   |  |  |  |
| FRU File ID               | {Not required}                                         |  |  |  |
| DAD Dutos                 | {Added as necessary to allow for 8-bype offset to next |  |  |  |
| PAD Bytes                 | area}                                                  |  |  |  |
|                           | As defined by the IPMI FRU documentation. The          |  |  |  |
|                           | following information shall be used by this power      |  |  |  |
|                           | supply:                                                |  |  |  |
| Mulit-Record Area         | Power Supply Information (Record type 0x00)            |  |  |  |
|                           | DC Output (Record Type 0x01)                           |  |  |  |
|                           | No other record types are required for power supply    |  |  |  |
|                           | Multi-Record information shall be defined as following |  |  |  |



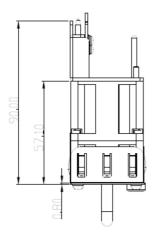
| Field Name (PS Info)           | Field Information Definition                          |  |  |  |
|--------------------------------|-------------------------------------------------------|--|--|--|
| Overall Capacity (watts)       | 460                                                   |  |  |  |
| Peak VA                        | 1070                                                  |  |  |  |
| Inrush current (A)             | 55                                                    |  |  |  |
| Inrush interval (msec)         | 5                                                     |  |  |  |
| Low end input voltage range 1  | 90                                                    |  |  |  |
| High end input voltage range 1 | 140                                                   |  |  |  |
| Low end input voltage range 2  | 180                                                   |  |  |  |
| High end input voltage range 2 | 264                                                   |  |  |  |
| A/C dropout total (msec)       | 20                                                    |  |  |  |
| Binary flags                   | Set for: Hot Swap support, Auto switch and PFC        |  |  |  |
| Peak Wattage                   | Set for 575 Watts                                     |  |  |  |
| Combined wattage               | None                                                  |  |  |  |
| Predictive fail tach support   | Supported                                             |  |  |  |
| Field Name (Output)            | Field Description : Two output are to be defined from |  |  |  |
| rieid Name (Output)            | #1 to #2, as follows: +12V and +12VSB                 |  |  |  |
| Output Information             | Set for: Standby on +12VSB, no 12VSB on all others    |  |  |  |
| All other output fields        | Format per IPMI specification , using parameters in   |  |  |  |
| All other output helds         | this specification                                    |  |  |  |
|                                |                                                       |  |  |  |

Table 8: Power Supply EEPROM FRU data format

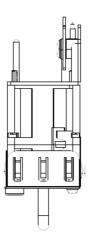
## 4.2 Fan Modules

The SNX-60x0-486F supports up to 5 fan modules. For front to rear and rear to front air flow, different types of fan modules are required.

| Air Flow Direction | Part Number         |
|--------------------|---------------------|
| Front to Rear      | AVC DFTA0456B2UP057 |
| Rear to Front      | AVC DFTA0456B2UP058 |


Table 9: Fan Modules part number




Fan module connector: LCU SM401V-20P

| #  | NAME           | Description             | #  | NAME           | Description             |
|----|----------------|-------------------------|----|----------------|-------------------------|
| 1  | FAN_CON_TACH_0 | FAN<br>tachometer 0     | 11 | FAN_DIR        | FAN Direction           |
| 2  | GND            | GND                     | 12 | GND            | GND                     |
| 3  | FAN_12VIN      | 12V                     | 13 | FAN_12VIN      | 12V                     |
| 4  | FAN_CON_PWM_0  | PWM control<br>for FAN0 | 14 | EE_GND         | EEPROM GND              |
| 5  |                |                         | 15 | EE_SDA         | EEPROM SDA              |
| 6  | EE_SCL         | EEPROM SCL              | 16 | EE_VDD         | EEPROM VDD              |
| 7  | EE_A0          | EEPROM<br>ADDR_0        | 17 | FAN_CON_PWM_1  | PWM control<br>for FAN1 |
| 8  | FAN_12VIN      | 12V                     | 18 | FAN_12VIN      | 12V                     |
| 9  | GND            | GND                     | 19 | GND            | GND                     |
| 10 | FAN_PRESENT#   | Exist FAN<br>module     | 20 | FAN_CON_TACH_1 | FAN<br>tachometer 0     |

