Introduction and Overview of Redfish

John Leung
DMTF - VP of Alliances
Intel – Principal Engineer
The Distributed Management Task Force

- An Industry Standards Organization
 - Developing manageability standards for 24 years (est. 1992)
 - Membership includes 65 companies and industry organizations
 - With active chapters in China and Japan

- Allied with
 - 14 standard development organizations (alliance partners)
 - 80+ universities and research organizations (academic alliance partners)

- Focused on manageability standards
 - For the management of on-platform, off-platform, network services and infrastructure domains
 - Which are recognized nationally (ANSI/US) and internationally (ISO)
Agenda

- Redfish - a modern manageability interface for the data center
 - Why a new interface?
 - Redfish capabilities
 - Elements of the Redfish standard
 - A JSON Response
- Redfish manageability models
 - Server/Compute model
 - Storage model
 - Network Device model
- Redfish tools
 - The conformance tool chain and OCP
"Redfish – a modern interface for managing the data center"

- **A RESTful interface**
 - To manage compute, storage, network and DCIM
 - Leverages existing Internet standards and tool chains
 - Usable by professions and amateurs

- **Resource models for managing**
 - Common platform manageability
 - (Power, thermal, cooling, inventory, reboot, firmware update, get telemetry, etc.)
 - Domain specific capabilities

DCIM = Data Center Infrastructure Management
Redfish: Why a New Interface?

- Market shifting to scale-out solutions
 - Datacenters have a sea of simple servers and multi-node servers
- Customers exhausting the functionality of current manageability interfaces
- Customers asked for a modern interface
 - Single simple interface for managing all datacenter platforms and devices
 - An interface which uses cloud/web protocols, structures, security models and tool chains
 - Schemas to allow introspect of interface and programmatic enablement

HTTP

```
HTTP GET https://<ip_addr>/redfish/v1/Systems/CS_1
```

Python code

```
rawData = urllib.urlopen('https://<ip_addr>/redfish/v1/Systems/CS_1'
jsonData = json.loads(rawData)
print( jsonData['SerialNumber'] )
```

Output

```
1A87CA442K
```
Why HTTP and JSON?

- **HTTP(S): The Web protocol**
 - Well-understood by IT admin
 - Known security model
 - Known network configuration
- **JSON: A modern data format**
 - Human-readable
 - Simpler than XML
 - Modern language support (json-schema)
- **For manageability, IT can use their**
 - Existing DEV/OPS skill set
 - Tool chain ecosystem

http://www.infoq.com/articles/rest-soap
Redfish Capabilities

Chassis Information
- Identification and asset information
- State and status
- Temperature sensors and fans
- Power supply, power consumption and thresholds
- Set power thresholds

Compute Manageability
- Reboot and power cycle server
- Configure BIOS settings
- Change boot order and device
- Update BIOS and firmware
- Memory and NVDIMMs
- Local network interface
- Local storage
- State and status

Composition
- Specific composition
- Enumerated composition

Management Infrastructure
- View / configure BMC network settings
- Manage local BMC user accounts
- Configure serial console access (e.g. SSH)

Discovery
- Physical hierarchy (rack/chassis/server/node)
- Compute service (servers)
- Management hierarchy (rack mgr, tray mgr, BMC)

Security
- Use HTTPS
- Map roles to privileges

Access and Notification
- Subscribe to published events
- Inspect Logs
- Access via host interface
The Redfish Standard

• Redfish is composed of
 • An Interface definition
 • Various Model schema

• Redfish Interface (RESTful)
 • HTTP/HTTPS - protocol
 • JSON – format of content

• Redfish Models and Schema
 • Schema format for JSON responses
 • DMTF publishes the models for platforms and compute/servers
 • Other standard bodies can publish their own

1 OData is an OASIS Standard
2 CSDL = Common Schema Definition Language
HTTP GET /redfish/v1/Systems/CS_1

Note

- Redfish is hyper-media
- Cannot presume a resource hierarchy
Redfish Model – Compute and Platform

Service Root
/redfish/v1
Root
Tasks
Sessions
Accounts
Events
Registries
Schemas

Collection Resource
/redfish/v1/Systems
Collection of Systems
"Logical view"
/Systems/<id>
Computer System
Processors
Memory
Disks
NICs
Power
Thermal

