Project Olympus
Power and Management Distribution Unit Specification

Author:
Shaun Harris, Architect, Microsoft
Revision History

<table>
<thead>
<tr>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>11/01/2017</td>
<td>Version 1.0 Ready for Project Olympus github</td>
</tr>
</tbody>
</table>
As of November 1, 2017, the following persons or entities have made this Specification available under the Open Web Foundation Final Specification Agreement (OWFa 1.0), which is available at http://www.openwebfoundation.org/legal/the-owf-1-0-agreements/owfa-1-0

Microsoft Corporation.

You can review the signed copies of the Open Web Foundation Agreement Version 1.0 for this Specification at Project Olympus License Agreements, which may also include additional parties to those listed above.

Your use of this Specification may be subject to other third party rights. THIS SPECIFICATION IS PROVIDED "AS IS." The contributors expressly disclaim any warranties (express, implied, or otherwise), including implied warranties of merchantability, non-infringement, fitness for a particular purpose, or title, related to the Specification. The entire risk as to implementing or otherwise using the Specification is assumed by the Specification implementer and user. IN NO EVENT WILL ANY PARTY BE LIABLE TO ANY OTHER PARTY FOR LOST PROFITS OR ANY FORM OF INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES OF ANY CHARACTER FROM ANY CAUSES OF ACTION OF ANY KIND WITH RESPECT TO THIS SPECIFICATION OR ITS GOVERNING AGREEMENT, WHETHER BASED ON BREACH OF CONTRACT, TORT (INCLUDING NEGLIGENCE), OR OTHERWISE, AND WHETHER OR NOT THE OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

CONTRIBUTORS AND LICENSORS OF THIS SPECIFICATION MAY HAVE MENTIONED CERTAIN TECHNOLOGIES THAT ARE MERELY REFERENCED WITHIN THIS SPECIFICATION AND NOT LICENSED UNDER THE OWF CLA OR OWFa. THE FOLLOWING IS A LIST OF MERELY REFERENCED TECHNOLOGY: INTELLIGENT PLATFORM MANAGEMENT INTERFACE (IPMI); I2C IS A TRADEMARK AND TECHNOLOGY OF NXP SEMICONDUCTORS; EPYC IS A TRADEMARK AND TECHNOLOGY OF ADVANCED MICRO DEVICES INC.; ASPEED AST 2400/2500 FAMILY PROCESSORS IS A TECHNOLOGY OF ASPEED TECHNOLOGY INC.; MOLEX NANOPITCH, NANO PICOBLADE, AND MINI-FIT JR AND ASSOCIATED CONNECTORS ARE TRADEMARKS AND TECHNOLOGIES OF MOLEX LLC; WINBOND IS A TRADEMARK OF WINBOND ELECTRONICS CORPORATION; NVLINK IS A TECHNOLOGY OF NVIDIA; INTEL XEON SCALABLE PROCESSORS, INTEL QUICKASSIST TECHNOLOGY, INTEL HYPER-THREADING TECHNOLOGY, ENHANCED INTEL SPEEDSTEP TECHNOLOGY, INTEL VIRTUALIZATION TECHNOLOGY, INTEL SERVER PLATFORM SERVICES, INTEL MANAGABILITY ENGINE, AND INTEL TRUSTED EXECUTION TECHNOLOGY ARE TRADEMARKS AND TECHNOLOGIES OF INTEL CORPORATION; SITARA ARM CORTEX-A9 PROCESSOR IS A TRADEMARK AND TECHNOLOGY OF TEXAS INSTRUMENTS; GUIDE PINS FROM PENCOM; BATTERIES FROM PANASONIC. IMPLEMENTATION OF THESE TECHNOLOGIES MAY BE SUBJECT TO THEIR OWN LEGAL TERMS.
Contents

1 Overview of the Project Olympus Power and Management Distribution Unit (PMDU) Specification8

2 PMDU Electrical ... 16
 2.1 AC/DC Power Supply Module ... 16
 2.1.1 Voltage, Current, and Frequency ... 16
 2.1.2 PSU Hold-Up Time ITIC Requirement ... 16
 2.1.3 Harmonic Susceptibility .. 17
 2.1.4 Modified Sine Waves .. 17
 2.1.5 Harmonic Emissions .. 18
 2.1.6 Line Transient ... 18
 2.1.7 Electrostatic Discharge Susceptibility ... 18
 2.1.8 Fast Transient Burst .. 18
 2.1.9 Radiated Immunity ... 18
 2.1.10 Surge Immunity .. 18
 2.1.11 Efficiency ... 19
 2.1.12 AC Line Fuses .. 19
 2.1.13 VAC Input fuse rating, interrupt capacity, maximum fuse rating .. 19
 2.1.14 AC/DC Module connector .. 19
 2.1.15 AC/DC Module Output Power and Voltage ... 20
 2.1.16 AC/DC Module LED Indicator .. 21
 2.1.17 AC/DC Module Mechanical Specification .. 22

 2.2 VAC Outlets and Overcurrent Protection ... 23

 2.3 Power monitoring requirements .. 23
 2.3.1 PMDU .. 23
 2.3.2 PMDU Rack Manager Firmware Update Requirement .. 23

 2.4 Electrical Interconnect Details ... 24

 2.5 Universal VAC Input Plugs and Cables 4 Wire and 5 Wire Cable Assy ... 24
 2.5.1 Universal Cable Assembly Power and Current Rating .. 24
 2.5.2 Universal Cable Assembly Breaker Protection from facility ... 24
 2.5.3 Universal Cable Assembly Connector detail ... 25
 2.5.4 Universal PMDU Connector detail ... 25
 2.5.5 Input Cable Assembly Detail .. 26
 2.5.6 Cable Length ... 26
 2.5.7 Bend Radius ... 26

 2.6 PMDU Power Monitoring Connectors and Cables .. 26

 2.7 Sub-assembly Allocated Output Power Current .. 27
 2.7.1 Sub-assembly Output Power and Signal .. 27

 2.8 Grounding and Return ... 30

 2.9 RJ45 Connectors .. 30

November 1, 2017
2.9.1 RJ45 for UART with HW Flow Control (RJ3/DIGI) ... 31
2.9.2 RJ45 for UART without HW Flow Control (RJ4/MGMT Console, RJ5/DEBUG) 31
2.9.3 RJ45 for Rack Manager Power and Boot Control RM1 .. 32
2.9.4 RJ45 for AC Relay Control (RC-1, RC-2, RC-3, RC-4) .. 32
2.10 SLOT ID ... 33
3 PMDU Mechanical Housing .. 34
 3.1 General Construction .. 34
 3.2 PMDU Structural Brackets ... 35
 3.3 PMDU Subassembly Power Connector ... 36
 3.3.1 Connector and Placement .. 36
 3.3.2 Guide Pins .. 36
 3.4 Rail Attachment .. 36
 3.4.1 Subassembly Interface ... 38
 3.5 Thermal ... 39
 3.6 Weight .. 39
 3.7 General Connector Quality ... 39
 3.7.1 Sub Assembly Connector Quality .. 40
4 Environmental ... 41
5 Compliance ... 42
 5.1 Safety Requirements .. 42
 5.2 EMC Requirements and Test Conditions .. 43
 5.3 Environmental Compliance .. 44
6 Labeling and Guidelines ... 45
 6.1 PMDU Assy Product Labeling and Guidelines ... 46
 6.1.1 42U PMDU Assy Product Labeling and Guidelines .. 46
 6.1.2 48U PMDU Assy Product Labeling and Guidelines .. 46
 6.2 Safety Warning Labeling ... 48
 6.3 Connector Labeling .. 49
 6.4 Breaker and Connector Labeling .. 49
 6.5 RM Management Port Legend Labeling .. 50
 6.6 Control Cable Port Labeling ... 51
 6.7 Serial Port Labeling ... 51
 6.8 Feed Labeling .. 53
7 Metal Finish/Painted Color ... 54
8 Appendix: Commonly Used of Acronyms .. 54
Figures

