Delivering Heterogeneous Accelerators for the Data Center and Edge

ODSA: White Paper, Reference Architecture and Fabric

Bapi Vinnakota
DOMAIN-SPECIFIC ACCELERATORS

- Host-attached programmable logic optimized for an application domain
 - Tensorflow, Netronome NFP, Crypto, IoT, ...
- Domain-specific accelerators contain lots of generic logic ~35-45% of silicon area, development time
 - Network, Host, Memory Interfaces
 - General-purpose CPUs
 - SRAM, interconnect
 - Domain-specific logic works in coordination with host and/or CPU SW

- Ideally
 - Investment in a DSA should be limited to the domain-acceleration logic
- In reality
 - Buy IP for the “non-core” parts, spend $$’s test and integration
MULTI-ChIPLET REFERENCE ARCHITECTURE FOR DSA

- With this architecture
 - Build for a new domain with new domain acceleration logic
 - Reuse chiplets instead of IP
- Also addresses connectivity issue
 - Who do I connect to when I build a chiplet
- How do make this work?
 - What is the architectural interface – memory transaction
 - No clear choice at the PHY layer. A design may use multiple PHYs
memory is the architecture interface
- coherence over a small area
- non-coherent transport over a larger area

inter chiplet
- phy: pipe interface to abstract the phy layer, multiple phys
- link: reuse existing link layer – which one?

intra chiplet
- phy: simple bow. pipe-like abstraction?
- link: reuse netronome isf

common
- network: route read/write across chiplets
- transport
 ▶ cache-coherent protocol. multiple choices. which one?
 ▶ non-coherent transport
 - classic dma
 - netronome isf transport layer
BEYOND THE ARCHITECTURAL INTERFACE

- **Implementation**
 - Can we demo the architecture. Iron out operations, test
 - What is the effort involved in developing chiplets for the reference architecture

- **Important non-technical issues**
 - IP rights
 - Workflow, tools
 - Assembly and test
 - Finding an open organization

- **Agenda builds off white paper**
 - Level set (this session)
 - PoC with today’s silicon
 - Building silicon for the reference architecture
 - Business model/open org discussion

- **Aim to make tangible progress toward building something useful**
ODSA WHITE PAPER

- Broad overview of the space
 - Needs to be refined to a 1.0 document, Additional participants welcome
- Motivation for chiplets
 - Do we need any more?
- Technology proof points focused on the PHY layer and substrate
 - PHY: Multiple options Serial/Parallel, proof points from Alphawave (newer), Aquantia, Intel, Kandou
 - Substrate: Organic substrates, fiber to the package
 - Fabric: Cache coherence protocols (CCIX, Open CAPI), scalable async fabric from Netronome
- To make chiplets work, they need to behave like they are on the same chip
 - Chiplets need an architectural interface (stolen from Gabe Loh from AMD), not just the PHY
- Generic architectural interfaces are challenging, if not impossible
 - May be possible for a narrower scope