Table 10: Fan Modules connector pin out







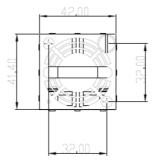



Figure 6: Fan module mechanical specification



# **5 System Overview**

The SNX-60x0-486F comprised of the following PCB

| PCB Function        | PCB Layer | Dimension (mmxmm) |
|---------------------|-----------|-------------------|
| Main board          | 12        | 431*315.5         |
| FAN module          | 2         | 38.5*29           |
| FAN Adapter         | 4         | 185*60.4          |
| LED board           | 2         | 35*121.1          |
| USB board           | 2         | 20*37             |
| Freescale CPU board | 6         | 120*109*1.6       |
| Intel CPU board     | 12        | 255*165.1         |

Table 11: PCBs for SNX-60x0-486F

### 5.1 Main PCB

The main PCB is a 12 layer PCB where the switch MAC resides. It also supports the following functions:

- Networking I/O ports
- Management ports
- LED
- Connectivity to power supply and fan
- Power conversion circuit
- Etcs



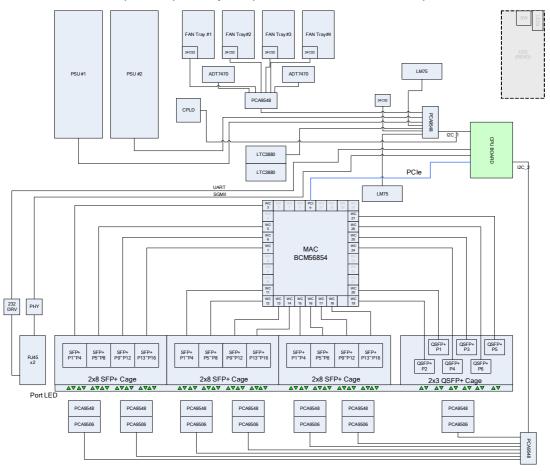



Figure 7: Main board block diagram

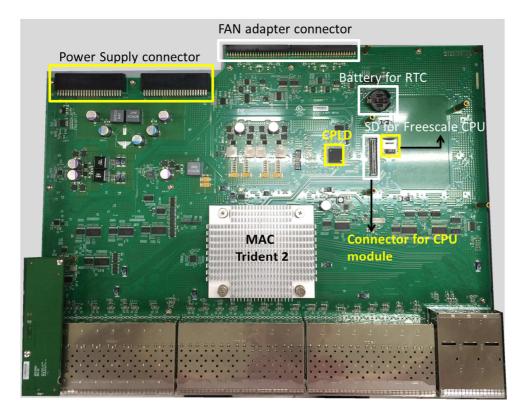



Figure 8: Main PCB top view



# 5.1 CPU Subsystem

The SNX-60x0-486F offers CPU in modular form to allows the flexibility for different CPU preference. Currently two types of CPU modules are supported, and the detail is provided in the following table and sections.

| Items            |            | Detailed Description                                     |  |  |  |
|------------------|------------|----------------------------------------------------------|--|--|--|
|                  | Freescale  |                                                          |  |  |  |
|                  | СРИ        | Freescale P2020,1.2GHz with PCle connector to main board |  |  |  |
| Modular CPU      | RAM        | DDR3 4GB for Freescale CPU                               |  |  |  |
| board (Option 1) | Flash      | Micro-SD Card 8GB for Freescale CPU                      |  |  |  |
|                  | Boot Flash | 8MB for Freescale CPU                                    |  |  |  |
|                  |            | Intel                                                    |  |  |  |
| CPU              |            | Intel Rangeley C2558 4 Cores/2.4G                        |  |  |  |
| Modular CPU      | RAM        | DDR3 4GB for Intel Rangeley CPU                          |  |  |  |
| board (Option 2) | Flash      | SSD 8GB for Intel Rangeley CPU                           |  |  |  |
|                  | Boot Flash | 8MB for Intel Rangeley CPU                               |  |  |  |