Figure 1. PMDU General Layout ... 9
Figure 2. PMDU General Description .. 10
Figure 3. PMDU General Description, Rack Manager and RJ45 Network Ports .. 11
Figure 4. PMDU Outlet Breaker Identification and Location 12
Figure 5. PMDU Outlet and RJ45 Relay Control Location 13
Figure 6. PMDU Power Distribution Functional Block Diagram 14
Figure 7. PMDU Rack Manager Functional Basic Block Diagram. See Specification for detail 15
Figure 8. AC-DC Module .. 22
Figure 9. Functional Block Diagram of Standardized Cable plug pin number assignment orientation (note touch-proof male contacts and female ground contact) ... 26
Figure 10. PMDU Subassembly Pinout Assignment Image 28
Figure 11. PMDU Housing General Dimensions, Microsoft drawings M1007740 and M1007710
supersede this image .. 35
Figure 12. PMDU Housing General Location, Microsoft drawings M1007740 and M1007710 supersede
this image .. 36
Figure 13. PMDU Rail Mounting: Inverted cone washers fit into keyhole slots in E2000 rails 37
Figure 14. Inverted cone washer with M5 socket head screw 38
Figure 15. Guide pins interfacing with sleeves on subassemblies .. 39
Figure 16. PMDU sides to be labeled .. 45

List of Tables

Table 1. List of Specifications .. 7
Table 2. AC Input Rating .. 16
Table 3. THD Requirements .. 18
Table 4. Power Requirements .. 24
Table 5. Male Universal Connector Part Number .. 25
Table 6. Male Universal Connector Part Number .. 25
Table 7. PMDU Universal Connector Pin Assignments 25
Table 8. Contact Wiping Distances .. 28
Table 9. PMDU Sub-assembly connector pinout assignment positions C1 through C24 and C25 through
42 or 48 .. 29
Table 10. RJ45 Pinout - UART with HW Flow Control 31
Table 11. RJ45 Pinout - UART without HW Flow Control 31
Table 12. RJ45 Pinout – Rack Manager Power/Boot Control 32
Table 13. RJ45 Pinout – Rack Manager Power/Boot Control 32
Table 14. Slot ID ... 33
Table 15. Environmental Requirements ... 41
Table 1. List of Specifications

<table>
<thead>
<tr>
<th>Specification title</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overview</td>
<td>Explains the guiding principles used for the design of the NGCS system.</td>
</tr>
<tr>
<td>Architecture</td>
<td>Details the NGCS Sub assembly, and Rack.</td>
</tr>
<tr>
<td>Hardware: Rack</td>
<td>Describes the hardware used in the NGCS system, including the rack, tray, and systems management.</td>
</tr>
<tr>
<td>Hardware: Purley Motherboard</td>
<td>Describes the Purley motherboard used in the NGCS system, including Sub assembly hardware and Sub assembly management.</td>
</tr>
<tr>
<td>Software: Architecture</td>
<td>Describes the architecture of the software used in the NGCS system, including the software requirements and systems management.</td>
</tr>
<tr>
<td>Software: Rack Manager CLI</td>
<td>Describes the Rack Manager command-line interface (CLI).</td>
</tr>
<tr>
<td>Software: Rest API</td>
<td>Describes the Rack Manager user interface access and security features, and then describes Rest API.</td>
</tr>
<tr>
<td>Software: Sub assembly API</td>
<td>Details the application programming interface (API) of the Sub assemblies used in the NGCS system</td>
</tr>
<tr>
<td>BIOS Implementation Guide</td>
<td>Describes the BIOS implementation requirements.</td>
</tr>
<tr>
<td>Hardware: RACK MANAGER</td>
<td>Describes the Fan and Rack Manager for the NGCS E2000 system.</td>
</tr>
<tr>
<td>Hardware: PMDU</td>
<td>Describes the PMDU for the NGCS E2000 system.</td>
</tr>
</tbody>
</table>

This document is intended for designers and engineers who will be building server solutions for a NGCS system.
1 Overview of the Project Olympus Power and Management Distribution Unit (PMDU) Specification

This document describes the Project Olympus Power and Management Distribution Unit (PMDU).

The PMDU is a sheet metal enclosure that mounts to the E2000 rails without the use of tools, and provides front-facing, blind-mate connectors having both power and signal contacts for each sub assembly U. As E2000 sub assemblies are inserted in the rack, they plug into the PMDU via the hotplug blind-mate connectors.

The PMDU shall have two Universal input bulkhead mount connectors for VAC Feed A and VAC Feed B. The Universal connector is a 7-pin connector comprised of earth ground and 3 phase pairs rated at 250VAC 50VAC per pair. The Universal connectors are both 4 wire and 5 wire facility cable assemblies at the desired voltage and amperage rating. The PMDU take both the VAC Feed A and VAC Feed B and distributes the 6 phase pairs to each sub-assembly.

The PMDU also monitors and reports the voltage, current and power for each of the 6 phase pairs. The PMDU shall be able report values to the management system. The management system shall issue a threshold value and the PMDU shall compared measured values to the assigned threshold and changing states of discrete outputs from the PMDU to the management system when thresholds are exceeded on each phase.

The PMDU shall come in two sizes, 42U and 48U. The facility to Universal connector shall come in three options: 5 Wire 415VAC 30A/32A, 4 Wire 208VAC 50A, and 4 Wire 208VAC 30A.
Figure 1. PMDU General Layout
Figure 2. PMDU General Description

- Subassembly
- Output Connectors
- RJ45 Connectors
- PMDU Rack Manager
- PMDU AC/DC Module
- TOR/Accessory Outlets
- Standardized 7 Wire Feed A
- Standardized 7 Wire Feed B
- PMDU C13/C14 Outlet Breakers
- Reserved for Product Label
Figure 3. PMDU General Description, Rack Manager and RJ45 Network Ports
Figure 4. PMDU Outlet Breaker Identification and Location
Figure 5. PMDU Outlet and RJ45 Relay Control Location
Figure 6. PMDU Power Distribution Functional Block Diagram
Figure 7. PMDU Rack Manager Functional Basic Block Diagram. See Specification for detail.
2 PMDU Electrical

2.1 AC/DC Power Supply Module

The PMDU shall have a hot swappable AC/DC module to power internal monitoring and Rack Manager. The PMDU shall be dual input from a single from VAC Feed A and B. The PSU shall not cause a secondary failure or outage as result of single fault in the unit.

The AC/DC Module shall not radiate or conduct emissions greater than applicable requirements.

2.1.1 Voltage, Current, and Frequency

The individual phase power supplies shall operate within all specified limits over the following input voltage range as defined in Table 2.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min</th>
<th>Rated</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage</td>
<td>$180 \text{ V}_{\text{rms}}$</td>
<td>$200-240 \text{ V}_{\text{rms}}$</td>
<td>$264 \text{ V}_{\text{rms}}$</td>
</tr>
<tr>
<td>Frequency</td>
<td>47 Hz</td>
<td>63 Hz</td>
<td></td>
</tr>
</tbody>
</table>

2.1.2 PSU Hold-Up Time ITIC Requirement

The power supply shall run without interruption when exposed to any of the power variations of up to 20mS zero voltage outage. At 20mS the voltage shall be greater than 180VAC. The 70% and 80% voltage sag does not apply as shown in the ITIC curve below. The transient portion of the chart depicted in red shall be instead as specified EN61000-4-4 Electrical Fast Transients and EN61000-4-5 Electrical Surge, 2000V L-PE, 1000V L-L.
2.1.3 Harmonic Susceptibility

Harmonic distortion of up to 10% THD must not cause the power supply to go out of specified limits. The power supply shall be capable of start-up (power-on) with full rated power load, at line input as low as 180VAC.

The power supply internal circuitry shall limit maximum input current to 150% max rated at all input and operating ambient conditions and output fault conditions.