HTTP GET /redfish/v1/Systems/CS_1/Processors/2

Collection of Chassis
"Physical view"
/Chassis/<id>
Chassis
Managed By
Computer Systems
Managed By
Computer Systems

Collection of Managers
"Mgmt hierarchy"
/Managers/<id>
BMC
LogService
NW protocol

Platform HW Mgmt

www.dmtf.org
Storage Model

- Reuses chassis model
- Adds StorageServices & StorageSystems
Network Model – Convert from YANG models

✓ Phase 1 - convert a small set of YANG models to Redfish models
 - Proves out the process, and validates the converter
• Phase 2 – larger list of YANG models

Phase 1 (Ethernet Switch)
• RFC6991 (YANG types)
• RFC7223 (Interfaces)
• RFC7224 (IANA Interface types)
• RFC7277 (IPv4 and IPv6)
• RFC7317 (system, system_state, platform, clock, ntp)
Redfish Tools

- Tools to enable Redfish modeling
- Tools to enable Redfish clients
 - Ability for early client development
 - DMTF extending charter to allow contribution to external repositories
- Tools being added

http://github.com/DMTF
The Redfish Conformance Tool-chain

- DMTF describes a standard for a manageability interface and models
- OCP could prescribe conformance requirements for the Redfish model elements (resources, properties, actions) in a profile document
- Implementations are tested for conformance to the profile to claim conformance to OCP specifications
OCP Conformance of Redfish Profile

The DMTF is

• Defining a JSON file format for a prescriptive profile
• Developing a Redfish Interop Validator
 • Reads the profile file
 • Profile drives the testing of a Redfish service implementation
• The Redfish Interop Validator has been open sourced
 • https://github.com/DMTF/Redfish-Interop-Validator

OCP could

• Create a baseline manageability profile
• Create project specific profiles
Public Redfish Collateral

- Redfish Github: github.com/DMTF
- Redfish Community Forum: redfishforum.com
- Redfish Developer's Hub: redfish.dmtf.org
- Specs, presentation: dmtf.org/standards/redfish
- Redfish Forum (SPMF): dmtf.org/standards/spmf

<table>
<thead>
<tr>
<th>Specification</th>
<th>Protocol</th>
<th>Scheme and Keyboards</th>
</tr>
</thead>
<tbody>
<tr>
<td>Redfish Specification Forum</td>
<td>Redfish Github</td>
<td>Redfish Community Forum</td>
</tr>
<tr>
<td>Redfish Developer's Hub</td>
<td>Redfish</td>
<td>Redfish Forum (SPMF)</td>
</tr>
<tr>
<td>Specs, presentation</td>
<td>dmtf.org/standards/redfish</td>
<td>dmtf.org/standards/spmf</td>
</tr>
</tbody>
</table>

Welcome to the Redfish Developer Hub

DMTF’s Redfish™ API is an open industry standard specification and scheme that helps enable simple and secure management of modern scalable-platform hardware, by specifying a RESTful interface and utilizing JSON and OData. Redfish helps customers integrate solutions within their existing tool chains. An aggressive development schedule is quickly advancing Redfish toward its goal of addressing all the components in the data center with a consistent API.

Welcome Developers

The DMTF’s Redfish Developer Hub in a one-stop, in-depth technical resource – by developers, for developers - designed to provide all the files, tools, community support, tutorials and other advanced education you may need to help you use Redfish.
Summary

- Redfish has rapidly established itself as the modern interface for data center management
 - Rapid advances in the interface with multiple schema releases
 - Expediting the tool-chain for extensions and usage
- The industry have reacted favorably (standards orgs, companies)
 - Alliance partnerships with SNIA, UEFI, OCP, The Green Grid, ASHRAE, CSCC
- Academic research is underway (with academic alliance partner members)
 - Texas Tech University - Cloud and Autonomic Computing Center
 - Barcelona Supercomputing Center
Thank you
PCIe Model

- The Fabric model is use to model PCIe, SAS, and other Fabrics.
- A fabric includes collections of zones, endpoints and switches
- A switch include a collection of ports
- Fabric mockups exist for PCIe, PCIeMesh and ComplexPCIe
Memory Model

- A computer system has physical memory
- A computer system may have memory domains
 - Each memory domains can be interleaved memory sets and memory chunks
 - Each memory chunks may have interleaved sets