Table 12: CPU subsystem key Components

## 5.1.1 Freescale CPU (P2020)

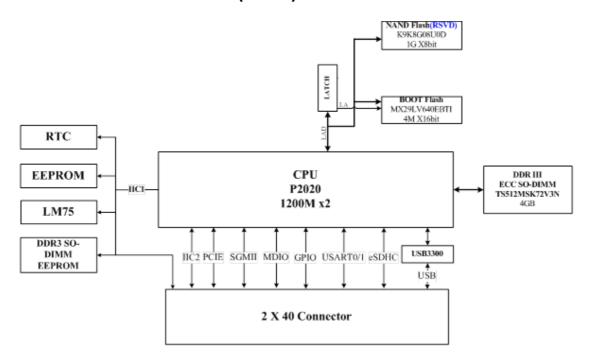



Figure 9: Freescale CPU board block diagram



## Freescale CPU module connector: SAMTEC BSE-040-01-F-D-A-TR

| For | For 80 PIN connector |                                                                              |    |           |                                                                                             |
|-----|----------------------|------------------------------------------------------------------------------|----|-----------|---------------------------------------------------------------------------------------------|
| #   |                      | Description                                                                  | #  |           | Description                                                                                 |
| 1   | 3.3V                 | 3.3V                                                                         | 2  | 3.3V      | 3.3V                                                                                        |
| 3   | SGMII_TXDP           | SGMII transmit<br>serial data.<br>Differential<br>interface positive<br>leg. | 4  | GND       | GND                                                                                         |
| 5   | SGMII_TXDN           | SGMII transmit serial data. Differential interface negative leg.             | 6  | GND       | GND                                                                                         |
| 7   | GND                  | GND                                                                          | 8  | PCIEO_TXP | PCI Express<br>transmit serial<br>data. Differential<br>interface positive<br>leg of lane 0 |
| 9   | GND                  | GND                                                                          | 10 | PCIEO_TXN | PCI Express<br>transmit serial<br>data. Differential<br>interface negative<br>leg of lane 0 |
| 11  | SGMII_RXDP           | SGMII receive<br>serial data.<br>Differential<br>interface positive<br>leg.  | 12 | GND       | GND                                                                                         |
| 13  | SGMII_RXDN           | SGMII receive<br>serial data.<br>Differential<br>interface negative<br>leg.  | 14 | GND       | GND                                                                                         |
| 15  | GND                  | GND                                                                          | 16 | PCIEO_RXP | PCI Express<br>receive serial data.<br>Differential<br>interface positive<br>leg of lane 0  |
| 17  | GND                  | GND                                                                          | 18 | PCIEO_RXN | PCI Express<br>receive serial data.<br>Differential<br>interface negative<br>leg of lane 0  |



| 19 | USB DP    | USB DP                                                                                      | 20 | GND            | GND                                                                |
|----|-----------|---------------------------------------------------------------------------------------------|----|----------------|--------------------------------------------------------------------|
| 21 | USB DN    | USB DN                                                                                      | 22 | GND            | GND                                                                |
| 23 | GND       | GND                                                                                         | 24 | PCIe1_REFCLKp  | Differential interface positive Reference Clock of PCIe 1          |
| 25 | GND       | GND                                                                                         | 26 | PCIe1_REFCLKn  | Differential<br>interface negative<br>Reference Clock of<br>PCIe 1 |
| 27 | PCIE1_TXP | PCI Express<br>transmit serial<br>data. Differential<br>interface positive<br>leg of lane 1 | 28 | GND            | GND                                                                |
| 29 | PCIE1_TXN | PCI Express<br>transmit serial<br>data. Differential<br>interface negative<br>leg of lane 1 | 30 | GND            | GND                                                                |
| 31 | GND       | GND                                                                                         | 32 | PCIe0_REFCLKp  | Differential<br>interface positive<br>Reference Clock of<br>PCIe 0 |
| 33 | GND       | GND                                                                                         | 34 | PCIe0_REFCLKn  | Differential interface negative Reference Clock of PCIe 0          |
| 35 | PCIE1_RXP | PCI Express<br>receive serial data.<br>Differential<br>interface positive<br>leg of lane 1  | 36 | GND            | GND                                                                |
| 37 | PCIE1_RXN | PCI Express<br>receive serial data.<br>Differential<br>interface negative<br>leg of lane 1  | 38 | GND            | GND                                                                |
| 39 | GND       | GND                                                                                         | 40 | RESET for CPLD | RESET for CPLD                                                     |
| 41 | 3.3V      | 3.3V                                                                                        | 42 | SD_CMD         | Command for micro SD Card                                          |
| 43 | SD_CLK    | micro SD Card<br>Clock                                                                      | 44 | SD_WP          | Write Protect for micro SD Card                                    |
| 45 | 3.3V      | 3.3V                                                                                        | 46 | RESET_ALL#     | Globe reset from<br>CPU board                                      |
| 47 | CPLD_INT# | Interrupt for CPLD                                                                          | 48 | RPS_INT#       | Interrupt for RPS                                                  |