2.1.4 Modified Sine Waves

The power supply shall operate when the AC input is a variant of a sine wave such as from a UPS. The output shall remain within regulation under all load conditions under modified sine wave. Under conditions below the power supply may disable the output:

- Rise time on the input exceeding 2V/μs
- Input voltage zero crossing lasting greater than 4 ms.
- Peak of the modified sine wave voltages consistently exceeding 375V

Under modified sine wave conditions, the power supply does not need to meet conducted EMI limits and harmonics.
2.1.5 Harmonic Emissions
Not Applicable

Table 3. THD Requirements

<table>
<thead>
<tr>
<th>Output load (% of max output load)</th>
<th>Maximum ITHD (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-15</td>
<td></td>
</tr>
<tr>
<td>15-30</td>
<td></td>
</tr>
<tr>
<td>30-100</td>
<td></td>
</tr>
</tbody>
</table>

2.1.6 Line Transient
The power supply shall operate within specifications under the following conditions:

- Transients as defined in IEC 61000-4-4.
- Transients as defined in IEC 61000-4-5.
 (Up to and including ±2 kV limits and phases 0°, 90°, 180°, and 270°.

2.1.7 Electrostatic Discharge Susceptibility
The power supply shall withstand the following ESD conditions at any point on the power supply enclosure.

- ±15 kV air discharge with no abnormal operation or damage to power supply
- Transients as defined in IEC 801-2

The storage capacitance shall be 150 pF and the discharge resistance shall be 330 ohms. The power supply shall meet all discharge requirements for the CE Mark designation.

2.1.8 Fast Transient Burst

2.1.9 Radiated Immunity

2.1.10 Surge Immunity
The power supply shall be tested with the system for immunity to AC Unidirectional wave; 2kV line to ground and 1kV line to line, per EN 55024: 1998/A1: 2001/A2: 2003, EN 61000-4-5: Edition 1.1:2001-04. The pass criteria include: No unsafe operation is allowed under any condition; all power supply output
voltage levels to stay within proper spec levels; No change in operating state or loss of data during and after the test.

2.1.11 Efficiency

The power supply shall meet the efficiency of TBD at it typical operating range.

2.1.12 AC Line Fuses

The AC Line Fuses shall be acceptable for all safety agency requirements. The fuse shall not blow unless component failure is encountered. The fuses shall not blow under all line and load conditions.

The AC Line Fuses shall be rated appropriately to prevent nuisance blows.

2.1.13 VAC Input fuse rating, interrupt capacity, maximum fuse rating.

Each phase shall have two input fuse, one per line. The input fuse shall be a fast blow with greater than 1.5KAIC interrupt capacity no greater than TBDA maximum.

2.1.13.1 AC/DC Module Hot Swappable

The AC/DC Module shall be hot swappable without interruption to the PDMU and Rack Manager as intended.

2.1.14 AC/DC Module connector

<table>
<thead>
<tr>
<th>Power Pin</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pin Number</td>
<td>Description</td>
</tr>
<tr>
<td>A6</td>
<td>Source B_Neutral Pin</td>
</tr>
<tr>
<td>A9</td>
<td>Source B_Line Pin</td>
</tr>
<tr>
<td>D6</td>
<td>Source A_Neutral Pin</td>
</tr>
<tr>
<td>D9</td>
<td>Source A_Line Pin</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Signal Pin</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pin Number</td>
<td>Description</td>
</tr>
<tr>
<td>A1</td>
<td>PSUA_Good Pin</td>
</tr>
<tr>
<td>A2</td>
<td>PSUB_Good Pin</td>
</tr>
<tr>
<td>A3</td>
<td>+3V3</td>
</tr>
</tbody>
</table>
2.1.15 AC/DC Module Output Power and Voltage

2.1.15.1 AC/DC Module Setpoint

The voltage setpoint shall be as specified in below table.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min</th>
<th>Set point nominal</th>
<th>Max</th>
<th>Units</th>
<th>Current (A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>+12.4V</td>
<td>11.7V</td>
<td>12.40</td>
<td>13.1V</td>
<td>Vrms</td>
<td>1.613</td>
</tr>
</tbody>
</table>

2.1.15.2 AC/DC Module DC Regulation

The regulation output (+12.0V) must stay within regulation +/-5% when operating at all load and input line voltages across the ambient temperature limits under steady state conditions.

2.1.15.3 AC/DC Module DC Ripple and Noise

The maximum allowed ripple/noise output of the power supply is defined in 120mVp-p. This is measured under 20MHz bandwidth at the power supply output connectors. A 10uF tantalum capacitor in parallel with a 0.1uF ceramic capacitor is placed at the point of measurement.

2.1.15.4 AC/DC Module DC Dynamic Load Step

The output voltages shall remain within Dynamic voltage limits specified for the step loading. The load transient repetition rate shall be 50Hz at duty cycles 50%. The load transient is set as Low.
Load=0.1613A(10% load)@10ms, High load=1.613A(100% load)@10ms, rise rate=1A/usec, fall rate=1A/usec. Dynamic voltage limits are 11.70VDC-13.1VDC.

2.1.15.5 AC/DC Module DC Capacitive Output requirement

The power supply shall be stable and meet all requirements with the following capacitive loading ranges.

<table>
<thead>
<tr>
<th>Output</th>
<th>Min</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>+12.4V</td>
<td>33</td>
<td>1000</td>
<td>μF</td>
</tr>
</tbody>
</table>

2.1.15.6 AC/DC Module DC Protection Circuits

2.1.15.6.1 Over Current Limit (OCL)

The power supply shall provide limited output current to the load for protecting the power supply from damage under indefinite over load conditions. OCL shall be set between 1.8A and 3.0A% of rated output current.

2.1.15.6.2 Over Voltage Protection (OVP)

The power supply over voltage protection shall be shut down upon an over voltage condition. Latch off is not required. Over voltage is range is TBD.

2.1.15.6.3 Over Temperature Protection (OTP)

The power supply shall be protected against over temperature conditions caused by loss of cooling or excessive ambient temperature which could cause internal part failures. In an over-temperature condition the PS shall shutdown protecting itself. When the temperature drops to within safe operating limit for internal parts, the power supply shall restore power automatically.

2.1.15.7 AC/DC Module Grounding

The output ground of the pins of the power supply provides the output power return path. The output connector ground pins shall be connected to the safety ground (power supply enclosure). This grounding should be well designed to ensure passing the max allowed Common Mode Noise levels.

2.1.16 AC/DC Module LED Indicator

This green LED is driven by internal circuitry and will illuminate GREEN whenever in an VAC input good and VDC output is good.
2.1.17 AC/DC Module Mechanical Specification

Figure 8. AC-DC Module
2.2 VAC Outlets and Overcurrent Protection

The PMDU shall provide 8 outlets with 4 outlets from feed A and feed B. The PMDU shall provide six 250VAC 10kAIC 13A breakers. Each breaker shall protect two outlets as identified in Figure 6. PMDU Power Distribution Functional Block Diagram

2.3 Power monitoring requirements.

2.3.1 PMDU

The Rack Manager in the PMDU shall be capable to report Voltage, Current, and Volt-Amps values at single and three phase units of measure at the input of the PMDU. The PMDU shall translate the threshold command to the three phases and independently calculate and report phase values as well as three phase sum.

Maximum vTHD for measurement shall be 5% or less.

Nominal vTHD for measurement shall be 1.5% or less.

See the latest revision of the Windows Cloud Server System Specification M2010 Rack Manager software spec for sample rate, measurement period, details and tolerances of voltage and current monitoring.

2.3.2 PMDU Rack Manager Firmware Update Requirement

The PDMU Rack Manager shall be capable of receiving firmware revision updates from the management switch via Ethernet normal operation. The PMDU Rack Manager shall communicate to the management switch via RJ-4.
2.4 Electrical Interconnect Details

2.5 Universal VAC Input Plugs and Cables 4 Wire and 5 Wire Cable Assy

2.5.1 Universal Cable Assembly Power and Current Rating

The PMDU uses different types of connectors for external connection to the facility.

