QCT Rackgo X
Yosemite V2

2018/10/11
Agenda

• Overview
• High Level Features-Yosemite V2 Sled
• Why Need This Product
• Mechanical View-System Level
• Mechanical View-Sled Level
• Mechanical View-Server Card Level
• Block Diagram of Sled-Yosemite V2 Sled
• Block Diagram of Server Card-Twin Lakes
• Enhancement From V1 to V2
• Compatible Components List & User Guide
• Design Files Contribution
• OCP Tenets/Principles
Overview

• Introduction
 - “Rackgo X Yosemite V2” is new generation platform that enables with Intel Xeon Processor Skylake-D Product Family. Each Yosemite V2 sled hosts up to “4x OCP compliant 1P server cards” or “2x 1P server cards & 2x device cards”. And each vCubby chassis can hold up to 4x Yosemite V2 sleds

• Contributions
 - Design package
 - Product submission to Marketplace.
 - Product Recognition: Accepted level

• Specification Reference
 - Facebook Multi-Node Server Platform: Yosemite V2 Design Specification v1.0 spec
Why Needs This Product

• More and more computing capability requirement than before for various application, for example, AI (artificial intelligence)

• High density Yosemite V2 with next generation CPU to provide higher computing performance & memory capacity
High Level Features - Yosemite V2 Sled

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Processor</td>
<td>• Intel Skylake-D, Xeon processor, up to 18 cores, TDP up to 110W. Twin Lakes only support 86W</td>
</tr>
</tbody>
</table>
| **Memory** | • Up to 4 DDR4 channels (2DIMMs / channel)
 • Max Memory capacity of Twin Lakes: 128GB. 16GB*8 or 32GB*4 |
| **External I/O Connections** | • 32 x PCIe Gen3 Lanes (CPU)
 • (6) X4 to gold finger
 • (2) X4 to high-speed storage drive M.2 connector on Twin Lakes.
 • 20 x Gen3 over HSIO (PCH)
 • (1) X4 PCIe for Mellanox CX-4 LX mezzanine
 • (1) USB 3.0 for DCI
 • (1) PCIe X1 for VGA
 • (1) USB 2.0 to baseboard
 • (1) Serial connection(Tx/Rx only)
 • I2C Management connection
 • Power On/Off, Reset control |
| **Storage** | • (3) M.2 connectors. One for boot drive(PCIe or SATA). Two for high-speed storage drive(PCIe). |
Mechanical View - System Level

- Twin Lakes Server
- Glacier Point Flash Card (houses up to 6 M.2 SSDs)
- Crane Flat Card (with PCIe add-in cards)
- Adapter card Type1 (for 50G NIC)
- Adapter card Type2 (for 100G NIC)
- VCubby
- 1x2 Medusa Cable
- Power Bar Board
- Electrical Brush
- Sled Chassis
- Base Plane Board
Mechanical View - Sled Level

All Computes

Different Configurations

2xComputes w/ 2x M.2 carrier cards
Mechanical View-Server Card Level

1P Server Card - Twin Lakes

CPU
Block Diagram of Sled-Yosemite V2 Sled
Block Diagram of Server Card - Twin Lakes
Enhancement From V1 to V2

• 8 DIMM/server card compare to V1 (4xDIMM)

• Install server card **vertically** with new V-cubby compare to V1 Cubby chassis (**horizontally**)

Compatible Components List & User Guide

• “QCT Rackgo X OCP Debug Card with LCD” could be operated with Yosemite V2 sled
Design Files Contribution-
01_Electricals

➢ 01_Full System Board Layout

- 01_Full System Board Layout
 - 01_MB_TL
 - 02_Baseboard
 - 03_Adapter board type 1
 - 04_Adapter board type 2
 - 05_Adapter board type 3
 - 06_Power bar with e-fuse
 - 07_Glacier Point
 - 08_Crane Flat

➢ 02_Full System Schematic CAD

- 02_Full System Schematic CAD
 - 01_MB_TL
 - 02_Baseboard
 - 03_Adapter board type 1
 - 04_Adapter board type 2
 - 05_Adapter board type 3
 - 06_Power bar with e-fuse
 - 07_Glacier Point
 - 08_Crane Flat
Design Files Contribution-
01_Electricals

03_Full System Component BOM

- 03_Full System Component BOM
 - 01_MB_TL
 - 02_Baseboard
 - 03_Adapter board type 1
 - 04_Adapter board type 2
 - 05_Adapter board type 3
 - 06_Power bar with e-fuse
 - 07_Glacier Point
 - 08_Crane Flat

04_Manufacturing Files

- 04_Manufacturing Files
 - 01_PCB manufacturing files
 - 02_Board component placement map (.pdf)
 - 03_Stack Up
Design Files Contribution-02_Mechanicals

 ➢ Mechanical files

- 02_Mechanicals
 - vcubby-with-yosv2-assy-20180620.zip
Design Files Contribution

03_Software

<table>
<thead>
<tr>
<th>Folder</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>03_Softwares</td>
<td></td>
</tr>
<tr>
<td>01_BIOS</td>
<td></td>
</tr>
<tr>
<td>02_BMC</td>
<td></td>
</tr>
<tr>
<td>03_CPLD</td>
<td></td>
</tr>
<tr>
<td>04_VR FW</td>
<td></td>
</tr>
<tr>
<td>05_BIC</td>
<td></td>
</tr>
</tbody>
</table>
OCP Tenets/Principles

➢ **Efficiency**
 ➢ Modularized design for user to easily allocate the compute/storage/accelerator ratio according to different workload

➢ **Scalability**
 ➢ Define a new 1S server card form factor for different modularized compute, storage or accelerator application

➢ **Openness**
 ➢ Comply with ORv2 standard

➢ **Impact**
 ➢ Provide a high efficiency & modularized design to extend the different possible applications
Thanks!