| 49 | TS_INT#      | Thermal Sensor IRQ mask           | 50 | NC        | NC                                      |
|----|--------------|-----------------------------------|----|-----------|-----------------------------------------|
| 51 | MGMT_INT#    | Interrupt for management PHY      | 52 | QSFP_INT# | Reset all I2C<br>device on I2C Bus<br>2 |
| 53 | 3.3V         | 3.3V                              | 54 | 3.3V      | 3.3V                                    |
| 55 | SCL1         | Serial clock line of I2C-bus 1    | 56 | SDA1      | Serial data line of I2C-bus 1           |
| 57 | GND          | GND                               | 58 | GND       | GND                                     |
| 59 | SCL2         | Serial clock line of I2C-bus 2    | 60 | SDA2      | Serial data line of I2C-bus 2           |
| 61 | 3.3V         | 3.3V                              | 62 | 3.3V      | 3.3V                                    |
| 63 | UARTO_TX     | UARTO_TX                          | 64 | UARTO_RX  | UARTO_RX                                |
| 65 | GND          | GND                               | 66 | GND       | GND                                     |
| 67 | SD_DATA0     | Data Line [Bit0] of micro SD Card | 68 | SD_DATA2  | Data Line [Bit2] of micro SD Card       |
| 69 | SD_DATA1     | Data Line [Bit1] of micro SD Card | 70 | SD_DATA3  | Data Line [Bit3] of micro SD Card       |
| 71 | 3.3V         | 3.3V                              | 72 | 3.3V      | 3.3V                                    |
| 73 | GND          | GND                               | 74 | GND       | GND                                     |
| 75 | MDC          | Management data clock             | 76 | MDIO      | Management data                         |
| 77 | Fan_SPD_CTRL | Control Fan Speed                 | 78 | NC        | NC                                      |
| 79 | NC           | NC                                | 80 | SDHC_CD_B | Card Detect of micro SD Card            |

Table 13: Freescale CPU module connector pin out

### 5.1.1.1 DDR3 SDRAM

The Freescale DDR SDRAM controller supports most JEDEC standard ×8, ×16, ×32, or ×64 DDR2 and DDR3 memories available. Built-in error checking and correction (ECC) ensures very low bit-error rates for reliable high-frequency operation. Dynamic power management and auto-precharge modes simplify memory system design. The DDR memory controller includes these distinctive features:

- Support for DDR2 and DDR3 SDRAM
- 64-/72-bit SDRAM data bus, 32-/40-bit SDRAM for DDR2 and DDR3
- Support for up to 32Gbits of memory

#### **5.1.1.2** PCle Interface

The P2020 supports three PCI Express interfaces that are compliant with the PCI Express Base Specification Revision 1.0a. The physical layer of the PCI Express



interface operates at a transmission rate of 2.5 Gbaud (data rate of 2.0 Gbps) per lane. The theoretical unidirectional peak bandwidth is 2 Gbps per lane. Receive and transmit ports operate independently, resulting in an aggregate theoretical bandwidth of 4 Gbps per lane.