<table>
<thead>
<tr>
<th>Assy Part Number</th>
<th>Description</th>
<th>Nominal Voltage</th>
<th>Equipment Load Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Power</td>
</tr>
<tr>
<td>73 42 200 0030</td>
<td>30A 5Wire 9AWG/6.63mm² NA</td>
<td>415VAC +/-10%</td>
<td>17.2kW</td>
</tr>
<tr>
<td></td>
<td>32A 5Wire 9AWG/6.63mm² EU</td>
<td>400VAC +/-10%</td>
<td>25A</td>
</tr>
<tr>
<td>73 42 200 0034</td>
<td>50A 4Wire 6AWG</td>
<td>208VAC +/-10%</td>
<td>14.4kW</td>
</tr>
<tr>
<td>73 42 200 0032</td>
<td>30A 4Wire 9AWG</td>
<td>208VAC +/-10%</td>
<td>8.6kW</td>
</tr>
<tr>
<td>TBD</td>
<td>30A 3Wire 9AWG</td>
<td>208VAC +/-10%</td>
<td>4.99kW</td>
</tr>
</tbody>
</table>

2.5.2 Universal Cable Assembly Breaker Protection from facility

The 30A 4 Wire L21-30 and 50A 4 Wire CS8365 cord assy shall have 30A and 50A protection respectively with UL marking and conformity to UL 489, NEMA AB1, AB3 ANSI Std. C37.16, ANSI Std. C37.17, C37.50, IEEE® Std. C37.13, UL 1066 and the National Electrical Code suitable for products certified to U.S., Canadian, European and Japanese standards.

2.5.3 Universal Cable Assembly Connector detail
See Microsoft Universal Power Cord specification XXX or latest version.

2.5.4 Universal PMDU Connector detail
The PMDU Shall provide bulkhead or panel mount connection to be mated with the Universal cable assembly described above. The cable retention clips shall reside on the 7 Wire Facility Cables not the PMDU bulkhead mount connector.

Table 5. Male Universal Connector Part Number

<table>
<thead>
<tr>
<th>Connector Name/ Assy</th>
<th>QTY</th>
<th>Input Connector Part Number</th>
<th>Input Connector Description</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 pin male pin with plastic locking housing</td>
<td>2</td>
<td>73 42 200 0038:</td>
<td>Han-Eco bulkhead housing with plug modules</td>
<td>70A 1000V pin and safety ground pin</td>
</tr>
</tbody>
</table>

Standardize VAC connector, plug detail part numbers

Table 6. Male Universal Connector Part Number

73 42 200 0038: Han-Eco 10B bulkhead mounted housing, male modules, 6-16mm²

<table>
<thead>
<tr>
<th>HARTING P/N</th>
<th>Description</th>
<th>QTY</th>
</tr>
</thead>
<tbody>
<tr>
<td>19410103301</td>
<td>Han-Eco 10B bulkhead mounted housing, without levers</td>
<td>1 pc</td>
</tr>
<tr>
<td>09140022643</td>
<td>Han 70A axial module, male 6-16mm²</td>
<td>3 pcs</td>
</tr>
<tr>
<td>19410012700</td>
<td>Han-Eco PE module-f 16-6 AWG</td>
<td>1 pc</td>
</tr>
</tbody>
</table>

Table 7. PMDU Universal Connector Pin Assignments

<table>
<thead>
<tr>
<th>Facility Cable Options</th>
<th>PMDU Pin Assignment</th>
<th>Phase Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 Wire</td>
<td>5 Wire</td>
<td>Pin Assignment</td>
</tr>
<tr>
<td>X</td>
<td>L1</td>
<td>A1</td>
</tr>
<tr>
<td>Y</td>
<td>L2</td>
<td>B1</td>
</tr>
<tr>
<td>Z</td>
<td>L3</td>
<td>C1</td>
</tr>
<tr>
<td>X</td>
<td>N</td>
<td>A2</td>
</tr>
<tr>
<td>Y</td>
<td>N</td>
<td>B2</td>
</tr>
<tr>
<td>Z</td>
<td>N</td>
<td>C2</td>
</tr>
<tr>
<td>PE</td>
<td>PE</td>
<td>D1</td>
</tr>
</tbody>
</table>
2.5.5 Input Cable Assembly Detail

2.5.6 Cable Length
Not applicable.

2.5.7 Bend Radius
Not applicable.

2.6 PMDU Power Monitoring Connectors and Cables
N/A
2.7 Sub-assembly Allocated Output Power Current.

1035VA is the maximum allocated output power per sub-assembly output power connector. This assumes all six U positions are attached within a single distribution group. The maximum current per VAC pin is 2.5A in a non-faulted condition and 3.7A in single fault within a single distribution group. The net current of single distribution group shall not exceed 16A per pin in any condition.

The sub-assembly output power is limited by the rack elevation and loading under a single fault condition and device attached across the 6U single distribution group. Single distribution groups are defined at U1 through U6, U7-U12, U13-U18, U19-U24, U24-U30, U31-U36, U37-U42, and U43-U48. Within each distribution group, each VAC pin position shares a 16A per pin limitation with U positions. If all six U position pins are attached the 16A allocated evenly at 2.5A per pin.

The sub-assembly output current pins are limited to a maximum of 16A per pin if only one output connector is attached in a given distribution group.

2.7.1 Sub-assembly Output Power and Signal

The sub-assembly power and signal connector shall be a FCI PwrBlade + part number 10106269-1C03001LF vertical PCB-mount receptacle. The FCI PwrBlade + series connectors have the following ratings (per EIA-364-20 unless indicated):

- High power contacts working voltage: 585Vrms, 32A
- High power contacts proof voltage: 2500Vrms
- High power contacts initial contact resistance: 10 milliohms (per IEC-364-23)
- Low power contacts working voltage: 585Vrms, 20A
- Low power contacts proof voltage: 1000Vrms
- Low power contacts initial contact resistance: 15 milliohms (per IEC-364-23)
- Signal contacts working voltage: 333Vrms
- Signal contacts proof voltage: 1000Vrms (per IEC-364-23)

The connector is configured with sequentially mating contacts, ground being the longest, power the second longest, and signal contacts the shortest. Wiping distances are as follows, with mating level 1 being safety ground, level 2 being power, and level 3 being signal. MFBL means ‘make first, break last’, and MLBF means ‘make last, break first’. See Table 12.
<table>
<thead>
<tr>
<th>CONTACT</th>
<th>MATING LENGTH</th>
<th>MATING LEVEL</th>
<th>WIPE LENGTH (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Power</td>
<td>MFBL</td>
<td>1</td>
<td>5.30</td>
</tr>
<tr>
<td>Low Power</td>
<td>Standard</td>
<td>2</td>
<td>3.60</td>
</tr>
<tr>
<td>Signal</td>
<td>MLBF</td>
<td>3</td>
<td>2.00</td>
</tr>
</tbody>
</table>

Table 8. Contact Wiping Distances

The connector is blind-mate and will tolerate up to 1.91mm of misalignment in the X and Y direction (viewing mating face). It is a vertical-mount PCB connector and will be mounted on vertical boards inside the PMDU.

Wiring from the Universal connectors to the sub-assembly power and signal connector shall be different.

For the 42U PMDU, U positions 1 thru 24 the sub-assembly power and signal connector shall be in accordance with the Sub Assembly A-B Pin Assignment as show below. U positions 24 thru 42 the sub-assembly power and signal connector shall be in accordance with the Sub Assembly B-A Pin Assignment as show below.

Figure 10. PMDU Subassembly Pinout Assignment Image
For the 48U PMDU, U positions 1 thru 24 the sub-assembly power and signal connector shall be in accordance with the Sub Assembly A-B Pin Assignment as show below. U positions 25 thru 42 or 48 the sub-assembly power and signal connector shall be in accordance with the Sub Assembly B-A Pin Assignment as show below.