### 5.1.2 Intel CPU (C2558)

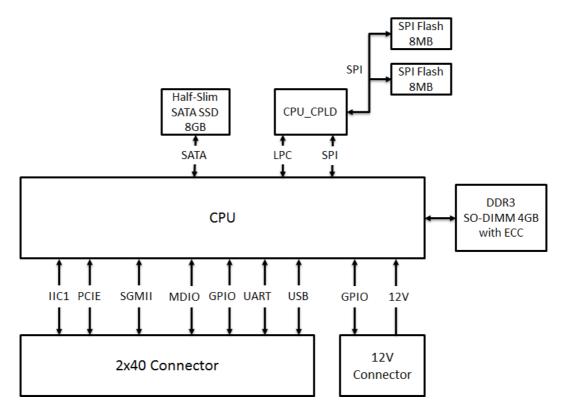



Figure 10: Intel CPU board block diagram

Intel CPU module connector: SAMTEC BSE-040-01-F-D-A-TR

| For | For 80 PIN connector |                                                                              |   |           |             |  |
|-----|----------------------|------------------------------------------------------------------------------|---|-----------|-------------|--|
| #   |                      | Description                                                                  | # |           | Description |  |
| 1   | 3.3V                 | 3.3V                                                                         | 2 | 3.3V      | 3.3V        |  |
| 3   | SGMII_TXDP           | SGMII transmit<br>serial data.<br>Differential<br>interface positive<br>leg. | 4 | GND       | GND         |  |
| 5   | SGMII_TXDN           | SGMII transmit<br>serial data.<br>Differential<br>interface negative<br>leg. | 6 | GND       | GND         |  |
| 7   | GND                  | GND                                                                          | 8 | PCIEO_TXP | PCI Express |  |



|    |            |                                                                                             | I  |               |                                                                                             |
|----|------------|---------------------------------------------------------------------------------------------|----|---------------|---------------------------------------------------------------------------------------------|
|    |            |                                                                                             |    |               | transmit serial<br>data. Differential<br>interface positive<br>leg of lane 0                |
| 9  | GND        | GND                                                                                         | 10 | PCIEO_TXN     | PCI Express<br>transmit serial<br>data. Differential<br>interface negative<br>leg of lane 0 |
| 11 | SGMII_RXDP | SGMII receive serial data. Differential interface positive leg.                             | 12 | GND           | GND                                                                                         |
| 13 | SGMII_RXDN | SGMII receive serial data. Differential interface negative leg.                             | 14 | GND           | GND                                                                                         |
| 15 | GND        | GND                                                                                         | 16 | PCIEO_RXP     | PCI Express<br>receive serial data.<br>Differential<br>interface positive<br>leg of lane 0  |
| 17 | GND        | GND                                                                                         | 18 | PCIEO_RXN     | PCI Express<br>receive serial data.<br>Differential<br>interface negative<br>leg of lane 0  |
| 19 | USB_DP     | USB_DP                                                                                      | 20 | GND           | GND                                                                                         |
| 21 | USB_DN     | USB_DN                                                                                      | 22 | GND           | GND                                                                                         |
| 23 | GND        | GND                                                                                         | 24 | PCIe1_REFCLKp | Differential<br>interface positive<br>Reference Clock of<br>PCIe 1                          |
| 25 | GND        | GND                                                                                         | 26 | PCIe1_REFCLKn | Differential<br>interface negative<br>Reference Clock of<br>PCIe 1                          |
| 27 | PCIE1_TXP  | PCI Express<br>transmit serial<br>data. Differential<br>interface positive<br>leg of lane 1 | 28 | GND           | GND                                                                                         |
| 29 | PCIE1_TXN  | PCI Express<br>transmit serial<br>data. Differential                                        | 30 | GND           | GND                                                                                         |