Table 9. PMDU Sub-assembly connector pinout assignment positions C1 through C24 and C25 through 42 or 48

<table>
<thead>
<tr>
<th>Universal Power Cable Connector Interface</th>
<th>PDMU Pin Definition</th>
<th>Feed A-B Sub Assy C 1-24 Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feed A Universal Power Cable Connector Interface</td>
<td>250 VAC Pair</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A1 Feed A -5 Wire and 4 Wire Phase A</td>
<td>P14</td>
</tr>
<tr>
<td></td>
<td>B2 Feed A -5 Wire Neutral or 4 Wire Phase B</td>
<td>P13</td>
</tr>
<tr>
<td></td>
<td>250 VAC Pair</td>
<td></td>
</tr>
<tr>
<td></td>
<td>B1 Feed A -5 Wire and 4 Wire Phase B</td>
<td>P10</td>
</tr>
<tr>
<td></td>
<td>C2 Feed A -5 Wire Neutral or 4 Wire Phase C</td>
<td>P9</td>
</tr>
<tr>
<td></td>
<td>250 VAC Pair</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C1 Feed A -5 Wire and 4 Wire Phase C</td>
<td>P6</td>
</tr>
<tr>
<td></td>
<td>A2 Feed A -5 Wire Neutral or 4 Wire Phase A</td>
<td>P5</td>
</tr>
<tr>
<td>Safety Ground</td>
<td>D1 Safety Ground</td>
<td>P1</td>
</tr>
<tr>
<td>Feed B Universal Power Cable Connector Interface</td>
<td>250 VAC Pair</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A1 Feed B -5 Wire and 4 Wire Phase A</td>
<td>P12</td>
</tr>
<tr>
<td></td>
<td>B2 Feed B -5 Wire Neutral or 4 Wire Phase B</td>
<td>P11</td>
</tr>
<tr>
<td></td>
<td>250 VAC Pair</td>
<td></td>
</tr>
<tr>
<td></td>
<td>B1 Feed B -5 Wire and 4 Wire Phase B</td>
<td>P8</td>
</tr>
<tr>
<td></td>
<td>C2 Feed B -5 Wire Neutral or 4 Wire Phase C</td>
<td>P7</td>
</tr>
<tr>
<td></td>
<td>250 VAC Pair</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C1 Feed B -5 Wire and 4 Wire Phase C</td>
<td>P4</td>
</tr>
<tr>
<td></td>
<td>A2 Feed B -5 Wire Neutral or 4 Wire Phase A</td>
<td>P3</td>
</tr>
<tr>
<td>Safety Ground</td>
<td>D1 Safety Ground</td>
<td>P1</td>
</tr>
</tbody>
</table>

See the Rack manager specification for pin out destination

- LR_SELECT A1
- NODE_IDO A2
- Analog Ground A3
- NODE_ID1 B1
- NODE_ID2 B2
- NODE_ID3 B3
- BLADE_THROTTLE# C1
- BLADE_ENDABLE# C2
- BLADE_PRESENT# C3
- PSKILL (SHORT PIN) D1
- NODE_ID4 D2
- NODE_ID5 D3
<table>
<thead>
<tr>
<th>Universal Power Cable Connector Interface</th>
<th>PDMU Pin Definition</th>
<th>Feed A-B Sub Assy C 25-C42/48 Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feed A Universal Power Cable Connector Interface</td>
<td>250 VAC Pair A1</td>
<td>Feed A -5 Wire and 4 Wire Phase A</td>
</tr>
<tr>
<td></td>
<td>B2</td>
<td>Feed A -5 Wire Neutral or 4 Wire Phase B</td>
</tr>
<tr>
<td></td>
<td>250 VAC Pair B1</td>
<td>Feed A -5 Wire and 4 Wire Phase B</td>
</tr>
<tr>
<td></td>
<td>C2</td>
<td>Feed A -5 Wire Neutral or 4 Wire Phase C</td>
</tr>
<tr>
<td></td>
<td>250 VAC Pair C1</td>
<td>Feed A -5 Wire and 4 Wire Phase C</td>
</tr>
<tr>
<td></td>
<td>A2</td>
<td>Feed A -5 Wire Neutral or 4 Wire Phase A</td>
</tr>
<tr>
<td>Safety Ground</td>
<td>D1</td>
<td>Safety Ground</td>
</tr>
<tr>
<td>Feed B Universal Power Cable Connector Interface</td>
<td>250 VAC Pair A1</td>
<td>Feed B -5 Wire and 4 Wire Phase A</td>
</tr>
<tr>
<td></td>
<td>B2</td>
<td>Feed B -5 Wire Neutral or 4 Wire Phase B</td>
</tr>
<tr>
<td></td>
<td>250 VAC Pair B1</td>
<td>Feed B -5 Wire and 4 Wire Phase B</td>
</tr>
<tr>
<td></td>
<td>C2</td>
<td>Feed B -5 Wire Neutral or 4 Wire Phase C</td>
</tr>
<tr>
<td></td>
<td>250 VAC Pair C1</td>
<td>Feed B -5 Wire and 4 Wire Phase C</td>
</tr>
<tr>
<td></td>
<td>A2</td>
<td>Feed B -5 Wire Neutral or 4 Wire Phase A</td>
</tr>
<tr>
<td>Safety Ground</td>
<td>D1</td>
<td>Safety Ground</td>
</tr>
</tbody>
</table>

See the Rack manager specification for pin out destination

- LR_SELECT A1
- NODE_IDO A2
- Analog Ground A3
- NODE_ID1 B1
- NODE_ID2 B2
- NODE_ID3 B3
- BLADE_THROTTLE# C1
- BLADE_ENDABLE# C2
- BLADE_PRESENT# C3
- PSKILL (SHORT PIN) D1
- NODE_ID4 D2
- NODE_ID5 D3

2.8 Grounding and Return

The PMDU grounding shall be via power cord safety ground. The enclosure sheet metal shall not be used for signal or voltage return. Safety Ground/Safety Earth shall be attached in accordance with safety certification requirements.

2.9 RJ45 Connectors

The PMDU contains 8 RJ45 connectors for cabling to external devices with 2 additional RJ45 connectors located on the Rack Manager. Below is a summary of the RJ45 connectors and the use.
Open Compute Project • Project Olympus Power and Management Distribution Unit

- MOR (NIC1) – Located on the Rack Manager. Supports 1GbE. Expected to connect to a Management Switch in the Middle of Row (MOR) rack.
- MGMT SW (NIC2) – Located on the Rack Manager. Supports 1GbE. Expected to connect to the Rack Manager Switch.
- RJ3 – Located on the PMDU. Supports HW flow control UART. Expected to connect to the UART DIGI in the MOR rack.

- RJ4 – Located on the PMDU. Supports SW flow control UART. Expected to connect to the Rack Management Switch (MGMT CONSOLE).
- RJ5 – Located on the PMDU. Supports SW flow control UART. Expected to be used as a DEBUG UART port.
- RC1 to RC4 – Located on the PMDU. Expected to connect to the AC relay cables.
- RM1 – Located on the PMDU. Expected to connect to a Stand-Alone Rack Manager Module located in the MOR rack.

2.9.1 RJ45 for UART with HW Flow Control (RJ3/DIGI)

The PMDU shall support one RJ45 connectors for interfacing with UARTs with hardware flow control. The connector pinout is shown in Table 10.

<table>
<thead>
<tr>
<th>Pin #</th>
<th>Signal</th>
<th>I/O</th>
<th>Voltage</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>RTS</td>
<td>O</td>
<td>RS232</td>
<td>Ready to Send</td>
</tr>
<tr>
<td>2</td>
<td>DTR</td>
<td>O</td>
<td>RS232</td>
<td>DSR</td>
</tr>
<tr>
<td>3</td>
<td>TXD</td>
<td>O</td>
<td>RS232</td>
<td>Transmit Data</td>
</tr>
<tr>
<td>4</td>
<td>GND</td>
<td>I</td>
<td>0V</td>
<td>GND</td>
</tr>
<tr>
<td>5</td>
<td>NC</td>
<td></td>
<td></td>
<td>No Connect</td>
</tr>
<tr>
<td>6</td>
<td>RXD</td>
<td>I</td>
<td>RS232</td>
<td>Receive Data</td>
</tr>
<tr>
<td>7</td>
<td>DSR</td>
<td>I</td>
<td>RS232</td>
<td>DTR</td>
</tr>
<tr>
<td>8</td>
<td>CTS</td>
<td>I</td>
<td>RS232</td>
<td>Clear to Send</td>
</tr>
</tbody>
</table>

2.9.2 RJ45 for UART without HW Flow Control (RJ4/MGMT Console, RJ5/DEBUG)

The PMDU shall support two RJ45 connectors for interfacing with UARTs without hardware flow control. The connector pinout is shown in Table 11. Hardware flow control signals are connected tied together at the connector. This enables a SW flow control port on the RM to communicate with select HW flow control end points.