| _  |           |                                                                                            |    |                |                                                                    |
|----|-----------|--------------------------------------------------------------------------------------------|----|----------------|--------------------------------------------------------------------|
|    |           | interface negative<br>leg of lane 1                                                        |    |                |                                                                    |
| 31 | GND       | GND                                                                                        | 32 | PCIe0_REFCLKp  | Differential interface positive Reference Clock of PCIe 0          |
| 33 | GND       | GND                                                                                        | 34 | PCIe0_REFCLKn  | Differential<br>interface negative<br>Reference Clock of<br>PCIe 0 |
| 35 | PCIE1_RXP | PCI Express<br>receive serial data.<br>Differential<br>interface positive<br>leg of lane 1 | 36 | GND            | GND                                                                |
| 37 | PCIE1_RXN | PCI Express<br>receive serial data.<br>Differential<br>interface negative<br>leg of lane 1 | 38 | GND            | GND                                                                |
| 39 | GND       | GND                                                                                        | 40 | RESET for CPLD | RESET for CPLD                                                     |
| 41 | 3.3V      | 3.3V                                                                                       | 42 | SD_CMD         | Command for micro SD Card                                          |
| 43 | SD_CLK    | micro SD Card<br>Clock                                                                     | 44 | SD_WP          | Write Protect for micro SD Card                                    |
| 45 | 3.3V      | 3.3V                                                                                       | 46 | RESET_ALL#     | Globe reset from<br>CPU board                                      |
| 47 | CPLD_INT# | Interrupt for CPLD                                                                         | 48 | RPS_INT#       | Interrupt for RPS                                                  |
| 49 | TS_INT#   | Thermal Sensor IRQ mask                                                                    | 50 | NC             | NC                                                                 |
| 51 | MGMT_INT# | Interrupt for management PHY                                                               | 52 | QSFP_INT#      | Reset all I2C<br>device on I2C Bus<br>2                            |
| 53 | 3.3V      | 3.3V                                                                                       | 54 | 3.3V           | 3.3V                                                               |
| 55 | SCL1      | Serial clock line of I2C-bus 1                                                             | 56 | SDA1           | Serial data line of I2C-bus 1                                      |
| 57 | GND       | GND                                                                                        | 58 | GND            | GND                                                                |
| 59 | SCL2      | Serial clock line of I2C-bus 2                                                             | 60 | SDA2           | Serial data line of I2C-bus 2                                      |
| 61 | 3.3V      | 3.3V                                                                                       | 62 | 3.3V           | 3.3V                                                               |
| 63 | UARTO_TX  | UARTO_TX                                                                                   | 64 | UARTO_RX       | UARTO_RX                                                           |
| 65 | GND       | GND                                                                                        | 66 | GND            | GND                                                                |
| 67 | SD_DATA0  | Data Line [Bit0] of micro SD Card                                                          | 68 | SD_DATA2       | Data Line [Bit2] of micro SD Card                                  |
| 69 | SD_DATA1  | Data Line [Bit1] of micro SD Card                                                          | 70 | SD_DATA3       | Data Line [Bit3] of micro SD Card                                  |
|    |           |                                                                                            |    |                |                                                                    |



Open Compute Project Alpha Networks SNX-60x0-486F Specification v0.6

| 71 | 3.3V         | 3.3V                  | 72 | 3.3V      | 3.3V                         |
|----|--------------|-----------------------|----|-----------|------------------------------|
| 73 | GND          | GND                   | 74 | GND       | GND                          |
| 75 | MDC          | Management data clock | 76 | MDIO      | Management data              |
| 77 | Fan_SPD_CTRL | Control Fan Speed     | 78 | NC        | NC                           |
| 79 | NC           | NC                    | 80 | SDHC_CD_B | Card Detect of micro SD Card |

Table 14: Intel CPU module connector pin out

Intel Rangeley module power connector: LCU MM2554G-2\*8-G1

| # | NAME                | Description                                           | #  | NAME                  | Description                                       |
|---|---------------------|-------------------------------------------------------|----|-----------------------|---------------------------------------------------|
| 1 | 12V                 | 12V                                                   | 16 | 12V                   | 12V                                               |
| 2 | 12V                 | 12V                                                   | 15 | 12V                   | 12V                                               |
| 3 | GND                 | GND                                                   | 14 | GND                   | GND                                               |
| 4 | GND                 | GND                                                   | 13 | GND                   | GND                                               |
| 5 | CPU_PROCHOT<br>_3P3 | Signal of<br>Processor Hot<br>from Intel CPU<br>Board | 12 | PM_V3P3_PWR<br>GD     | 3.3V power good from MB                           |
| 6 | FP_PWR_BTN_<br>N    | interrupt Signal<br>from MB                           | 11 | CPU_THERMTR<br>IP_3P3 | Signal of Thermal<br>trip from Intel CPU<br>Board |
| 7 | RTC_3V3             | 3.3V for RTC                                          | 10 | PM_V3P3_V1P<br>9_EN   | 3.3V Enable from Intel CPU Board                  |
| 8 | GND                 | GND                                                   | 9  | GND                   | GND                                               |

Table 15: Intel CPU module power connector pin out

### **5.1.2.1** DDR3 SDRAM

The Rangeley Memory Controller supports up to 64 GB. The memory controller supports a 64-bit data bus with 8-bit ECC. When only one of the two memory channels is used in a platform board design, Channel 0 must be used. In all designs, Channel 0 must be populated by DRAM devices. Within each memory channel DIMMs are populated in slot order; slot 0 is populated first and slot 1 last. If a DIMM has two ranks, the ranks must be symmetrical (same chip width, same chip density, and same total memory size per rank). If both memory channels of the memory controller are used, then both channels must be populated identically. The CPU board is used a DDR3-1333 4GB SO-DIMM.