<table>
<thead>
<tr>
<th>Pin #</th>
<th>Signal</th>
<th>I/O</th>
<th>Voltage</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>NC</td>
<td>I</td>
<td>RS232</td>
<td>Ready to Send. Connect to CTS (0 ohm resistor)</td>
</tr>
</tbody>
</table>
2.9.3 RJ45 for Rack Manager Power and Boot Control RM1

The PMDU shall support one RJ45 connectors for enabling external control of the Rack Manager power and boot state. The connector pinout is shown in Table 12.

Table 12. RJ45 Pinout – Rack Manager Power/Boot Control

<table>
<thead>
<tr>
<th>Pin #</th>
<th>Signal</th>
<th>I/O</th>
<th>Voltage</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>RM_THROTTLE+</td>
<td>I</td>
<td>RS485</td>
<td>Set rack to throttle mode</td>
</tr>
<tr>
<td>2</td>
<td>RM_THROTTLE-</td>
<td>I</td>
<td>RS485</td>
<td>Set rack to throttle mode</td>
</tr>
<tr>
<td>3</td>
<td>RM_BOOTSTRAP+</td>
<td>I</td>
<td>RS485</td>
<td>Sets receiving RM to boot from network</td>
</tr>
<tr>
<td>4</td>
<td>RM_PRESENT#</td>
<td>I</td>
<td>3.3V</td>
<td>Indicates Rack Manager is present</td>
</tr>
<tr>
<td>5</td>
<td>NC</td>
<td></td>
<td></td>
<td>No Connect</td>
</tr>
<tr>
<td>6</td>
<td>RM_BOOTSTRAP-</td>
<td>I</td>
<td>RS485</td>
<td>Sets receiving RM to boot from network</td>
</tr>
<tr>
<td>7</td>
<td>GND</td>
<td>I</td>
<td>0V</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>RM_OFF</td>
<td>I</td>
<td>5V</td>
<td>Disables Rack Manager 12V HSC</td>
</tr>
</tbody>
</table>

2.9.4 RJ45 for AC Relay Control (RC-1, RC-2, RC-3, RC-4)

The PMDU shall support four RJ45 connectors for controlling cabled AC power to rack devices through an AC relay device. The RJ45 connectors used as a AC relay control output. The connector pinout is shown in Table 13.

Table 13. RJ45 Pinout – Rack Manager Power/Boot Control

<table>
<thead>
<tr>
<th>Pin #</th>
<th>Signal</th>
<th>I/O</th>
<th>Voltage</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>NC</td>
<td></td>
<td></td>
<td>No Connect</td>
</tr>
<tr>
<td>2</td>
<td>NC</td>
<td></td>
<td></td>
<td>No Connect</td>
</tr>
<tr>
<td>3</td>
<td>NC</td>
<td></td>
<td></td>
<td>No Connect</td>
</tr>
<tr>
<td>4</td>
<td>RELAY_CNTL</td>
<td>I</td>
<td>0V</td>
<td>Disables AC Power through relay</td>
</tr>
<tr>
<td>5</td>
<td>NC</td>
<td></td>
<td></td>
<td>No Connect</td>
</tr>
<tr>
<td>6</td>
<td>NC</td>
<td></td>
<td></td>
<td>No Connect</td>
</tr>
<tr>
<td>7</td>
<td>NC</td>
<td>I</td>
<td>0V</td>
<td>No Connect</td>
</tr>
<tr>
<td>8</td>
<td>P5V</td>
<td>I</td>
<td>5V</td>
<td>5V source</td>
</tr>
</tbody>
</table>
2.10 SLOT ID

The PMDU shall provide grounding of signal pins on the FCI connector to assign a separate slot identification code to each blade. The coding shall be as shown in Table 14.

Table 14. Slot ID

<table>
<thead>
<tr>
<th>Blade</th>
<th>SLOT_ID[5:0]</th>
<th>Blade</th>
<th>SLOT_ID[5:0]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blade 1</td>
<td>000000</td>
<td>Blade 25</td>
<td>100000</td>
</tr>
<tr>
<td>Blade 2</td>
<td>000001</td>
<td>Blade 26</td>
<td>100001</td>
</tr>
<tr>
<td>Blade 3</td>
<td>000010</td>
<td>Blade 27</td>
<td>100010</td>
</tr>
<tr>
<td>Blade 4</td>
<td>000011</td>
<td>Blade 28</td>
<td>100011</td>
</tr>
<tr>
<td>Blade 5</td>
<td>000100</td>
<td>Blade 29</td>
<td>100100</td>
</tr>
<tr>
<td>Blade 6</td>
<td>000101</td>
<td>Blade 30</td>
<td>100101</td>
</tr>
<tr>
<td>Blade 7</td>
<td>001000</td>
<td>Blade 31</td>
<td>101000</td>
</tr>
<tr>
<td>Blade 8</td>
<td>001001</td>
<td>Blade 32</td>
<td>101001</td>
</tr>
<tr>
<td>Blade 9</td>
<td>001010</td>
<td>Blade 33</td>
<td>101010</td>
</tr>
<tr>
<td>Blade 10</td>
<td>001011</td>
<td>Blade 34</td>
<td>101011</td>
</tr>
<tr>
<td>Blade 11</td>
<td>001100</td>
<td>Blade 35</td>
<td>101100</td>
</tr>
<tr>
<td>Blade 12</td>
<td>001101</td>
<td>Blade 36</td>
<td>101101</td>
</tr>
<tr>
<td>Blade 13</td>
<td>010000</td>
<td>Blade 37</td>
<td>110000</td>
</tr>
<tr>
<td>Blade 14</td>
<td>010001</td>
<td>Blade 38</td>
<td>110001</td>
</tr>
<tr>
<td>Blade 15</td>
<td>010010</td>
<td>Blade 39</td>
<td>110010</td>
</tr>
<tr>
<td>Blade 16</td>
<td>010011</td>
<td>Blade 40</td>
<td>110011</td>
</tr>
<tr>
<td>Blade 17</td>
<td>010100</td>
<td>Blade 41</td>
<td>110100</td>
</tr>
<tr>
<td>Blade 18</td>
<td>010101</td>
<td>Blade 42</td>
<td>110101</td>
</tr>
<tr>
<td>Blade 19</td>
<td>011000</td>
<td>Blade 43</td>
<td>111000</td>
</tr>
<tr>
<td>Blade 20</td>
<td>011001</td>
<td>Blade 44</td>
<td>111001</td>
</tr>
<tr>
<td>Blade 21</td>
<td>011010</td>
<td>Blade 45</td>
<td>111010</td>
</tr>
<tr>
<td>Blade 22</td>
<td>011011</td>
<td>Blade 46</td>
<td>111011</td>
</tr>
<tr>
<td>Blade 23</td>
<td>011100</td>
<td>Blade 47</td>
<td>111100</td>
</tr>
<tr>
<td>Blade 24</td>
<td>011101</td>
<td>Blade 48</td>
<td>111101</td>
</tr>
</tbody>
</table>
3 PMDU Mechanical Housing

3.1 General Construction

The PMDU housing shall be constructed of 1.2mm thick steel, having the dimensions shown in the figure below. Detailed dimensions on Microsoft drawing M1007740-001 (42U SKU) and M1007710-001 (48U SKU). The housing shall be coated to prevent rust and corrosion.