#### **5.1.2.2** PCle Interface

The Rangeley has up to 16 PCIe ports. Each port consists of a Transmitter differential pair and a Receiver differential pair which are in the 1.0-Volt Core power well of the



SoC. The Rangeley supports devices with 5.0 GT/s and 2.5 GT/s capabilities.

# 6 IO and Connectors

### 6.1 RS232 Interface

Baud Rate: s/w define

Data bits: 8Stop Bit: 1Parity: None

• Flow control: None

# **6.2 Management Ethernet Interfaces**

There are one single PHY on front panel PCBA, use SGMII interface from CPU module convert to 10/100/1000 RJ-45 GbE Management port. The PHY used is Marvell 88E1112.

### 6.3 USB Interface

The CPU contains one Enhanced Host Controller Interface (EHCI) and complies to the EHCI 1.0 Specification. The EHCI supports up to four USB 2.0 root ports. USB 2.0 allows data transfers up to 480 Mbps. The controller integrates a Rate-Matching Hub (RMH) to support USB 1.1 devices. The USB Port 1 interface is configured by the debug software to be a debug port.

# 7 Power/Environmental/Agency Certifications

| Power                               |                                         |  |  |
|-------------------------------------|-----------------------------------------|--|--|
| Number of power supply              | 2 (default in Power 2 only)             |  |  |
| Max. Operating power Max. 360 (W)   |                                         |  |  |
| Maximum power                       | 456 watts (W) (from Power supply)       |  |  |
| Maximum heat dissipation            | Max. 1228 BTU/hr                        |  |  |
| Environment                         |                                         |  |  |
| Dimensions (height x width x depth) | 44mm(H)440mm(W) x 487.4 mm(D)           |  |  |
| Weight                              | Around 9.07kg, include 2 PSU and 4 FANs |  |  |
| Operating temperature 0~40°C        |                                         |  |  |
| Storage temperature                 | -40~70°C                                |  |  |



| Operating relative humidity | 0%-95% RH                                                                                                              |
|-----------------------------|------------------------------------------------------------------------------------------------------------------------|
| Storage relative humidity   | 0%~95% RH                                                                                                              |
| Altitude                    | 3,000 meters (9,850 feet)                                                                                              |
| Acoustic Noise Test Result  | All FB fan modules are running at high speed: around 75.5dB All FB fan modules are running at low speed: around 59.3dB |

Table 16: Power consumption and environment table

| Regulatory Standards Compliance |                                                                                                                        |  |  |  |  |
|---------------------------------|------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Regulatory<br>compliance        | Comply with CE markings per directives 2004/108/EC and 2006/95/EC FCC/IC Report Class A BSMI UL/cUL Listed Mark CCC CB |  |  |  |  |
| Safety                          | IEC60950-1 FCC/IC Report Class A EN 60950-1 FCC/IC Report Class A UL/CSA 60950-1 CNS 14336-1 GB4943.1                  |  |  |  |  |
| ЕМС                             | EN 55022/EN 55024, Class A FCC CFR47, Part 15B, Class A ICES-003, Class A CNS 13438, Class A GB9254 YDT993             |  |  |  |  |

|   | RoHS Requirement                                   |                 |  |  |  |  |
|---|----------------------------------------------------|-----------------|--|--|--|--|
| # | Description                                        | Limitation/ ppm |  |  |  |  |
| 1 | Cadmium/ Cadmium Compounds                         | 80              |  |  |  |  |
| 2 | Hexavalent Chromium/ Hexavalent Chromium Compounds | 800             |  |  |  |  |
| 3 | Lead/ Lead Compounds                               | 800             |  |  |  |  |
| 4 | Mercury/ Mercury Compounds                         | 800             |  |  |  |  |
| 5 | Polybrominated Biphenyls (PBBs)                    | 800             |  |  |  |  |
| 6 | Polybrominated Diphenylethers (PBDEs)              | 800             |  |  |  |  |

Table 17: Regulatory Standards Compliance table