The PMDU shall be support 42U and 48U rack assemblies.
3.2 PMDU Structural Brackets

The PMDU shall include brackets at the top and bottom for to further restrict movement in the rack. Representative image is below. See Microsoft drawing M1007740-001 (42U SKU) and M1007710-001 (48U SKU) for details.
3.3 PMDU Subassembly Power Connector

3.3.1 Connector and Placement

The sub-assembly power and signal connector shall be a FCI PwrBlade + part number 10106269-1C03001LF vertical PCB-mount receptacle. One connector is placed at every U (44.45mm) of the PMDU, oriented as shown in Figure 12.

![Figure 12. PMDU Housing General Location, Microsoft drawings M1007740 and M1007710 supersede this image](image)

3.3.2 Guide Pins

The zinc plated steel guide pins on the face of the PMDU are self-clinching, made by PENCOM, part number GNST-6-25-Z. Their nominal dimensions are Ø 6.00mm x 25.00mm long. The guide pins are located 18.18mm above the subassembly power connectors at every U.

3.4 Rail Attachment

There are threaded cone washers on the left side of the PMDU, held in place by M5 socket head screws, that allow the PMDU to mount to keyhole slots in the E2000 system rails. The inverted surfaces of the washers pull the PMDU tightly against the sides of the rails. Details of cone
washer design shown in Microsoft drawing M1007740-001 (42U SKU) and M1007710-001 (48U SKU).

Figure 13. PMDU Rail Mounting: Inverted cone washers fit into keyhole slots in E2000 rails.
3.4.1 Subassembly Interface

The PMDU interfaces with an E2000 Subassembly in two ways. As a Sub assembly is inserted into the rack, a hole at the rear of the Subassembly slides onto a front-facing pin that is mounted in the PMDU sheet metal housing. As the Subassembly is further inserted, the blind mate connector on the rear of the Subassembly engages with a corresponding blind mate connector on the PMDU. Subassembly travel is stopped by a guide pin sleeve on the rear of the subassembly.
3.5 Thermal

The front, right side, and back face of the PMDU housing shall be perforated. The front face is defined as the PMDU output connector plane. The back face is defined as the plane facing the door. The right-side face is defined as the plane facing the opposite interior of the rack.

The perforation shall be as described in mechanical drawing shown in Microsoft drawing M1007740-001 (42U SKU) and M1007710-001 (48U SKU).

The rack manager and PMDU power supply shall be cooled via the perforations provided and natural convection.

3.6 Weight

The weight of the PMDU shall not exceed 35 lbs.

3.7 General Connector Quality

The PMDU will be used in datacenters with a wide range of humidity. The connectors for these deployments must be capable of withstanding high humidity during shipping and installation. The connector selection must comply with EIA364 and be reviewed and approved by Microsoft.
3.7.1 Sub Assembly Connector Quality

The base starting point for plating for connectors shall be 30μ” thickness gold. Connectors can be made from different materials and thicknesses. The plating specifications for all connectors within the PMDU assembly must be reviewed with Microsoft and approved by Microsoft with extra focus on plating that is less than 30μ” gold.

Connecter shall not show degradation over a 50 mate/unmate cycles.
4 Environmental

The specifications listed in the following table must be supported.

Table 15. Environmental Requirements

<table>
<thead>
<tr>
<th>Specification</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>Operating: 50°F to 140°F (10°C to 60°C)</td>
</tr>
<tr>
<td></td>
<td>• Maximum rate of change: 18°F (10°C)/hour</td>
</tr>
<tr>
<td></td>
<td>• Allowable derating guideline of 1.6°F/1000ft (0.9°C/304m) above 3000 ft.</td>
</tr>
<tr>
<td></td>
<td>Non-operating: -40°F to 140°F (-40°C to 60°C)</td>
</tr>
<tr>
<td></td>
<td>• Rate of change less than 36°F (20°C)/hour</td>
</tr>
<tr>
<td>Humidity</td>
<td>Operating: Equivalent to 10% to 80% Relative Humidity (RH) non-condensing at 35°C</td>
</tr>
<tr>
<td></td>
<td>• Maximum rate of change 20% RH in an hour</td>
</tr>
<tr>
<td></td>
<td>Non-operating: 5% to 95% non-condensing</td>
</tr>
<tr>
<td></td>
<td>• 100.4°F (38°C) maximum wet bulb temperature</td>
</tr>
<tr>
<td>Altitude</td>
<td>Operating: 10000ft (3050m) maximum</td>
</tr>
<tr>
<td></td>
<td>• Rate of change less than 1500 ft./min (457m/min)</td>
</tr>
<tr>
<td></td>
<td>Non-operating: 30000ft (9144m) maximum</td>
</tr>
<tr>
<td></td>
<td>• Rate of change less than 1500 ft./min (457m/min)</td>
</tr>
</tbody>
</table>

See the latest version of the IT Equipment and Data Center Power/Physical/Environmental Specification Document M1001852.
5 Compliance

PMDU shall be designed to comply with regulatory requirements mandated by countries where it is going to be deployed (Refer to Country List for Compliance Certifications, See separate document for up to date list)

- Safety Compliance: Components are designed to comply with safety requirements outlined in IEC 60950-1 and IEC 62368-1 (mandatory from 2019/6/20) standards, and applicable national deviations (i.e. EN, CSA, UL, etc.).
- EMC Compliance: Components are designed to comply with Class A emission limits and immunity requirements outlined in CISPR 32 and CISPR 24 standards, and applicable national regulations (i.e. FCC CFR 47, part 15 in the USA, ICES-003 in Canada, EN 55032 and EN 55024 in Europe, KN 32 and KN 35 in South Korea, VCCI-CISPER 32 in Japan, etc.).
- Environmental Compliance: Components are designed to comply with all worldwide regulations that ban, restrict, or require reporting of hazardous substances (i.e. RoHS Directive 2011/65/EU, REACH Directive 2006/1907/EC (Annex XVII) and Battery Directive 2006/66/EC in Europe, California Proposition 65 in the USA) applicable to server finished goods.
- Energy Efficiency Compliance: Components are designed to comply with applicable energy efficiency regulations.

5.1 Safety Requirements

Following are the component regulation requirements:

- Power Supply shall be separately approved to IEC 60950-1 and IEC 62368-1, including applicable national deviations (i.e. EN, CSA, UL, etc.).
- Battery pack and cell (including coin cell battery) shall have minimum safety and transportation certifications required by IEC, UL and UN standards, as applicable.
- All Fans shall have minimum certifications to IEC/EN and UL standards (i.e. UL, TUV,VDE).
- All current limiting devices shall have minimum certifications to IEC/EN and UL standards (i.e. UL, TUV,VDE).and shall be suitable rated for the application where the device in its application complies with IEC60950.
- All printed wiring boards shall be rated V-0 and be sourced from a UL approved printed wiring board manufacturer.
- All connectors shall be UL recognized and have a UL flame rating of V-0.
- All wiring harnesses shall be sourced from a UL approved wiring harness manufacturer. SELV Cable to be rated minimum 80V, 130C.
- Product safety label must be printed on UL approved label stock and printer ribbon. Alternatively labels can be purchased from a UL approved label manufacturer.
- The product must be marked with the correct regulatory markings to support the certifications that are specified in this document.
5.2 EMC Requirements and Test Conditions

The equipment shall fulfill the requirements of the applicable EMC standards when tested as a system.

For all EMC testing, the equipment, when connected to the system and cabling, shall be tested in a worst-case user configuration, in concurrence with the Microsoft Regulatory Compliance team.

Microsoft requires a higher-level of performance for several the EMC tests. Equipment for Microsoft Cloud Server Infrastructure shall meet the following requirements beyond regulatory limits/test levels through all supported voltage ranges and loads.

<table>
<thead>
<tr>
<th>Test</th>
<th>Test Method</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radiated emissions margin (to Class A regulatory limits)</td>
<td>ANSI C63.4/CISPR 32</td>
<td>-3 dB</td>
</tr>
<tr>
<td>Conducted emissions margin (to Class A regulatory limits)</td>
<td>ANSI C63.4/CISPR 32</td>
<td>-3 dB</td>
</tr>
<tr>
<td>Electrostatic Discharge (ESD) - Contact Discharge</td>
<td>EN 61000-4-2</td>
<td>+/-6 kV Criteria B, +/-8 kV Criteria C</td>
</tr>
<tr>
<td>Electrostatic Discharge (ESD) - Air Discharge</td>
<td>EN 61000-4-2</td>
<td>+/-11 kV Criteria B, +/-15 kV Criteria C</td>
</tr>
<tr>
<td>Radiated Immunity</td>
<td>EN 61000-4-3</td>
<td>5 V/m, Criteria A</td>
</tr>
<tr>
<td>Electrical Fast Transient (EFT)</td>
<td>EN 61000-4-4</td>
<td>+/-2 kV, Criteria B on Mains</td>
</tr>
<tr>
<td></td>
<td></td>
<td>+/-1 kV, Criteria B on I/O</td>
</tr>
<tr>
<td>Surge</td>
<td>EN 61000-4-5</td>
<td>Regulatory standard</td>
</tr>
<tr>
<td>Conducted Immunity</td>
<td>EN 61000-4-6</td>
<td>4 Vrms, Criteria A</td>
</tr>
<tr>
<td>Magnetic Field Immunity</td>
<td>EN 61000-4-8</td>
<td>Regulatory standard</td>
</tr>
<tr>
<td>Voltage Dips and Interruptions</td>
<td>EN 61000-4-11</td>
<td>Regulatory standard</td>
</tr>
<tr>
<td>Harmonics (product drawing ≤ 16 A per phase)</td>
<td>EN 61000-3-2</td>
<td>Regulatory standard</td>
</tr>
<tr>
<td>Harmonics (product drawing > 16 A per phase, ≤ 75 A per phase)</td>
<td>EN 61000-3-12</td>
<td>Regulatory standard</td>
</tr>
<tr>
<td>Voltage Fluctuations & Flicker (product drawing ≤ 16 A per phase)</td>
<td>EN 61000-3-3</td>
<td>Regulatory standard</td>
</tr>
<tr>
<td>Voltage Fluctuations & Flicker (product drawing > 16 A per phase, ≤ 75 A per phase)</td>
<td>EN 61000-3-11</td>
<td>Regulatory standard</td>
</tr>
</tbody>
</table>

Criteria Definition

A During testing normal performance within the specification limits. **Unintended input from input device is not allowed.**

B During testing temporary degradation or loss of function or performance which is self-recoverable. “Lock up” is not allowed. **For equipment with manually inputted data, which can be confirmed by reading the display, errors which can be recognized by the operator and easily corrected are permissible.**

C Failures resulting in a delay in processing after the external disturbance is removed, but which can be recovered to normal operation by reset or reboot are permissible. Failures resulting in a system abort, which can be recovered to normal operation by reset or reboot, are permissible.

D Degradation or loss of function which is not recoverable due to damage to equipment or software, or loss of data.
5.3 Environmental Compliance

PMDU must comply with the latest editions of Microsoft specifications:

- H00594 MICROSOFT RESTRICTED SUBSTANCES FOR HARDWARE PRODUCTS, and
- H00642 MICROSOFT RESTRICTED SUBSTANCES CONTROL SYSTEM FOR HARDWARE PRODUCTS.

PMDU must not contain lead, mercury, cadmium, hexavalent chromium, polybrominated biphenyls (PBB) and polybrominated diphenyl ethers (PBDE) in excess of the limits specified in the EU Directive, 2011/65/EU, “Restriction of the use of Certain Hazardous Substances in Electrical and Electronic Equipment” and will not exceed a maximum unintentional or trace allowance defined by the EU Directive 2011/65/EU).
6 Labeling and Guidelines

The PMDU shall be labeled via sticker or ink marking on two surface sides, left and rear.

Figure 16. PMDU sides to be labeled
6.1 PMDU Assy Product Labeling and Guidelines

The product label location shall be located from U position 14 opposite at the Rear Surface of the PDMU unit.

6.1.1 42U PMDU Assy Product Labeling and Guidelines

The product label location shall be located from U position 14 opposite at the Rear Surface of the PDMU unit. See M2010_42U PMDU_Agency Label drawing number CM1014263-001 for latest label information.

6.1.2 48U PMDU Assy Product Labeling and Guidelines

The product label location shall be located from U position 14 opposite at the Rear Surface of the PDMU unit. See drawing M2010_48U PMDU_Agency Label drawing number CM1023919-001
Label Spec
Material: PC Film
Thickness: 0.25mm
Adhesive Thickness: 0.05mm

Open Compute Project • Project Olympus Power and Management Distribution Unit

http://opencompute.org
6.2 Safety Warning Labeling

The following 2 warning labels (MS P/N M1019319-002 and P/N M1031376-001) shall be located between the 2 universal connectors.
6.3 Connector Labeling

Each U location shall be labeled, coined, or stamped from bottom to top on the side surfaces with U1 starting at the bottom.

6.4 Breaker and Connector Labeling

Each breaker and C13 outlet shall be labeled on the rear surfaces
6.5 RM Management Port Legend Labeling.

The rear surface shall be labeled with a matching legend identifying port number and location found on the rack manager.
6.6 Control Cable Port Labeling

Each control port shall be labeled on the side surface.

The rear surface shall be labeled with a matching legend identifying port number and location.

6.7 Serial Port Labeling

Each serial port shall be labeled on the side surface.
The rear surface shall be labeled with a matching legend identifying port number and location.
6.8 Feed Labeling

Each Feed shall be labeled, coined or stamped.
7 Metal Finish/Painted Color

The unit shall be finished so as not to corrode. The finish shall be
HOT DIPPED GALVANIZED STEEL, SGCC
HARDNESS: 50-60 ROCKWELL B
SPECIFICATION: JIS G3302
PLATING/COATING: ZCS(A)X, ZINC COATING MASS: Z08, MINIMIZED SPANGLE,
SKIN PASSED, CHROMATE (ANTI-FINGER PRINT) TREATED, UNOILED
MATERIAL SHALL CONTAIN 0.02% MIN TO 0.15% MAX CARBON.

8 Appendix: Commonly Used of Acronyms

This section provides definitions of acronyms used in the WCS system specifications.

ACPI – advanced configuration and power interface
AHCI – advanced host controller interface
ANSI – American National Standards Institute
API – application programming interface
BIOS – basic input/output system
BMC – baseboard management controller
CBB – connector Backplane Board
CFM – cubic feet per minute (measure of volume flow rate)
CM – chassis manager
DDR4 – double data rate type 4
DHCP – dynamic host configuration protocol
DIMM – dual inline memory module
DPC - DIMMs per memory channel
ECC – error-correcting code
EEPROM - electrically erasable programmable read-only memory
EIA – Electronic Industries Alliance
EMC – electromagnetic compatibility
EMI – electromagnetic interference
FRU – field replaceable unit
GPIO – general purpose input output
HSC – hot-swap controller
I²C – inter-integrated circuit
IPMI – intelligent platform management interface
LAN – local area network
LFF – large form factor
LPC – low pin count
MBB – mid-Backplane Board
MTBF – mean time between failures
MUX – multiplexer
NGCS – Next Generation Cloud Server
PCB – printed circuit board
PCIe – peripheral component interconnect express
PCH – platform controller hub
PDU – power distribution unit
PMDU – power management distribution unit
PECI – Platform Environment Control Interface
POST – power-on self-test
PSU – power supply unit
PXE – preboot execution environment
RB – rear I/O Board
RM – rack manager
RU – rack unit
SAS – serial-attached small computer system interface (SCSI)
SATA – serial AT attachment
SDA – serial data signal
SFF – small form factor
SMBUS – systems management bus
SMBIOS – systems management BIOS
SPD – Serial Presence Detect
SPI – serial peripheral interface
SSD – solid-state drive
TDP – thermal design power
TOR – top of rack switch
TPM – trusted platform module
RU – rack unit
UART – universal asynchronous receiver/transmitter
UEFI – unified extensible firmware interface
WMI – Windows Management Interface